1
|
Sukakul T, Bruze M, Svedman C. Fragrance Contact Allergy - A Review Focusing on Patch Testing. Acta Derm Venereol 2024; 104:adv40332. [PMID: 39140486 PMCID: PMC11334351 DOI: 10.2340/actadv.v104.40332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/27/2024] [Indexed: 08/15/2024] Open
Abstract
Fragrance materials are widely used in various types of products in daily life and many of them can be contact sensitizers. Contact allergy to fragrances has been reported to be common worldwide. Unlike other groups of contact allergens such as metals and preservatives, fragrance materials in consumer products can be present as single fragrance chemicals or in the form of mixtures known as natural complex substances. Due to the complexity of the fragrance materials and the high number of fragrance substances known to cause contact sensitization, selecting suitable materials for patch testing is challenging. Emerging fragrance markers have been additionally introduced in different baseline series for screening to enhance the rate of fragrance contact allergy detection. Moreover, there have been continual updates on basic knowledge, clinical perspectives, sources of exposure, and regulations on the use of fragrance materials. Avoiding pitfalls while performing patch testing with fragrance test materials is also crucial and should not be overlooked. Therefore, this review aims to update knowledge to provide a high-quality holistic approach to fragrance contact allergy diagnosis and management.
Collapse
Affiliation(s)
- Thanisorn Sukakul
- Department of Occupational and Environmental Dermatology, Lund University, Skåne University Hospital, Malmö, Sweden.
| | - Magnus Bruze
- Department of Occupational and Environmental Dermatology, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Cecilia Svedman
- Department of Occupational and Environmental Dermatology, Lund University, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
2
|
Kassirer S, Marini L, Zachary CB, Sarnoff DS, Landau M. Esthetic and medical tattooing: Part I: Tattooing techniques, implications, and adverse effects in healthy populations and special groups. J Am Acad Dermatol 2024:S0190-9622(24)00964-2. [PMID: 38980248 DOI: 10.1016/j.jaad.2024.05.094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 07/10/2024]
Abstract
Tattooing, the introduction of exogenous pigments into the skin, has a rich history spanning thousands of years, with cultural, cosmetic, and medical significance. With the increasing prevalence of tattoos, understanding their potential complications and contraindications is of growing importance. The most common complications are hypersensitivity reactions, which may vary in morphology and timing. Infectious complications are often due to inadequate aseptic and hygienic practices during the tattooing process or healing period. Tattoo pigment can present diagnostic challenges, affecting cancer diagnosis and imaging. This CME article explores the history, cultural significance, epidemiology, chemistry, technique, contraindications, and complications of tattoos. Appreciating these factors can help individuals considering tattoos understand the safety and potential risks of their body art, and provide physicians with a thorough understanding of tattooing if consulted.
Collapse
Affiliation(s)
- Samuel Kassirer
- American Medical Program, Tel Aviv University Faculty of Medicine, Tel Aviv, Israel
| | - Leonardo Marini
- Diplomate General Surgery and Dermatology, Medical and Scientific Director, SDC The Skin Doctors Center, Trieste, Italy
| | | | - Deborah S Sarnoff
- Clinical Professor, Ronald O. Perelman Department of Dermatology at NYU Grossman School of Medicine, New York, New York
| | | |
Collapse
|
3
|
Zyryanov S, Asetskaya I, Butranova O, Terekhina E, Polivanov V, Yudin A, Samsonova K. Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis: Analysis of the Russian Database of Spontaneous Reports. Pharmaceuticals (Basel) 2024; 17:675. [PMID: 38931343 PMCID: PMC11207115 DOI: 10.3390/ph17060675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/30/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
(1) Background: Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) are extremely severe cutaneous adverse drug reactions which are relatively rare in routine clinical practice. An analysis of a national pharmacovigilance database may be the most effective method of obtaining information on SJS and TEN. (2) Methods: Design-a retrospective descriptive pharmacoepidemiologic study of spontaneous reports (SRs) with data on SJS and TEN retrieved from the Russian National Pharmacovigilance database for the period from 1 April 2019 to 31 December 2023. Descriptive statistics was used to assess the demographic data of patients and the structure of suspected drugs. (3) Results: A total of 170 SRs on SJS and TEN were identified, of which 32.9% were SJS and 67.1%-TEN. In total, 30% were pediatric SRs, 21.2%-SRs of the elderly. There were 12 lethal cases, and all cases were TEN. The leading culprit drugs were anti-infectives for systemic use and nervous system agents. The top 10 involved drugs are as follows: lamotrigine (23.5%), ibuprofen (12.9%), ceftriaxone (8.8%), amoxicillin and amoxicillin with beta-lactam inhibitors (8.8%), paracetamol (7.6%), carbamazepine (5.9%), azithromycin (4.1%), valproic acid (4.1%), omeprazole (3.5%), and levetiracetam (3.5%). (4) Conclusions: Our study was the first study in Russia aimed at the assessment of the structure of the drugs involved in SJS and TEN on the national level.
Collapse
Affiliation(s)
- Sergey Zyryanov
- Department of General and Clinical Pharmacology, Peoples’ Friendship University of Russia Named after Patrice Lumumba (RUDN), 6 Miklukho-Maklaya St., 117198 Moscow, Russia; (S.Z.); (I.A.); (E.T.); (K.S.)
- Moscow City Health Department, City Clinical Hospital No. 24, State Budgetary Institution of Healthcare of the City of Moscow, Pistzovaya Str. 10, 127015 Moscow, Russia;
| | - Irina Asetskaya
- Department of General and Clinical Pharmacology, Peoples’ Friendship University of Russia Named after Patrice Lumumba (RUDN), 6 Miklukho-Maklaya St., 117198 Moscow, Russia; (S.Z.); (I.A.); (E.T.); (K.S.)
| | - Olga Butranova
- Department of General and Clinical Pharmacology, Peoples’ Friendship University of Russia Named after Patrice Lumumba (RUDN), 6 Miklukho-Maklaya St., 117198 Moscow, Russia; (S.Z.); (I.A.); (E.T.); (K.S.)
| | - Elizaveta Terekhina
- Department of General and Clinical Pharmacology, Peoples’ Friendship University of Russia Named after Patrice Lumumba (RUDN), 6 Miklukho-Maklaya St., 117198 Moscow, Russia; (S.Z.); (I.A.); (E.T.); (K.S.)
| | - Vitaly Polivanov
- Pharmacovigilance Center, Information and Methodological Center for Expert Evaluation, Record and Analysis of Circulation of Medical Products under the Federal Service for Surveillance in Healthcare, 4-1 Slavyanskaya Square, 109074 Moscow, Russia;
| | - Alexander Yudin
- Moscow City Health Department, City Clinical Hospital No. 24, State Budgetary Institution of Healthcare of the City of Moscow, Pistzovaya Str. 10, 127015 Moscow, Russia;
- Russian National Research Medical University Named after N.I. Pirogov, St. Ostrovityanova, 1, 117997 Moscow, Russia
| | - Kristina Samsonova
- Department of General and Clinical Pharmacology, Peoples’ Friendship University of Russia Named after Patrice Lumumba (RUDN), 6 Miklukho-Maklaya St., 117198 Moscow, Russia; (S.Z.); (I.A.); (E.T.); (K.S.)
| |
Collapse
|
4
|
Mizumachi H, Watanabe M, Ikezumi M, Kajiwara M, Yasuda M, Mizuno M, Imai N, Sakuma M, Shibata M, Watanabe SI, Motoyama J, Basketter D, Eskes C, Hoffmann S, Lehmann DM, Ashikaga T, Sozu T, Takeyoshi M, Suzuki S, Miyazawa M, Kojima H. The inter-laboratory validation study of EpiSensA for predicting skin sensitization potential. J Appl Toxicol 2024; 44:510-525. [PMID: 37897225 PMCID: PMC11503481 DOI: 10.1002/jat.4559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023]
Abstract
The Epidermal Sensitization Assay (EpiSensA) is a reconstructed human epidermis (RhE)-based gene expression assay for predicting the skin sensitization potential of chemicals. Since the RhE model is covered by a stratified stratum corneum, various kinds of test chemicals, including lipophilic ones and pre-/pro-haptens, can be tested with a route of exposure akin to an in vivo assay and human exposure. This article presents the results of a formally managed validation study of the EpiSensA that was carried out by three participating laboratories. The purpose of this validation study was to assess transferability of the EpiSensA to new laboratories along with its within- (WLR) and between-laboratory reproducibility (BLR). The validation study was organized into two independent stages. As demonstrated during the first stage, where three sensitizers and one non-sensitizer were correctly predicted by all participating laboratories, the EpiSensA was successfully transferred to all three participating laboratories. For Phase I of the second stage, each participating laboratory performed three experiments with an identical set of 15 coded test chemicals resulting in WLR of 93.3%, 93.3%, and 86.7%, respectively. Furthermore, when the results from the 15 test chemicals were combined with those of the additional 12 chemicals tested in Phase II of the second stage, the BLR for 27 test chemicals was 88.9%. Moreover, the predictive capacity among the three laboratories showed 92.6% sensitivity, 63.0% specificity, 82.7% accuracy, and 77.8% balanced accuracy based on murine local lymph node assay (LLNA) results. Overall, this validation study concluded that EpiSensA is easily transferable and sufficiently robust for assessing the skin sensitization potential of chemicals.
Collapse
Affiliation(s)
- Hideyuki Mizumachi
- R&D Safety Science Research, Kao Corporation, 2606 Akabane, Ichikai-Machi, Haga-Gun, Tochigi 321-3497, Japan
| | - Mika Watanabe
- Hatano Research Institute, Food and Drug Safety Center, 729-5 Ochiai, Hadano, Kanagawa 257-8523, Japan
| | - Mayu Ikezumi
- Hatano Research Institute, Food and Drug Safety Center, 729-5 Ochiai, Hadano, Kanagawa 257-8523, Japan
| | - Michika Kajiwara
- Hatano Research Institute, Food and Drug Safety Center, 729-5 Ochiai, Hadano, Kanagawa 257-8523, Japan
| | - Michiyo Yasuda
- Hatano Research Institute, Food and Drug Safety Center, 729-5 Ochiai, Hadano, Kanagawa 257-8523, Japan
| | - Makoto Mizuno
- Safety and Analytical Research Laboratories, KOSÉ Corporation, 48-18 Sakae-cho, Kita-ku, Tokyo 114-0005, Japan
| | - Noriyasu Imai
- Safety and Analytical Research Laboratories, KOSÉ Corporation, 48-18 Sakae-cho, Kita-ku, Tokyo 114-0005, Japan
| | - Megumi Sakuma
- Safety and Analytical Research Laboratories, KOSÉ Corporation, 48-18 Sakae-cho, Kita-ku, Tokyo 114-0005, Japan
| | - Momoko Shibata
- Safety and Analytical Research Laboratories, KOSÉ Corporation, 48-18 Sakae-cho, Kita-ku, Tokyo 114-0005, Japan
| | - Shin-ichi Watanabe
- Safety Research Science Laboratory, LION Corporation, 100 Tajima, Odawara-shi, Kanagawa 256-0811, Japan
| | - Junko Motoyama
- Safety Research Science Laboratory, LION Corporation, 100 Tajima, Odawara-shi, Kanagawa 256-0811, Japan
| | - David Basketter
- DABMEB Consultancy Ltd., Kingswood, Gloucestershire GL12 8RN, UK
| | - Chantra Eskes
- Services and Consultation on Alternative Methods (SeCAM), Magliaso, Switzerland and Swiss 3R Competence Centre (3RCC), Bern, Switzerland
| | | | - David M. Lehmann
- Office of Research and Development, US Environmental Protection Agency, 109 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Takao Ashikaga
- Japanese Center for the Validation of Alternative Methods (JaCVAM), National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kanagawa 210-9501, Japan
| | - Takashi Sozu
- Department of Information and Computer Technology, Faculty of Engineering, Tokyo University of Science, Katsushika-ku, Tokyo 125-0051, Japan
| | - Masahiro Takeyoshi
- Chemicals Assessment and Research Center, Chemicals Evaluation and Research Institute (CERI), 1600 Shimotakano, Sugito-machi, Kitakatsushika-gun, Saitama 345-0043, Japan
| | - Sho Suzuki
- R&D Safety Science Research, Kao Corporation, 2606 Akabane, Ichikai-Machi, Haga-Gun, Tochigi 321-3497, Japan
| | - Masaaki Miyazawa
- R&D Safety Science Research, Kao Corporation, 2606 Akabane, Ichikai-Machi, Haga-Gun, Tochigi 321-3497, Japan
| | - Hajime Kojima
- Japanese Center for the Validation of Alternative Methods (JaCVAM), National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kanagawa 210-9501, Japan
| |
Collapse
|
5
|
Mizumachi H, Suzuki S, Sakuma M, Natsui M, Imai N, Miyazawa M. Reconstructed human epidermis-based testing strategy of skin sensitization potential and potency classification using epidermal sensitization assay and in silico data. J Appl Toxicol 2024; 44:415-427. [PMID: 37846211 DOI: 10.1002/jat.4551] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/24/2023] [Accepted: 09/24/2023] [Indexed: 10/18/2023]
Abstract
The hazards and potency of skin sensitizers are traditionally determined using animal tests such as the local lymph node assay (LLNA); however, significant progress has been made in the development of non-animal test methods addressing the first three mechanistic key events of adverse outcome pathway in skin sensitization. We developed the epidermal sensitization assay (EpiSensA), which is a reconstructed human epidermis-based assay, by measuring four genes related to critical keratinocyte responses during skin sensitization. Four in vitro skin sensitization test methods (EpiSensA, direct peptide reactivity assay [DPRA], KeratinoSens™, and human cell line activation test [h-CLAT]) were systematically evaluated using 136 chemicals including lipophilic chemicals and pre/pro-haptens, which may be related to assay-specific limitations. The constructed database included existing and newly generated data. The EpiSensA showed a broader applicability domain and predicted the hazards with 82.4% and 78.8% accuracy than LLNA and human data. The EpiSensA could detect 76 out of 88 sensitizers at lower concentrations than the LLNA, indicating that the EpiSensA has higher sensitivity for the detection of minor sensitizing constituents. These results confirmed the potential use of the EpiSensA in evaluating a mixture of unknown compositions that can be evaluated by animal tests. To combine different information sources, the reconstructed human epidermis-based testing strategy (RTS) was developed based on weighted multiple information from the EpiSensA and TImes MEtabolism Simulator platform for predicting Skin Sensitization (TIMES-SS; RTSv1) or Organization for Economic Cooperation and Development (OECD) QSAR Toolbox automated workflow (RTSv2). The predictivities of the hazards and Globally Harmonized System (GHS) subcategories were equal to or better than the defined approaches (2 out of 3, integrated testing strategy [ITS]v1, and ITSv2) adopted as OECD Guideline 497.
Collapse
Affiliation(s)
| | - Sho Suzuki
- Safety Science Research, Kao Corporation, Haga-gun, Japan
| | - Megumi Sakuma
- Safety and Analytical Research Laboratories, KOSÉ Corporation, Tokyo, Japan
| | - Midori Natsui
- Safety Science Research, Kao Corporation, Haga-gun, Japan
| | - Noriyasu Imai
- Safety and Analytical Research Laboratories, KOSÉ Corporation, Tokyo, Japan
| | | |
Collapse
|
6
|
Bialas I, Zelent-Kraciuk S, Jurowski K. The Skin Sensitisation of Cosmetic Ingredients: Review of Actual Regulatory Status. TOXICS 2023; 11:392. [PMID: 37112619 PMCID: PMC10146005 DOI: 10.3390/toxics11040392] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/11/2023] [Accepted: 04/19/2023] [Indexed: 06/19/2023]
Abstract
All cosmetics products must be safe under foreseeable conditions of use. Allergenic responses are one of the most frequent adverse reactions noted for cosmetics. Thus, the EU cosmetics legislation requires skin sensitisation assessment for all cosmetics ingredients, including the regulated ones (for which the full toxicological dossier needs to be analysed by the Scientific Committee on Consumer Safety (SCCS)) and those (perceived as less toxic) which are assessed by industrial safety assessors. Regardless of who performs the risk assessment, it should be carried out using scientifically and regulatory body-accepted methods. In the EU, reference methods for chemical toxicity testing are defined in the relevant Annexes (VII-X) of the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) Regulation. Recommendations for Skin Sensitization (Skin Sens) testing are provided in Annex VII, and this particular endpoint information is required for all EU-registered chemicals. Historically, in vivo animal and human methods have been used. Both raise ethical doubts, and some of them cause practical problems in the objective analysis of skin sensitising potency. Previous decades of huge effort have resulted in the regulatory acceptance of the alternative Skin Sens IATA (Integrated Approaches to Testing and Assessment) and NGRA (Next Generation Risk Assessment). Regardless of the testing issues, a serious sociological problem are observed within the market: the consumer assumes the presence of strong sensitisers in cosmetics formulations and insufficient risk management tools used by the industry. The present review aims to provide an overview of methods for assessing skin sensitisation. Additionally, it aims to answer the following question: what are the most potent skin sensitisers used in cosmetics? The answer considers the mechanistic background along with the actual regulatory status of ingredients and practical examples of responsible industry solutions in the area of risk management.
Collapse
Affiliation(s)
- Iwona Bialas
- CosmetoSAFE Consulting Sp. z o.o., 05-500 Piaseczno, Poland;
| | | | - Kamil Jurowski
- The Laboratory of Innovative Research and Analyzes, Institute of Medical Studies, Medical College, Rzeszów University, 35-959 Rzeszow, Poland
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertises, 91-205 Łódź, Poland
| |
Collapse
|
7
|
Sakamoto E, Katahira Y, Mizoguchi I, Watanabe A, Furusaka Y, Sekine A, Yamagishi M, Sonoda J, Miyakawa S, Inoue S, Hasegawa H, Yo K, Yamaji F, Toyoda A, Yoshimoto T. Chemical- and Drug-Induced Allergic, Inflammatory, and Autoimmune Diseases Via Haptenation. BIOLOGY 2023; 12:biology12010123. [PMID: 36671815 PMCID: PMC9855847 DOI: 10.3390/biology12010123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/23/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
Haptens are small molecules that only elicit an immune response when bound to proteins. Haptens initially bind to self-proteins and activate innate immune responses by complex mechanisms via inflammatory cytokines and damage-associated molecular patterns and the subsequent upregulation of costimulatory signals such as cluster of differentiation 86 (CD86) on dendritic cells. Subsequent interactions between CD86 and CD28 on T cells are critically important for properly activating naive T cells and inducing interleukin 2 production, leading to the establishment of adaptive immunity via effector and memory T cells. Accumulating evidence revealed the involvement of haptens in the development of various autoimmune-like diseases such as allergic, inflammatory, and autoimmune diseases including allergic contact dermatitis, atopy, asthma, food allergy, inflammatory bowel diseases, hemolytic anemia, liver injury, leukoderma, and even antitumor immunity. Therefore, the development of in vitro testing alternatives to evaluate in advance whether a substance might lead to the development of these diseases is highly desirable. This review summarizes and discusses recent advances in chemical- and drug-induced allergic, inflammatory, and autoimmune diseases via haptenation and the possible molecular underlying mechanisms, as well as in vitro testing alternatives to evaluate in advance whether a substance might cause the development of these diseases.
Collapse
Affiliation(s)
- Eri Sakamoto
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Yasuhiro Katahira
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Izuru Mizoguchi
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Aruma Watanabe
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Yuma Furusaka
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Ami Sekine
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Miu Yamagishi
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Jukito Sonoda
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Satomi Miyakawa
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Shinya Inoue
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Hideaki Hasegawa
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Kazuyuki Yo
- POLA Chemical Industries, Inc., 560 Kashio-cho, Totsuka-ku, Yokohama-shi 244-0812, Kanagawa, Japan
| | - Fumiya Yamaji
- POLA Chemical Industries, Inc., 560 Kashio-cho, Totsuka-ku, Yokohama-shi 244-0812, Kanagawa, Japan
| | - Akemi Toyoda
- POLA Chemical Industries, Inc., 560 Kashio-cho, Totsuka-ku, Yokohama-shi 244-0812, Kanagawa, Japan
| | - Takayuki Yoshimoto
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
- Correspondence: ; Tel.: +81-3-3351-6141
| |
Collapse
|
8
|
Gądarowska D, Kalka J, Daniel-Wójcik A, Mrzyk I. Alternative Methods for Skin-Sensitization Assessment. TOXICS 2022; 10:740. [PMID: 36548573 PMCID: PMC9783525 DOI: 10.3390/toxics10120740] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Skin sensitization is a term used to refer to the regulatory hazard known as allergic contact dermatitis (ACD) in humans or contact hypersensitivity in rodents, an important health endpoint considered in chemical hazard and risk assessments. Information on skin sensitization potential is required in various regulatory frameworks, such as the Directive of the European Parliament and the Council on Registration, Evaluation and Authorization of Chemicals (REACH). The identification of skin-sensitizing chemicals previously required the use of animal testing, which is now being replaced by alternative methods. Alternative methods in the field of skin sensitization are based on the measurement or prediction of key events (KE), i.e., (i) the molecular triggering event, i.e., the covalent binding of electrophilic substances to nucleophilic centers in skin proteins; (ii) the activation of keratinocytes; (iii) the activation of dendritic cells; (iv) the proliferation of T cells. This review article focuses on the current state of knowledge regarding the methods corresponding to each of the key events in skin sensitization and considers the latest trends in the development and modification of these methods.
Collapse
Affiliation(s)
- Dominika Gądarowska
- The Faculty of Energy and Environmental Engineering, Silesian University of Technology, Konarskiego 18, 44-100 Gliwice, Poland
- Łukasiewicz Research Network—Institute of Industrial Organic Chemistry Branch Pszczyna, Doświadczalna 27, 43-200 Pszczyna, Poland
| | - Joanna Kalka
- The Faculty of Energy and Environmental Engineering, Silesian University of Technology, Konarskiego 18, 44-100 Gliwice, Poland
| | - Anna Daniel-Wójcik
- Łukasiewicz Research Network—Institute of Industrial Organic Chemistry Branch Pszczyna, Doświadczalna 27, 43-200 Pszczyna, Poland
| | - Inga Mrzyk
- Łukasiewicz Research Network—Institute of Industrial Organic Chemistry Branch Pszczyna, Doświadczalna 27, 43-200 Pszczyna, Poland
| |
Collapse
|
9
|
Kim SM, Studnitzer B, Esser-Kahn A. Heat Shock Protein 90's Mechanistic Role in Contact Hypersensitivity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2622-2631. [PMID: 35675957 PMCID: PMC9308677 DOI: 10.4049/jimmunol.2101023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/15/2022] [Indexed: 11/19/2022]
Abstract
Despite the known dangers of contact allergens and their long-lasting use as models in immunology, their molecular mode of action largely remains unknown. In this study, we report that a contact allergen, 1-chloro-2,4-dinitrobenzene (DNCB), elicits contact hypersensitivity through binding the protein we identify. Starting from an unbiased sampling of proteomics, we found nine candidate proteins with unique DNCB-modified peptide fragments. More than half of these fragments belonged to heat shock protein 90 (HSP90), a common stress-response protein and a damage-associated molecular pattern, and showed the highest probability of incidence. Inhibition and short hairpin RNA knockdown of HSP90 in human monocyte cell line THP-1 suppressed the potency of DNCB by >80%. Next, we successfully reduced DNCB-induced contact hypersensitivity in HSP90-knockout mice, which confirmed our findings. Finally, we hypothesized that DNCB-modified HSP90 activates the immune cells through HSP90's receptor, CD91. Pretreatment of CD91 in THP-1 cell lines and BALB/c mice attenuated the potency of DNCB, consistent with the result of HSP90-knockout mice. Altogether, our data show that DNCB-HSP90 binding plays a role in mediating DNCB-induced contact hypersensitivity, and the activation of CD91 by DNCB-modified HSP90 proteins could mediate this process.
Collapse
Affiliation(s)
- Seong-Min Kim
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL
| | - Bradley Studnitzer
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL
| | - Aaron Esser-Kahn
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL
| |
Collapse
|
10
|
Klimek L. [Allergic reactions to bioimplants]. HNO 2022; 70:361-370. [PMID: 35344067 DOI: 10.1007/s00106-022-01173-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Bioimplants are used in a variety of ways in otorhinolaryngology, most commonly in facial reconstructive surgery, cochlear implants (CI), bone-anchored hearing aids, and partial/total ossicular replacement prostheses (PORP/TORP), but also for tympanic drainage, laryngeal cannula, voice prostheses after laryngectomy, etc., and in otorhinolaryngology-related procedures as dental implants in dentistry. METHODS A literature search was performed to analyze the immunology of allergic reactions to bioimplants and to determine the available evidence by searching Medline, PubMed, and national and international study and guideline registries and the Cochrane Library. Human studies published in the period up to and including 12/2021 were considered. RESULTS Based on the international literature and previous experience, a review of allergies to bioimplants in otolaryngology is presented. CONCLUSION Otorhinolaryngologists should always consider the possibility of allergic reactions when inserting allogeneic materials, particularly, but not only, when using bioimplants.
Collapse
Affiliation(s)
- L Klimek
- Zentrum für Rhinologie und Allergologie, An den Quellen 10, 65183, Wiesbaden, Deutschland.
| |
Collapse
|
11
|
Basketter DA, Kimber I. Enzymes and sensitization via skin exposure: A critical analysis. Regul Toxicol Pharmacol 2021; 129:105112. [PMID: 34973388 DOI: 10.1016/j.yrtph.2021.105112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/15/2021] [Accepted: 12/27/2021] [Indexed: 10/19/2022]
Abstract
Some proteins, including enzymes, can induce allergic sensitization of various types, including allergic sensitization of the respiratory tract. There is now an increased understanding of the role that the skin plays in the development of IgE-mediated allergy and this prompts the question whether topical exposure to enzymes used widely in consumer cleaning products could result in allergic sensitization. Here, the evidence that proteins can interact with the skin immune system and the way they do so is reviewed, together with a consideration of the experience gained over decades of the use of enzymes in laundry and cleaning products. The conclusion drawn is that although transcutaneous sensitization to proteins can occur (typically through compromised skin) resulting in IgE antibody-mediated allergy, in practice such skin contact with enzymes used in laundry and cleaning products does not appear to pose a significant risk of allergic disease. Further, the evidence summarized in this publication support the view that proteins do not pose a risk of allergic contact dermatitis.
Collapse
Affiliation(s)
| | - Ian Kimber
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
12
|
A hypothetical skin sensitisation next generation risk assessment for coumarin in cosmetic products. Regul Toxicol Pharmacol 2021; 127:105075. [PMID: 34728330 DOI: 10.1016/j.yrtph.2021.105075] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/04/2021] [Accepted: 10/27/2021] [Indexed: 11/21/2022]
Abstract
Next generation Risk Assessment (NGRA) is an exposure-led, hypothesis-driven approach which integrates new approach methodologies (NAMs) to assure safety without generating animal data. This hypothetical skin allergy risk assessment of two consumer products - face cream containing 0.1% coumarin and deodorant containing 1% coumarin - demonstrates the application of our skin allergy NGRA framework which incorporates our Skin Allergy Risk Assessment (SARA) Model. SARA uses Bayesian statistics to provide a human relevant point of departure and risk metric for a given chemical exposure based upon input data that can include both NAMs and historical in vivo studies. Regardless of whether NAM or in vivo inputs were used, the model predicted that the face cream and deodorant exposures were low and high risk respectively. Using only NAM data resulted in a minor underestimation of risk relative to in vivo. Coumarin is a predicted pro-hapten and consequently, when applying this mechanistic understanding to the selection of NAMs the discordance in relative risk could be minimized. This case study demonstrates how integrating a computational model and generating bespoke NAM data in a weight of evidence framework can build confidence in safety decision making.
Collapse
|
13
|
Yamaga H, Watanabe S, Fujita M, Yamamoto Y, Kasahara T, Kataoka S. Amino acid derivative reactivity assay-organic solvent reaction system: A novel alternative test for skin sensitization capable of assessing highly hydrophobic substances. J Appl Toxicol 2021; 41:1634-1648. [PMID: 33636015 DOI: 10.1002/jat.4152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 12/12/2022]
Abstract
The amino acid derivative reactivity assay (ADRA) is an in chemico alternative to animal testing that focuses on protein binding. The ADRA is a skin sensitization test that solves problems associated with the direct peptide reactivity assay. However, when utilizing the ADRA to evaluate highly hydrophobic substances with octanol/water partition coefficients (logKow) of >6, the test substances may not dissolve in the reaction solution, which can prevent the accurate assessment of skin sensitization. Therefore, we developed the ADRA-organic solvent (ADRA-OS) reaction system, which is a novel skin sensitization test that enables the assessment of highly hydrophobic substances with a logKow of >6. We discovered that the organic solvent ratio, the triethylamine concentration, and the ethylenediaminetetraacetic acid disodium salt dihydrate concentration participate in reactions with the nucleophile N-(2-(1-naphthyl)acetyl)-l-cysteine (NAC) and sensitizers that are used in ADRA and in stabilizing NAC. Thus, we determined the optimal reaction composition of the ADRA-OS according to L9 (33 ) orthogonal array experiments. Using this test, we assessed 14 types of highly hydrophobic substances. When we compared the results with ADRA, we found that ADRA-OS reaction system has high solubility for highly hydrophobic substances and that it has a high predictive capacity (sensitivity: 63%, specificity: 100%, accuracy: 79%). The implication of the results is that the novel ADRA-OS reaction system should provide a useful method for assessing the skin sensitization of highly hydrophobic substances with a logKow of >6.
Collapse
Affiliation(s)
- Hiroaki Yamaga
- Safety Science Research Laboratories, Lion Corporation, Kanagawa, Japan
| | - Shinichi Watanabe
- Safety Science Research Laboratories, Lion Corporation, Kanagawa, Japan
| | - Masaharu Fujita
- Safety Evaluation Center, Fujifilm Corporation, Kanagawa, Japan
| | - Yusuke Yamamoto
- Safety Evaluation Center, Fujifilm Corporation, Kanagawa, Japan
| | | | - Shinsuke Kataoka
- Safety Science Research Laboratories, Lion Corporation, Kanagawa, Japan
| |
Collapse
|
14
|
Prasse C. Reactivity-directed analysis - a novel approach for the identification of toxic organic electrophiles in drinking water. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:48-65. [PMID: 33432313 DOI: 10.1039/d0em00471e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Drinking water consumption results in exposure to complex mixtures of organic chemicals, including natural and anthropogenic chemicals and compounds formed during drinking water treatment such as disinfection by-products. The complexity of drinking water contaminant mixtures has hindered efforts to assess associated health impacts. Existing approaches focus primarily on individual chemicals and/or the evaluation of mixtures, without providing information about the chemicals causing the toxic effect. Thus, there is a need for the development of novel strategies to evaluate chemical mixtures and provide insights into the species responsible for the observed toxic effects. This critical review introduces the application of a novel approach called Reactivity-Directed Analysis (RDA) to assess and identify organic electrophiles, the largest group of known environmental toxicants. In contrast to existing in vivo and in vitro approaches, RDA utilizes in chemico methodologies that investigate the reaction of organic electrophiles with nucleophilic biomolecules, including proteins and DNA. This review summarizes the existing knowledge about the presence of electrophiles in drinking water, with a particular focus on their formation in oxidative treatment systems with ozone, advanced oxidation processes, and UV light, as well as disinfectants such as chlorine, chloramines and chlorine dioxide. This summary is followed by an overview of existing RDA approaches and their application for the assessment of aqueous environmental matrices, with an emphasis on drinking water. RDA can be applied beyond drinking water, however, to evaluate source waters and wastewater for human and environmental health risks. Finally, future research demands for the detection and identification of electrophiles in drinking water via RDA are outlined.
Collapse
Affiliation(s)
- Carsten Prasse
- Department of Environmental Health and Engineering, Whiting School of Engineering and Bloomberg School of Public Health, Johns Hopkins University, 3400 N Charles St, Baltimore, MD-21318, USA.
| |
Collapse
|
15
|
Kimber I. The activity of methacrylate esters in skin sensitisation test methods II. A review of complementary and additional analyses. Regul Toxicol Pharmacol 2020; 119:104821. [PMID: 33186628 DOI: 10.1016/j.yrtph.2020.104821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/29/2020] [Accepted: 11/05/2020] [Indexed: 01/13/2023]
Abstract
Allergic contact dermatitis is an important occupational health issue, and there is a need to identify accurately those chemicals that have the potential to induce skin sensitisation. Hazard identification was performed initially using animal (guinea pig and mouse) models. More recently, as a result of the drive towards non-animal methods, alternative in vitro and in silico approaches have been developed. Some of these new in vitro methods have been formally validated and have been assigned OECD Test Guideline status. The performance of some of these recently developed in vitro methods, and of 2 quantitative structure-activity relationships (QSAR) approaches, with a series of methacrylate esters has been reviewed and reported previously. In this article that first review has been extended further with additional data and complementary analyses. Results obtained using in vitro methods (Direct Peptide Reactivity Assay, DPRA; ARE-Nrf2 luciferase test methods, KeratinoSens and LuSens; Epidermal Sensitisation Assay, EpiSensA; human Cell Line Activation Test, h-CLAT, and the myeloid U937 Skin Sensitisation test, U-SENS), and 2 QSAR approaches (DEREK™-nexus and TIMES-SS), with 11 methacrylate esters and methacrylic acid are reported here, and compared with existing data from the guinea pig maximisation test and the local lymph node assay. With this series of chemicals it was found that some in vitro tests (DPRA and ARE-Nrf2 luciferase) performed well in comparison with animal test results and available human skin sensitisation data. Other in vitro tests (EpiSensA and h-CLAT) proved rather more problematic. Results with DEREK™-nexus and TIMES-SS failed to reflect accurately the skin sensitisation potential of the methacrylate esters. The implications for assessment of skin sensitising activity are discussed.
Collapse
Affiliation(s)
- Ian Kimber
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
16
|
Grindon C, Combes R, Cronin MT, Roberts DW, Garrod JF. An Integrated Decision-tree Testing Strategy for Skin Sensitisation with Respect to the Requirements of the EU REACH Legislation. Altern Lab Anim 2019; 35:683-97. [DOI: 10.1177/026119290703500613] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This report presents some of the results of a joint research project, sponsored by Defra and conducted by FRAME and Liverpool John Moores University, on the status of alternatives to animal testing with regard to the European Union REACH (Registration, Evaluation and Authorisation of Chemicals) system for the safety testing and risk assessment of chemicals. The project covered all the main toxicity endpoints associated with the REACH system. This report focuses on the use of alternative (non-animal) methods (both in vitro and in silico) for skin sensitisation testing. The manuscript reviews in vitro tests based on protein-ligand binding, dendritic/Langerhans cells and T-lymphocyte activation, and also the QSAR models and expert systems available for this endpoint. These tests are then incorporated into an integrated, decision-tree testing strategy, which also includes the Local Lymph Node Assay (in its original and new reduced protocols) and the traditional guinea-pig tests (which should only be used as a last resort). The aim of the strategy is to minimise the use of animals in testing for skin sensitisation, while satisfying the scientific and logistical demands of the EU REACH legislation.
Collapse
Affiliation(s)
| | | | - Mark T.D. Cronin
- School of Pharmacy and Chemistry, Liverpool John Moores University, Liverpool, UK
| | - David W. Roberts
- School of Pharmacy and Chemistry, Liverpool John Moores University, Liverpool, UK
| | - John F. Garrod
- Chemicals and Nanotechnologies Division, Defra, London, UK
| |
Collapse
|
17
|
Corsini E, Engin AB, Neagu M, Galbiati V, Nikitovic D, Tzanakakis G, Tsatsakis AM. Chemical-induced contact allergy: from mechanistic understanding to risk prevention. Arch Toxicol 2018; 92:3031-3050. [PMID: 30097700 DOI: 10.1007/s00204-018-2283-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/02/2018] [Indexed: 12/11/2022]
Abstract
Chemical allergens are small molecules able to form a sensitizing complex once they bound to proteins. One of the most frequent manifestations of chemical allergy is contact hypersensitivity, which can have serious impact on quality of life. Allergic contact dermatitis is a predominantly CD8 + T cell-mediated immune disease, resulting in erythema and eczema. Chemical allergy is of considerable importance to the toxicologist, who has the responsibility of identifying and characterizing the allergenic potential of chemicals, and estimating the risk they pose to human health. This review aimed at exploring the phenomena of chemical-induced contact allergy starting from a mechanistic understanding, immunoregulatory mechanisms, passing through the potency of contract allergen until the hazard identification, pointing out the in vitro models for assessing contact allergen-induced cell activation and the risk prevention.
Collapse
Affiliation(s)
- Emanuela Corsini
- Laboratory of Toxicology, Department of Environmental and Political Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Ayşe Başak Engin
- Gazi Üniversitesi, Eczacılık Fakültesi, Toksikoloji, Hipodrom, 06330, Ankara, Turkey
| | - Monica Neagu
- Immunology Department, "Victor Babes" National Institute of Pathology, 99-101 Splaiul Independentei, 050096, Bucharest, Romania
| | - Valentina Galbiati
- Laboratory of Toxicology, Department of Environmental and Political Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy.
| | - Dragana Nikitovic
- Department of Histology-Embryology, School of Medicine, University of Crete, Heraklion, Greece
| | - George Tzanakakis
- Department of Histology-Embryology, School of Medicine, University of Crete, Heraklion, Greece
| | - Aristidis M Tsatsakis
- Department of Forensic Sciences and Toxicology, University of Crete, Heraklion, Greece
| |
Collapse
|
18
|
Villani AP, Gamradt P, Nosbaum A, Laoubi L, Jullien D, Nicolas JF, Vocanson M. Immune-mediated skin diseases induced by chemicals and drugs. CURRENT OPINION IN TOXICOLOGY 2018. [DOI: 10.1016/j.cotox.2018.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
19
|
Mizumachi H, Sakuma M, Ikezumi M, Saito K, Takeyoshi M, Imai N, Okutomi H, Umetsu A, Motohashi H, Watanabe M, Miyazawa M. Transferability and within- and between-laboratory reproducibilities of EpiSensA for predicting skin sensitization potential in vitro: A ring study in three laboratories. J Appl Toxicol 2018; 38:1233-1243. [DOI: 10.1002/jat.3634] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 03/23/2018] [Accepted: 03/26/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Hideyuki Mizumachi
- Kao Corporation, R&D, Safety Science Research; 2606 Akabane, Ichikai-Machi, Haga-Gun Tochigi 321-3497 Japan
| | - Megumi Sakuma
- KOSÉ Corporation, Research Laboratories; 1-18-4 Azusawa, Itabashi-ku Tokyo 174-0051 Japan
| | - Mayu Ikezumi
- Food and Drug Safety Center; Hatano Research Institute; 729-5 Ochiai Hadano-shi Kanagawa 257-8523 Japan
| | - Kazutoshi Saito
- Kao Corporation, R&D, Safety Science Research; 2606 Akabane, Ichikai-Machi, Haga-Gun Tochigi 321-3497 Japan
| | - Midori Takeyoshi
- KOSÉ Corporation, Research Laboratories; 1-18-4 Azusawa, Itabashi-ku Tokyo 174-0051 Japan
| | - Noriyasu Imai
- KOSÉ Corporation, Research Laboratories; 1-18-4 Azusawa, Itabashi-ku Tokyo 174-0051 Japan
| | - Hiroko Okutomi
- Food and Drug Safety Center; Hatano Research Institute; 729-5 Ochiai Hadano-shi Kanagawa 257-8523 Japan
| | - Asami Umetsu
- Food and Drug Safety Center; Hatano Research Institute; 729-5 Ochiai Hadano-shi Kanagawa 257-8523 Japan
| | - Hiroko Motohashi
- Food and Drug Safety Center; Hatano Research Institute; 729-5 Ochiai Hadano-shi Kanagawa 257-8523 Japan
| | - Mika Watanabe
- Food and Drug Safety Center; Hatano Research Institute; 729-5 Ochiai Hadano-shi Kanagawa 257-8523 Japan
| | - Masaaki Miyazawa
- Kao Corporation, R&D, Safety Science Research; 2606 Akabane, Ichikai-Machi, Haga-Gun Tochigi 321-3497 Japan
| |
Collapse
|
20
|
Sukasem C, Katsila T, Tempark T, Patrinos GP, Chantratita W. Drug-Induced Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis Call for Optimum Patient Stratification and Theranostics via Pharmacogenomics. Annu Rev Genomics Hum Genet 2018; 19:329-353. [PMID: 29652519 DOI: 10.1146/annurev-genom-083115-022324] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Global Genomic Medicine Collaborative, a multinational coalition of genomic and policy experts working to implement genomics in clinical care, considers pharmacogenomics to be among the first areas in genomic medicine that can provide guidance in routine clinical practice, by linking genetic variation and drug response. Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) are severe life-threatening reactions to medications with a high incidence worldwide. Genomic screening prior to drug administration is a key opportunity and potential paradigm for using genomic medicine to reduce morbidity and mortality and ultimately eliminate one of the most devastating adverse drug reactions. This review focuses on the current understanding of the surveillance, pathogenesis, and treatment of SJS/TEN, including the role of genomics and pharmacogenomics in the etiology, treatment, and eradication of preventable causes of drug-induced SJS/TEN. Gaps, unmet needs, and priorities for future research have been identified for the optimal management of drug-induced SJS/TEN in various ethnic populations. Pharmacogenomics holds great promise for optimal patient stratification and theranostics, yet its clinical implementation needs to be cost-effective and sustainable.
Collapse
Affiliation(s)
- Chonlaphat Sukasem
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand.,South East Asian Pharmacogenomics Research Network (SEAPHARM)
| | - Theodora Katsila
- Department of Pharmacy, School of Health Sciences, University of Patras, GR-26504 Patras, Greece
| | - Therdpong Tempark
- Department of Pediatrics, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Chulalongkorn University, Bangkok 10330, Thailand
| | - George P Patrinos
- Department of Pharmacy, School of Health Sciences, University of Patras, GR-26504 Patras, Greece.,Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Wasun Chantratita
- South East Asian Pharmacogenomics Research Network (SEAPHARM).,Excellence Center for Medical Genomics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand;
| |
Collapse
|
21
|
Respiratory sensitization: toxicological point of view on the available assays. Arch Toxicol 2017; 92:803-822. [DOI: 10.1007/s00204-017-2088-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/05/2017] [Indexed: 12/22/2022]
|
22
|
Vukmanović S, Sadrieh N. Skin sensitizers in cosmetics and beyond: potential multiple mechanisms of action and importance of T-cell assays for in vitro screening. Crit Rev Toxicol 2017; 47:415-432. [DOI: 10.1080/10408444.2017.1288025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Stanislav Vukmanović
- Cosmetics Division, Office of Cosmetics and Colors (OCAC), Center for Food Safety and Applied Nutrition (CFSAN), Food and Drug Administration (FDA), MD, USA
| | - Nakissa Sadrieh
- Cosmetics Division, Office of Cosmetics and Colors (OCAC), Center for Food Safety and Applied Nutrition (CFSAN), Food and Drug Administration (FDA), MD, USA
| |
Collapse
|
23
|
Roberts DW, Aptula A, Api AM. Structure–Potency Relationships for Epoxides in Allergic Contact Dermatitis. Chem Res Toxicol 2017; 30:524-531. [DOI: 10.1021/acs.chemrestox.6b00241] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- David W. Roberts
- School
of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, United Kingdom
| | - Aynur Aptula
- Unilever
Safety
and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedford MK44 1LQ, United Kingdom
| | - Anne Marie Api
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff
Lake, New Jersey 07677, United States
| |
Collapse
|
24
|
Saito K, Takenouchi O, Nukada Y, Miyazawa M, Sakaguchi H. An in vitro skin sensitization assay termed EpiSensA for broad sets of chemicals including lipophilic chemicals and pre/pro-haptens. Toxicol In Vitro 2016; 40:11-25. [PMID: 27965148 DOI: 10.1016/j.tiv.2016.12.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 12/07/2016] [Accepted: 12/08/2016] [Indexed: 10/20/2022]
Abstract
To evaluate chemicals (e.g. lipophilic chemicals, pre/pro-haptens) that are difficult to correctly evaluate using in vitro skin sensitization tests (e.g. DPRA, KeratinoSens or h-CLAT), we developed a novel in vitro test termed "Epidermal Sensitization Assay: EpiSensA" that uses reconstructed human epidermis. This assay is based on the induction of multiple marker genes (ATF3, IL-8, DNAJB4 and GCLM) related to two keratinocyte responses (inflammatory or cytoprotective) in the induction of skin sensitization. Here, we first confirmed the mechanistic relevance of these marker genes by focusing on key molecules that regulate keratinocyte responses in vivo (P2X7 for inflammatory and Nrf2 for cytoprotective responses). The up-regulation of ATF3 and IL-8, or DNAJB4 and GCLM induced by the representative sensitizer 2,4-dinitrochlorobenzene in human keratinocytes was significantly suppressed by a P2X7 specific antagonist KN-62, or by Nrf2 siRNA, respectively, which supported mechanistic relevance of marker genes. Moreover, the EpiSensA had sensitivity, specificity and accuracy of 93%, 100% and 93% for 29 lipophilic chemicals (logKow≥3.5), and of 96%, 75% and 88% for 43 hydrophilic chemicals including 11 pre/pro-haptens, compared with the LLNA. These results suggested that the EpiSensA could be a mechanism-based test applicable to broad sets of chemicals including lipophilic chemicals and pre/pro-haptens.
Collapse
Affiliation(s)
- Kazutoshi Saito
- Kao Corporation, R&D, Safety Science Research, 2606 Akabane Ichikai-Machi Haga-Gun, Tochigi 321-3497, Japan.
| | - Osamu Takenouchi
- Kao Corporation, R&D, Safety Science Research, 2606 Akabane Ichikai-Machi Haga-Gun, Tochigi 321-3497, Japan
| | - Yuko Nukada
- Kao Corporation, R&D, Safety Science Research, 2606 Akabane Ichikai-Machi Haga-Gun, Tochigi 321-3497, Japan
| | - Masaaki Miyazawa
- Kao Corporation, R&D, Safety Science Research, 2606 Akabane Ichikai-Machi Haga-Gun, Tochigi 321-3497, Japan
| | - Hitoshi Sakaguchi
- Kao Corporation, R&D, Safety Science Research, 2606 Akabane Ichikai-Machi Haga-Gun, Tochigi 321-3497, Japan
| |
Collapse
|
25
|
Bach RO, Thormann H, Christensen LP. Occupational periorbital allergic contact dermatitis caused by antioxidants in black rubber in an otorhinolaryngologist using an otomicroscope. Contact Dermatitis 2016; 74:117-9. [PMID: 26763990 DOI: 10.1111/cod.12485] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 09/05/2015] [Accepted: 09/15/2015] [Indexed: 11/27/2022]
Affiliation(s)
- Rasmus O Bach
- Department of Dermatology and Allergy Centre, Odense University Hospital, University of Southern Denmark, DK-5000, Odense C, Denmark
| | - Henrik Thormann
- Department of Dermatology and Allergy Centre, Odense University Hospital, University of Southern Denmark, DK-5000, Odense C, Denmark
| | - Lars P Christensen
- Department of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, DK-5230, Odense M, Denmark
| |
Collapse
|
26
|
Islam PS, Chang C, Selmi C, Generali E, Huntley A, Teuber SS, Gershwin ME. Medical Complications of Tattoos: A Comprehensive Review. Clin Rev Allergy Immunol 2016; 50:273-86. [DOI: 10.1007/s12016-016-8532-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Urbisch D, Mehling A, Guth K, Ramirez T, Honarvar N, Kolle S, Landsiedel R, Jaworska J, Kern PS, Gerberick F, Natsch A, Emter R, Ashikaga T, Miyazawa M, Sakaguchi H. Assessing skin sensitization hazard in mice and men using non-animal test methods. Regul Toxicol Pharmacol 2015; 71:337-51. [DOI: 10.1016/j.yrtph.2014.12.008] [Citation(s) in RCA: 192] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 12/15/2014] [Accepted: 12/16/2014] [Indexed: 10/24/2022]
|
28
|
Serup J, Hutton Carlsen K. Patch test study of 90 patients with tattoo reactions: Negative outcome of allergy patch test to baseline batteries and culprit inks suggests allergen(s) are generated in the skin through haptenization. Contact Dermatitis 2014; 71:255-63. [DOI: 10.1111/cod.12271] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 05/12/2014] [Accepted: 05/13/2014] [Indexed: 01/13/2023]
Affiliation(s)
- Jørgen Serup
- Department of Dermatology; The ‘Tattoo Clinic’, Bispebjerg University Hospital; DK-2400 Copenhagen Denmark
| | - Katrina Hutton Carlsen
- Department of Dermatology; The ‘Tattoo Clinic’, Bispebjerg University Hospital; DK-2400 Copenhagen Denmark
| |
Collapse
|
29
|
Mekenyan O, Patlewicz G, Kuseva C, Popova I, Mehmed A, Kotov S, Zhechev T, Pavlov T, Temelkov S, Roberts DW. A mechanistic approach to modeling respiratory sensitization. Chem Res Toxicol 2014; 27:219-39. [PMID: 24422459 DOI: 10.1021/tx400345b] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Chemical respiratory sensitization is an important occupational health problem which may lead to severely incapacitated human health, yet there are currently no validated or widely accepted models for identifying and characterizing the potential of a chemical to induce respiratory sensitization. This is in part due to the ongoing uncertainty about the immunological mechanisms through which respiratory sensitization may be acquired. Despite the lack of test method, regulations such as REACH still require an assessment of respiratory sensitization for risk assessment and/or for the purposes of classification and labeling. The REACH guidance describes an integrated evaluation strategy to characterize what information sources could be available to facilitate such an assessment. The components of this include a consideration of well-established structural alerts and existing data (whether it be derived from read-across, (quantitative) structure-activity relationships ((Q)SAR), in vivo studies etc.). There has been some progress in developing SARs as well as a handful of empirical QSARs. More recently, efforts have been focused on exploring whether the reaction chemistry mechanistic domains first characterized for skin sensitization are relevant for respiratory sensitization and to what extent modifications or refinements are needed to rationalize the differences between the two end points as far as their chemistry is concerned. This study has built upon the adverse outcome pathway (AOP) for skin sensitization that was developed and published by the OECD in 2012. We have structured a workflow to characterize the initiating events that are relevant in driving respiratory sensitization. OASIS pipeline technology was used to encode these events as components in a software platform to enable a prediction of respiratory sensitization potential to be made for new untested chemicals. This prediction platform could be useful in the assessment of respiratory sensitization potential or for grouping chemicals for subsequent read-across.
Collapse
Affiliation(s)
- Ovanes Mekenyan
- Laboratory of Mathematical Chemistry, University "Prof As Zlatarov" , 1 Yakim Street, Bourgas, Bulgaria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Vocanson M, Nicolas JF, Basketter D. In vitroapproaches to the identification and characterization of skin sensitizers. ACTA ACUST UNITED AC 2014. [DOI: 10.1586/17469872.2013.814882] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
31
|
Basketter D, Maxwell G. Identification and characterization of allergens:in vitroapproaches. ACTA ACUST UNITED AC 2014. [DOI: 10.1586/17469872.2.4.471] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
32
|
Teubner W, Mehling A, Schuster PX, Guth K, Worth A, Burton J, van Ravenzwaay B, Landsiedel R. Computer models versus reality: how well do in silico models currently predict the sensitization potential of a substance. Regul Toxicol Pharmacol 2013; 67:468-85. [PMID: 24090701 DOI: 10.1016/j.yrtph.2013.09.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 09/20/2013] [Accepted: 09/23/2013] [Indexed: 11/29/2022]
Abstract
National legislations for the assessment of the skin sensitization potential of chemicals are increasingly based on the globally harmonized system (GHS). In this study, experimental data on 55 non-sensitizing and 45 sensitizing chemicals were evaluated according to GHS criteria and used to test the performance of computer (in silico) models for the prediction of skin sensitization. Statistic models (Vega, Case Ultra, TOPKAT), mechanistic models (Toxtree, OECD (Q)SAR toolbox, DEREK) or a hybrid model (TIMES-SS) were evaluated. Between three and nine of the substances evaluated were found in the individual training sets of various models. Mechanism based models performed better than statistical models and gave better predictivities depending on the stringency of the domain definition. Best performance was achieved by TIMES-SS, with a perfect prediction, whereby only 16% of the substances were within its reliability domain. Some models offer modules for potency; however predictions did not correlate well with the GHS sensitization subcategory derived from the experimental data. In conclusion, although mechanistic models can be used to a certain degree under well-defined conditions, at the present, the in silico models are not sufficiently accurate for broad application to predict skin sensitization potentials.
Collapse
|
33
|
Pot LM, Scheitza SM, Coenraads PJ, Blömeke B. Penetration and haptenation of p-phenylenediamine. Contact Dermatitis 2013; 68:193-207. [PMID: 23510340 DOI: 10.1111/cod.12032] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Although p-phenylenediamine (PPD) has been recognized as an extreme sensitizer for many years, the exact mechanism of sensitization has not been elucidated yet. Penetration and the ability to bind to proteins are the first two hurdles that an allergen has to overcome to be able to sensitize. This review is an overview of studies regarding PPD penetration through skin (analogues) and studies on the amino acids that are targeted by PPD. To complete this review, the auto-oxidation and N-acetylation steps involved in PPD metabolism are described. In summary, under normal hair dyeing exposure conditions, <1% of the applied PPD dose penetrates the skin. The majority (>80%) of PPD that penetrates will be converted into the detoxification products monoacetyl-PPD and diacetyl-PPD by the N-acetyltransferase enzymes. The small amount of PPD that does not become N-acetylated is susceptible to auto-oxidation reactions, yielding protein-reactive PPD derivatives. These derivatives may bind to specific amino acids, and some of the formed adducts might be the complexes responsible for sensitization. However, true in vivo evidence is lacking, and further research to unravel the definite mechanism of sensitization is needed.
Collapse
Affiliation(s)
- Laura M Pot
- Department of Dermatology, University Medical Centre Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | | | | | | |
Collapse
|
34
|
Development of a new in vitro skin sensitization assay (Epidermal Sensitization Assay; EpiSensA) using reconstructed human epidermis. Toxicol In Vitro 2013; 27:2213-24. [PMID: 23999411 DOI: 10.1016/j.tiv.2013.08.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Revised: 06/18/2013] [Accepted: 08/22/2013] [Indexed: 11/21/2022]
Abstract
Recent changes in regulatory requirements and social views on animal testing have accelerated the development of reliable alternative tests for predicting skin sensitizing potential of chemicals. In this study, we aimed to develop a new in vitro skin sensitization assay using reconstructed human epidermis, RhE model, which is expected to have broader applicability domain rather than existing in vitro assays. Microarray analysis revealed that the expression of five genes (ATF3, DNAJB4, GCLM, HSPA6 and HSPH1) related to cellular stress response were significantly up-regulated in RhE model after 6h treatment with representative skin sensitizers, 1-fluoro-2,4-dinitrobenzene and oxazolone, but not a non-sensitizer, benzalkonium chloride. The predictive performance of five genes was examined with eight skin sensitizers (e.g., cinnamic aldehyde), four non-sensitizers (e.g., sodium lauryl sulfate) and four pre-/pro-haptens (e.g., p-phenylenediamine, isoeugenol). When the positive criteria were set to obtain the highest accuracy with the animal testing (LLNA), ATF3, DNAJB4 and GCLM exhibited a high predictive accuracy (100%, 93.8% and 87.5%, respectively). All tested pre-/pro-haptens were correctly predicted by both ATF3 and DNAJB4. These results suggested that the RhE-based assay, termed epidermal sensitization assay (EpiSensA), could be an useful skin sensitization assay with a broad applicability domain including pre-/pro-haptens.
Collapse
|
35
|
Mehling A, Eriksson T, Eltze T, Kolle S, Ramirez T, Teubner W, van Ravenzwaay B, Landsiedel R. Non-animal test methods for predicting skin sensitization potentials. Arch Toxicol 2012; 86:1273-95. [PMID: 22707154 DOI: 10.1007/s00204-012-0867-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 05/09/2012] [Indexed: 12/01/2022]
Abstract
Contact allergies are complex diseases, and it is estimated that 15-20 % of the general population suffers from contact allergy, with increasing prevalence. Evaluation of the sensitization potential of a substance is usually carried out in animal models. Nowadays, there is much interest in reducing and ultimately replacing current animal tests. Furthermore, as of 2013, the EU has posed a ban on animal testing of cosmetic ingredients that includes skin sensitization. Therefore, predictive and robust in vitro tests are urgently needed. In order to establish alternatives to animal testing, the in vitro tests must mimic the very complex interactions between the sensitizing chemical and the different parts of the immune system. This review article summarizes recent efforts to develop in vitro tests for predicting skin sensitizers. Cell-based assays, in chemico methods and, to a lesser extent, in silico methods are presented together with a discussion of their current status. With considerable progress having been achieved during the last years, the rationale today is that data from different non-animal test methods will have to be combined in order to obtain reliable hazard and potency information on potential skin sensitizers.
Collapse
|
36
|
Kaplan DH, Igyártó BZ, Gaspari AA. Early immune events in the induction of allergic contact dermatitis. Nat Rev Immunol 2012; 12:114-24. [PMID: 22240625 DOI: 10.1038/nri3150] [Citation(s) in RCA: 391] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The skin is a barrier site that is exposed to a wide variety of potential pathogens. As in other organs, pathogens that invade the skin are recognized by pattern-recognition receptors (PRRs). Recently, it has been recognized that PRRs are also engaged by chemical contact allergens and, in susceptible individuals, this elicits an inappropriate immune response that results in allergic contact dermatitis. In this Review, we focus on how contact allergens promote inflammation by activating the innate immune system. We also examine how innate immune cells in the skin, including mast cells and dendritic cells, cooperate with each other and with T cells and keratinocytes to initiate and drive early responses to contact allergens.
Collapse
Affiliation(s)
- Daniel H Kaplan
- Department of Dermatology, Center for Immunology, University of Minnesota, MBB 3-146, 2101 6th St. SE, Minneapolis, Minnesota 55414, USA.
| | | | | |
Collapse
|
37
|
Adler S, Basketter D, Creton S, Pelkonen O, van Benthem J, Zuang V, Andersen KE, Angers-Loustau A, Aptula A, Bal-Price A, Benfenati E, Bernauer U, Bessems J, Bois FY, Boobis A, Brandon E, Bremer S, Broschard T, Casati S, Coecke S, Corvi R, Cronin M, Daston G, Dekant W, Felter S, Grignard E, Gundert-Remy U, Heinonen T, Kimber I, Kleinjans J, Komulainen H, Kreiling R, Kreysa J, Leite SB, Loizou G, Maxwell G, Mazzatorta P, Munn S, Pfuhler S, Phrakonkham P, Piersma A, Poth A, Prieto P, Repetto G, Rogiers V, Schoeters G, Schwarz M, Serafimova R, Tähti H, Testai E, van Delft J, van Loveren H, Vinken M, Worth A, Zaldivar JM. Alternative (non-animal) methods for cosmetics testing: current status and future prospects-2010. Arch Toxicol 2011; 85:367-485. [PMID: 21533817 DOI: 10.1007/s00204-011-0693-2] [Citation(s) in RCA: 358] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 03/03/2011] [Indexed: 01/09/2023]
Abstract
The 7th amendment to the EU Cosmetics Directive prohibits to put animal-tested cosmetics on the market in Europe after 2013. In that context, the European Commission invited stakeholder bodies (industry, non-governmental organisations, EU Member States, and the Commission's Scientific Committee on Consumer Safety) to identify scientific experts in five toxicological areas, i.e. toxicokinetics, repeated dose toxicity, carcinogenicity, skin sensitisation, and reproductive toxicity for which the Directive foresees that the 2013 deadline could be further extended in case alternative and validated methods would not be available in time. The selected experts were asked to analyse the status and prospects of alternative methods and to provide a scientifically sound estimate of the time necessary to achieve full replacement of animal testing. In summary, the experts confirmed that it will take at least another 7-9 years for the replacement of the current in vivo animal tests used for the safety assessment of cosmetic ingredients for skin sensitisation. However, the experts were also of the opinion that alternative methods may be able to give hazard information, i.e. to differentiate between sensitisers and non-sensitisers, ahead of 2017. This would, however, not provide the complete picture of what is a safe exposure because the relative potency of a sensitiser would not be known. For toxicokinetics, the timeframe was 5-7 years to develop the models still lacking to predict lung absorption and renal/biliary excretion, and even longer to integrate the methods to fully replace the animal toxicokinetic models. For the systemic toxicological endpoints of repeated dose toxicity, carcinogenicity and reproductive toxicity, the time horizon for full replacement could not be estimated.
Collapse
Affiliation(s)
- Sarah Adler
- Centre for Documentation and Evaluation of Alternatives to Animal Experiments (ZEBET), Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Basketter D, Maxwell G. In VitroApproaches to the Identification and Characterization of Skin Sensitizers. Cutan Ocul Toxicol 2008; 26:359-73. [DOI: 10.1080/15569520701622993] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
39
|
Grindon C, Combes R, Cronin MT, Roberts DW, Garrod JF. An Integrated Decision-tree Testing Strategy for Skin Sensitisation with Respect to the Requirements of the EU REACH Legislation. Altern Lab Anim 2008; 36 Suppl 1:75-89. [DOI: 10.1177/026119290803601s07] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This report presents some of the results of a joint research project, sponsored by Defra and conducted by FRAME and Liverpool John Moores University, on the status of alternatives to animal testing with regard to the European Union REACH (Registration, Evaluation and Authorisation of Chemicals) system for the safety testing and risk assessment of chemicals. The project covered all the main toxicity end-points associated with the REACH system. This report focuses on the use of alternative (non-animal) methods (both in vitro and in silico) for skin sensitisation testing. The manuscript reviews in vitro tests based on protein-ligand binding, dendritic/Langerhans cells and T-lymphocyte activation, and also the QSAR models and expert systems available for this endpoint. These tests are then incorporated into an integrated, decision-tree testing strategy, which also includes the Local Lymph Node Assay (in its original and new reduced protocols) and the traditional guinea-pig tests (which should only be used as a last resort). The aim of the strategy is to minimise the use of animals in testing for skin sensitisation, while satisfying the scientific and logistical demands of the EU REACH legislation.
Collapse
Affiliation(s)
| | | | - Mark T.D. Cronin
- School of Pharmacy and Chemistry, Liverpool John Moores University, Liverpool, UK
| | - David W. Roberts
- School of Pharmacy and Chemistry, Liverpool John Moores University, Liverpool, UK
| | - John F. Garrod
- Chemicals and Nanotechnologies Division, Defra, London, UK
| |
Collapse
|
40
|
Netzeva T, Pavan M, Worth A. Review of (Quantitative) Structure–Activity Relationships for Acute Aquatic Toxicity. ACTA ACUST UNITED AC 2008. [DOI: 10.1002/qsar.200710099] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
41
|
Roberts DW, Aptula AO, Patlewicz G, Pease C. Chemical reactivity indices and mechanism-based read-across for non-animal based assessment of skin sensitisation potential. J Appl Toxicol 2008; 28:443-54. [DOI: 10.1002/jat.1293] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
42
|
Skin disposition, chemistry and metabolism data: Towards the practical development of novel integrated approaches for skin allergy risk assessment without animals. Toxicol Lett 2007. [DOI: 10.1016/j.toxlet.2007.05.391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
43
|
|