1
|
Kim DH, Kim S, Park S, Byun JM, Hong J, Shin D, Kim I, Bang SM, Lee J, Lee JY, Kim S, Kim KH, Chung Y, Jung S, Koh Y, Yoon S. Phase II trial of imatinib mesylate in patients with PDGFRA/B-negative hypereosinophilic syndrome. Br J Haematol 2024; 205:2305-2314. [PMID: 39389908 PMCID: PMC11637721 DOI: 10.1111/bjh.19828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024]
Abstract
The role of imatinib in PDGFRA/B-negative hypereosinophilic syndromes (HES) is controversial because of the heterogeneity of HES and the scarcity of prospective studies. We conducted a phase II clinical trial to evaluate the efficacy of imatinib in PDGFRA/B-negative HES. Thirty-two patients were treated with imatinib (100-400 mg daily), and the molecular basis of their response was identified using whole-exome sequencing (WES) and whole-transcriptome sequencing (WTS). The haematological response rate was 46.9%, with a complete haematological response (CHR) rate of 18.8%. The median time to response was 1.5 months. Among the six patients who achieved CHR, five maintained it until the 24th cycle of imatinib and one lost response after 20 months. The median progression-free survival was 4.3 months. WES and WTS were conducted for 11 patients. The number of non-silent mutations did not differ between responders and non-responders. Nine differentially expressed genes, including SNORD15A, were downregulated in responders. STAT5B::RARA, PAK2::PIGX, and FIP1L1::CHIC2 fusions were identified in patients with sustained responses, and RNF130::BRAF and WNK1::KDM5A fusions were identified in non-responders. Imatinib, along with an appropriate biomarker, could be a promising option for PDGFRA/B-negative HES.
Collapse
Affiliation(s)
- Dong Hyun Kim
- Department of Internal MedicineSeoul National University HospitalSeoulKorea
- Department of Translational MedicineSeoul National University College of MedicineSeoulKorea
| | - Seokhyeon Kim
- Cancer Research InstituteSeoul National University College of MedicineSeoulKorea
| | - Seonyang Park
- Department of Internal MedicineInje University Haeundae Paik HospitalBusanKorea
| | - Ja Min Byun
- Department of Internal MedicineSeoul National University HospitalSeoulKorea
- Biomedical Research InstituteSeoul National University HospitalSeoulKorea
| | - Junshik Hong
- Department of Internal MedicineSeoul National University HospitalSeoulKorea
- Cancer Research InstituteSeoul National University College of MedicineSeoulKorea
- Biomedical Research InstituteSeoul National University HospitalSeoulKorea
- Cancer for Medical InnovationSeoul National University HospitalSeoulKorea
| | - Dong‐Yeop Shin
- Department of Internal MedicineSeoul National University HospitalSeoulKorea
- Cancer Research InstituteSeoul National University College of MedicineSeoulKorea
- Biomedical Research InstituteSeoul National University HospitalSeoulKorea
- Cancer for Medical InnovationSeoul National University HospitalSeoulKorea
| | - Inho Kim
- Department of Internal MedicineSeoul National University HospitalSeoulKorea
- Cancer Research InstituteSeoul National University College of MedicineSeoulKorea
| | - Soo Mee Bang
- Department of Internal MedicineSeoul National University Bundang HospitalSeongnamKorea
| | - Jeong‐Ok Lee
- Department of Internal MedicineSeoul National University Bundang HospitalSeongnamKorea
| | - Ji Yun Lee
- Department of Internal MedicineSeoul National University Bundang HospitalSeongnamKorea
| | - Sang‐A Kim
- Department of Internal MedicineSeoul National University Bundang HospitalSeongnamKorea
| | - Ki Hwan Kim
- Department of Internal MedicineSeoul National University Boramae HospitalSeoulKorea
| | - Yeun‐Jun Chung
- Department of Microbiology, College of MedicineThe Catholic University of KoreaSeoulKorea
- Integrated Research Center for Genome Polymorphism, Precision Medicine Research Center, College of MedicineThe Catholic University of KoreaSeoulKorea
| | - Seung‐Hyun Jung
- Integrated Research Center for Genome Polymorphism, Precision Medicine Research Center, College of MedicineThe Catholic University of KoreaSeoulKorea
- Department of Biochemistry, College of MedicineThe Catholic University of KoreaSeoulKorea
| | - Youngil Koh
- Department of Internal MedicineSeoul National University HospitalSeoulKorea
- Cancer Research InstituteSeoul National University College of MedicineSeoulKorea
- Biomedical Research InstituteSeoul National University HospitalSeoulKorea
- Cancer for Medical InnovationSeoul National University HospitalSeoulKorea
| | - Sung‐Soo Yoon
- Department of Internal MedicineSeoul National University HospitalSeoulKorea
- Cancer Research InstituteSeoul National University College of MedicineSeoulKorea
- Biomedical Research InstituteSeoul National University HospitalSeoulKorea
- Cancer for Medical InnovationSeoul National University HospitalSeoulKorea
| |
Collapse
|
2
|
Budak B, Tükel EY, Turanlı B, Kiraz Y. Integrated systems biology analysis of acute lymphoblastic leukemia: unveiling molecular signatures and drug repurposing opportunities. Ann Hematol 2024; 103:4121-4134. [PMID: 38836918 PMCID: PMC11512839 DOI: 10.1007/s00277-024-05821-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/27/2024] [Indexed: 06/06/2024]
Abstract
Acute lymphoblastic leukemia (ALL) is a hematological malignancy characterized by aberrant proliferation and accumulation of lymphoid precursor cells within the bone marrow. The tyrosine kinase inhibitor (TKI), imatinib mesylate, has played a significant role in the treatment of Philadelphia chromosome-positive ALL (Ph + ALL). However, the achievement of durable and sustained therapeutic success remains a challenge due to the development of TKI resistance during the clinical course.The primary objective of this investigation is to propose a novel and efficacious treatment approach through drug repositioning, targeting ALL and its Ph + subtype by identifying and addressing differentially expressed genes (DEGs). This study involves a comprehensive analysis of transcriptome datasets pertaining to ALL and Ph + ALL in order to identify DEGs associated with the progression of these diseases to identify possible repurposable drugs that target identified hub proteins.The outcomes of this research have unveiled 698 disease-related DEGs for ALL and 100 for Ph + ALL. Furthermore, a subset of drugs, specifically glipizide for Ph + ALL, and maytansine and isoprenaline for ALL, have been identified as potential candidates for therapeutic intervention. Subsequently, cytotoxicity assessments were performed to confirm the in vitro cytotoxic effects of these selected drugs on both ALL and Ph + ALL cell lines.In conclusion, this study offers a promising avenue for the management of ALL and Ph + ALL through drug repurposed drugs. Further investigations are necessary to elucidate the mechanisms underlying cell death, and clinical trials are recommended to validate the promising results obtained through drug repositioning strategies.
Collapse
Affiliation(s)
- Betül Budak
- Department of Bioengineering, Marmara University, Istanbul, Türkiye
- Department of Genetics and Bioengineering, Istanbul Bilgi University, Istanbul, Türkiye
| | - Ezgi Yağmur Tükel
- Department of Genetics and Bioengineering, Faculty of Engineering, Izmir University of Economics, Balçova, Izmir, Türkiye
| | - Beste Turanlı
- Department of Bioengineering, Marmara University, Istanbul, Türkiye
- Health Biotechnology Joint Research and Application Center of Excellence, Istanbul, Türkiye
| | - Yağmur Kiraz
- Department of Genetics and Bioengineering, Faculty of Engineering, Izmir University of Economics, Balçova, Izmir, Türkiye.
| |
Collapse
|
3
|
Lang TJL, Damm F, Bullinger L, Frick M. Mechanisms of Resistance to Small Molecules in Acute Myeloid Leukemia. Cancers (Basel) 2023; 15:4573. [PMID: 37760544 PMCID: PMC10526197 DOI: 10.3390/cancers15184573] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
In recent years, great progress has been made in the therapy of AML by targeting cellular processes associated with specific molecular features of the disease. Various small molecules inhibiting FLT3, IDH1/IDH2, and BCL2 have already gained approval from the respective authorities and are essential parts of personalized therapeutic regimens in modern therapy of AML. Unfortunately, primary and secondary resistance to these inhibitors is a frequent problem. Here, we comprehensively review the current state of knowledge regarding molecular processes involved in primary and secondary resistance to these agents, covering both genetic and nongenetic mechanisms. In addition, we introduce concepts and strategies for how these resistance mechanisms might be overcome.
Collapse
Affiliation(s)
- Tonio Johannes Lukas Lang
- Department of Hematology, Oncology and Cancer Immunology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 13353 Berlin, Germany
| | - Frederik Damm
- Department of Hematology, Oncology and Cancer Immunology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 13353 Berlin, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Lars Bullinger
- Department of Hematology, Oncology and Cancer Immunology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 13353 Berlin, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Mareike Frick
- Department of Hematology, Oncology and Cancer Immunology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 13353 Berlin, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
4
|
Stergiou IE, Papadakos SP, Karyda A, Tsitsilonis OE, Dimopoulos MA, Theocharis S. EPH/Ephrin Signaling in Normal Hematopoiesis and Hematologic Malignancies: Deciphering Their Intricate Role and Unraveling Possible New Therapeutic Targets. Cancers (Basel) 2023; 15:3963. [PMID: 37568780 PMCID: PMC10417178 DOI: 10.3390/cancers15153963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Erythropoietin-producing hepatocellular carcinoma receptors (EPHs) represent the largest family of receptor tyrosine kinases (RTKs). EPH interaction with ephrins, their membrane-bound ligands, holds a pivotal role in embryonic development, while, though less active, it is also implicated in various physiological functions during adult life. In normal hematopoiesis, different patterns of EPH/ephrin expression have been correlated with hematopoietic stem cell (HSC) maintenance and lineage-committed hematopoietic progenitor cell (HPC) differentiation, as well as with the functional properties of their mature offspring. Research in the field of hematologic malignancies has unveiled a rather complex involvement of the EPH/ephrinsignaling pathway in the pathophysiology of these neoplasms. Aberrations in genetic, epigenetic, and protein levels have been identified as possible players implicated both in tumor progression and suppression, while correlations have also been highlighted regarding prognosis and response to treatment. Initial efforts to therapeutically target the EPH/ephrin axis have been undertaken in the setting of hematologic neoplasia but are mainly confined to the preclinical level. To this end, deciphering the complexity of this signaling pathway both in normal and malignant hematopoiesis is necessary.
Collapse
Affiliation(s)
- Ioanna E. Stergiou
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Stavros P. Papadakos
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.P.P.); (A.K.)
| | - Anna Karyda
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.P.P.); (A.K.)
| | - Ourania E. Tsitsilonis
- Flow Cytometry Unit, Department of Biology, School of Science, National and Kapodistrian University of Athens, 15784 Athens, Greece;
| | - Meletios-Athanasios Dimopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Alexandra Hospital, 11528 Athens, Greece
| | - Stamatios Theocharis
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.P.P.); (A.K.)
| |
Collapse
|
5
|
Yin Z, Liao M, Yan R, Li G, Ou R, Liu Z, Zhong Q, Shen H, Zhu Y, Xie S, Zhang Q, Liu S, Huang J. Transcriptome- and metabolome-based candidate mechanism of BCR-ABL-independent resistance to olverembatinib in Philadelphia chromosome-positive acute lymphoblastic leukemia. Funct Integr Genomics 2023; 23:53. [PMID: 36717477 DOI: 10.1007/s10142-023-00980-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 02/01/2023]
Abstract
Olverembatinib represents the third-generation breakpoint cluster region protein-Abelson-murine leukemia 1 (BCR-ABL1) tyrosine kinase inhibitor with oral bioavailability, which can be used to overcome the T315I mutation in Philadelphia chromosome-positive (Ph +) leukemia. BCR-ABL-independent resistance to olverembatinib has been reported among patients in various clinical cases. However, the mechanism of olverembatinib resistance has rarely been reported. This study has illustrated bone marrow cell transcriptome and metabolome profiles among Ph + acute lymphoblastic leukemias (ALL) cases pre- and post-olverembatinib resistance. The transcriptome studies demonstrated that PI3K/AKT, purine metabolism, and other signaling pathways could play a vital role in olverembatinib resistance. As suggested by metabolomics, olverembatinib resistance in Ph + ALL was associated with purine metabolism alterations. Subsequently, high-performance liquid chromatography along with real-time quantitative PCR was utilized to measure purine metabolism-related mRNA levels and metabolism expression levels between olverembatinib resistance and sensitive cell lines. Our results elucidate the mechanism of olverembatinib resistance in Ph + ALL at transcriptome and metabolome levels, which facilitate a better understanding of olverembatinib resistance and hence may prove crucial in identifying novel drugs to tackle this conundrum.
Collapse
Affiliation(s)
- Zhao Yin
- Department of Hematology, Guangdong Second Provincial General Hospital, Xin Gang Zhong Road 466#, Haizhu Distict, Guangzhou, 510317, China
| | - Meiyan Liao
- Department of Hematology, Guangdong Second Provincial General Hospital, Xin Gang Zhong Road 466#, Haizhu Distict, Guangzhou, 510317, China
| | - Rongrong Yan
- Department of Hematology, Guangdong Second Provincial General Hospital, Xin Gang Zhong Road 466#, Haizhu Distict, Guangzhou, 510317, China
| | - Guangchao Li
- Department of Hematology, Guangdong Second Provincial General Hospital, Xin Gang Zhong Road 466#, Haizhu Distict, Guangzhou, 510317, China
| | - Ruiming Ou
- Department of Hematology, Guangdong Second Provincial General Hospital, Xin Gang Zhong Road 466#, Haizhu Distict, Guangzhou, 510317, China
| | - Zhi Liu
- Department of Hematology, Guangdong Second Provincial General Hospital, Xin Gang Zhong Road 466#, Haizhu Distict, Guangzhou, 510317, China
| | - Qi Zhong
- Department of Hematology, Guangdong Second Provincial General Hospital, Xin Gang Zhong Road 466#, Haizhu Distict, Guangzhou, 510317, China
| | - Huijuan Shen
- Department of Hematology, Guangdong Second Provincial General Hospital, Xin Gang Zhong Road 466#, Haizhu Distict, Guangzhou, 510317, China
| | - Yangmin Zhu
- Department of Hematology, Guangdong Second Provincial General Hospital, Xin Gang Zhong Road 466#, Haizhu Distict, Guangzhou, 510317, China
| | - Shuangfeng Xie
- Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Yanjiang West Road 107#, Guangzhou, 510080, China.
| | - Qing Zhang
- Department of Hematology, Guangdong Second Provincial General Hospital, Xin Gang Zhong Road 466#, Haizhu Distict, Guangzhou, 510317, China.
| | - Shuang Liu
- Department of Hematology, Guangdong Second Provincial General Hospital, Xin Gang Zhong Road 466#, Haizhu Distict, Guangzhou, 510317, China.
| | - Jing Huang
- Department of Hematology, Guangdong Second Provincial General Hospital, Xin Gang Zhong Road 466#, Haizhu Distict, Guangzhou, 510317, China.
| |
Collapse
|
6
|
Faisal Hamdi AI, How SH, Islam MK, Lim JCW, Stanslas J. Adaptive therapy to circumvent drug resistance to tyrosine kinase inhibitors in cancer: is it clinically relevant? Expert Rev Anticancer Ther 2022; 22:1309-1323. [PMID: 36376248 DOI: 10.1080/14737140.2022.2147671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Cancer is highly adaptable and is constantly evolving against current targeted therapies such as tyrosine kinase inhibitors. Despite advances in recent decades, the emergence of drug resistance to tyrosine kinase inhibitors constantly hampers therapeutic efficacy of cancer treatment. Continuous therapy versus intermittent clinical regimen has been a debate in drug administration of cancer patients. An ecologically-inspired shift in cancer treatment known as 'adaptive therapy' intends to improve the drug administration of drugs to cancer patients that can delay emergence of drug resistance. AREAS COVERED We discuss improved understanding of the concept of drug resistance, the basis of continuous therapy, intermittent clinical regimens, and adaptive therapy will be reviewed. In addition, we discuss how adaptive therapy provides guidance for future cancer treatment. EXPERT OPINION The current understanding of drug resistance in cancer leads to poor prognosis and limited treatment options in patients. Fighting drug resistance mutants is constantly followed by new forms of resistance. In most reported cases, continuous therapy leads to drug resistance and an intermittent clinical regimen vaguely delays it. However, adaptive therapy, conceptually, exploits multiple parameters that can suppress the growth of drug resistance and provides safe treatment for cancer patients in the future.
Collapse
Affiliation(s)
- Amir Imran Faisal Hamdi
- Pharmacotherapeutics Unit, Department of Medicine, Universiti Putra MalaysiaMedicine, 43400, Serdang, Malaysia
| | - Soon Hin How
- Kuliyyah of Medicine, International Islamic University Malaysia, Kuantan Campus, Kuliyyah of Medicine, 25200, Kuantan, Malaysia
| | | | - Jonathan Chee Woei Lim
- Pharmacotherapeutics Unit, Department of Medicine, Universiti Putra MalaysiaMedicine, 43400, Serdang, Malaysia
| | - Johnson Stanslas
- Pharmacotherapeutics Unit, Department of Medicine, Universiti Putra MalaysiaMedicine, 43400, Serdang, Malaysia
| |
Collapse
|
7
|
Poudel G, Tolland MG, Hughes TP, Pagani IS. Mechanisms of Resistance and Implications for Treatment Strategies in Chronic Myeloid Leukaemia. Cancers (Basel) 2022; 14:cancers14143300. [PMID: 35884363 PMCID: PMC9317051 DOI: 10.3390/cancers14143300] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/28/2022] [Accepted: 07/04/2022] [Indexed: 12/01/2022] Open
Abstract
Simple Summary Chronic myeloid leukaemia (CML) is a type of blood cancer that is currently well-managed with drugs that target cancer-causing proteins. However, a significant proportion of CML patients do not respond to those drug treatments or relapse when they stop those drugs because the cancer cells in those patients stop relying on that protein and instead develop a new way to survive. Therefore, new treatment strategies may be necessary for those patients. In this review, we discuss those additional survival pathways and outline combination treatment strategies to increase responses and clinical outcomes, improving the lives of CML patients. Abstract Tyrosine kinase inhibitors (TKIs) have revolutionised the management of chronic myeloid leukaemia (CML), with the disease now having a five-year survival rate over 80%. The primary focus in the treatment of CML has been on improving the specificity and potency of TKIs to inhibit the activation of the BCR::ABL1 kinase and/or overcoming resistance driven by mutations in the BCR::ABL1 oncogene. However, this approach may be limited in a significant proportion of patients who develop TKI resistance despite the effective inhibition of BCR::ABL1. These patients may require novel therapeutic strategies that target both BCR::ABL1-dependent and BCR::ABL1-independent mechanisms of resistance. The combination treatment strategies that target alternative survival signalling, which may contribute towards BCR::ABL1-independent resistance, could be a successful strategy for eradicating residual leukaemic cells and consequently increasing the response rate in CML patients.
Collapse
Affiliation(s)
- Govinda Poudel
- Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA 5000, Australia; (G.P.); (M.G.T.); (T.P.H.)
- School of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5000, Australia
- Australasian Leukaemia and Lymphoma Group, Richmond, VIC 3121, Australia
| | - Molly G. Tolland
- Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA 5000, Australia; (G.P.); (M.G.T.); (T.P.H.)
- School of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5000, Australia
| | - Timothy P. Hughes
- Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA 5000, Australia; (G.P.); (M.G.T.); (T.P.H.)
- School of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5000, Australia
- Australasian Leukaemia and Lymphoma Group, Richmond, VIC 3121, Australia
- Department of Haematology and Bone Marrow Transplantation, Royal Adelaide Hospital and SA Pathology, Adelaide, SA 5000, Australia
| | - Ilaria S. Pagani
- Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA 5000, Australia; (G.P.); (M.G.T.); (T.P.H.)
- School of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5000, Australia
- Australasian Leukaemia and Lymphoma Group, Richmond, VIC 3121, Australia
- Correspondence:
| |
Collapse
|
8
|
Li J, Shou X. Screening of Translocation Ets-Leukemia-Acute-Myeloid-Leukemia-1 Fusion Gene and Expression Pattern of Multidrug Resistance Protein Protein in Children with Acute Lymphoblastic Leukemia. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.2864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The study aimed to investigate the positive rate of TEL-AML 1 fusion gene in acute lymphoblastic leukemia (ALL) children and the clinical characteristics of ALL patients with TEL-AML 1 fusion gene positively expressed, as well as the expression level of MRP-1. 40 ALL children were selected,
with their medical records collected. The TEL-AML 1 fusion gene was screened by nested RTPCR. Bone marrow specimens were taken for G-banded karyotype analysis and flow cytometry immunophenotyping of the marrow chromosome. A semi-quantitative RT-PCR method was used to study the mRNA expression
level of MRP 1. The results showed that the positive rate of TEL-AML 1 fusion gene in ALL patients was 22.5% (9/40). The positive group exhibited lower gene expression level, the hepatosplenomegaly degree, the total number of peripheral white blood cells, the absolute count of naive cells,
and the Hb level at the first visit, indicating that the tumor burden of children in the positive group was lower. The complete remission rate of the positive group was higher (P < 0.05). The mRNA expression level of MRP 1 gene positive group was lower. In conclusion, patients with
positive TEL-AML 1 fusion gene were more sensitive to chemotherapeutic drugs, and their treatment responses and prognosis were better.
Collapse
Affiliation(s)
- Jiandi Li
- Department of Pediatrics, Zhuji Affiliated Hospital of Shaoxing University, Zhuji, 311800, Zhejiang, China
| | - Xiaoqun Shou
- Zhuji Maternal and Child Health Hospital of Zhejiang Province, Zhuji, 311800, Zhejiang, China
| |
Collapse
|
9
|
miR-34a-Mediated Survivin Inhibition Improves the Antitumor Activity of Selinexor in Triple-Negative Breast Cancer. Pharmaceuticals (Basel) 2021; 14:ph14060523. [PMID: 34072442 PMCID: PMC8227962 DOI: 10.3390/ph14060523] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 12/31/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive disease with limited therapeutic options. Here, we pursued a combinatorial therapeutic approach to enhance the activity of selinexor, the first-in-class XPO1 inhibitor, by miR-34a ectopic expression in human TNBC experimental models. Anti-proliferative activity induced by selinexor and miR-34a expression, singly and in combination, was evaluated by MTS assay and cell counting. The effect of treatments on survivin and apoptosis-related proteins was assessed by western blotting and ELISA. The antitumor and toxic effects of individual and combined treatments were evaluated on TNBC orthotopic xenografts in SCID mice. Selinexor consistently showed anti-proliferative activity, although to a variable extent, in the different TNBC cell lines and caused the impairment of survivin expression and intracellular distribution, accompanied by apoptosis induction. Consistent with in vitro data, the XPO1 inhibitor variably affected the growth of TNBC orthotopic xenografts. miR-34a cooperated with selinexor to reduce survivin expression and improved its anti-proliferative activity in TNBC cells. Most importantly, miR-34a expression markedly enhanced selinexor antitumor activity in the less sensitive TNBC xenograft model, in absence of toxicity. Our data form a solid foundation for promoting the use of a miR-34a-based approach to improve the therapeutic efficacy of selinexor in TNBC patients.
Collapse
|
10
|
Lei H, Xu HZ, Shan HZ, Liu M, Lu Y, Fang ZX, Jin J, Jing B, Xiao XH, Gao SM, Gao FH, Xia L, Yang L, Liu LG, Wang WW, Liu CX, Tong Y, Wu YZ, Zheng JK, Chen GQ, Zhou L, Wu YL. Targeting USP47 overcomes tyrosine kinase inhibitor resistance and eradicates leukemia stem/progenitor cells in chronic myelogenous leukemia. Nat Commun 2021; 12:51. [PMID: 33397955 PMCID: PMC7782553 DOI: 10.1038/s41467-020-20259-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
Identifying novel drug targets to overcome resistance to tyrosine kinase inhibitors (TKIs) and eradicating leukemia stem/progenitor cells are required for the treatment of chronic myelogenous leukemia (CML). Here, we show that ubiquitin-specific peptidase 47 (USP47) is a potential target to overcome TKI resistance. Functional analysis shows that USP47 knockdown represses proliferation of CML cells sensitive or resistant to imatinib in vitro and in vivo. The knockout of Usp47 significantly inhibits BCR-ABL and BCR-ABLT315I-induced CML in mice with the reduction of Lin-Sca1+c-Kit+ CML stem/progenitor cells. Mechanistic studies show that stabilizing Y-box binding protein 1 contributes to USP47-mediated DNA damage repair in CML cells. Inhibiting USP47 by P22077 exerts cytotoxicity to CML cells with or without TKI resistance in vitro and in vivo. Moreover, P22077 eliminates leukemia stem/progenitor cells in CML mice. Together, targeting USP47 is a promising strategy to overcome TKI resistance and eradicate leukemia stem/progenitor cells in CML.
Collapse
MESH Headings
- Animals
- Cell Proliferation/drug effects
- DNA Damage
- DNA Repair/drug effects
- Drug Resistance, Neoplasm/drug effects
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Fusion Proteins, bcr-abl
- Gene Expression Regulation, Leukemic/drug effects
- Humans
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Mice, Knockout
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Proteasome Endopeptidase Complex/metabolism
- Protein Binding/drug effects
- Protein Kinase Inhibitors/pharmacology
- Protein Stability/drug effects
- Proteolysis/drug effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- STAT5 Transcription Factor/metabolism
- Signal Transduction/drug effects
- Thiophenes/pharmacology
- Ubiquitin Thiolesterase/metabolism
- Ubiquitin-Specific Proteases/metabolism
- Xenograft Model Antitumor Assays
- Y-Box-Binding Protein 1/metabolism
- ras Proteins/metabolism
- Mice
Collapse
Affiliation(s)
- Hu Lei
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Han-Zhang Xu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Hui-Zhuang Shan
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Meng Liu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Ying Lu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Zhi-Xiao Fang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Jin Jin
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Bo Jing
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Xin-Hua Xiao
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Shen-Meng Gao
- Laboratory of Internal Medicine, The First Affiliated Hospital of Wenzhou Medical University, 325000, Wenzhou, China
| | - Feng-Hou Gao
- Department of Oncology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, 200011, Shanghai, China
| | - Li Xia
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Li Yang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Li-Gen Liu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Wei-Wei Wang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Chuan-Xu Liu
- Department of Hematology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 200092, Shanghai, China
| | - Yin Tong
- Department of Hematology, Shanghai First People's Hospital, Shanghai Jiao Tong University School of Medicine, 200081, Shanghai, China
| | - Yun-Zhao Wu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Jun-Ke Zheng
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Guo-Qiang Chen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education and Chinese Academy of Medical Sciences Research Unit (NO.2019RU043), Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
| | - Li Zhou
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
| | - Ying-Li Wu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
| |
Collapse
|
11
|
Taymaz-Nikerel H, Eraslan S, Kırdar B. Insights Into the Mechanism of Anticancer Drug Imatinib Revealed Through Multi-Omic Analyses in Yeast. ACTA ACUST UNITED AC 2020; 24:667-678. [DOI: 10.1089/omi.2020.0144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Hilal Taymaz-Nikerel
- Department of Genetics and Bioengineering, Istanbul Bilgi University, Istanbul, Turkey
- Department of Chemical Engineering, Bogazici University, Istanbul, Turkey
| | - Serpil Eraslan
- Department of Chemical Engineering, Bogazici University, Istanbul, Turkey
- Koç University Hospital, Diagnosis Center for Genetic Disorders, Istanbul, Turkey
| | - Betül Kırdar
- Department of Chemical Engineering, Bogazici University, Istanbul, Turkey
| |
Collapse
|
12
|
Komorowski L, Fidyt K, Patkowska E, Firczuk M. Philadelphia Chromosome-Positive Leukemia in the Lymphoid Lineage-Similarities and Differences with the Myeloid Lineage and Specific Vulnerabilities. Int J Mol Sci 2020; 21:E5776. [PMID: 32806528 PMCID: PMC7460962 DOI: 10.3390/ijms21165776] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 12/18/2022] Open
Abstract
Philadelphia chromosome (Ph) results from a translocation between the breakpoint cluster region (BCR) gene on chromosome 9 and ABL proto-oncogene 1 (ABL1) gene on chromosome 22. The fusion gene, BCR-ABL1, is a constitutively active tyrosine kinase which promotes development of leukemia. Depending on the breakpoint site within the BCR gene, different isoforms of BCR-ABL1 exist, with p210 and p190 being the most prevalent. P210 isoform is the hallmark of chronic myeloid leukemia (CML), while p190 isoform is expressed in majority of Ph-positive B cell acute lymphoblastic leukemia (Ph+ B-ALL) cases. The crucial component of treatment protocols of CML and Ph+ B-ALL patients are tyrosine kinase inhibitors (TKIs), drugs which target both BCR-ABL1 isoforms. While TKIs therapy is successful in great majority of CML patients, Ph+ B-ALL often relapses as a drug-resistant disease. Recently, the high-throughput genomic and proteomic analyses revealed significant differences between CML and Ph+ B-ALL. In this review we summarize recent discoveries related to differential signaling pathways mediated by different BCR-ABL1 isoforms, lineage-specific genetic lesions, and metabolic reprogramming. In particular, we emphasize the features distinguishing Ph+ B-ALL from CML and focus on potential therapeutic approaches exploiting those characteristics, which could improve the treatment of Ph+ B-ALL.
Collapse
Affiliation(s)
- Lukasz Komorowski
- Department of Immunology, Medical University of Warsaw, Nielubowicza 5 St, 02-097 Warsaw, Poland; (L.K.); (K.F.)
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Trojdena 2a St, 02-091 Warsaw, Poland
| | - Klaudyna Fidyt
- Department of Immunology, Medical University of Warsaw, Nielubowicza 5 St, 02-097 Warsaw, Poland; (L.K.); (K.F.)
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Trojdena 2a St, 02-091 Warsaw, Poland
| | - Elżbieta Patkowska
- Department of Hematology, Institute of Hematology and Transfusion Medicine, Indiry Gandhi 14, 02-776 Warsaw, Poland;
| | - Malgorzata Firczuk
- Department of Immunology, Medical University of Warsaw, Nielubowicza 5 St, 02-097 Warsaw, Poland; (L.K.); (K.F.)
| |
Collapse
|
13
|
Tange N, Hayakawa F, Yasuda T, Odaira K, Yamamoto H, Hirano D, Sakai T, Terakura S, Tsuzuki S, Kiyoi H. Staurosporine and venetoclax induce the caspase-dependent proteolysis of MEF2D-fusion proteins and apoptosis in MEF2D-fusion (+) ALL cells. Biomed Pharmacother 2020; 128:110330. [PMID: 32504922 DOI: 10.1016/j.biopha.2020.110330] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/22/2020] [Accepted: 05/23/2020] [Indexed: 01/01/2023] Open
Abstract
MEF2D-fusion (M-fusion) genes are newly discovered recurrent gene abnormalities that are detected in approximately 5 % of acute lymphoblastic leukemia (ALL) cases. Their introduction to cells has been reported to transform cell lines or increase the colony formation of bone marrow cells, suggesting their survival-supporting ability, which prompted us to examine M-fusion-targeting drugs. To identify compounds that reduce the protein expression level of MEF2D, we developed a high-throughput screening system using 293T cells stably expressing a fusion protein of MEF2D and luciferase, in which the protein expression level of MEF2D was easily measured by a luciferase assay. We screened 3766 compounds with known pharmaceutical activities using this system and selected staurosporine as a potential inducer of the proteolysis of MEF2D. Staurosporine induced the proteolysis of M-fusion proteins in M-fusion (+) ALL cell lines. Proteolysis was inhibited by caspase inhibitors, not proteasome inhibitors, suggesting caspase dependency. Consistent with this result, the growth inhibitory effects of staurosporine were stronger in M-fusion (+) ALL cell lines than in negative cell lines, and caspase inhibitors blocked apoptosis induced by staurosporine. We identified the cleavage site of MEF2D-HNRNPUL1 by caspases and confirmed that its caspase cleavage-resistant mutant was resistant to staurosporine-induced proteolysis. Based on these results, we investigated another Food and Drug Administration-approved caspase activator, venetoclax, and found that it exerted similar effects to staurosporine, namely, the proteolysis of M-fusion proteins and strong growth inhibitory effects in M-fusion (+) ALL cell lines. The present study provides novel insights into drug screening strategies and the clinical indications of venetoclax.
Collapse
Affiliation(s)
- Naoyuki Tange
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Fumihiko Hayakawa
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan; Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Takahiko Yasuda
- Clinical Research Center, Nagoya Medical Center, National Hospital Organization, Nagoya, Japan
| | - Koya Odaira
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hideyuki Yamamoto
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Daiki Hirano
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toshiyasu Sakai
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Seitaro Terakura
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinobu Tsuzuki
- Department of Biochemistry, Aichi Medical University, School of Medicine, Japan
| | - Hitoshi Kiyoi
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
14
|
Li Y, Zuo H, Wang H, Hu A. Decrease of MLK4 prevents hepatocellular carcinoma (HCC) through reducing metastasis and inducing apoptosis regulated by ROS/MAPKs signaling. Biomed Pharmacother 2019; 116:108749. [PMID: 31071576 DOI: 10.1016/j.biopha.2019.108749] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/27/2019] [Accepted: 02/27/2019] [Indexed: 01/03/2023] Open
Abstract
Hepatocellular carcinoma (HCC) results in large amounts of deaths each year worldwide. To develop more effective treatments for HCC, it is very necessary to define the molecular mechanisms in hepatocarcinogenesis. Mixed lineage kinase (MLK)-4 is a member of the MLK family of mitogen-activated protein kinase kinase kinases, and modulates different cellular responses. However, its role in the meditation of HCC progression remains unclear. In the study, we found that MLK4 was over-expressed in tumor samples of HCC patients. High MLK4 expression was significantly associated with shorter overall survival in HCC. Knockdown of MLK4 inhibited HCC cell proliferation and metastasis, which was partly through reducing matrix metalloproteinase (MMP)-13, MMP2, enhancer of zeste homolog 2 (EZH2) and Vimentin expressions. Apoptosis was significantly induced by MLK4 knockdown in HCC cells via decreasing Bcl-2 and increasing cleaved poly (ADP-ribose) polymerase (PARP), Caspase-7 and -3 expression levels. In addition, MLK4 silence led to a significant reactive oxygen species (ROS) production in liver cancer cells, accompanied with elevated expression of phosphorylated p38, c-Jun N-terminal kinase (JNK) and ERK1/2. Notably, reducing ROS generation and blocking MAPKs (p38/JNK/ERK1/2) signaling markedly abrogated MLK4 knockdown-induced apoptosis in HCC cells. Moreover, MLK4 silence-prevented metastasis was also rescued by scavenging ROS generation and repressing MAPKs pathway. In vivo, injection of MLK4 siRNA markedly inhibited liver tumor growth in xenograft models, and MLK4 knockdown reduced HCC lung metastasis. Together, our study indicated the essential function of MLK4 in HCC progression, providing crucial therapeutic hypothesis for the prevention of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Yu Li
- Department of Infectious Diseases, Shaanxi Provincial People's Hospital, the Affiliated Hospital of Xi'an Medical University, Xi'an, 710068, China
| | - Haibo Zuo
- Department of Liver, Gallbladder, Pancreas & Spleen Surgery, Shunde Hospital of Southern Medical University, Foshan, 528000, China
| | - Hongjian Wang
- Second Cancer Subjects, Tengzhou Central People's Hospital, Tengzhou, 277500, China
| | - Anxiang Hu
- Second Cancer Subjects, Tengzhou Central People's Hospital, Tengzhou, 277500, China.
| |
Collapse
|
15
|
BCL2 inhibitor ABT-199 and JNK inhibitor SP600125 exhibit synergistic cytotoxicity against imatinib-resistant Ph+ ALL cells. Biochem Biophys Rep 2018; 15:69-75. [PMID: 30073206 PMCID: PMC6068087 DOI: 10.1016/j.bbrep.2018.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/28/2018] [Accepted: 07/02/2018] [Indexed: 02/08/2023] Open
Abstract
Imatinib (IMT), a specific tyrosine kinase inhibitor (TKI), has drastically changed the treatment strategy for Ph+ ALL (Philadelphia chromosome-positive acute lymphoblastic leukemia). However, TKI resistance remains a serious problem for patient prognosis. Here, a Ph+ ALL cell line NphA2 and the IMT-resistant subline NphA2/STIR were analyzed to identify a potential novel treatment strategy. We also examined other Ph+ ALL cells, MR87 and its IMT-resistant subline, MR87/STIR. IMT induced apoptosis of NphA2 and MR87 but had no effect on resistant sublines. Increased phosphorylated ERK and BCL2, but not BCL-XL, were observed in NphA2/STIR compared with NphA2. NphA2/STIR but not NphA2 was moderately sensitive to U0126, an ERK inhibitor. Interestingly, SP600125, a JNK inhibitor, was potent in cell growth inhibition and apoptosis induction of both parental and IMT-resistant NphA2 and MR87 cells. Moreover, NphA2 and MR87 and their IMT-resistant sublines were sensitive to ABT-199, a specific BCL2 inhibitor. The combination of SP600125 and ABT-199 synergistically suppressed both parental and IMT-resistant cells, including one with T315I mutation, suggesting that Ph+ ALL exhibits high sensitivity to ABT-199 and SP600125 regardless of TKI resistance. This combination might be a possible therapeutic strategy for Ph+ ALL in the future. SP600125 JNK inhibitor is cytotoxic against imatinib-resistant Ph+ ALL cells. BCl2 inhibitor ABT 199 exhibits cytotoxicity against imatinib-resistant Ph+ ALL. SP600125 and ABT199 are synergistic in imatinib-resistant Ph+ ALL with T315I. Some leukemia cells are sensitive to MCL1 inhibitor maritoclax but not to ABT-199.
Collapse
|
16
|
Nutlin-3 plus tanshinone IIA exhibits synergetic anti-leukemia effect with imatinib by reactivating p53 and inhibiting the AKT/mTOR pathway in Ph+ ALL. Biochem J 2017; 474:4153-4170. [PMID: 29046392 DOI: 10.1042/bcj20170386] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 10/09/2017] [Accepted: 10/16/2017] [Indexed: 02/05/2023]
Abstract
Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL) is triggered by BCR/ABL kinase. Recent efforts focused on the development of more potent tyrosine kinase inhibitors (TKIs) that also inhibit mutant tyrosine kinases such as nilotinib and dasatinib. Although major advances in the treatment of this aggressive disease with potent inhibitors of the BCR/ABL kinases, patients in remission frequently relapse due to drug resistance possibly mediated, at least in part, by compensatory activation of growth-signaling pathways and protective feedback signaling of leukemia cells in response to TKI treatment. Continuous activation of AKT/mTOR signaling and inactivation of p53 pathway were two mechanisms of TKI resistance. Here, we reported that nutlin-3 plus tanshinone IIA significantly potentiated the cytotoxic and apoptotic induction effects of imatinib by down-regulation of the AKT/mTOR pathway and reactivating the p53 pathway deeply in Ph+ ALL cell line. In primary samples from Ph+ ALL patients, nutlin-3 plus tanshinone IIA also exhibited synergetic cytotoxic effects with imatinib. Of note, three samples from Ph+ ALL patients harboring T315I mutation also showed sensitivity to the combined treatment of imatinib, nutlin-3 plus tanshinone IIA. In Ph+ ALL mouse models, imatinib combined with nutlin-3 plus tanshinone IIA also exhibited synergetic effects on reduction in leukemia burden. These results demonstrated that nutlin-3 plus tanshinone IIA combined TKI might be a promising treatment strategy for Ph+ ALL patients.
Collapse
|
17
|
EPHB4 is a therapeutic target in AML and promotes leukemia cell survival via AKT. Blood Adv 2017; 1:1635-1644. [PMID: 29296810 DOI: 10.1182/bloodadvances.2017005694] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 07/05/2017] [Indexed: 02/01/2023] Open
Abstract
EPHB4, an ephrin type B receptor, is implicated in the growth of several epithelial tumors and is a promising target in cancer therapy; however, little is known about its role in hematologic malignancies. In this article, we show that EPHB4 is highly expressed in ∼30% of acute myeloid leukemia (AML) samples. In an unbiased RNA interference screen of primary leukemia samples, we found that EPHB4 drives survival in a subset of AML cases. Knockdown of EPHB4 inhibits phosphatidylinositol 3-kinase/AKT signaling, and this is accompanied by a reduction in cell viability, which can be rescued by a constitutively active form of AKT. Finally, targeting EPHB4 with a highly specific monoclonal antibody (MAb131) is effective against AML in vitro and in vivo. EPHB4 is therefore a potential target in AML with high EPHB4 expression.
Collapse
|
18
|
El Bezawy R, De Cesare M, Pennati M, Deraco M, Gandellini P, Zuco V, Zaffaroni N. Antitumor activity of miR-34a in peritoneal mesothelioma relies on c-MET and AXL inhibition: persistent activation of ERK and AKT signaling as a possible cytoprotective mechanism. J Hematol Oncol 2017; 10:19. [PMID: 28100259 PMCID: PMC5242015 DOI: 10.1186/s13045-016-0387-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 12/30/2016] [Indexed: 12/15/2022] Open
Abstract
Background The value of microRNAs (miRNAs) as novel targets for cancer therapy is now widely recognized. However, no information is currently available on the expression/functional role of miRNAs in diffuse malignant peritoneal mesothelioma (DMPM), a rapidly lethal disease, poorly responsive to conventional treatments, for which the development of new therapeutic strategies is urgently needed. Here, we evaluated the expression and biological effects of miR-34a—one of the most widely deregulated miRNAs in cancer and for which a lipid-formulated mimic is already clinically available—in a large cohort of DMPM clinical samples and a unique collection of in house-developed preclinical models, with the aim to assess the potential of a miR-34a-based approach for disease treatment. Methods miR-34a expression was determined by qRT-PCR in 45 DMPM and 7 normal peritoneum specimens as well as in 5 DMPM cell lines. Following transfection with miR-34a mimic, the effects on DMPM cell phenotype, in terms of proliferative potential, apoptotic rate, invasion ability, and cell cycle distribution, were assessed. In addition, three subcutaneous and orthotopic DMPM xenograft models were used to examine the effect of miR-34a on tumorigenicity. The expression of miRNA targets and the activation status of relevant pathways were investigated by western blot. Results miR-34a was found to be down-regulated in DMPM clinical specimens and cell lines compared to normal peritoneal samples. miR-34a reconstitution in DMPM cells significantly inhibited proliferation and tumorigenicity, induced an apoptotic response, and declined invasion ability, mainly through the down-regulation of c-MET and AXL and the interference with the activation of downstream signaling. Interestingly, a persistent activation of ERK1/2 and AKT in miR-34a-reconstituted cells was found to counteract the antiproliferative and proapoptotic effects of miRNA, yet not affecting its anti-invasive activity. Conclusions Our preclinical data showing impressive inhibitory effects induced by miR-34a on DMPM cell proliferation, invasion, and growth in immunodeficient mice strongly suggest the potential clinical utility of a miR-34a-replacement therapy for the treatment of such a still incurable disease. On the other hand, we provide the first evidence of a potential cytoprotective/resistance mechanism that may arise towards miRNA-based therapies through the persistent activation of RTK downstream signaling. Electronic supplementary material The online version of this article (doi:10.1186/s13045-016-0387-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rihan El Bezawy
- Molecular Pharmacology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133, Milan, Italy
| | - Michelandrea De Cesare
- Molecular Pharmacology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133, Milan, Italy
| | - Marzia Pennati
- Molecular Pharmacology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133, Milan, Italy
| | - Marcello Deraco
- Colon-Rectal Cancer Surgery Unit, Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133, Milan, Italy
| | - Paolo Gandellini
- Molecular Pharmacology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133, Milan, Italy
| | - Valentina Zuco
- Molecular Pharmacology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133, Milan, Italy.
| | - Nadia Zaffaroni
- Molecular Pharmacology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133, Milan, Italy.
| |
Collapse
|
19
|
Li L, Xu N, Zhang JF, Xu LL, Zhou X, Huang BT, Li YL, Liu XL. EphB4/ephrinB2 Contributes to Imatinib Resistance in Chronic Myeloid Leukemia Involved in Cytoskeletal Proteins. Int J Med Sci 2016; 13:365-73. [PMID: 27226777 PMCID: PMC4879769 DOI: 10.7150/ijms.14989] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 04/12/2016] [Indexed: 11/07/2022] Open
Abstract
INTRODUCTION The mechanism of EphB4/ephrinB2 in the resistance of chronic myelogenous leukemia to imatinib keeps unknown. METHODS The imatinib resistant chronic myelogenous leukemia cell line-K562-R, was established. EphB4 receptor expression was detected in patients and resistant cells. Cell migration and drug sensitivity were tested in the EphB4 knockdown cells and mouse models. RESULTS The EphB4 receptor was over-expressed in blast crisis patients compared to chronic phase patients. The level of EphB4 receptor expression was associated with a complete cytogenetic response within 12 months. Enhanced expression of the EphB4 receptor was detected in the K562-R cells. EphB4 knockdown inhibited cell migration ability and restored sensitivity to imatinib in vitro and in vivo. Restored sensitivity to imatinib was observed in K562-R cells, along with increased levels of phospho-EphB4 and decreased phosphorylation levels of RhoA, Rac1, and Cdc42. CONCLUSION Our study illustrates that aberrant activation of EphB4/ephrinB2 may mediate chronic myeloid leukemia resistance involved in cytoskeletal proteins.
Collapse
Affiliation(s)
- Lin Li
- 1. Department of Hematology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou 510515, Guangdong, China
| | - Na Xu
- 1. Department of Hematology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou 510515, Guangdong, China
| | - Jin-Fang Zhang
- 2. Department of Paediatric Hematology and Oncology, Clinical Center of Tumor Therapy, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 510000, China
| | - Lu-Lu Xu
- 1. Department of Hematology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou 510515, Guangdong, China
| | - Xuan Zhou
- 1. Department of Hematology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou 510515, Guangdong, China
| | - Bin-Tao Huang
- 3. Department of Hematology, The Affiliated Hospital of Inner Mongolia Medical University, 1 Tongdao Avenue North, Hohhot 010059, China
| | - Yu-Ling Li
- 1. Department of Hematology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou 510515, Guangdong, China
| | - Xiao-Li Liu
- 1. Department of Hematology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou 510515, Guangdong, China
| |
Collapse
|
20
|
Guo Y, Li Y, Shan Q, He G, Lin J, Gong Y. Curcumin potentiates the anti-leukemia effects of imatinib by downregulation of the AKT/mTOR pathway and BCR/ABL gene expression in Ph+ acute lymphoblastic leukemia. Int J Biochem Cell Biol 2015; 65:1-11. [PMID: 25979368 DOI: 10.1016/j.biocel.2015.05.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 03/24/2015] [Accepted: 05/01/2015] [Indexed: 02/05/2023]
Abstract
Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL) is triggered by BCR/ABL and SRC family tyrosine kinases. They interact with each other and subsequently activate downstream growth-signaling pathways, including Raf/MEK/ERK, Akt/mTOR, and STAT5 pathways. Although imatinib is the standard treatment for Ph+ leukemia, response rate of Ph+ ALL to imatinib is low, relapse is frequent and quick. Studies have documented the potential anti-tumor activities of curcumin. However, whether curcumin can be used in the therapy for Ph+ ALL remains obscure. Here, we reported that curcumin induced apoptosis by inhibition of AKT/mTOR and ABL/STAT5 signaling, down-regulation of BCR/ABL expression, and induction of the BCL2/BAX imbalance. Curcumin exerted synergetic anti-leukemia effects with imatinib by inhibition of the imatinib-mediated overactivation of AKT/mTOR signaling and down-regulation of BCR/ABL gene expression. In primary samples from Ph+ ALL patients, curcumin inhibited cellular proliferation and down-regulated constitutive activation of growth-signaling pathways not only in newly diagnosed patients but also in imatinib-resistant patients. In Ph+ ALL mouse models, curcumin exhibited synergetic anti-leukemia effects with imatinib. These results demonstrated that curcumin might be a promising agent for Ph+ ALL patients.
Collapse
Affiliation(s)
- Yong Guo
- Department of Hematology, West China Hospital of Sichuan University, China
| | - Yi Li
- Department of Human Sciences, Texas A&M University-Kingsville, Kingsville, TX 78363, USA
| | - Qingqing Shan
- Department of Hematology, West China Hospital of Sichuan University, China
| | - Guangcui He
- Department of Hematology, West China Hospital of Sichuan University, China
| | - Juan Lin
- Department of Hematology, West China Hospital of Sichuan University, China
| | - Yuping Gong
- Department of Hematology, West China Hospital of Sichuan University, China.
| |
Collapse
|
21
|
Li J, Chen Y, Chen B, Chen C, Qiu B, Zheng Z, Zheng J, Liu T, Wang W, Hu J. Inhibition of 32Dp210 cells harboring T315I mutation by a novel derivative of emodin correlates with down-regulation of BCR-ABL and its downstream signaling pathways. J Cancer Res Clin Oncol 2015; 141:283-93. [PMID: 25217883 DOI: 10.1007/s00432-014-1820-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 08/29/2014] [Indexed: 01/23/2023]
Abstract
PURPOSE The clinical outcome of chronic myeloid leukemia (CML) patients has been changed dramatically due to the development of imatinib (IM). However, the emergence of IM resistance, commonly associated with point mutations within the BCR-ABL kinase domain, remains a major clinical problem. Here, we investigated the effects of E35, a novel derivative of emodin, on the IM-resistant 32Dp210-T315I cells. METHODS Cell proliferation was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide and colony formation assay. Induction of apoptosis was confirmed by DNA fragmentation assay and annexin V/PI staining assay. Real-time quantitative PCR was used to access the BCR-ABL gene expression. Changes of related signaling molecules were detected through Western blot. RESULTS E35 was found to potently inhibit proliferation of 32Dp210-T315I cells with an average IC50 of 2.4 µM at 48 h. Colony formation was almost fully suppressed in 1.0 μM E35 group. DNA fragmentation and annexin V/PI staining assay exhibited the typical DNA fragmentation and the increased proportion of early apoptotic cells, respectively. The induction of apoptosis was associated with increase of Bax to Bcl-2 expression ratio and activation of caspase cascades involving decrease of pro-caspase 9 and pro-caspase 3 and increase of PARP cleavage. The protein expression of P210(BCR-ABL) and p-P210(BCR-ABL) was down-regulated in the presence of E35, although the mRNA levels remained almost unchanged. Moreover, the activation of the P210(BCR-ABL) downstream signaling pathways including CrkL, Akt/mTOR and MEK/ERK was fully suppressed by E35. CONCLUSION Our study indicated that E35 might be a potential antileukemia agent against IM resistance in CML.
Collapse
MESH Headings
- Apoptosis/drug effects
- Benzamides/pharmacology
- Blotting, Western
- Cell Proliferation/drug effects
- Colony-Forming Units Assay
- Down-Regulation
- Drug Resistance, Neoplasm/drug effects
- Emodin/chemistry
- Emodin/pharmacology
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Humans
- Imatinib Mesylate
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Mutation/genetics
- Piperazines/pharmacology
- Protein Kinase Inhibitors/pharmacology
- Pyrimidines/pharmacology
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction/drug effects
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Jing Li
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, Fujian, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Yang K, Fu LW. Mechanisms of resistance to BCR-ABL TKIs and the therapeutic strategies: A review. Crit Rev Oncol Hematol 2014; 93:277-92. [PMID: 25500000 DOI: 10.1016/j.critrevonc.2014.11.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 08/30/2014] [Accepted: 11/03/2014] [Indexed: 12/12/2022] Open
Abstract
BCR-ABL caused by the translocation of t(9,22) with elevated tyrosine-kinase activity could induce leukemia in mice, which established BCR-ABL as the molecular pathogenic event in CML (Chronic myeloid leukemia). In recent years, a variety of tyrosine kinase inhibitors (TKIs) targeting at BCR-ABL specifically and effectively have been developed, which has fundamentally promoted the treatment of CML. However, the efficacy of TKIs was limited by its resistance induced by the development of kinase domain mutations and other mechanisms illustrated. In this review, we summarized BCR-ABL inhibitors approved by Food and Drug Administration (FAD), with the same concerns focus on the resistant mechanisms of BCR-ABL inhibitors and therapeutic resistant strategies.
Collapse
Affiliation(s)
- Ke Yang
- Sun Yat-sen University Cancer center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Li-wu Fu
- Sun Yat-sen University Cancer center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.
| |
Collapse
|
23
|
Yue Y, Wang Y, He Y, Yang S, Chen Z, Wang Y, Xing S, Shen C, Amin HM, Wu D, Song YH. Reversal of bortezomib resistance in myelodysplastic syndrome cells by MAPK inhibitors. PLoS One 2014; 9:e90992. [PMID: 24608798 PMCID: PMC3946707 DOI: 10.1371/journal.pone.0090992] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Accepted: 02/05/2014] [Indexed: 01/20/2023] Open
Abstract
The myelodysplastic syndromes (MDS) comprise a heterogeneous group of malignant neoplasms with distinctive clinicopathological features. Currently, there is no specific approach for the treatment of MDS. Here, we report that bortezomib (BTZ), a proteasome inhibitor that has been used to treat plasma cell myeloma, induced G2/M phase cycle arrest in the MDS cell line SKM-1 through upregulation of Wee1, a negative regulator of G2/M phase transition. Treatment by BTZ led to reduced SKM-1 cell viability as well as increased apoptosis and autophagy. The BTZ-induced cell death was associated with reduced expression of p-ERK. To elucidate the implications of downregulation of p-ERK, we established the BTZ resistant cell line SKM-1R. Our data show that resistance to BTZ-induced apoptosis could be reversed by the MEK inhibitors U0126 or PD98059. Our results suggest that MAPK pathway may play an important role in mediating BTZ resistance.
Collapse
Affiliation(s)
- Yingxing Yue
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, First Affiliated Hospital, Soochow University, Suzhou, China
| | - Ying Wang
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Yang He
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Shuting Yang
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, First Affiliated Hospital, Soochow University, Suzhou, China
| | - Zixing Chen
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Yuanyuan Wang
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Shanshan Xing
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, First Affiliated Hospital, Soochow University, Suzhou, China
| | - Congcong Shen
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, First Affiliated Hospital, Soochow University, Suzhou, China
| | - Hesham M. Amin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Depei Wu
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
- * E-mail: (YHS); (DPW)
| | - Yao-Hua Song
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, First Affiliated Hospital, Soochow University, Suzhou, China
- * E-mail: (YHS); (DPW)
| |
Collapse
|
24
|
Homoharringtonine contributes to imatinib sensitivity by blocking the EphB4/RhoA pathway in chronic myeloid leukemia cell lines. Med Oncol 2014; 31:836. [PMID: 24415355 DOI: 10.1007/s12032-013-0836-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 12/27/2013] [Indexed: 01/29/2023]
Abstract
The purpose was to investigate the role of EphB4 in imatinib (IM) resistance and the mechanism responsible for homoharringtonine (HHT) contributing to imatinib sensitivity for a chronic myeloid leukemia (CML) cell lines. We established cell lines from a patient with CML at the time of first diagnosis and relapsed phase and designated them as NPhA1 and NPhA2, respectively. Stable underexpressing EphB4 cells (NPhA2-sh) were obtained. The activated signal proteins in cells were tested by Western blot. The EphB4 was overexpressed in IM-resistant NPhA2 in comparison with the NPhA1 cell line, but the expression of EphB4 mRNA and protein significantly decreased in knockdown NPhA2-EphB4-sh cells compared with NPhA2 and NPhA1 (P < 0.001) cell lines. NPhA2-EphB4-sh cells were sensitive to IM (IC50 0.93 mg/L), and NPhA2 showed IM resistance (IC50 5.45 mg/L) (P < 0.001). Meanwhile, phospho-Rac1/cdc42 was significantly increased in NPhA2 cells compared to NPhA2-EphB4-sh (P < 0.001). The apoptosis rate reached 58.71 ± 2.39 % with NPhA2 cells incubated with HHT + IM, which was higher than NPhA2 cells incubated with IM alone (P = 0.002). IC50 of NPhA2 cells incubated with IM was 5.45 mg/L. However, co-stimulation with HHT + IM decreased the IC50 of NPhA2 cells from 5.45 to 1.17 mg/L (P < 0.001). Furthermore, HHT blocked the expressions of EphB4/RhoA, but did not down-regulate the phospho-MEK/ERK in NPhA2 cells. The overexpression of EphB4 contributed to IM resistance in CML line cells. EphB4/RhoA may be a new marker of IM resistance. HHT + IM gained more treatment advantages than IM alone by blocking EphB4/RhoA pathways in CML cell lines.
Collapse
|
25
|
Ehrkamp A, Herrmann C, Stoll R, Heumann R. Ras and rheb signaling in survival and cell death. Cancers (Basel) 2013; 5:639-61. [PMID: 24216995 PMCID: PMC3730321 DOI: 10.3390/cancers5020639] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 05/08/2013] [Accepted: 05/17/2013] [Indexed: 12/11/2022] Open
Abstract
One of the most obvious hallmarks of cancer is uncontrolled proliferation of cells partly due to independence of growth factor supply. A major component of mitogenic signaling is Ras, a small GTPase. It was the first identified human protooncogene and is known since more than three decades to promote cellular proliferation and growth. Ras was shown to support growth factor-independent survival during development and to protect from chemical or mechanical lesion-induced neuronal degeneration in postmitotic neurons. In contrast, for specific patho-physiological cases and cellular systems it has been shown that Ras may also promote cell death. Proteins from the Ras association family (Rassf, especially Rassf1 and Rassf5) are tumor suppressors that are activated by Ras-GTP, triggering apoptosis via e.g., activation of mammalian sterile 20-like (MST1) kinase. In contrast to Ras, their expression is suppressed in many types of tumours, which makes Rassf proteins an exciting model for understanding the divergent effects of Ras activity. It seems likely that the outcome of Ras signaling depends on the balance between the activation of its various downstream effectors, thus determining cellular fate towards either proliferation or apoptosis. Ras homologue enriched in brain (Rheb) is a protein from the Ras superfamily that is also known to promote proliferation, growth, and regeneration through the mammalian target of rapamycin (mTor) pathway. However, recent evidences indicate that the Rheb-mTor pathway may switch its function from a pro-growth into a cell death pathway, depending on the cellular situation. In contrast to Ras signaling, for Rheb, the cellular context is likely to modulate the whole Rheb-mTor pathway towards cellular death or survival, respectively.
Collapse
Affiliation(s)
- Anja Ehrkamp
- Molecular Neurobiochemistry, Ruhr University of Bochum, 44780 Bochum, Germany; E-Mail:
| | - Christian Herrmann
- Department of Physical Chemistry1, Protein Interaction, Ruhr University of Bochum, 44780 Bochum, Germany; E-Mail:
| | - Raphael Stoll
- Biomolecular NMR, Ruhr University of Bochum, 44780 Bochum, Germany; E-Mail:
| | - Rolf Heumann
- Molecular Neurobiochemistry, Ruhr University of Bochum, 44780 Bochum, Germany; E-Mail:
| |
Collapse
|
26
|
Tang K, Lin Y, Li LM. The Role of Phenethyl Isothiocyanate on Bladder Cancer ADM Resistance Reversal and Its Molecular Mechanism. Anat Rec (Hoboken) 2013; 296:899-906. [PMID: 23495258 DOI: 10.1002/ar.22677] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 01/20/2013] [Indexed: 11/07/2022]
Affiliation(s)
- Kai Tang
- Department of Urology, Tianjin Medical University General Hospital, 300052, China
| | | | | |
Collapse
|
27
|
Kang J, Pervaiz S. Crosstalk between Bcl-2 family and Ras family small GTPases: potential cell fate regulation? Front Oncol 2013; 2:206. [PMID: 23316476 PMCID: PMC3539672 DOI: 10.3389/fonc.2012.00206] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 12/12/2012] [Indexed: 12/12/2022] Open
Abstract
Cell fate regulation is a function of diverse cell signaling pathways that promote cell survival and or inhibit cell death execution. In this regard, the role of the Bcl-2 family in maintaining a tight balance between cell death and cell proliferation has been extensively studied. The conventional dogma links cell fate regulation by the Bcl-2 family to its effect on mitochondrial permeabilization and apoptosis amplification. However, recent evidence provide a novel mechanism for death regulation by the Bcl-2 family via modulating cellular redox metabolism. For example overexpression of Bcl-2 has been shown to contribute to a pro-oxidant intracellular milieu and down-regulation of cellular superoxide levels enhanced death sensitivity of Bcl-2 overexpressing cells. Interestingly, gene knockdown of the small GTPase Rac1 or pharmacological inhibition of its activity also reverted death phenotype in Bcl-2 expressing cells. This appears to be a function of an interaction between Bcl-2 and Rac1. Similar functional associations have been described between the Bcl-2 family and other members of the Ras superfamily. These interactions at the mitochondria provide novel opportunities for strategic therapeutic targeting of drug-resistant cancers.
Collapse
Affiliation(s)
- Jia Kang
- ROS, Apoptosis and Cancer Biology Laboratory, Department of Physiology, Yong Loo Lin School of Medicine Singapore, Singapore ; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore Singapore, Singapore
| | | |
Collapse
|
28
|
Apoptosis Induced by Benzyl Isothiocyanate in Gefitinib-Resistant Lung Cancer Cells is Associated with Akt/MAPK Pathways and Generation of Reactive Oxygen Species. Cell Biochem Biophys 2012; 66:81-92. [DOI: 10.1007/s12013-012-9456-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
29
|
Packer LM, Rana S, Hayward R, O'Hare T, Eide CA, Rebocho A, Heidorn S, Zabriskie MS, Niculescu-Duvaz I, Druker BJ, Springer C, Marais R. Nilotinib and MEK inhibitors induce synthetic lethality through paradoxical activation of RAF in drug-resistant chronic myeloid leukemia. Cancer Cell 2011; 20:715-27. [PMID: 22169110 PMCID: PMC3951999 DOI: 10.1016/j.ccr.2011.11.004] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 10/15/2011] [Accepted: 11/02/2011] [Indexed: 01/07/2023]
Abstract
We show that imatinib, nilotinib, and dasatinib possess weak off-target activity against RAF and, therefore, drive paradoxical activation of BRAF and CRAF in a RAS-dependent manner. Critically, because RAS is activated by BCR-ABL, in drug-resistant chronic myeloid leukemia (CML) cells, RAS activity persists in the presence of these drugs, driving paradoxical activation of BRAF, CRAF, MEK, and ERK, and leading to an unexpected dependency on the pathway. Consequently, nilotinib synergizes with MEK inhibitors to kill drug-resistant CML cells and block tumor growth in mice. Thus, we show that imatinib, nilotinib, and dasatinib drive paradoxical RAF/MEK/ERK pathway activation and have uncovered a synthetic lethal interaction that can be used to kill drug-resistant CML cells in vitro and in vivo.
Collapse
MESH Headings
- Amino Acid Substitution
- Animals
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Apoptosis
- Benzamides/pharmacology
- Benzamides/therapeutic use
- Cell Line, Tumor
- Dasatinib
- Drug Resistance, Neoplasm
- Drug Synergism
- Enzyme Activation/drug effects
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Genes, ras
- Humans
- Imatinib Mesylate
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- MAP Kinase Kinase Kinases/antagonists & inhibitors
- MAP Kinase Kinase Kinases/metabolism
- MAP Kinase Signaling System
- Mice
- Mice, Nude
- Piperazines/pharmacology
- Proto-Oncogene Proteins B-raf/metabolism
- Proto-Oncogene Proteins c-raf/metabolism
- Pyrimidines/pharmacology
- Pyrimidines/therapeutic use
- Thiazoles/pharmacology
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
- raf Kinases/metabolism
Collapse
Affiliation(s)
- Leisl M. Packer
- Division of Tumour Biology, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, United Kingdom
| | - Sareena Rana
- Division of Tumour Biology, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, United Kingdom
| | - Robert Hayward
- Division of Tumour Biology, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, United Kingdom
| | - Thomas O'Hare
- Division of Hematology and Hematologic Malignancies, Huntsman Cancer Institute, University of Utah, Salt Lake City, 84112-5550, UT
- Division of Hematology and Medical Oncology, Oregon Health & Science University Knight Cancer Institute, Howard Hughes Medical Institute, Portland, OR 97239, USA
| | - Christopher A. Eide
- Division of Hematology and Medical Oncology, Oregon Health & Science University Knight Cancer Institute, Howard Hughes Medical Institute, Portland, OR 97239, USA
| | - Ana Rebocho
- Division of Tumour Biology, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, United Kingdom
| | - Sonja Heidorn
- Division of Tumour Biology, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, United Kingdom
| | - Matthew S. Zabriskie
- Division of Hematology and Medical Oncology, Oregon Health & Science University Knight Cancer Institute, Howard Hughes Medical Institute, Portland, OR 97239, USA
| | - Ion Niculescu-Duvaz
- Cancer Research UK Centre for Cancer Therapeutics, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, United Kingdom
| | - Brian J. Druker
- Division of Hematology and Medical Oncology, Oregon Health & Science University Knight Cancer Institute, Howard Hughes Medical Institute, Portland, OR 97239, USA
| | - Caroline Springer
- Cancer Research UK Centre for Cancer Therapeutics, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, United Kingdom
| | - Richard Marais
- Division of Tumour Biology, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, United Kingdom
- Address for correspondence: Professor Richard Marais, Centre for Cell and Molecular Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, United Kingdom, Tel: +44 207 153 5171
| |
Collapse
|
30
|
|
31
|
Rodriguez-Otero P, Román-Gómez J, Vilas-Zornoza A, José-Eneriz ES, Martín-Palanco V, Rifón J, Torres A, Calasanz MJ, Agirre X, Prosper F. Deregulation of FGFR1 and CDK6 oncogenic pathways in acute lymphoblastic leukaemia harbouring epigenetic modifications of the MIR9 family. Br J Haematol 2011; 155:73-83. [DOI: 10.1111/j.1365-2141.2011.08812.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
32
|
Redig AJ, Vakana E, Platanias LC. Regulation of mammalian target of rapamycin and mitogen activated protein kinase pathways by BCR-ABL. Leuk Lymphoma 2011; 52 Suppl 1:45-53. [PMID: 21299459 DOI: 10.3109/10428194.2010.546919] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A large body of evidence has established that BCR-ABL regulates engagement and activation of mammalian target of rapamycin (mTOR) and mitogen activated protein kinase (MAPK) signaling cascades. mTOR-mediated signals, as well as signals transduced by ERK, JNK, and p38 MAPK, are important components of the aberrant signaling induced by BCR-ABL. Such deregulation of mTOR or MAPK pathways contributes to BCR-ABL leukemogenesis, and their targeting with selective inhibitors provides an approach to enhance antileukemic responses and/or overcome leukemic cell resistance in chronic myeloid leukemia (CML) and Philadelphia chromosome-positive (Ph+) acute lymphoblastic leukemia (ALL). This review explores recent advances in our understanding of mTOR and MAPK signaling in BCR-ABL-expressing leukemias and discusses the potential therapeutic targeting of these pathways in CML and Ph+ ALL.
Collapse
Affiliation(s)
- Amanda J Redig
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology/Oncology, Northwestern University Medical School and Jesse Brown VA Medical Center, Chicago, IL, USA
| | | | | |
Collapse
|
33
|
Svensson Holm ACB, Bengtsson T, Grenegård M, Lindström EG. Platelet membranes induce airway smooth muscle cell proliferation. Platelets 2011; 22:45-55. [DOI: 10.3109/09537104.2010.515696] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|