1
|
Kessing LV, Knudsen MB, Rytgaard HCW, Torp-Pedersen C, Berk M. Lithium versus anticonvulsants and the risk of physical disorders - Results from a comprehensive long-term nation-wide population-based study emulating a target trial. Eur Neuropsychopharmacol 2024; 84:48-56. [PMID: 38663126 DOI: 10.1016/j.euroneuro.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 06/19/2024]
Abstract
Bipolar disorder is associated with increased rates of many physical disorders, but the effects of medication are unclear. We systematically investigated the associations between sustained use of first line maintenance agents, lithium versus lamotrigine and valproate, and the risk of physical disorders using a nation-wide population-based target trial emulation covering the entire 5.9 million inhabitants in Denmark. We identified two cohorts. Cohort 1: patients with a diagnosis of bipolar disorder prior to first purchase (N = 12.607). Cohort 2: all 156.678 adult patients who had their first ever purchase (since 1995) of either lithium, lamotrigine or valproate between 1997 and 2021 regardless of diagnosis. Main analyses investigated the effect of sustained exposure defined as exposure for all consecutive 6-months periods during a 10-year follow-up. Outcomes included a diagnosis of incident stroke, arteriosclerosis, angina pectoris, myocardial infarction, diabetes mellitus, myxedema, osteoporosis, dementia, Parkinson's disease, chronic kidney disease and cancer (including subtypes). In both Cohorts 1 and 2, there were no systematic statistically significant differences in associations between sustained use of lithium versus lamotrigine and valproate, respectively, and any physical disorder, including subtypes of disorders, except myxedema, for which exposure to lithium increased the absolute risk of myxedema with 7-10 % compared with lamotrigine or valproate. In conclusion, these analyses emulating a target trial of "real world" observational register-based data show that lithium does not increase the risk of developing any kind of physical disorders, except myxedema, which may be a result of detection bias.
Collapse
Affiliation(s)
- Lars Vedel Kessing
- Copenhagen Affective disorder Research Center (CADIC), Psychiatric Center Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| | - Mark Bech Knudsen
- Section of Biostatistics, Department of Public Health, University of Copenhagen, Denmark
| | | | | | - Michael Berk
- School of Medicine, Deakin University, Australia
| |
Collapse
|
2
|
Tsai KW, Yang YF, Wang LJ, Pan CC, Chang CH, Chiang YC, Wang TY, Lu RB, Lee SY. Correlation of potential diagnostic biomarkers (circulating miRNA and protein) of bipolar II disorder. J Psychiatr Res 2024; 172:254-260. [PMID: 38412788 DOI: 10.1016/j.jpsychires.2024.02.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/06/2024] [Accepted: 02/20/2024] [Indexed: 02/29/2024]
Abstract
OBJECTIVES We previously identified certain peripheral biomarkers of bipolar II disorder (BD-II) including circulating miRNAs (miR-7-5p, miR-142-3p, miR-221-5p, and miR-370-3p) and proteins (Matrix metallopeptidase 9 (MMP9), phenylalanyl-tRNA synthetase subunit beta (FARSB), peroxiredoxin 2 (PRDX2), carbonic anhydrase 1 (CA-1), and proprotein convertase subtilisin/kexin type 9 (PCSK9)). We try to explore the connection between these biomarkers. METHODS We explored correlations between the peripheral levels of above circulating miRNAs and proteins in our previously collected BD-II (N = 96) patients and control (N = 115) groups. We further searched TargetScan and BioGrid websites to identify direct and indirect interactions between these protein-coding genes and circulating miRNAs. RESULTS In the BD-II group, we identified significant correlations between the miR-221-5p and CA-1 (rho = -0.323, P = 0.001), FARSB (rho = 0.251, P = 0.014), MMP-9 (rho = 0.313, P = 0.002) and PCSK9 (rho = 0.252, P = 0.014). The miR-370-3p also significantly correlated with FARSB expression (rho = 0.330, P = 0.001) and PCSK9 expression (rho = 0.221, P = 0.031) in the BD-II group. Our findings were in line with the modulating axis identified from TargetScan and BioGrid, miR-221-5p/CA-1/MMP9 and miR-370-3p/FARSB/PCSK9, suggesting their association with BD-II. CONCLUSION Our result supported that peripheral candidate miRNA and protein biomarkers may interact in BD-II. We concluded that miR-221-5p/CA-1/MMP9 and miR-370-3p/FARSB/PCSK9 axes might act a critical role in the pathomechanism of BD-II.
Collapse
Affiliation(s)
- Kuo-Wang Tsai
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan
| | - Yi-Fang Yang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Liang-Jen Wang
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chih-Chuan Pan
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Cheng-Ho Chang
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Yung-Chih Chiang
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Tzu-Yun Wang
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ru-Band Lu
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Yanjiao Furen Hospital, Hebei, China
| | - Sheng-Yu Lee
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; Department of Psychiatry, Faculty of Medicine, Kaohsiung Medical University Kaohsiung, Taiwan.
| |
Collapse
|
3
|
Puglisi-Allegra S, Lazzeri G, Busceti CL, Giorgi FS, Biagioni F, Fornai F. Lithium engages autophagy for neuroprotection and neuroplasticity: translational evidence for therapy. Neurosci Biobehav Rev 2023; 148:105148. [PMID: 36996994 DOI: 10.1016/j.neubiorev.2023.105148] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/23/2023] [Accepted: 03/26/2023] [Indexed: 03/30/2023]
Abstract
Here an overview is provided on therapeutic/neuroprotective effects of Lithium (Li+) in neurodegenerative and psychiatric disorders focusing on the conspicuous action of Li+ through autophagy. The effects on the autophagy machinery remain the key molecular mechanisms to explain the protective effects of Li+ for neurodegenerative diseases, offering potential therapeutic strategies for the treatment of neuropsychiatric disorders and emphasizes a crossroad linking autophagy, neurodegenerative disorders, and mood stabilization. Sensitization by psychostimulants points to several mechanisms involved in psychopathology, most also crucial in neurodegenerative disorders. Evidence shows the involvement of autophagy and metabotropic Glutamate receptors-5 (mGluR5) in neurodegeneration due to methamphetamine neurotoxicity as well as in neuroprotection, both in vitro and in vivo models. More recently, Li+ was shown to modulate autophagy through its action on mGluR5, thus pointing to an additional way of autophagy engagement by Li+ and to a substantial role of mGluR5 in neuroprotection related to neural e neuropsychiatry diseases. We propose Li+ engagement of autophagy through the canonical mechanisms of autophagy machinery and through the intermediary of mGluR5.
Collapse
|
4
|
Chen PH, Hsiao CY, Chiang SJ, Shen RS, Lin YK, Chung KH, Tsai SY. Cardioprotective potential of lithium and role of fractalkine in euthymic patients with bipolar disorder. Aust N Z J Psychiatry 2023; 57:104-114. [PMID: 34875897 DOI: 10.1177/00048674211062532] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Over a half century, lithium has been used as the first-line medication to treat bipolar disorder. Emerging clinical and laboratory studies suggest that lithium may exhibit cardioprotective effects in addition to neuroprotective actions. Fractalkine (CX3CL1) is a unique chemokine associated with the pathogenesis of mood disorders and cardiovascular diseases. Herein we aimed to ascertain whether lithium treatment is associated with favorable cardiac structure and function in relation to the reduced CX3CL1 among patients with bipolar disorder. METHODS We recruited 100 euthymic patients with bipolar I disorder aged over 20 years to undergo echocardiographic study and measurement of plasma CX3CL1. Associations between lithium treatment, cardiac structure and function and peripheral CX3CL1 were analyzed according to the cardiovascular risk. The high cardiovascular risk was defined as (1) age ⩾ 45 years in men or ⩾ 55 years in women or (2) presence of concurrent cardiometabolic diseases. RESULTS In the high cardiovascular risk group (n = 61), patients who received lithium as the maintenance treatment had significantly lower mean values of left ventricular internal diameters at end-diastole (Cohen's d = 0.65, p = 0.001) and end-systole (Cohen's d = 0.60, p = 0.004), higher mean values of mitral valve E/A ratio (Cohen's d = 0.51, p = 0.019) and superior performance of global longitudinal strain (Cohen's d = 0.51, p = 0.037) than those without lithium treatment. In addition, mean plasma levels of CX3CL1 in the high cardiovascular risk group were significantly lower among patients with lithium therapy compared with those without lithium treatment (p = 0.029). Multiple regression models showed that the association between lithium treatment and mitral value E/A ratio was contributed by CX3CL1. CONCLUSION Data from this largest sample size study of the association between lithium treatment and echocardiographic measures suggest that lithium may protect cardiac structure and function in patients with bipolar disorder. Reduction of CX3CL1 may mediate the cardioprotective effects of lithium.
Collapse
Affiliation(s)
- Pao-Huan Chen
- Department of Psychiatry, Taipei Medical University Hospital, Taipei.,Psychiatric Research Center, Taipei Medical University Hospital, Taipei.,Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei
| | - Cheng-Yi Hsiao
- Division of Cardiology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei.,Cardiovascular Research Center, Taipei Medical University Hospital, Taipei.,Taipei Heart Institute, Taipei Medical University, Taipei.,Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei
| | - Shuo-Ju Chiang
- Division of Cardiology, Department of Internal Medicine, Taipei City Hospital, Taipei
| | - Ruei-Siang Shen
- Department of Clinical Psychology, College of Medicine, Fu-Jen Catholic University, New Taipei City
| | - Yen-Kuang Lin
- Graduate Institute of Athletics and Coaching Science, National Taiwan Sport University, Taoyuan
| | - Kuo-Hsuan Chung
- Department of Psychiatry, Taipei Medical University Hospital, Taipei.,Psychiatric Research Center, Taipei Medical University Hospital, Taipei.,Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei
| | - Shang-Ying Tsai
- Department of Psychiatry, Taipei Medical University Hospital, Taipei.,Psychiatric Research Center, Taipei Medical University Hospital, Taipei.,Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei
| |
Collapse
|
5
|
Abstract
PURPOSE Development of new thymoleptic medications has primarily centered on anticonvulsants and antipsychotic drugs. Based on our studies of intracellular calcium ion signaling in mood disorders, we were interested in the use of novel medications that act on this mechanism of neuronal activation as potential mood stabilizers. METHOD We reviewed the dynamics of the calcium second messenger system and the international body of data demonstrating increased baseline and stimulated intracellular calcium levels in peripheral cells of patients with bipolar mood disorders. We then examined studies of the effect of established mood stabilizers on intracellular calcium ion levels and on mechanisms of mobilization of this second messenger. After summarizing studies of calcium channel blocking agents, whose primary action is to attenuate hyperactive intracellular calcium signaling, we considered clinical experience with this class of medications and the potential for further research. FINDINGS Established mood stabilizers normalize increased intracellular calcium ion levels in bipolar disorder patients. Most case series and controlled studies suggest an antimanic and possibly mood stabilizing effect of the calcium channel blocking medications verapamil and nimodipine, with fewer data on isradipine. A relatively low risk of teratogenicity and lack of cognitive adverse effects or weight gain suggest possible applications in pregnancy and in patients for whom these are considerations. IMPLICATIONS Medications that antagonize hyperactive intracellular signaling warrant more interest than they have received in psychiatry. Further experience will clarify the applications of these medications alone and in combination with more established mood stabilizers.
Collapse
|
6
|
Lee SY, Wang TY, Lu RB, Wang LJ, Chang CH, Chiang YC, Tsai KW. Peripheral BDNF correlated with miRNA in BD-II patients. J Psychiatr Res 2021; 136:184-189. [PMID: 33610945 DOI: 10.1016/j.jpsychires.2021.02.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/08/2021] [Accepted: 02/08/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVES We have identified the association between peripheral levels of candidate miRNAs (miR-7-5p, miR-142-3p, miR-221-5p, and miR-370-3p) for BD-II in previous study. Most of these miRNAs are associated with regulation of expression of peripheral brain derived neurotrophic factor (BDNF) levels. In order to clarify the underlying mechanism of BDNF and miRNAs in the pathogenesis of BD-II, it is of interest to investigate the relation between the peripheral levels of miR-7-5p, miR-142-3p, miR-221-5p, miR-370-3p with BDNF levels. Because the BDNF Val66Met polymorphism influence the secretion of BDNF, we further stratified the above correlations by this polymorphism. METHODS We have recruited 98 BD-II patients. Beside analyzing peripheral levels of miR-7-5p, miR-142-3p, miR-221-5p, miR-370-3p, and BDNF, the genetic distribution of the BDNF Val66Met polymorphism was also analyzed. RESULTS We found that the miR7-5p, miR221-5p, and miR370-3p significantly correlated with the BDNF levels for all patients. If stratified by the BDNF Val66Met polymorphism, the significant correlation between miR221-5p and miR370-3p with BDNF only remained in the Val/Met genotype. However, the correlation between miR7-5p and BDNF level is significant in all 3 genotypes. CONCLUSION Our result supported that these miRNAs may be involved in the pathomechanism of BD-II through relation with BDNF.
Collapse
Affiliation(s)
- Sheng-Yu Lee
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; Department of Psychiatry, Faculty of Medicine, Kaohsiung Medical University Kaohsiung, Taiwan; Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tzu-Yun Wang
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ru-Band Lu
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Yanjiao Furen Hospital, Hebei, China
| | - Liang-Jen Wang
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Cheng-Ho Chang
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Yung-Chih Chiang
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Kuo-Wang Tsai
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan.
| |
Collapse
|
7
|
Gandhi AB, Kaleem I, Alexander J, Hisbulla M, Kannichamy V, Antony I, Mishra V, Banerjee A, Khan S. Neuroplasticity Improves Bipolar Disorder: A Review. Cureus 2020; 12:e11241. [PMID: 33274124 PMCID: PMC7707145 DOI: 10.7759/cureus.11241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Bipolar disorder (BD) is known for impairments in neurotrophic and neuroprotective processes, which translate into emotional and cognitive deficits affecting various brain regions. Using its neuroplastic properties, lithium, thus far, is the mood stabilizer used to amend the pathophysiological imbalance in BD. Neuroplasticity has gained massive popularity in the research department in the past decade, yet it lacks direct effort in changing the protocol through which physicians treat BD. Physical activity alongside cognitive therapy is theorized to produce long-term changes in the executive control network due to the assimilation of new neurons, amendment of emotional lability through hippocampal neurogenesis, and strengthening the stability of frontosubcortical and prefrontolimbic brain regions via neurogenesis. This review aims to provide an incentive for utilizing neuroplastic mechanisms concerning impairments dispensed by BD.
Collapse
Affiliation(s)
- Arohi B Gandhi
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Ifrah Kaleem
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Josh Alexander
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Mohamed Hisbulla
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Vishmita Kannichamy
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Ishan Antony
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Vinayak Mishra
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Amit Banerjee
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Safeera Khan
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
8
|
Biological Targets Underlying the Antisuicidal Effects of Lithium. Curr Behav Neurosci Rep 2020. [DOI: 10.1007/s40473-020-00208-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
9
|
Case KC, Salsaa M, Yu W, Greenberg ML. Regulation of Inositol Biosynthesis: Balancing Health and Pathophysiology. Handb Exp Pharmacol 2020; 259:221-260. [PMID: 30591968 DOI: 10.1007/164_2018_181] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Inositol is the precursor for all inositol compounds and is essential for viability of eukaryotic cells. Numerous cellular processes and signaling functions are dependent on inositol compounds, and perturbation of their synthesis leads to a wide range of human diseases. Although considerable research has been directed at understanding the function of inositol compounds, especially phosphoinositides and inositol phosphates, a focus on regulatory and homeostatic mechanisms controlling inositol biosynthesis has been largely neglected. Consequently, little is known about how synthesis of inositol is regulated in human cells. Identifying physiological regulators of inositol synthesis and elucidating the molecular mechanisms that regulate inositol synthesis will contribute fundamental insight into cellular processes that are mediated by inositol compounds and will provide a foundation to understand numerous disease processes that result from perturbation of inositol homeostasis. In addition, elucidating the mechanisms of action of inositol-depleting drugs may suggest new strategies for the design of second-generation pharmaceuticals to treat psychiatric disorders and other illnesses.
Collapse
Affiliation(s)
- Kendall C Case
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | - Michael Salsaa
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | - Wenxi Yu
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Miriam L Greenberg
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
10
|
Cikánková T, Fišar Z, Hroudová J. In vitro effects of antidepressants and mood-stabilizing drugs on cell energy metabolism. Naunyn Schmiedebergs Arch Pharmacol 2019; 393:797-811. [PMID: 31858154 DOI: 10.1007/s00210-019-01791-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 12/05/2019] [Indexed: 01/16/2023]
Abstract
The evaluation of drug-induced mitochondrial impairment may be important in drug development as well as in the comprehension of molecular mechanisms of the therapeutic and adverse effects of drugs. The primary aim of this study was to investigate the effects of four drugs for treatment of depression (bupropion, fluoxetine, amitriptyline, and imipramine) and five drugs for bipolar disorder treatment (lithium, valproate, valpromide, lamotrigine, and carbamazepine) on cell energy metabolism. The in vitro effects of the selected psychopharmaca were measured in isolated pig brain mitochondria; the activities of citrate synthase (CS) and electron transport chain (ETC) complexes (I, II + III, and IV) and mitochondrial respiration rates linked to complex I and complex II were measured. Complex I was significantly inhibited by lithium, carbamazepine, fluoxetine, amitriptyline, and imipramine. The activity of complex IV was decreased after exposure to carbamazepine. The activities of complex II + III and CS were not affected by any tested drug. Complex I-linked respiration was significantly inhibited by bupropion, fluoxetine, amitriptyline, imipramine, valpromide, carbamazepine, and lamotrigine. Significant inhibition of complex II-linked respiration was observed after mitochondria were exposed to amitriptyline, fluoxetine, and carbamazepine. Our outcomes confirm the need to investigate the effects of drugs on both the total respiration rate and the activities of individual enzymes of the ETC to reveal the risk of adverse effects as well as to understand the molecular mechanisms leading to drug-induced changes in the respiratory rate. Our approach can be further replicated to study the mechanisms of action of newly developed drugs.
Collapse
Affiliation(s)
- Tereza Cikánková
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00, Prague 2, Czech Republic
| | - Zdeněk Fišar
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00, Prague 2, Czech Republic
| | - Jana Hroudová
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00, Prague 2, Czech Republic. .,Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Albertov 4, 128 00, Prague 2, Czech Republic.
| |
Collapse
|
11
|
Vaseghi S, Babapour V, Nasehi M, Zarrindast MR. Synergistic but not additive effect between ACPA and lithium in the dorsal hippocampal region on spatial learning and memory in rats: Isobolographic analyses. Chem Biol Interact 2019; 315:108895. [PMID: 31715133 DOI: 10.1016/j.cbi.2019.108895] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/31/2019] [Accepted: 11/08/2019] [Indexed: 12/27/2022]
Abstract
Lithium and cannabinoids can disrupt learning and memory performance. The goal of the present study is to investigate the additive or synergistic effect of lithium and cannabinoid combination doses on spatial learning and memory in rats by isobolographic analyses. Although several studies have suggested synergistic effects of cannabinoids or lithium in response to other compounds, in most of them isobolographic analyses were not used; Thus, there is a need for more detailed studies using isobolographic analyses. In this study, spatial memory was evaluated in the Morris Water Maze (MWM) apparatus by eight trials in the training day and one trial in the test day. Lithium was injected intraperitoneal and ACPA (cannabinoid type 1 receptor agonist) was injected into the dorsal hippocampal region (intra-CA1). For the isobolographic analyses, the ED50 of lithium (2.5 mg/kg) and ACPA (0.5 μg/rat) was measured by linear regression analysis, considering the doses were tested in our previous research. The results showed that, combinations of low, medium and high doses of lithium (0.312 mg/kg, 0.625 mg/kg and 1.25 mg/kg, respectively) and ACPA (0.0625 μg/rat, 0.125 μg/rat and 0.25 μg/rat, respectively) had synergistic but not additive effect on spatial learning and spatial memory. In conclusion, we suggest that combination doses of lithium and ACPA have synergistic but not additive effect on spatial learning and memory in the rat's dorsal hippocampal region.
Collapse
Affiliation(s)
- Salar Vaseghi
- Department of Physiology, Faculty of Veterinary Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Vahab Babapour
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Institute for Cognitive Science Studies (ICSS), Tehran, Iran; Department of Neuroendocrinology, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Limanaqi F, Biagioni F, Ryskalin L, Busceti CL, Fornai F. Molecular Mechanisms Linking ALS/FTD and Psychiatric Disorders, the Potential Effects of Lithium. Front Cell Neurosci 2019; 13:450. [PMID: 31680867 PMCID: PMC6797817 DOI: 10.3389/fncel.2019.00450] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 09/20/2019] [Indexed: 12/12/2022] Open
Abstract
Altered proteostasis, endoplasmic reticulum (ER) stress, abnormal unfolded protein response (UPR), mitochondrial dysfunction and autophagy impairment are interconnected events, which contribute to the pathogenesis of amyotrophic lateral sclerosis (ALS)/frontotemporal dementia (FTD). In recent years, the mood stabilizer lithium was shown to potentially modify ALS/FTD beyond mood disorder-related pathology. The effects of lithium are significant in ALS patients carrying genetic variations in the UNC13 presynaptic protein, which occur in ALS/FTD and psychiatric disorders as well. In the brain, lithium modulates a number of biochemical pathways involved in synaptic plasticity, proteostasis, and neuronal survival. By targeting UPR-related events, namely ER stress, excitotoxicity and autophagy dysfunction, lithium produces plastic effects. These are likely to relate to neuroprotection, which was postulated for mood and motor neuron disorders. In the present manuscript, we try to identify and discuss potential mechanisms through which lithium copes concomitantly with ER stress, UPR and autophagy dysfunctions related to UNC13 synaptic alterations and aberrant RNA and protein processing. This may serve as a paradigm to provide novel insights into the neurobiology of ALS/FTD featuring early psychiatric disturbances.
Collapse
Affiliation(s)
- Fiona Limanaqi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | | | - Larisa Ryskalin
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | | | - Francesco Fornai
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.,IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|
13
|
González-Pinto A, López-Peña P, Bermúdez-Ampudia C, Vieta E, Martinez-Cengotitabengoa M. Can lithium salts prevent depressive episodes in the real world? Eur Neuropsychopharmacol 2018; 28:1351-1359. [PMID: 30243681 DOI: 10.1016/j.euroneuro.2018.09.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/08/2018] [Accepted: 09/05/2018] [Indexed: 12/11/2022]
Abstract
To critically examine the effectiveness of lithium in preventing depressive symptoms (mixed and depressive episodes) in real life settings, taking into account adherence to drug treatment and its implications for the clinical costs of the disease. Overall, 72 patients with bipolar disorder initially treated with lithium carbonate were included and followed-up for 10 years. Patients were assessed every 8 weeks for morbidity and alcohol/drug consumption. Patients with good adherence to lithium had fewer episodes with depressive features than poor adherers (B = 2.405, p = 0.046) and also fewer manic and hypomanic episodes (B = 2.572; p < 0.001), after controlling for confounders. Time to relapse into a depressive or mixed episode and into a manic or hypomanic episode was shorter in patients with poor adherence. The costs of the 1.95 ± 2.38 (mean ± standard deviation) admissions of adherent patients through the 10 years of follow-up were €10,349, while the costs of the 6.25 ± 4.92 admissions of non-adherent patients were €44,547. In clinical practice settings, long-term lithium salts seem to have a preventive effect on depressive symptoms.
Collapse
Affiliation(s)
- Ana González-Pinto
- CIBERSAM-BioAraba Research Institute, Vitoria, Spain; University of the Basque Country (EHU/UPV), Vitoria, Spain
| | - Purificación López-Peña
- CIBERSAM-BioAraba Research Institute, Vitoria, Spain; University of the Basque Country (EHU/UPV), Vitoria, Spain
| | | | - Eduard Vieta
- Hospital Clinic, Institute of Neuroscience, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Spain
| | - Mónica Martinez-Cengotitabengoa
- CIBERSAM-BioAraba Research Institute, Vitoria, Spain; University of the Basque Country (EHU/UPV), Vitoria, Spain; National Distance Education University Spain (UNED), Vitoria, Spain.
| |
Collapse
|
14
|
Miskowiak KW, Petersen NA, Harmer CJ, Ehrenreich E, Kessing LV, Vinberg M, Macoveanu J, Siebner HR. Neural correlates of improved recognition of happy faces after erythropoietin treatment in bipolar disorder. Acta Psychiatr Scand 2018; 138:336-347. [PMID: 29882276 DOI: 10.1111/acps.12915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/11/2018] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Bipolar disorder is associated with impairments in social cognition including the recognition of happy faces. This is accompanied by imbalanced cortico-limbic response to emotional faces. We found that EPO improved the recognition of happy faces in patients with bipolar disorder. This randomized, controlled, longitudinal fMRI study explores the neuronal underpinnings of this effect. METHOD Forty-four patients with bipolar disorder in full or partial remission were randomized to eight weekly erythropoietin (EPO; 40 000 IU) or saline (NaCl 0.9%) infusions in a double-blind, parallel-group design. Participants underwent whole-brain fMRI at 3T, mood ratings and blood tests at baseline and week 14. During fMRI, participants viewed happy and fearful faces and performed a gender discrimination task. RESULTS Thirty-four patients had complete pre- and post-treatment fMRI data (EPO: N = 18, saline: N = 16). Erythropoietin vs. saline increased right superior frontal response to happy vs. fearful faces. This correlated with improved happiness recognition in the EPO group. Erythropoietin also enhanced gender discrimination accuracy for happy faces. These effects were not influenced by medication, mood, red blood cells or blood pressure. CONCLUSIONS Together with previous findings, the present observation suggests that increased dorsal prefrontal attention control is a common mechanism of EPO-associated improvements across several cognitive domains.
Collapse
Affiliation(s)
- K W Miskowiak
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - N A Petersen
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - C J Harmer
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - E Ehrenreich
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Denmark
| | - L V Kessing
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - M Vinberg
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - J Macoveanu
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - H R Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital, Hvidovre, Denmark.,Department of Neurology, Copenhagen University Hospital, Bispebjerg, Copenhagen, Denmark
| |
Collapse
|
15
|
Lithium, Stress, and Resilience in Bipolar Disorder: Deciphering this key homeostatic synaptic plasticity regulator. J Affect Disord 2018; 233:92-99. [PMID: 29310970 DOI: 10.1016/j.jad.2017.12.026] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 11/30/2017] [Accepted: 12/19/2017] [Indexed: 01/12/2023]
Abstract
BACKGROUND Lithium is the lightest metal and the only mood stabilizer that has been used for over half a century for the treatment of bipolar disorder (BD). As a small ion, lithium is omnipresent, and consequently, its molecular mechanisms and targets are widespread. Currently, lithium is a crucial pharmacotherapy for the treatment of acute mood episodes, prophylactic therapy, and suicide prevention in BD. Besides, lithium blood level is the most widely used biomarker in clinical psychiatry. The concept of stress in BD characterizes short- and long-term deleterious effects at multiple levels (from genes to behaviors) and the ability to establish homeostatic regulatory mechanisms to either prevent or reverse these effects. Within this concept, lithium has consistently shown anti-stress effects, by normalizing components across several levels associated with BD-induced impairments in cellular resilience and plasticity. METHODS A literature search for biomarkers associated with lithium effects at multiple targets, with a particular focus on those related to clinical outcomes was performed. An extensive search of the published literature using PubMed, Medline and Google Scholar was performed. Example search terms included lithium, plasticity, stress, efficacy, and neuroimaging. Articles determined by the author to focus on lithium's impact on neural plasticity markers (central and periphery) and clinical outcomes were examined in greater depth. Relevant papers were evaluated, selected and included in this review. RESULTS Lithium induces neurotrophic and neuroprotective effects in a wide range of preclinical and translational models. Lithium's neurotrophic effects are related to the enhancement of cellular proliferation, differentiation, growth, and regeneration, whereas its neuroprotective effects limit the progression of neuronal atrophy or cell death following the onset of BD. Lithium's neurotrophic and neuroprotective effects seem most pronounced in the presence of pathology, which again supports its pivotal role as an active homeostatic regulator. LIMITATIONS Few studies associated with clinical outcomes. Due to space limitations, the author was unable to detail all findings, in special those originated from preclinical studies. CONCLUSIONS These results support a potential role for biomarkers involved in neuroprotection and activation of plasticity pathways in lithium's clinical response. Evidence supporting this model comes from results evaluating macroscopic and microscopic brain structure as well neurochemical findings in vivo from cellular to sub-synaptic (molecules and intracellular signaling) compartments using central and peripheral biomarkers. Challenges to precisely decipher lithium's biological mechanisms involved in its therapeutic profile include the complex nature of the illness and clinical subtypes, family history and comorbid conditions. In the context of personalized medicine, it is necessary to validate predictive biomarkers of response to lithium by designing longitudinal clinical studies during mood episodes and associated clinical dimensions in BD.
Collapse
|
16
|
Soeiro-de-Souza MG, Otaduy MCG, Machado-Vieira R, Moreno RA, Nery FG, Leite C, Lafer B. Anterior Cingulate Cortex Glutamatergic Metabolites and Mood Stabilizers in Euthymic Bipolar I Disorder Patients: A Proton Magnetic Resonance Spectroscopy Study. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2018; 3:985-991. [PMID: 29789269 DOI: 10.1016/j.bpsc.2018.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 02/28/2018] [Accepted: 02/28/2018] [Indexed: 02/04/2023]
Abstract
BACKGROUND Bipolar disorder is a chronic and recurrent illness characterized by depressive and manic episodes. Proton magnetic resonance spectroscopy (1H-MRS) studies have demonstrated glutamate (Glu) system abnormalities in BD, but it is unclear how Glu varies among mood states and how medications modulate it. The objective of this study was to investigate the influence of mood stabilizers on anterior cingulate cortex Glu levels using 1H-MRS during euthymia. METHODS One hundred twenty-eight bipolar I disorder (BDI) euthymic subjects and 80 healthy control subjects underwent 3T brain 1H-MRS imaging examination including acquisition of an anterior cingulate cortex single voxel (8 cm3) 1H-MRS, based on a point resolved spectroscopy (PRESS) sequence with an echo time of 80 ms and a repetition time of 1500 ms (BIPUSP MRS study). The Glu system was described by measuring Glu and the sum of Glu and glutamine (Glx) using creatine (Cre) as a reference. RESULTS Euthymic BDI subjects presented with higher ratios of Glu/Cre and Glx/Cre compared to healthy control subjects. Glu/Cre ratios were lower among patients using anticonvulsants, while Glx/Cre did not differ between the two groups. Lithium, antipsychotics, and antidepressants did not influence Glu/Cre or Glx/Cre. CONCLUSIONS We reported Glu/Cre and Glx abnormalities in the largest sample of euthymic BDI patients studied by 1H-MRS to date. Our data indicate that both Glu/Cre and Glx/Cre are elevated in BDI during euthymia regardless of medication effects, reinforcing the hypothesis of glutamatergic abnormalities in BD. Furthermore, we found an effect of anticonvulsants on Glu/Cre during euthymia, which might indicate a mechanism of mood stabilization in BD.
Collapse
Affiliation(s)
- Marcio Gerhardt Soeiro-de-Souza
- Mood Disorders Unit, Department and Institute of Psychiatry, University of São Paulo, São Paulo, Brazil; Genetics and Pharmacogenetics Unit, Department and Institute of Psychiatry, University of São Paulo, São Paulo, Brazil.
| | | | | | - Ricardo Alberto Moreno
- Mood Disorders Unit, Department and Institute of Psychiatry, University of São Paulo, São Paulo, Brazil
| | - Fabiano G Nery
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Claudia Leite
- Laboratory of Magnetic Resonance, Department and Institute of Radiology, University of São Paulo, São Paulo, Brazil
| | - Beny Lafer
- Bipolar Disorders Program, Department and Institute of Psychiatry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
17
|
Szulc A, Wiedlocha M, Waszkiewicz N, Galińska-Skok B, Marcinowicz P, Gierus J, Mosiolek A. Proton magnetic resonance spectroscopy changes after lithium treatment. Systematic review. Psychiatry Res Neuroimaging 2018; 273:1-8. [PMID: 29414126 DOI: 10.1016/j.pscychresns.2018.01.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 12/10/2017] [Accepted: 01/12/2018] [Indexed: 01/03/2023]
Abstract
1H MRS is widely used in the research of mental disorders. It enables evaluation of concentration or ratios of several metabolites, which play important roles in brain metabolism: N-acetylaspartate (NAA), choline containing compounds, myo-inositol and glutamate, glutamine and GABA (together as Glx complex or separately). Specifically in bipolar disorder brain metabolite abnormalities include mostly NAA reduces and Glx increases in different brain regions. Bipolar disorder is associated with impairment in neurotrophic and cellular plasticity, resilience pathways and in neuroprotective processes. Lithium, which is commonly used in BD treatment, modulates neurotransmitter release, reduces oxidative stress and apoptosis, induces angiogenesis, neurogenesis and neurotrophic response. Thus brain metabolite abnormalities may elucidate the mechanisms of this processes. In the present article we systematically reviewed 26 studies - the majority of them investigated bipolar disorder ( 7 follow-up and all 11 cross-sectional studies). Moreover we dispute whether the influence of lithium on brain metabolites in bipolar disorder could explain the background of its potential neuroprotective action. The results of our literature review do not equivocally confirm Lithium's influence the metabolite changes in the brain. The majority of the follow-up studies do not support the initially assumed influence of Lithium on the increase of NAA level in various brain structures. The results of studies are inconclusive with regard to levels of Glx or Glu and Lithium intake, rather point a lack of relationship. The above results were reviewed according to the most recent theories in the field accounting for the impact of lithium (1)HMRS measures.
Collapse
Affiliation(s)
- Agata Szulc
- Department of Psychiatry, Medical University of Warsaw, Pruszkow, Poland
| | | | | | - Beata Galińska-Skok
- Department of Psychiatry, Medical University of Białystok, Choroszcz, Poland
| | - Piotr Marcinowicz
- Department of Psychiatry, Medical University of Warsaw, Pruszkow, Poland
| | - Jacek Gierus
- Department of Psychiatry, Medical University of Warsaw, Pruszkow, Poland
| | - Anna Mosiolek
- Department of Psychiatry, Medical University of Warsaw, Pruszkow, Poland; Department of Psychiatry, Medical University of Białystok, Choroszcz, Poland
| |
Collapse
|
18
|
Deckersbach T, Peters AT, Shea C, Gosai A, Stange JP, Peckham AD, Ellard KK, Otto MW, Rauch SL, Dougherty DD, Nierenberg AA. Memory performance predicts response to psychotherapy for depression in bipolar disorder: A pilot randomized controlled trial with exploratory functional magnetic resonance imaging. J Affect Disord 2018; 229:342-350. [PMID: 29331692 PMCID: PMC5807220 DOI: 10.1016/j.jad.2017.12.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/21/2017] [Accepted: 12/26/2017] [Indexed: 02/08/2023]
Abstract
OBJECTIVE This pilot randomized controlled trial compared Cognitive Behavior Therapy (CBT) and Supportive Psychotherapy (SP) for the treatment of depression in bipolar I disorder. We also examined whether exploratory verbal memory, executive functioning, and neural correlates of verbal memory during functional magnetic resonance imaging (fMRI) predicted change in depression severity. METHODS Thirty-two adults (ages 18-65) with DSM-IV bipolar I disorder meeting current criteria for a major depressive episode were randomized to 18 weeks of CBT or SP. Symptom severity was assessed before, at the mid-point, and after the 18-week intervention. All participants completed a brief pre-treatment neuropsychological testing battery (including the California Verbal Learning Test-2nd Edition, Delis Kaplan Executive Functioning System [DKEFS] Trail-making Test, and DKEFS Sorting Test), and a sub-set of 17 participants provided usable fMRI data while completing a verbal learning paradigm that consisted of encoding word lists. RESULTS CBT and SP yielded comparable improvement in depressive symptoms from pre- to post-treatment. Better retention of learned information (CVLT-II long delay free recall vs. Trial 5) and recognition (CVLT-II hits) were associated with greater improvement in depression in both treatments. Increased activation in the left dorsolateral prefrontal cortex and right hippocampus during encoding was also related to depressive symptom improvement. LIMITATIONS Sample size precluded tests of clinical factors that may interact with cognitive/neural function to predict treatment outcome. CONCLUSION Neuropsychological assessment and fMRI offer additive information regarding who is most likely to benefit from psychotherapy for bipolar depression.
Collapse
Affiliation(s)
- Thilo Deckersbach
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| | - Amy T Peters
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Conor Shea
- Department of Neuroscience, Boston University, Boston, MA, USA
| | - Aishwarya Gosai
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Jonathan P Stange
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Andrew D Peckham
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, McLean Hospital, Belmont, MA, USA
| | - Kristen K Ellard
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Michael W Otto
- Department of Psychology, Boston University, Boston, MA, USA
| | - Scott L Rauch
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, McLean Hospital, Belmont, MA, USA
| | - Darin D Dougherty
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Andrew A Nierenberg
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
19
|
The CACNA1C risk allele rs1006737 is associated with age-related prefrontal cortical thinning in bipolar I disorder. Transl Psychiatry 2017; 7:e1086. [PMID: 28398341 PMCID: PMC5416698 DOI: 10.1038/tp.2017.57] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 02/02/2017] [Accepted: 02/18/2017] [Indexed: 12/20/2022] Open
Abstract
Calcium channels control the inflow of calcium ions into cells and are involved in diverse cellular functions. The CACNA1C gene polymorphism rs1006737 A allele has been strongly associated with increased risk for bipolar disorder (BD) and with modulation of brain morphology. The medial prefrontal cortex (mPFC) has been widely associated with mood regulation in BD, but the role of this CACNA1C polymorphism in mPFC morphology and brain aging has yet to be elucidated. One hundred seventeen euthymic BD type I subjects were genotyped for CACNA1C rs1006737 and underwent 3 T three-dimensional structural magnetic resonance imaging scans to determine cortical thickness of mPFC components (superior frontal cortex (sFC), medial orbitofrontal cortex (mOFC), caudal anterior cingulate cortex (cACC) and rostral anterior cingulate cortex (rACC)). Carriers of the CACNA1C allele A exhibited greater left mOFC thickness compared to non-carriers. Moreover, CACNA1C A carriers showed age-related cortical thinning of the left cACC, whereas among A non-carriers there was not an effect of age on left cACC cortical thinning. In the sFC, mOFC and rACC (left or right), a negative correlation was observed between age and cortical thickness, regardless of CACNA1C rs1006737 A status. Further studies investigating the direct link between cortical thickness, calcium channel function, apoptosis mechanism and their underlying relationship with aging-associated cognitive decline in BD are warranted.
Collapse
|
20
|
Diagnosis and body mass index effects on hippocampal volumes and neurochemistry in bipolar disorder. Transl Psychiatry 2017; 7:e1071. [PMID: 28350397 PMCID: PMC5404613 DOI: 10.1038/tp.2017.42] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 11/14/2016] [Accepted: 01/15/2017] [Indexed: 12/14/2022] Open
Abstract
We previously reported that higher body mass index (BMI) was associated with greater hippocampal glutamate+glutamine in people with bipolar disorder (BD), but not in non-BD healthy comparator subjects (HSs). In the current report, we extend these findings by examining the impact of BD diagnosis and BMI on hippocampal volumes and the concentrations of several additional neurochemicals in 57 early-stage BD patients and 31 HSs. Using 3-T magnetic resonance imaging and magnetic resonance spectroscopy, we measured bilateral hippocampal volumes and the hippocampal concentrations of four neurochemicals relevant to BD: N-acetylaspartate+N-acteylaspartylglutamate (tNAA), creatine+phosphocreatine (Cre), myoinositol (Ins) and glycerophosphocholine+phosphatidylcholine (Cho). We used multivariate factorial analysis of covariance to investigate the impact of diagnosis (patient vs HS) and BMI category (normal weight vs overweight/obese) on these variables. We found a main effect of diagnosis on hippocampal volumes, with patients having smaller hippocampi than HSs. There was no association between BMI and hippocampal volumes. We found diagnosis and BMI effects on hippocampal neurochemistry, with patients having lower Cre, Ins and Cho, and overweight/obese subjects having higher levels of these chemicals. In patient-only models that controlled for clinical and treatment variables, we detected an additional association between higher BMI and lower tNAA that was absent in HSs. To our knowledge, this was the first study to investigate the relative contributions of BD diagnosis and BMI to hippocampal volumes, and only the second to investigate their contributions to hippocampal chemistry. It provides further evidence that diagnosis and elevated BMI both impact limbic brain areas relevant to BD.
Collapse
|
21
|
Sigitova E, Fišar Z, Hroudová J, Cikánková T, Raboch J. Biological hypotheses and biomarkers of bipolar disorder. Psychiatry Clin Neurosci 2017; 71:77-103. [PMID: 27800654 DOI: 10.1111/pcn.12476] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 10/04/2016] [Accepted: 10/25/2016] [Indexed: 02/06/2023]
Abstract
The most common mood disorders are major depressive disorders and bipolar disorders (BD). The pathophysiology of BD is complex, multifactorial, and not fully understood. Creation of new hypotheses in the field gives impetus for studies and for finding new biomarkers for BD. Conversely, new biomarkers facilitate not only diagnosis of a disorder and monitoring of biological effects of treatment, but also formulation of new hypotheses about the causes and pathophysiology of the BD. BD is characterized by multiple associations between disturbed brain development, neuroplasticity, and chronobiology, caused by: genetic and environmental factors; defects in apoptotic, immune-inflammatory, neurotransmitter, neurotrophin, and calcium-signaling pathways; oxidative and nitrosative stress; cellular bioenergetics; and membrane or vesicular transport. Current biological hypotheses of BD are summarized, including related pathophysiological processes and key biomarkers, which have been associated with changes in genetics, systems of neurotransmitter and neurotrophic factors, neuroinflammation, autoimmunity, cytokines, stress axis activity, chronobiology, oxidative stress, and mitochondrial dysfunctions. Here we also discuss the therapeutic hypotheses and mechanisms of the switch between depressive and manic state.
Collapse
Affiliation(s)
- Ekaterina Sigitova
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Zdeněk Fišar
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Jana Hroudová
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Tereza Cikánková
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Jiří Raboch
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| |
Collapse
|
22
|
The correlation between plasma brain-derived neurotrophic factor and cognitive function in bipolar disorder is modulated by the BDNF Val66Met polymorphism. Sci Rep 2016; 6:37950. [PMID: 27905499 PMCID: PMC5131343 DOI: 10.1038/srep37950] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 11/01/2016] [Indexed: 02/07/2023] Open
Abstract
We explored the effect of the Brain-derived neurotrophic factor (BDNF) Val66Met polymorphism (rs6265) on correlation between changes in plasma BDNF levels with cognitive function and quality of life (QoL) after 12 weeks of treatment in bipolar disorder (BD). Symptom severity and plasma BDNF levels were assessed upon recruitment and during weeks 1, 2, 4, 8 and 12. QoL, the Wisconsin Card Sorting Test (WCST), and the Conners’ Continuous Performance Test (CPT) were assessed at baseline and endpoint. The BDNF Val66Met polymorphism was genotyped. Changes in cognitive function and QoL over 12 weeks were reduced using factor analysis for the evaluation of their correlations with changes in plasma BDNF. Five hundred forty-one BD patients were recruited and 65.6% of them completed the 12-week follow-up. Changes in plasma BDNF levels with factor 1 (WCST) were significantly negatively correlated (r = −0.25, p = 0.00037). After stratification of BD subtypes and BDNF genotypes, this correlation was significant only in BP-I and the Val/Met genotype (r = −0.54, p = 0.008). We concluded that changes in plasma BDNF levels significantly correlated with changes in WCST scores in BD and is moderated by the BDNF Val66Met polymorphism and the subtype of BD.
Collapse
|
23
|
Uemura T, Green M, Warsh JJ. CACNA1C SNP rs1006737 associates with bipolar I disorder independent of the Bcl-2 SNP rs956572 variant and its associated effect on intracellular calcium homeostasis. World J Biol Psychiatry 2016; 17:525-34. [PMID: 25843436 DOI: 10.3109/15622975.2015.1019360] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVES Intracellular calcium (Ca(2+)) dyshomeostasis (ICDH) has been implicated in bipolar disorder (BD) pathophysiology. We previously showed that SNP rs956572 in the B-cell CLL/lymphoma 2 (Bcl-2) gene associates with elevated B lymphoblast (BLCL) intracellular Ca(2+) concentrations ([Ca(2+)]B) differentially in BD-I. Genome-wide association studies strongly support the association between BD and the SNP rs1006737, located within the L-type voltage-dependent Ca(2+) channel α1C subunit gene (CACNA1C). Here we investigated whether this CACNA1C variant also associates with ICDH and interacts with SNP rs956572 on [Ca(2+)]B in BD-I. METHODS CACNA1C SNP rs1006737 was genotyped in 150 BD-I, 65 BD-II, 30 major depressive disorder patients, and 70 healthy subjects with available BLCL [Ca(2+)]B and Bcl-2 SNP rs956572 genotype measures. RESULTS SNP rs1006737 was significantly associated with BD-I. The [Ca(2+)]B was significantly higher in BD-I rs1006737 A compared with healthy A allele carriers and also in healthy GG compared with A allele carriers. There was no significant interaction between SNP rs1006737 and SNP rs956572 on [Ca(2+)]B. CONCLUSIONS Our study further supports the association of SNP rs1006737 with BD-I and suggests that CACNA1C SNP rs1006737 and Bcl-2 SNP rs956572, or specific causal variants in LD with these proxies, act independently to increase risk and ICDH in BD-I.
Collapse
Affiliation(s)
- Takuji Uemura
- a Laboratory of Cellular and Molecular Pathophysiology, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health , Toronto , Ontario , Canada.,b Department of Psychiatry , University of Toronto , Toronto , Ontario , Canada.,c Department of Neuropsychiatry , Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi , Chuo , Yamanashi , Japan
| | - Marty Green
- a Laboratory of Cellular and Molecular Pathophysiology, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health , Toronto , Ontario , Canada
| | - Jerry J Warsh
- a Laboratory of Cellular and Molecular Pathophysiology, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health , Toronto , Ontario , Canada.,b Department of Psychiatry , University of Toronto , Toronto , Ontario , Canada.,d Department of Pharmacology & Toxicology , University of Toronto , Toronto , Ontario , Canada.,e Institute of Medical Science, University of Toronto , Toronto , Ontario , Canada.,f Program in Neuroscience, University of Toronto , Toronto , Ontario , Canada
| |
Collapse
|
24
|
Veronese N, Solmi M, Luchini C, Lu RB, Stubbs B, Zaninotto L, Correll CU. Acetylcholinesterase inhibitors and memantine in bipolar disorder: A systematic review and best evidence synthesis of the efficacy and safety for multiple disease dimensions. J Affect Disord 2016; 197:268-280. [PMID: 27010579 DOI: 10.1016/j.jad.2016.03.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 02/09/2016] [Accepted: 03/09/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND Acetylcholinesterase inhibitors (AceI) and memantine might prove useful in bipolar disorder (BD) given their neuroprotective and pro-cognitive effects, as highlighted by several case reports. We aimed to systematically review the efficacy and safety of AceI and memantine across multiple outcome dimensions in BD. METHODS Systematic PubMed and SCOPUS search until 04/17/2015 without language restrictions. Included were randomized controlled trials (RCTs), open label studies and case series of AceI or memantine in BD patients reporting quantitative data on depression, mania, psychotic symptoms, global functioning, or cognitive performance. We summarized results using a best-evidence based synthesis. RESULTS Out of 214 hits, 12 studies (RCTs=5, other designs=7, total n=422) were included. Donepezil (studies=5; treated=102 vs. placebo=21): there was strong evidence for no effect on mania and psychotic symptoms; low evidence indicating no effect on depression. Galantamine (studies=3; treated=21 vs. controls=20) (placebo=10, healthy subjects=10): there was strong evidence for no effect on mania; moderate evidence for no effect on depression; low evidence for no effect on global functioning. Memantine (studies=4; treated=152 vs. placebo=88): there was conflicting evidence regarding efficacy for mania, depression and global functioning. LIMITATIONS Paucity of RCTs; small sample size studies; heterogeneous design, outcome and patient characteristics. CONCLUSION There is limited but converging evidence of no effect of AceI in BD, and conflicting evidence about memantine in BD. Too few studies of mostly medium/low quality and lacking sufficient numbers of patients in specific mood states, especially mania, contributed data, focusing solely on short-term/medium-term treatment, necessitating additional high-quality research to yield more definite results.
Collapse
Affiliation(s)
- Nicola Veronese
- Department of Medicine, DIMED, Geriatrics Division, University of Padova, Padova, Italy
| | - Marco Solmi
- Department of Neurosciences, University of Padua, Padua, Italy; National Health Care System, Padua Local Unit ULSS 17, Italy
| | - Claudio Luchini
- Department of Pathology and Diagnostics, University and Hospital Trust of Verona, Verona, Italy; Surgical Pathology Unit, Santa Chiara Hospital, Trento, Italy
| | - Ru-Band Lu
- Institute of Behavioral Medicine, Department of Psychiatry, College of Medicine & Hospital, National Cheng-Kung University, Tainan, Taiwan, ROC
| | - Brendon Stubbs
- Physiotherapy Department, South London and Maudsley NHS Foundation Trust, Denmark Hill, London SE5 8AZ, United Kingdom; Health Service and Population Research Department, Institute of Psychiatry, Psychology and Neuroscience King's College London, De Crespigny Park, London Box SE5 8AF, United Kingdom
| | - Leonardo Zaninotto
- Department of Biomedical and Neuro-Motor Sciences, University of Bologna, Italy; Department of Mental Health, Local Sanitary, Unit n. 16 - ULSS 16, Padova, Italy
| | - Christoph U Correll
- The Zucker Hillside Hospital, Psychiatry Research, Northwell Health, Glen Oaks, New York, USA; Hofstra Northwell School of Medicine, Hempstead, NY, USA; The Feinstein Institute for Medical Research, Manhasset, NY, USA; Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
25
|
Chen WC, Lai YS, Lin SH, Lu KH, Lin YE, Panyod S, Ho CT, Sheen LY. Anti-depressant effects of Gastrodia elata Blume and its compounds gastrodin and 4-hydroxybenzyl alcohol, via the monoaminergic system and neuronal cytoskeletal remodeling. JOURNAL OF ETHNOPHARMACOLOGY 2016; 182:190-9. [PMID: 26899441 DOI: 10.1016/j.jep.2016.02.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 01/26/2016] [Accepted: 02/03/2016] [Indexed: 05/11/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Gastrodia elata Blume is a highly valuable traditional Chinese medicine used in the treatment of depression. However, compounds with antidepressant effects in water extracts of G. elata Bl. (WGE) have not been identified. The aims of this study were to determine the major antidepressant compound in WGE and to evaluate the antidepressant effects of WGE and its active compounds which involved the monoaminergic system and neuronal cytoskeletal remodeling. MATERIALS AND METHODS Gastrodin (GAS) and 4-hydroxybenzyl alcohol (HBA) in WGE, were analyzed with high-performance liquid chromatography (HPLC)-ultraviolet detection. The forced swimming test (FST) was used to induce depression-like symptoms in 9 weeks old male Sprague-Dawley rats. The open field test (OFT) was used to measure anxiety after WGE, GAS, and HBA treatments. The levels of monoamine such as serotonin (5-HT), dopamine (DA), and their metabolites 5-hydroxyindoleacetic acid (5-HIAA), 3,4-dihydroxyphenylacetic acid (DOPAC), and homovanillic acid (HVA) were measured using HPLC-electrochemical detection. Western blotting was used to examine the 5-HT1A receptor and the neuronal cytoskeleton remodeling-related proteins, Slit, dihydropyrimidinase-related protein 2 (DPYSL2, also called CRMP2), Ras homologous member A (RhoA), and profilin 1 (PFN1) in vivo. Slit1 expression was evaluated in Hs683 cell line after treated with WGE (0.5mg/mL), GAS (50, 100 and 100μM), and HBA (50, 100 and 100μM). RESULTS Oral administration of WGE (500mg/kg bw), GAS (100mg/kg bw), and HBA (100mg/kg bw) exhibited the anti-depressant effect by significantly reducing the immobility time in FST, monoamine metabolism including the 5-HT to 5-HIAA in the hippocampus and DA to DOPAC and HVA ratios in the frontal cortex, amygdala, and hippocampus. In the hippocampus, the expression of the neuronal cytoskeleton remodeling-related negative regulators Slit1 and RhoA were significantly down-regulated. In addition, the positive regulators CRMP2 and PFN1 were significantly up-regulated following GAS, HBA, and WGE treatments. Moreover, WGE, GAS, and HBA were directly down-regulated Slit1 expression in Hs683 cells. CONCLUSION WGE, GAS, and HBA exhibited potential anti-depressant effects in rats by decreasing monoamine metabolism and modulated cytoskeleton remodeling-related protein expression in the Slit-Robo pathway. These results suggest that WGE can be used as agent for depressive prevention.
Collapse
Affiliation(s)
- Wei-Cheng Chen
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Yi-Syuan Lai
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Shih-Hang Lin
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Kuan-Hung Lu
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Yu-En Lin
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Suraphan Panyod
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901-8520, USA
| | - Lee-Yan Sheen
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan; National Center for Food Safety Education and Research, National Taiwan University, Taipei 10617, Taiwan; Center for Food and Biomolecules, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
26
|
Kim Y, Morath B, Hu C, Byrne LK, Sutor SL, Frye MA, Tye SJ. Antidepressant actions of lateral habenula deep brain stimulation differentially correlate with CaMKII/GSK3/AMPK signaling locally and in the infralimbic cortex. Behav Brain Res 2016; 306:170-7. [PMID: 26956153 DOI: 10.1016/j.bbr.2016.02.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 02/24/2016] [Accepted: 02/28/2016] [Indexed: 12/28/2022]
Abstract
High frequency deep brain stimulation (DBS) of the lateral habenula (LHb) reduces symptoms of depression in severely treatment-resistant individuals. Despite the observed therapeutic effects, the molecular underpinnings of DBS are poorly understood. This study investigated the efficacy of high frequency LHb DBS (130Hz; 200μA; 90μs) in an animal model of tricyclic antidepressant resistance. Further, we reported DBS mediated changes in Ca(2+)/calmodulin-dependent protein kinase (CaMKIIα/β), glycogen synthase kinase 3 (GSK3α/β) and AMP-activated protein kinase (AMPK) both locally and in the infralimbic cortex (IL). Protein expressions were then correlated to immobility time during the forced swim test (FST). Antidepressant actions were quantified via FST. Treatment groups comprised of animals treated with adrenocorticotropic hormone alone (ACTH; 100μg/day, 14days, n=7), ACTH with active DBS (n=7), sham DBS (n=8), surgery only (n=8) or control (n=8). Active DBS significantly reduced immobility in ACTH-treated animals (p<0.05). For this group, western blot results demonstrated phosphorylation status of LHb CaMKIIα/β and GSK3α/β significantly correlated to immobility time in the FST. Concurrently, we observed phosphorylation status of CaMKIIα/β, GSK3α/β, and AMPK in the IL to be negatively correlated with antidepressant actions of DBS. These findings suggest that activity dependent phosphorylation of CaMKIIα/β, and GSK3α/β in the LHb together with the downregulation of CaMKIIα/β, GSK3α/β, and AMPK in the IL, contribute to the antidepressant actions of DBS.
Collapse
Affiliation(s)
- Yesul Kim
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55905, USA; School of Psychology, Deakin University, Burwood, Victoria 3125, Australia
| | - Brooke Morath
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55905, USA
| | - Chunling Hu
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55905, USA
| | - Linda K Byrne
- School of Psychology, Deakin University, Burwood, Victoria 3125, Australia
| | - Shari L Sutor
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55905, USA
| | - Mark A Frye
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55905, USA
| | - Susannah J Tye
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55905, USA; School of Psychology, Deakin University, Burwood, Victoria 3125, Australia; Department of Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA; Department of Psychiatry, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
27
|
Liu X, Kelsoe JR, Greenwood TA. A genome-wide association study of bipolar disorder with comorbid eating disorder replicates the SOX2-OT region. J Affect Disord 2016; 189:141-149. [PMID: 26433762 PMCID: PMC4640946 DOI: 10.1016/j.jad.2015.09.029] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 09/14/2015] [Accepted: 09/18/2015] [Indexed: 01/08/2023]
Abstract
BACKGROUND Bipolar disorder is a heterogeneous mood disorder associated with several important clinical comorbidities, such as eating disorders. This clinical heterogeneity complicates the identification of genetic variants contributing to bipolar susceptibility. Here we investigate comorbidity of eating disorders as a subphenotype of bipolar disorder to identify genetic variation that is common and unique to both disorders. METHODS We performed a genome-wide association analysis contrasting 184 bipolar subjects with eating disorder comorbidity against both 1370 controls and 2006 subjects with bipolar disorder only from the Bipolar Genome Study (BiGS). RESULTS The most significant genome-wide finding was observed bipolar with comorbid eating disorder vs. controls within SOX2-OT (p=8.9×10(-8) for rs4854912) with a secondary peak in the adjacent FXR1 gene (p=1.2×10(-6) for rs1805576) on chromosome 3q26.33. This region was also the most prominent finding in the case-only analysis (p=3.5×10(-7) and 4.3×10(-6), respectively). Several regions of interest containing genes involved in neurodevelopment and neuroprotection processes were also identified. LIMITATIONS While our primary finding did not quite reach genome-wide significance, likely due to the relatively limited sample size, these results can be viewed as a replication of a recent study of eating disorders in a large cohort. CONCLUSIONS These findings replicate the prior association of SOX2-OT with eating disorders and broadly support the involvement of neurodevelopmental/neuroprotective mechanisms in the pathophysiology of both disorders. They further suggest that different clinical manifestations of bipolar disorder may reflect differential genetic contributions and argue for the utility of clinical subphenotypes in identifying additional molecular pathways leading to illness.
Collapse
Affiliation(s)
- Xiaohua Liu
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | | | - John R. Kelsoe
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- San Diego Veterans Affairs Healthcare System, San Diego, CA
- Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA
| | | |
Collapse
|
28
|
Valiengo LDCL, Stella F, Forlenza OV. Mood disorders in the elderly: prevalence, functional impact, and management challenges. Neuropsychiatr Dis Treat 2016; 12:2105-14. [PMID: 27601905 PMCID: PMC5003566 DOI: 10.2147/ndt.s94643] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Despite the lower prevalence of severe mood disorders in the elderly as compared to younger adults, late-life depression and bipolar disorder (BD) are more strongly associated with negative outcomes related to the presence of medical comorbidities, cognitive deficits, and increased suicide risk and overall mortality. The mechanisms that contribute to these associations are probably multifactorial, involving pathological factors related directly and indirectly to the disease itself, ranging from biological to psychosocial factors. Most of the accumulated knowledge on the nature of these associations derives from naturalistic and observational studies, and controlled data are still scarce. Nonetheless, there has clearly been a recent growth of the scientific interest on late-life BD and geriatric depression. In the present study, we review the most relevant studies on prevalence, clinical presentation, and cognitive/functional impact of mood disorders in elderly. Several clinical-epidemiological studies were dedicated to the study of the prevalence of mood disorders in old age in distinct settings; however, fewer studies investigated the underlying neurobiological findings and treatment specificities in late-life depression and BD. In the present study, we further discuss the implications of these findings on the management of mood disorders in older adults.
Collapse
Affiliation(s)
- Leandro da Costa Lane Valiengo
- Laboratory of Neuroscience (LIM-27), Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo, Sao Paulo
| | - Florindo Stella
- Laboratory of Neuroscience (LIM-27), Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo, Sao Paulo; Biosciences Institute, Universidade Estadual Paulista, Rio Claro, Brazil
| | - Orestes Vicente Forlenza
- Laboratory of Neuroscience (LIM-27), Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo, Sao Paulo
| |
Collapse
|
29
|
Malhi GS, Bassett D, Boyce P, Bryant R, Fitzgerald PB, Fritz K, Hopwood M, Lyndon B, Mulder R, Murray G, Porter R, Singh AB. Royal Australian and New Zealand College of Psychiatrists clinical practice guidelines for mood disorders. Aust N Z J Psychiatry 2015; 49:1087-206. [PMID: 26643054 DOI: 10.1177/0004867415617657] [Citation(s) in RCA: 543] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES To provide guidance for the management of mood disorders, based on scientific evidence supplemented by expert clinical consensus and formulate recommendations to maximise clinical salience and utility. METHODS Articles and information sourced from search engines including PubMed and EMBASE, MEDLINE, PsycINFO and Google Scholar were supplemented by literature known to the mood disorders committee (MDC) (e.g., books, book chapters and government reports) and from published depression and bipolar disorder guidelines. Information was reviewed and discussed by members of the MDC and findings were then formulated into consensus-based recommendations and clinical guidance. The guidelines were subjected to rigorous successive consultation and external review involving: expert and clinical advisors, the public, key stakeholders, professional bodies and specialist groups with interest in mood disorders. RESULTS The Royal Australian and New Zealand College of Psychiatrists clinical practice guidelines for mood disorders (Mood Disorders CPG) provide up-to-date guidance and advice regarding the management of mood disorders that is informed by evidence and clinical experience. The Mood Disorders CPG is intended for clinical use by psychiatrists, psychologists, physicians and others with an interest in mental health care. CONCLUSIONS The Mood Disorder CPG is the first Clinical Practice Guideline to address both depressive and bipolar disorders. It provides up-to-date recommendations and guidance within an evidence-based framework, supplemented by expert clinical consensus. MOOD DISORDERS COMMITTEE Professor Gin Malhi (Chair), Professor Darryl Bassett, Professor Philip Boyce, Professor Richard Bryant, Professor Paul Fitzgerald, Dr Kristina Fritz, Professor Malcolm Hopwood, Dr Bill Lyndon, Professor Roger Mulder, Professor Greg Murray, Professor Richard Porter and Associate Professor Ajeet Singh. INTERNATIONAL EXPERT ADVISORS Professor Carlo Altamura, Dr Francesco Colom, Professor Mark George, Professor Guy Goodwin, Professor Roger McIntyre, Dr Roger Ng, Professor John O'Brien, Professor Harold Sackeim, Professor Jan Scott, Dr Nobuhiro Sugiyama, Professor Eduard Vieta, Professor Lakshmi Yatham. AUSTRALIAN AND NEW ZEALAND EXPERT ADVISORS Professor Marie-Paule Austin, Professor Michael Berk, Dr Yulisha Byrow, Professor Helen Christensen, Dr Nick De Felice, A/Professor Seetal Dodd, A/Professor Megan Galbally, Dr Josh Geffen, Professor Philip Hazell, A/Professor David Horgan, A/Professor Felice Jacka, Professor Gordon Johnson, Professor Anthony Jorm, Dr Jon-Paul Khoo, Professor Jayashri Kulkarni, Dr Cameron Lacey, Dr Noeline Latt, Professor Florence Levy, A/Professor Andrew Lewis, Professor Colleen Loo, Dr Thomas Mayze, Dr Linton Meagher, Professor Philip Mitchell, Professor Daniel O'Connor, Dr Nick O'Connor, Dr Tim Outhred, Dr Mark Rowe, Dr Narelle Shadbolt, Dr Martien Snellen, Professor John Tiller, Dr Bill Watkins, Dr Raymond Wu.
Collapse
Affiliation(s)
- Gin S Malhi
- Discipline of Psychiatry, Kolling Institute, Sydney Medical School, University of Sydney, Sydney, NSW, Australia CADE Clinic, Department of Psychiatry, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Darryl Bassett
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, Perth, WA, Australia School of Medicine, University of Notre Dame, Perth, WA, Australia
| | - Philip Boyce
- Discipline of Psychiatry, Sydney Medical School, Westmead Clinical School, University of Sydney, Sydney, NSW, Australia
| | - Richard Bryant
- School of Psychology, University of New South Wales, Sydney, NSW, Australia
| | - Paul B Fitzgerald
- Monash Alfred Psychiatry Research Centre (MAPrc), Monash University Central Clinical School and The Alfred, Melbourne, VIC, Australia
| | - Kristina Fritz
- CADE Clinic, Discipline of Psychiatry, Sydney Medical School - Northern, University of Sydney, Sydney, NSW, Australia
| | - Malcolm Hopwood
- Department of Psychiatry, University of Melbourne, Melbourne, VIC, Australia
| | - Bill Lyndon
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia Mood Disorders Unit, Northside Clinic, Greenwich, NSW, Australia ECT Services Northside Group Hospitals, Greenwich, NSW, Australia
| | - Roger Mulder
- Department of Psychological Medicine, University of Otago-Christchurch, Christchurch, New Zealand
| | - Greg Murray
- Department of Psychological Sciences, School of Health Sciences, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Richard Porter
- Department of Psychological Medicine, University of Otago-Christchurch, Christchurch, New Zealand
| | - Ajeet B Singh
- School of Medicine, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
30
|
Using neuroimaging to evaluate and guide pharmacological and psychotherapeutic treatments for mood disorders in children. CNS Spectr 2015; 20:359-68. [PMID: 25659836 DOI: 10.1017/s1092852914000819] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mood disorders are increasing in childhood, and often require multimodal and comprehensive treatment plans to address a complex array of symptoms and associated morbidities. Pharmacotherapy, in combination with psychotherapeutic interventions, is essential for treatment and stabilization. Current evidence supports the use of a number of interventions in children and adolescents diagnosed with DSM-5 mood spectrum disorders, which are associated with impairments in prefrontal-striatal-limbic networks, which are key for emotional functioning and regulation. Yet, little is known about the neurobiological effects of interventions on the developing brain. This chapter provides a synopsis of the literature demonstrating the neural effects of psychotropic medications and psychotherapy in youth with depressive or bipolar spectrum disorders. Additional longitudinal and biological studies are warranted to characterize the effects of these interventions on all phases and stages of mood illness development in children and adolescents.
Collapse
|
31
|
Madison JM, Zhou F, Nigam A, Hussain A, Barker DD, Nehme R, van der Ven K, Hsu J, Wolf P, Fleishman M, O’Dushlaine C, Rose S, Chambert K, Lau FH, Ahfeldt T, Rueckert EH, Sheridan SD, Fass DM, Nemesh J, Mullen TE, Daheron L, McCarroll S, Sklar P, Perlis RH, Haggarty SJ. Characterization of bipolar disorder patient-specific induced pluripotent stem cells from a family reveals neurodevelopmental and mRNA expression abnormalities. Mol Psychiatry 2015; 20:703-17. [PMID: 25733313 PMCID: PMC4440839 DOI: 10.1038/mp.2015.7] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 10/29/2014] [Accepted: 12/19/2014] [Indexed: 02/07/2023]
Abstract
Bipolar disorder (BD) is a common neuropsychiatric disorder characterized by chronic recurrent episodes of depression and mania. Despite evidence for high heritability of BD, little is known about its underlying pathophysiology. To develop new tools for investigating the molecular and cellular basis of BD, we applied a family-based paradigm to derive and characterize a set of 12 induced pluripotent stem cell (iPSC) lines from a quartet consisting of two BD-affected brothers and their two unaffected parents. Initially, no significant phenotypic differences were observed between iPSCs derived from the different family members. However, upon directed neural differentiation, we observed that CXCR4 (CXC chemokine receptor-4) expressing central nervous system (CNS) neural progenitor cells (NPCs) from both BD patients compared with their unaffected parents exhibited multiple phenotypic differences at the level of neurogenesis and expression of genes critical for neuroplasticity, including WNT pathway components and ion channel subunits. Treatment of the CXCR4(+) NPCs with a pharmacological inhibitor of glycogen synthase kinase 3, a known regulator of WNT signaling, was found to rescue a progenitor proliferation deficit in the BD patient NPCs. Taken together, these studies provide new cellular tools for dissecting the pathophysiology of BD and evidence for dysregulation of key pathways involved in neurodevelopment and neuroplasticity. Future generation of additional iPSCs following a family-based paradigm for modeling complex neuropsychiatric disorders in conjunction with in-depth phenotyping holds promise for providing insights into the pathophysiological substrates of BD and is likely to inform the development of targeted therapeutics for its treatment and ideally prevention.
Collapse
Affiliation(s)
- Jon M. Madison
- Stanley Center for Psychiatric Research, Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA,Psychiatric & Neurodevelopmental Genetics Unit, Center for Human Genetics Research, Massachusetts General Hospital, Boston, MA 02114, USA,Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA,Correspondence: (JM), (SJH)
| | - Fen Zhou
- Stanley Center for Psychiatric Research, Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA,Psychiatric & Neurodevelopmental Genetics Unit, Center for Human Genetics Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Aparna Nigam
- Stanley Center for Psychiatric Research, Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA,Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Ali Hussain
- Stanley Center for Psychiatric Research, Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA,Psychiatric & Neurodevelopmental Genetics Unit, Center for Human Genetics Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Douglas D. Barker
- Stanley Center for Psychiatric Research, Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA
| | - Ralda Nehme
- Stanley Center for Psychiatric Research, Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA,Department of Stem Cell & Regenerative Biology, Harvard University, Cambridge, MA,Department of Neurology, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, USA
| | - Karlijn van der Ven
- Psychiatric & Neurodevelopmental Genetics Unit, Center for Human Genetics Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jenny Hsu
- Stanley Center for Psychiatric Research, Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA,Psychiatric & Neurodevelopmental Genetics Unit, Center for Human Genetics Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Pavlina Wolf
- Stanley Center for Psychiatric Research, Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA,Psychiatric & Neurodevelopmental Genetics Unit, Center for Human Genetics Research, Massachusetts General Hospital, Boston, MA 02114, USA,Department of Neurology, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, USA
| | - Morgan Fleishman
- Stanley Center for Psychiatric Research, Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA,Psychiatric & Neurodevelopmental Genetics Unit, Center for Human Genetics Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Colm O’Dushlaine
- Stanley Center for Psychiatric Research, Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA
| | - Sam Rose
- Stanley Center for Psychiatric Research, Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA
| | - Kimberly Chambert
- Stanley Center for Psychiatric Research, Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA
| | - Frank H. Lau
- Department of Stem Cell & Regenerative Biology, Harvard University, Cambridge, MA
| | - Tim Ahfeldt
- Department of Stem Cell & Regenerative Biology, Harvard University, Cambridge, MA
| | - Erroll H. Rueckert
- Stanley Center for Psychiatric Research, Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA,Psychiatric & Neurodevelopmental Genetics Unit, Center for Human Genetics Research, Massachusetts General Hospital, Boston, MA 02114, USA,Chemical Neurobiology Laboratory, Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Steven D. Sheridan
- Chemical Neurobiology Laboratory, Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Daniel M. Fass
- Stanley Center for Psychiatric Research, Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA,Department of Neurology, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, USA,Chemical Neurobiology Laboratory, Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - James Nemesh
- Stanley Center for Psychiatric Research, Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA,Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Thomas E. Mullen
- Stanley Center for Psychiatric Research, Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA,Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Laurence Daheron
- Department of Stem Cell & Regenerative Biology, Harvard University, Cambridge, MA
| | - Steve McCarroll
- Stanley Center for Psychiatric Research, Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA,Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Pamela Sklar
- Department of Psychiatry, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Roy H. Perlis
- Stanley Center for Psychiatric Research, Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA,Psychiatric & Neurodevelopmental Genetics Unit, Center for Human Genetics Research, Massachusetts General Hospital, Boston, MA 02114, USA,Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA,Chemical Neurobiology Laboratory, Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Stephen J. Haggarty
- Stanley Center for Psychiatric Research, Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA,Psychiatric & Neurodevelopmental Genetics Unit, Center for Human Genetics Research, Massachusetts General Hospital, Boston, MA 02114, USA,Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA,Department of Neurology, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, USA,Chemical Neurobiology Laboratory, Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA,Correspondence: (JM), (SJH)
| |
Collapse
|
32
|
Machado-Vieira R, Zanetti MV, Teixeira AL, Uno M, Valiengo LL, Soeiro-de-Souza MG, Oba-Shinjo SM, de Sousa RT, Zarate CA, Gattaz WF, Marie SKN. Decreased AKT1/mTOR pathway mRNA expression in short-term bipolar disorder. Eur Neuropsychopharmacol 2015; 25:468-73. [PMID: 25726893 PMCID: PMC5863235 DOI: 10.1016/j.euroneuro.2015.02.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 01/20/2015] [Accepted: 02/06/2015] [Indexed: 01/30/2023]
Abstract
Strong evidence implicates intracellular signaling cascades dysfunction in the pathophysiology of Bipolar Disorder (BD). Regulation of AKT/mTOR pathway is a critical signaling pathway in synaptic neurotransmission and plasticity, also modulating cell proliferation and migration. Gene expression of the AKT/mTOR pathway was assessed in 25 BD (DSM-IV-TR criteria) unmedicated depressed individuals at baseline and after 6 weeks of lithium therapy and 31 matched healthy controls. Decreases in blood AKT1 and mTOR mRNA expression, as well as in BAD/BCL-2 expression ratio were observed in short-term BD patients during depressive episodes in comparison to healthy controls. There was no significant change in the expression of AKT1, mTOR, BCL-2, BAD and NDUFA6 after lithium therapy in the total group of BD subjects. However, the changes in AKT1 expression after lithium treatment were positively correlated with depression improvement. An integrated activity within this pathway was observed at both baseline and post-treatment. The present results support an integrated AKT/mTOR signaling pathway activity in a similar fashion to the described in previous human postmortem and rodents brain studies. Overall, the results reinforce a role for AKT1 and mTOR in the pathophysiology of BD and support the relevance of blood mRNA expression as a valid surrogate biological source to study brain intracellular signaling cascades changes and convergent molecular pathways in psychiatric disorders.
Collapse
Affiliation(s)
- Rodrigo Machado-Vieira
- Laboratory of Neuroscience, LIM- 27, Institute and Department of Psychiatry, University of Sao Paulo, Brazil; Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of Sao Paulo, Brazil; Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, NIH, Bethesda, MD, United States.
| | - Marcus V Zanetti
- Laboratory of Neuroscience, LIM- 27, Institute and Department of Psychiatry, University of Sao Paulo, Brazil; Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of Sao Paulo, Brazil
| | - Antonio L Teixeira
- Interdisciplinary Laboratory of Medical Investigation, Federal University of Minas Gerais, Brazil
| | - Miyuki Uno
- Laboratory of Molecular and Cellular Biology, Department of Neurology, University of Sao Paulo, Brazil
| | - Leandro L Valiengo
- Laboratory of Neuroscience, LIM- 27, Institute and Department of Psychiatry, University of Sao Paulo, Brazil
| | | | - Sueli M Oba-Shinjo
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, NIH, Bethesda, MD, United States
| | - Rafael T de Sousa
- Laboratory of Neuroscience, LIM- 27, Institute and Department of Psychiatry, University of Sao Paulo, Brazil
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, NIH, Bethesda, MD, United States
| | - Wagner F Gattaz
- Laboratory of Neuroscience, LIM- 27, Institute and Department of Psychiatry, University of Sao Paulo, Brazil; Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of Sao Paulo, Brazil
| | - Suely K N Marie
- Laboratory of Molecular and Cellular Biology, Department of Neurology, University of Sao Paulo, Brazil
| |
Collapse
|
33
|
Bcl-2 associated with severity of manic symptoms in bipolar patients in a manic phase. Psychiatry Res 2015; 225:305-8. [PMID: 25563670 DOI: 10.1016/j.psychres.2014.12.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 11/18/2014] [Accepted: 12/14/2014] [Indexed: 01/26/2023]
Abstract
B cell lymphoma protein-2 (Bcl-2) may contribute to the pathophysiology of bipolar disorder, and may be involved in the therapeutic action of anti-manic drugs. The aim of this study was to investigate serum levels of Bcl-2 in bipolar patients in a manic phase, and evaluate the Bcl-2 changes after treatment. We consecutively enrolled 23 bipolar inpatients in a manic phase and 40 healthy subjects; 20 bipolar patients were followed up with treatment. Serum Bcl-2 levels were measured with assay kits. All 20 patients were evaluated by examining the correlation between Bcl-2 levels and Young Mania Rating Scale (YMRS) scores, using Spearman׳s correlation coefficients. The serum Bcl-2 levels in bipolar patients in a manic phase were higher than in healthy subjects, but without a significant difference. The YMRS scores were significantly negatively associated with serum Bcl-2 levels (p=0.042). Bcl-2 levels of the 20 bipolar patients were measured at the end of treatment. Using the Wilcoxon Signed Rank test, we found no significant difference in the Bcl-2 levels of bipolar patients after treatment. Our results suggest that Bcl-2 levels might be an indicator of severity of manic symptoms in bipolar patients in a manic phase.
Collapse
|
34
|
Lee SY, Chen SL, Chang YH, Chen PS, Huang SY, Tzeng NS, Wang CL, Wang LJ, Lee IH, Wang TY, Chen KC, Yang YK, Hong JS, Lu RB. Correlation of plasma brain-derived neurotrophic factor and metabolic profiles in drug-naïve patients with bipolar II disorder after a twelve-week pharmacological intervention. Acta Psychiatr Scand 2015; 131:120-8. [PMID: 25131388 DOI: 10.1111/acps.12324] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/08/2014] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Brain-derived neurotrophic factor (BDNF) is thought to be involved in the pathophysiology of bipolar disorder (BD) and metabolic syndrome. We investigated the correlation between plasma BDNF with mood symptoms and metabolic indices in patients with BD-II over a 12-week pharmacological intervention. METHOD Drug-naïve patients with BD-II (n=117) were recruited. Metabolic profiles [cholesterol, triglyceride, HbA1C, fasting serum glucose, body mass index (BMI)] and plasma BDNF wtrun "tblautotrun "tblsctrun "tbl_contere measured at baseline and 2, 8, and 12 weeks after beginning medication. To adjust within-subject dependence over repeated assessments, multiple linear regressions with generalized estimating equation methods were used. RESULTS Seventy-six (65.0%) patients completed the intervention. Plasma BDNF levels were significantly associated with BMI (P=9.6E-5), low-density lipoprotein (P=0.034) and total (P=0.001) cholesterol, but not with the Hamilton Depression Rating Scale-17 and Young Mania Rating Scale scores over the 12-week treatment. CONCLUSION We found initial evidence of a positive correlation between plasma BDNF levels and BMI, low-density lipoprotein and total cholesterol in drug-naïve patients with BD-II. The specific function of BDNF in regulating and maintaining peripheral metabolic health requires additional investigation.
Collapse
Affiliation(s)
- S-Y Lee
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; Department of Psychiatry, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Zanetti MV, Otaduy MC, de Sousa RT, Gattaz WF, Busatto GF, Leite CC, Machado-Vieira R. Bimodal effect of lithium plasma levels on hippocampal glutamate concentrations in bipolar II depression: a pilot study. Int J Neuropsychopharmacol 2015; 18:pyu058. [PMID: 25522399 PMCID: PMC4438538 DOI: 10.1093/ijnp/pyu058] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Accepted: 09/21/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The hippocampus has been highly implicated in the pathophysiology of bipolar disorder (BD). Nevertheless, no study has longitudinally evaluated hippocampal metabolite levels in bipolar depression under treatment with lithium. METHODS Nineteen medication-free BD patients (78.9% treatment-naïve and 73.7% with BD type II) presenting an acute depressive episode and 17 healthy controls were studied. Patients were treated for 6 weeks with lithium in an open-label trial. N-acetyl aspartate (NAA), creatine, choline, myo-Inositol, and glutamate levels were assessed in the left hippocampus before (week 0) and after (week 6) lithium treatment using 3T proton magnetic resonance spectroscopy (1H-MRS). The metabolite concentrations were estimated using internal water as reference and voxel segmentation for partial volume correction. RESULTS At baseline, acutely depressed BD patients and healthy controls exhibited similar hippocampal metabolites concentrations, with no changes after 6 weeks of lithium monotherapy. A significant correlation between antidepressant efficacy and increases in NAA concentration over time was observed. Also, there was a significant positive correlation between the changes in glutamate concentrations over follow-up and plasma lithium levels at endpoint. Mixed effects model analysis revealed a bimodal effect of lithium plasma levels in hippocampal glutamate concentrations: levels of 0.2 to 0.49 mmol/L (n=9) were associated with a decrease in glutamate concentrations, whereas the subgroup of BD subjects with "standard" lithium levels (≥ 0.50 mmol/L; n = 10) showed an overall increase in glutamate concentrations over time. CONCLUSIONS These preliminary results suggest that lithium has a bimodal action in hippocampal glutamate concentration depending on the plasma levels.
Collapse
Affiliation(s)
- Marcus V Zanetti
- Mood Disorders Program, Laboratory of Neuroscience (LIM-27), Department and Institute of Psychiatry, University of Sao Paulo, Brazil (Drs Zanetti, de Sousa, Gattaz, and Machado-Vieira); Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, Brazil (Drs Zanetti, Gattaz, Busatto, and Machado-Vieira); Laboratory of Psychiatric Neuroimaging, LIM-21, Department and Institute of Psychiatry, University of Sao Paulo, Brazil (Drs Zanetti and Busatto); Department of Radiology, University of Sao Paulo, Brazil (Drs Otaduy and Leite); Experimental Therapeutics and Pathophysiology Branch (ETPB), National Institute of Mental Health, NIH, Bethesda, MD (Dr Machado-Vieira).
| | - Maria C Otaduy
- Mood Disorders Program, Laboratory of Neuroscience (LIM-27), Department and Institute of Psychiatry, University of Sao Paulo, Brazil (Drs Zanetti, de Sousa, Gattaz, and Machado-Vieira); Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, Brazil (Drs Zanetti, Gattaz, Busatto, and Machado-Vieira); Laboratory of Psychiatric Neuroimaging, LIM-21, Department and Institute of Psychiatry, University of Sao Paulo, Brazil (Drs Zanetti and Busatto); Department of Radiology, University of Sao Paulo, Brazil (Drs Otaduy and Leite); Experimental Therapeutics and Pathophysiology Branch (ETPB), National Institute of Mental Health, NIH, Bethesda, MD (Dr Machado-Vieira)
| | - Rafael T de Sousa
- Mood Disorders Program, Laboratory of Neuroscience (LIM-27), Department and Institute of Psychiatry, University of Sao Paulo, Brazil (Drs Zanetti, de Sousa, Gattaz, and Machado-Vieira); Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, Brazil (Drs Zanetti, Gattaz, Busatto, and Machado-Vieira); Laboratory of Psychiatric Neuroimaging, LIM-21, Department and Institute of Psychiatry, University of Sao Paulo, Brazil (Drs Zanetti and Busatto); Department of Radiology, University of Sao Paulo, Brazil (Drs Otaduy and Leite); Experimental Therapeutics and Pathophysiology Branch (ETPB), National Institute of Mental Health, NIH, Bethesda, MD (Dr Machado-Vieira)
| | - Wagner F Gattaz
- Mood Disorders Program, Laboratory of Neuroscience (LIM-27), Department and Institute of Psychiatry, University of Sao Paulo, Brazil (Drs Zanetti, de Sousa, Gattaz, and Machado-Vieira); Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, Brazil (Drs Zanetti, Gattaz, Busatto, and Machado-Vieira); Laboratory of Psychiatric Neuroimaging, LIM-21, Department and Institute of Psychiatry, University of Sao Paulo, Brazil (Drs Zanetti and Busatto); Department of Radiology, University of Sao Paulo, Brazil (Drs Otaduy and Leite); Experimental Therapeutics and Pathophysiology Branch (ETPB), National Institute of Mental Health, NIH, Bethesda, MD (Dr Machado-Vieira)
| | - Geraldo F Busatto
- Mood Disorders Program, Laboratory of Neuroscience (LIM-27), Department and Institute of Psychiatry, University of Sao Paulo, Brazil (Drs Zanetti, de Sousa, Gattaz, and Machado-Vieira); Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, Brazil (Drs Zanetti, Gattaz, Busatto, and Machado-Vieira); Laboratory of Psychiatric Neuroimaging, LIM-21, Department and Institute of Psychiatry, University of Sao Paulo, Brazil (Drs Zanetti and Busatto); Department of Radiology, University of Sao Paulo, Brazil (Drs Otaduy and Leite); Experimental Therapeutics and Pathophysiology Branch (ETPB), National Institute of Mental Health, NIH, Bethesda, MD (Dr Machado-Vieira)
| | - Claudia C Leite
- Mood Disorders Program, Laboratory of Neuroscience (LIM-27), Department and Institute of Psychiatry, University of Sao Paulo, Brazil (Drs Zanetti, de Sousa, Gattaz, and Machado-Vieira); Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, Brazil (Drs Zanetti, Gattaz, Busatto, and Machado-Vieira); Laboratory of Psychiatric Neuroimaging, LIM-21, Department and Institute of Psychiatry, University of Sao Paulo, Brazil (Drs Zanetti and Busatto); Department of Radiology, University of Sao Paulo, Brazil (Drs Otaduy and Leite); Experimental Therapeutics and Pathophysiology Branch (ETPB), National Institute of Mental Health, NIH, Bethesda, MD (Dr Machado-Vieira)
| | - Rodrigo Machado-Vieira
- Mood Disorders Program, Laboratory of Neuroscience (LIM-27), Department and Institute of Psychiatry, University of Sao Paulo, Brazil (Drs Zanetti, de Sousa, Gattaz, and Machado-Vieira); Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, Brazil (Drs Zanetti, Gattaz, Busatto, and Machado-Vieira); Laboratory of Psychiatric Neuroimaging, LIM-21, Department and Institute of Psychiatry, University of Sao Paulo, Brazil (Drs Zanetti and Busatto); Department of Radiology, University of Sao Paulo, Brazil (Drs Otaduy and Leite); Experimental Therapeutics and Pathophysiology Branch (ETPB), National Institute of Mental Health, NIH, Bethesda, MD (Dr Machado-Vieira)
| |
Collapse
|
36
|
de Sousa RT, Streck EL, Zanetti MV, Ferreira GK, Diniz BS, Brunoni AR, Busatto GF, Gattaz WF, Machado-Vieira R. Lithium increases leukocyte mitochondrial complex I activity in bipolar disorder during depressive episodes. Psychopharmacology (Berl) 2015; 232:245-50. [PMID: 24961563 DOI: 10.1007/s00213-014-3655-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 06/05/2014] [Indexed: 12/25/2022]
Abstract
RATIONALE Different lines of evidence suggest that mitochondrial dysfunction may be implicated in bipolar disorder (BD) pathophysiology. Mitochondrial electron transport chain (ETC) is a key target to evaluate mitochondrial function, but its activity has never been assessed in unmedicated BD or during mood episodes. Also, lithium has been shown to increase ETC gene expression/activity in preclinical models and in postmortem brains of BD subjects, but to date, no study has evaluated lithium's direct effects on ETC activity in vivo. OBJECTIVES This study aims to evaluate leukocyte ETC complexes I-IV activities in acute depressive episode in BD (compared to controls) and the effect of lithium treatment on ETC activity. METHODS Subjects with short-term BD during a depressive episode (n=25) were treated for 6 weeks with lithium. Leukocytes were collected at baseline and endpoint and mitochondrial ETC complexes I-IV activities were evaluated and compared to age-matched healthy controls (n=24). RESULTS Lithium significantly increased mitochondrial complex I activity from baseline to endpoint (p=0.02), with no changes in other complexes after 6 weeks. Also, plasma lithium levels were significantly correlated to mitochondrial complex I activity after treatment (p=0.003). Mitochondrial complexes I-IV activities did not differ during depressive episodes in BD compared to healthy controls. CONCLUSIONS Our findings demonstrate for the first time an increase in mitochondrial ETC complex I activity in vivo after lithium treatment in BD, which was positively associated with plasma lithium levels. Further studies are warranted to clarify the potential role of this target in neuroprotection-related drug development.
Collapse
Affiliation(s)
- Rafael T de Sousa
- Laboratory of Neuroscience, LIM-27, Institute and Department of Psychiatry, University of Sao Paulo, Sao Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Atagün Mİ, Güntekin B, Tan D, Tülay EE, Başar E. Lithium excessively enhances event related beta oscillations in patients with bipolar disorder. J Affect Disord 2015; 170:59-65. [PMID: 25233240 DOI: 10.1016/j.jad.2014.08.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 07/19/2014] [Accepted: 08/15/2014] [Indexed: 11/26/2022]
Abstract
BACKGROUND Previous resting-state electroencephalography studies have consistently shown that lithium enhances delta and theta oscillations in default mode networks. Cognitive task based networks differ from resting-state networks and this is the first study to investigate effects of lithium on evoked and event-related beta oscillatory responses of patients with bipolar disorder. METHODS The study included 16 euthymic patients with bipolar disorder on lithium monotherapy, 22 euthymic medication-free patients with bipolar disorder and 21 healthy participants. The maximum peak-to-peak amplitudes were measured for each subject's averaged beta responses (14-28 Hz) in the 0-300 ms time window. Auditory simple and oddball paradigm were presented to obtain evoked and event-related beta oscillatory responses. RESULTS There were significant differences in beta oscillatory responses between groups (p=0.010). Repeated measures ANOVA revealed location (p=0.007), laterality X group (p=0.043) and stimulus X location (p=0.013) type effects. Serum lithium levels were correlated with beta responses. LIMITATIONS The lithium group had higher number of previous episodes, suggesting that patients of the lithium were more severe cases than patients of the medication-free group. DISCUSSION Lithium stimulates neuroplastic cascades and beta oscillations become prominent during neuroplastic changes. Excessively enhanced beta oscillatory responses in the lithium-treated patients may be indicative of excessive activation of the neuron groups of the certain cognitive networks and dysfunctional GABAergic modulation during cognitive activity.
Collapse
Affiliation(s)
- Murat İlhan Atagün
- Yıldırım Beyazıt University, Faculty of Medicine, Department of Psychiatry, Ankara, Turkey; Ankara Atatürk Training and Education Hospital, Department of Psychiatry, Ankara, Turkey
| | - Bahar Güntekin
- Istanbul Kultur University, Brain Dynamics, Cognition and Complex Systems Research Center, Ataköy Campus Bakırköy, 34156 Istanbul, Turkey
| | - Devran Tan
- Maltepe University, Faculty of Medicine, Department of Psychiatry, Istanbul, Turkey
| | - Emine Elif Tülay
- Istanbul Kultur University, Brain Dynamics, Cognition and Complex Systems Research Center, Ataköy Campus Bakırköy, 34156 Istanbul, Turkey
| | - Erol Başar
- Istanbul Kultur University, Brain Dynamics, Cognition and Complex Systems Research Center, Ataköy Campus Bakırköy, 34156 Istanbul, Turkey.
| |
Collapse
|
38
|
Barbosa IG, Rocha NP, Assis F, Vieira ÉLM, Soares JC, Bauer ME, Teixeira, AL. Monocyte and lymphocyte activation in bipolar disorder: a new piece in the puzzle of immune dysfunction in mood disorders. Int J Neuropsychopharmacol 2014; 18:pyu021. [PMID: 25539506 PMCID: PMC4368866 DOI: 10.1093/ijnp/pyu021] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND This study tested the hypothesis that the low-grade inflammation presented in patients with bipolar disorder (BD) is associated with expansion of activated T cells, and this activated state may be due to a lack of peripheral regulatory cells. METHODS Specifically, we investigated the distribution of monocytes and lymphocyte subsets, and investigated Th1/Th2/Th17 cytokines in plasma by flow cytometry. Twenty-one BD type I patients and 21 age- and sex-matched controls were recruited for this study. RESULTS BD patients had increased proportions of monocytes (CD14+). Regarding lymphocyte populations, BD patients presented reduced proportions of T cells (CD3+) and cytotoxic T cells (CD3+CD8+). BD patients also exhibited a higher percentage of activated T CD4+CD25+ cells, and a lower percentage of IL-10 expressing Treg cells. CONCLUSIONS Our data shed some light into the underlying mechanisms involved with the chronic low-grade inflammatory profile described in BD patients.
Collapse
Affiliation(s)
- Izabela Guimarães Barbosa
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil (Drs Barbosa, Rocha, Assis, Vieira, and Teixeira); D epartment of Psychiatry and Behavioral Sciences, UT Health School of Medicine, Houston, Texas (Dr Soares); Laboratório de Imunologia do Envelhecimento, Instituto de Pesquisas Biomédicas, Pontifícia Universidade Católica do Rio Grande do Sul (PUC-RS), Porto Alegre, Brazil (Dr Bauer).
| | | | | | | | | | | | | |
Collapse
|
39
|
Lopes-Borges J, Valvassori SS, Varela RB, Tonin PT, Vieira JS, Gonçalves CL, Streck EL, Quevedo J. Histone deacetylase inhibitors reverse manic-like behaviors and protect the rat brain from energetic metabolic alterations induced by ouabain. Pharmacol Biochem Behav 2014; 128:89-95. [PMID: 25433326 DOI: 10.1016/j.pbb.2014.11.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 11/03/2014] [Accepted: 11/07/2014] [Indexed: 11/19/2022]
Abstract
Studies have revealed alterations in mitochondrial complexes in the brains of bipolar patients. However, few studies have examined changes in the enzymes of the tricarboxylic acid cycle. Several preclinical studies have suggested that histone deacetylase inhibitors may have antimanic effects. The present study aims to investigate the effects of lithium, valproate and sodium butyrate, a histone deacetylase inhibitor, on the activity of tricarboxylic acid cycle enzymes in the brains of rats subjected to an animal model of mania induced by ouabain. Wistar rats received a single intracerebroventricular injection of ouabain or cerebrospinal fluid. Starting on the day following the intracerebroventricular injection, the rats were treated for 7days with intraperitoneal injections of saline, lithium, valproate or sodium butyrate. Risk-taking behavior, locomotor and exploratory activities were measured using the open-field test. Citrate synthase, succinate dehydrogenase, and malate dehydrogenase were examined in the frontal cortex and hippocampus. All treatments reversed ouabain-related risk-taking behavior and hyperactivity in the open-field test. Ouabain inhibited tricarboxylic acid cycle enzymes in the brain, and valproate and sodium butyrate but not lithium reversed this ouabain-induced dysfunction. Thus, protecting the tricarboxylic acid cycle may contribute to the therapeutic effects of histone deacetylase inhibitors.
Collapse
Affiliation(s)
- Jéssica Lopes-Borges
- Laboratory of Neurosciences, National Institute for Translational Medicine (INCT-TM), Center of Excellence in Applied Neurosciences of Santa Catarina (NENASC), Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC 88806-000, Brazil
| | - Samira S Valvassori
- Laboratory of Neurosciences, National Institute for Translational Medicine (INCT-TM), Center of Excellence in Applied Neurosciences of Santa Catarina (NENASC), Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC 88806-000, Brazil.
| | - Roger B Varela
- Laboratory of Neurosciences, National Institute for Translational Medicine (INCT-TM), Center of Excellence in Applied Neurosciences of Santa Catarina (NENASC), Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC 88806-000, Brazil
| | - Paula T Tonin
- Laboratory of Neurosciences, National Institute for Translational Medicine (INCT-TM), Center of Excellence in Applied Neurosciences of Santa Catarina (NENASC), Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC 88806-000, Brazil
| | - Julia S Vieira
- Laboratory of Bioenergetics, National Institute for Translational Medicine (INCT-TM), Center of Excellence in Applied Neurosciences of Santa Catarina (NENASC), Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC 88806-000, Brazil
| | - Cinara L Gonçalves
- Laboratory of Bioenergetics, National Institute for Translational Medicine (INCT-TM), Center of Excellence in Applied Neurosciences of Santa Catarina (NENASC), Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC 88806-000, Brazil
| | - Emilio L Streck
- Laboratory of Bioenergetics, National Institute for Translational Medicine (INCT-TM), Center of Excellence in Applied Neurosciences of Santa Catarina (NENASC), Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC 88806-000, Brazil
| | - João Quevedo
- Laboratory of Neurosciences, National Institute for Translational Medicine (INCT-TM), Center of Excellence in Applied Neurosciences of Santa Catarina (NENASC), Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC 88806-000, Brazil; Center for Experimental Models in Psychiatry, Department of Psychiatry and Behavioral Sciences, University of Texas Medical School at Houston, Houston, TX, USA
| |
Collapse
|
40
|
Santos JL, Aparicio A, Bagney A, Sánchez-Morla EM, Rodríguez-Jiménez R, Mateo J, Jiménez-Arriero MÁ. A five-year follow-up study of neurocognitive functioning in bipolar disorder. Bipolar Disord 2014; 16:722-31. [PMID: 24909395 DOI: 10.1111/bdi.12215] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Revised: 08/27/2013] [Accepted: 10/16/2013] [Indexed: 01/30/2023]
Abstract
OBJECTIVES Cognitive dysfunction in bipolar disorder has been well-established in cross-sectional studies; however, there are few data regarding the longitudinal course of cognitive performance in bipolar disorder. The aim of this study was to examine the course of cognitive function in a sample of euthymic patients with bipolar disorder during a five-year follow-up period. METHODS Eighty euthymic outpatients with a DSM-IV diagnosis of bipolar disorder and 40 healthy control comparison subjects were neuropsychologically assessed at baseline (T1) and then at follow-up of five years (T2). A neurocognitive battery including the main cognitive domains of speed of processing, working memory, attention, verbal memory, visual memory, and executive function was used to evaluate cognitive performance. RESULTS Repeated-measures multivariate analyses showed that progression of cognitive dysfunction in patients was not different to that of control subjects in any of the six cognitive domains examined. Only a measure from the verbal memory domain, delayed free recall, worsened more in patients with bipolar disorder. Additionally, it was found that clinical course during the follow-up period did not influence the course of cognitive dysfunction. CONCLUSIONS Cognitive dysfunction that is characteristic of bipolar disorder is persistent and stable over time. Only dysfunction in verbal recall was found to show a progressive course that cannot be explained by clinical or treatment variables.
Collapse
Affiliation(s)
- José Luis Santos
- Department of Psychiatry, Hospital Virgen de la Luz, Cuenca, Spain
| | | | | | | | | | | | | |
Collapse
|
41
|
Munkholm K, Pedersen BK, Kessing LV, Vinberg M. Elevated levels of plasma brain derived neurotrophic factor in rapid cycling bipolar disorder patients. Psychoneuroendocrinology 2014; 47:199-211. [PMID: 25001969 DOI: 10.1016/j.psyneuen.2014.05.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 05/05/2014] [Accepted: 05/05/2014] [Indexed: 12/31/2022]
Abstract
Impaired neuroplasticity may be implicated in the pathophysiology of bipolar disorder, involving peripheral alterations of the neurotrophins brain derived neurotrophic factor (BDNF) and neurotrophin 3 (NT-3). Evidence is limited by methodological issues and is based primarily on case-control designs. The aim of this study was to investigate whether BDNF and NT-3 levels differ between patients with rapid cycling bipolar disorder and healthy control subjects and whether BDNF and NT-3 levels alter with affective states in rapid cycling bipolar disorder patients. Plasma levels of BDNF and NT-3 were measured in 37 rapid cycling bipolar disorder patients and in 40 age- and gender matched healthy control subjects using enzyme-linked immunosorbent assay (ELISA). In a longitudinal design, repeated measurements of BDNF and NT-3 were evaluated in various affective states in bipolar disorder patients during a 6-12 months period and compared with repeated measurements in healthy control subjects. Careful attention was given to standardization of all procedures and adjustment for potential confounders of BDNF and NT-3. In linear mixed models, adjusting for demographical and lifestyle factors, levels of BDNF were significantly elevated in bipolar disorder patients in euthymic- (p<0.05), depressed- (p<0.005) and manic/hypomanic (p<0.005) states compared with healthy control subjects. Within bipolar disorder patients, adjusting for medication, there was no significant difference in BDNF levels between affective states, with equally elevated levels present in euthymic-, depressive- and manic/hypomanic patients. Levels of BDNF were higher in patients with longer duration of illness compared with patients with shorter duration of illness. We found no difference in NT-3 levels between bipolar disorder patients in any affective state compared with healthy control subjects and no difference in NT-3 levels between affective states in bipolar disorder patients. The results suggest that BDNF may be a marker related to illness stage in bipolar disorder, not varying with affective states in rapid cycling bipolar disorder patients. Due to the nature of comparison, it cannot be excluded that the finding of elevated BDNF levels in bipolar disorder patients compared with healthy controls could be influenced by medication.
Collapse
Affiliation(s)
- Klaus Munkholm
- Psychiatric Center Copenhagen, Rigshospitalet, University of Copenhagen, Denmark.
| | - Bente Klarlund Pedersen
- The Centre of Inflammation and Metabolism and The Centre for Physical Activity Research, Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Denmark
| | - Lars Vedel Kessing
- Psychiatric Center Copenhagen, Rigshospitalet, University of Copenhagen, Denmark
| | - Maj Vinberg
- Psychiatric Center Copenhagen, Rigshospitalet, University of Copenhagen, Denmark
| |
Collapse
|
42
|
Winham SJ, Cuellar-Barboza AB, McElroy SL, Oliveros A, Crow S, Colby CL, Choi DS, Chauhan M, Frye MA, Biernacka JM. Bipolar disorder with comorbid binge eating history: a genome-wide association study implicates APOB. J Affect Disord 2014; 165:151-8. [PMID: 24882193 PMCID: PMC4224146 DOI: 10.1016/j.jad.2014.04.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 04/11/2014] [Indexed: 11/30/2022]
Abstract
BACKGROUND Bipolar disorder (BD) is a highly heritable disease. While genome-wide association (GWA) studies have identified several genetic risk factors for BD, few of these studies have investigated the genetic etiology of specific disease subtypes. In particular, BD is positively associated with eating dysregulation traits such as binge eating behavior (BE), yet the genetic risk factors underlying BD with comorbid BE have not been investigated. METHODS Utilizing data from the Genetic Association Information Network study of BD, which included 729,454 single nucleotide polymorphisms (SNPs) genotyped in 1001 European American bipolar cases and 1034 controls, we performed GWA analyses of bipolar subtypes defined by the presence or absence of BE history, and performed a case-only analysis comparing BD subjects with and without BE history. Association signals were refined using imputation, and network analysis was performed with Ingenuity Pathway Analysis software. Based on these results, candidate SNPs were selected for replication in an independent sample of 855 cases and 857 controls. RESULTS Top ranking SNPs in the discovery set included rs6006893 in PRR5, rs17045162 in ANK2, rs13233490 near PER4, rs4665788 and rs10198175 downstream of APOB, rs2367911 in CACNA2D1, and rs7249968 near ZNF536. Rs10198175 in APOB also demonstrated evidence of association in the replication sample and a meta-analysis of the two samples. LIMITATIONS Without information of BE history in controls, it is not possible to determine whether the observed association with APOB reflects a risk factor for BE behavior in general or a risk factor for a subtype of BD with BE. Further longitudinal and functional studies are needed to determine the causal pathways underlying the observed associations. CONCLUSIONS This study identified new potential BD-susceptibility genes, highlighting the advantages of phenotypic sub-classification in genetic research and clinical practice.
Collapse
Affiliation(s)
- Stacey J. Winham
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Alfredo B. Cuellar-Barboza
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA,Department of Psychiatry, Universidad Autonoma de Nuevo Leon, Monterrey, Mexico
| | - Susan L. McElroy
- Lindner Center of HOPE, Mason, OH, USA,University of Cincinnati, Cincinnati, OH, USA
| | - Alfredo Oliveros
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Scott Crow
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA,The Emily Program, St. Paul, MN, USA
| | - Colin L. Colby
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Doo-Sup Choi
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Mohit Chauhan
- Department of Psychiatry and Psychology, Mayo Clinic Health Systems, Austin, MN, USA
| | - Mark A. Frye
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Joanna M. Biernacka
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA,Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA,Corresponding author at: Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA. Tel.: +1 507 538 5274; fax: +1 507 284 9542. (J.M. Biernacka)
| |
Collapse
|
43
|
Dubovsky SL, Daurignac E, Leonard KE. Increased platelet intracellular calcium ion concentration is specific to bipolar disorder. J Affect Disord 2014; 164:38-42. [PMID: 24856551 DOI: 10.1016/j.jad.2014.04.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 04/11/2014] [Indexed: 01/02/2023]
Abstract
BACKGROUND Increased baseline ([Ca(2+)]B) and agonist-stimulated ([Ca(2+)]s) free intracellular calcium ion concentrations ([Ca(2+)]i) are well-replicated findings in bipolar disorder, but whether this finding is specific to that condition and if so, whether it is a marker of the mood disorder or a feature seen in other disorders such as psychosis has remained unclear. METHODS Platelet [Ca(2+)]i was assessed in 15 inpatients with psychotic and nonpsychotic mania, 17 schizophrenia inpatients, and 17 matched controls. RESULTS Platelet [Ca(2+)]B and [Ca(2+)]s were significantly higher than controls in bipolar disorder but not schizophrenia. Variability of [Ca(2+)]B was significantly increased in bipolar disorder regardless of the presence of psychosis, but not in schizophrenia. LIMITATIONS Use of antipsychotic drugs by the majority of both patient groups may have obscured elevated [Ca(2+)]i in schizophrenia, or may have masked a difference between psychotic and nonpsychotic bipolar disorder. Measurement of [Ca(2+)]i is too labor intensive to become a routine test for diagnosis or prediction of treatment response. CONCLUSIONS Elevated intracellular Ca(2+) signaling may be a marker of primary cellular hyperactivity that could contribute to comorbid conditions such as hypertension and neuronal apoptosis. Since lithium and carbamazepine attenuate increased [Ca(2+)]i, further research may demonstrate a correlation between normalization of [Ca(2+)]i and response to one of these medications, and further research may clarify whether a subgroup of patients may respond well to calcium channel antagonists.
Collapse
Affiliation(s)
- Steven L Dubovsky
- Department of Psychiatry, State University of New York at Buffalo, Buffalo, NY 14215, USA; Departments of Psychiatry and Medicine, University of Colorado, Denver, CO, USA.
| | - Elsa Daurignac
- Department of Psychiatry, State University of New York at Buffalo, Buffalo, NY 14215, USA
| | - Kenneth E Leonard
- Department of Psychiatry, State University of New York at Buffalo, Buffalo, NY 14215, USA; Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
44
|
Grande I, Magalhães PVS, Chendo I, Stertz L, Fries GR, Cereser KM, Cunha ÂBM, Gói P, Kunz M, Udina M, Martín-Santos R, Frey BN, Vieta E, Kapczinski F. Val66Met polymorphism and serum brain-derived neurotrophic factor in bipolar disorder: an open-label trial. Acta Psychiatr Scand 2014; 129:393-400. [PMID: 23957567 DOI: 10.1111/acps.12192] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/11/2013] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Brain-derived neurotrophic factor (BDNF) is consistently associated with acute mood episodes in bipolar disorder, but there is a lack of longitudinal data to support this hypothesis. In this 16-week open-label clinical trial, we tested the predictive role of BDNF Val66Met polymorphism on serum BDNF levels and the relationship of serum BDNF and clinical response in people with bipolar disorder during an acute illness episode. METHOD Sixty-four people with bipolar disorder who were medication-free at baseline and in an acute mood episode were recruited. They were matched with 64 healthy controls. Clinical evaluation, serum BDNF, and BDNF Val66Met polymorphism were determined at baseline, and change in serum BDNF was assessed in patients at weeks 2, 4, 8 and 16. RESULTS There were no differences between patients and controls in serum BDNF or in frequencies of the BDNF Val66Met polymorphism genotype at baseline. The multivariable model showed that Met carriers had a significantly different change in BDNF levels compared with Val homozygotes. Not achieving a complete remission was also associated with lower prospectively assessed BDNF levels. CONCLUSION This study provides the first longitudinal evidence that both the BDNF Val66Met polymorphism and remission status predict change in circulating BDNF levels.
Collapse
Affiliation(s)
- I Grande
- Bipolar Disorders Unit, IDIBAPS, CIBERSAM, Clinical Institute of Neurosciences, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Del Cul A. Le lithium : monothérapie ou associations. ANNALES MÉDICO-PSYCHOLOGIQUES, REVUE PSYCHIATRIQUE 2014; 172:207-211. [DOI: 10.1016/j.amp.2014.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
46
|
Machado-Vieira R, Soeiro-De-Souza MG, Richards EM, Teixeira AL, Zarate CA. Multiple levels of impaired neural plasticity and cellular resilience in bipolar disorder: developing treatments using an integrated translational approach. World J Biol Psychiatry 2014; 15:84-95. [PMID: 23998912 PMCID: PMC4180367 DOI: 10.3109/15622975.2013.830775] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVES This paper reviews the neurobiology of bipolar disorder (BD), particularly findings associated with impaired cellular resilience and plasticity. METHODS PubMed/Medline articles and book chapters published over the last 20 years were identified using the following keyword combinations: BD, calcium, cytokines, endoplasmic reticulum (ER), genetics, glucocorticoids, glutamate, imaging, ketamine, lithium, mania, mitochondria, neuroplasticity, neuroprotection, neurotrophic, oxidative stress, plasticity, resilience, and valproate. RESULTS BD is associated with impaired cellular resilience and synaptic dysfunction at multiple levels, associated with impaired cellular resilience and plasticity. These findings were partially prevented or even reversed with the use of mood stabilizers, but longitudinal studies associated with clinical outcome remain scarce. CONCLUSIONS Evidence consistently suggests that BD involves impaired neural plasticity and cellular resilience at multiple levels. This includes the genetic and intra- and intercellular signalling levels, their impact on brain structure and function, as well as the final translation into behaviour/cognitive changes. Future studies are expected to adopt integrated translational approaches using a variety of methods (e.g., microarray approaches, neuroimaging, genetics, electrophysiology, and the new generation of -omics techniques). These studies will likely focus on more precise diagnoses and a personalized medicine paradigm in order to develop better treatments for those who need them most.
Collapse
Affiliation(s)
- Rodrigo Machado-Vieira
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, NIH, Bethesda, MD, USA,Laboratory of Neuroscience, LIM27, Institute and Department of Psychiatry, School of Medicine, University of Sao Paulo, SP, Brazil,Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of Sao Paulo, SP, Brazil
| | - Marcio G. Soeiro-De-Souza
- Mood Disorders Unit (GRUDA), Institute and Department of Psychiatry, School of Medicine, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Erica M. Richards
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, NIH, Bethesda, MD, USA
| | - Antonio L. Teixeira
- Neurology Group, Department of Internal Medicine, School of Medicine, UFMG, Belo Horizonte, Brazil
| | - Carlos A. Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, NIH, Bethesda, MD, USA
| |
Collapse
|
47
|
Pfaffenseller B, Fries GR, Wollenhaupt-Aguiar B, Colpo GD, Stertz L, Panizzutti B, Magalhães PVS, Kapczinski F. Neurotrophins, inflammation and oxidative stress as illness activity biomarkers in bipolar disorder. Expert Rev Neurother 2014; 13:827-42. [DOI: 10.1586/14737175.2013.811981] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
48
|
Baek JH, Kinrys G, Nierenberg AA. Lithium tremor revisited: pathophysiology and treatment. Acta Psychiatr Scand 2014; 129:17-23. [PMID: 23834617 DOI: 10.1111/acps.12171] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/30/2013] [Indexed: 01/28/2023]
Abstract
OBJECTIVE Tremor occurs frequently as a side-effect of lithium, and it is, however, easily overlooked in the clinical setting. In this article, we attempt to review the pathophysiology and the clinical approach of lithium tremor. METHOD We searched the Pubmed and Cochrane Library for relevant articles up to the year 2012. Sixty-four articles including 10 review papers, 3 clinical trials, and 12 case reports were reviewed. RESULTS Lithium tremor is classified as a postural tremor and subcategorized as an exaggerated physiologic tremor. Differential diagnosis includes metabolic abnormalities, benign essential tremor, Parkinson's disease, and lithium toxicity. Various methods of evaluating lithium tremor and treatment options are discussed. CONCLUSION When lithium tremor has developed, thorough history taking, physical examination, and blood examination including serum lithium level are needed. Pharmacotherapy is indicated only in patients with disabling tremor.
Collapse
Affiliation(s)
- J H Baek
- Bipolar Clinic and Research Program, Massachusetts General Hospital, Boston, MA, USA
| | | | | |
Collapse
|
49
|
Barbosa IG, Nogueira CRC, Rocha NP, Queiroz ALL, Vago JP, Tavares LP, Assis F, Fagundes CT, Huguet RB, Bauer ME, Teixeira AL, de Sousa LP. Altered intracellular signaling cascades in peripheral blood mononuclear cells from BD patients. J Psychiatr Res 2013; 47:1949-54. [PMID: 24075327 DOI: 10.1016/j.jpsychires.2013.08.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 08/23/2013] [Accepted: 08/26/2013] [Indexed: 01/17/2023]
Abstract
Bipolar disorder (BD) is a severe psychiatric disorder of complex physiopathology that has been associated with a pro-inflammatory state. The aim of the present study was to investigate intracellular pathways associated with inflammatory signaling, assessing the phosphorylation levels of transcription factor nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPKs) in peripheral blood mononuclear cells of euthymic BD patients and healthy controls. Fifteen BD euthymic type I patients, and 12 healthy controls matched by age and gender were enrolled in this study. All subjects were assessed by the Mini-International Neuropsychiatry Interview and the patients also by the Young Mania Rating Scale and the Hamilton Depression Rating Scale. Phosphorylation levels of p65 NF-κB subunit, and MAPK ERK1/2, and p38 were assessed by Western blot and flow cytometry. Plasma cytokines (IL-2, IL-4, IL6, IL-10, IFN-γ, TNF-α, and IL-17A) were measured using cytometric bead arrays. Western blot and flow cytometry analyses showed increased phosphorylation levels of p65 NF-κB subunit, and MAPKs ERK1/2, and p38 in BD patients in euthymia in comparison with controls. BD patients presented increased pro-inflammatory cytokines levels in comparison with controls, and TNF-α correlated with the levels of phosphorylated p65 NF-κB. The present study found increased activation of MAPK and NF-κB pathways in BD patients, which is in line with a pro-inflammatory status.
Collapse
Affiliation(s)
- Izabela Guimarães Barbosa
- Programa de Pós Graduação em Neurociências, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abdallah MW, Mortensen EL, Greaves-Lord K, Larsen N, Bonefeld-Jørgensen EC, Nørgaard-Pedersen B, Hougaard DM, Grove J. Neonatal levels of neurotrophic factors and risk of autism spectrum disorders. Acta Psychiatr Scand 2013; 128:61-9. [PMID: 23039165 DOI: 10.1111/acps.12020] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/04/2012] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To examine levels of 3 neurotrophic factors (NTFs): Brain derived neurotrophic factor (BDNF), Neurotrophin-4 (NT-4), and transforming growth factor-β (TGF-β) in dried blood spot samples of neonates diagnosed with autism spectrum disorders (ASD) later in life and frequency-matched controls. METHOD Biologic samples were retrieved from the Danish Newborn Screening Biobank. NTFs for 414 ASD cases and 820 controls were measured using Luminex technology. Associations were analyzed with continuous measures (Tobit regression) as well as dichotomized at the lower and upper 10th percentiles cutoff points derived from the controls' distributions (logistic regression). RESULTS ASD cases were more likely to have BDNF levels falling in the lower 10th percentile (odds ratios [OR], 1.53 [95% confidence intervals (CI), 1.04-2.24], P-value = 0.03). Similar pattern was seen for TGF-β in females with ASD (OR, 2.36 [95% CI, 1.05-5.33], P-value = 0.04). For NT-4, however, ASD cases diagnosed with ICD-10 only were less likely to have levels in upper 10th percentile compared with controls (OR, 0.22 [95% CI, 0.05-0.98], P-value = 0.05). CONCLUSION Results cautiously indicate decreased NTFs levels during neonatal period in ASD. This may contribute to the pathophysiology of ASD through impairments of neuroplasticity. Further research is required to confirm our results and to examine the potential therapeutic effects of NTFs in ASD.
Collapse
Affiliation(s)
- M W Abdallah
- Section for Epidemiology, HEALTH, Aarhus University, Aarhus, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|