1
|
Xie C, Wei M, Yang F, Liu Q, Wu F, Huang J. Efficacy and toxicity of carfilzomib- or bortezomib-based regimens for treatment of transplant-ineligible patients with newly diagnosed multiple myeloma: A meta-analysis. Medicine (Baltimore) 2022; 101:e30715. [PMID: 36181088 PMCID: PMC9524967 DOI: 10.1097/md.0000000000030715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Multiple myeloma is a clonal disorder of malignant plasma cells that comprises approximately 10% of hematologic malignancies. The aim of this study was to investigate the efficacy and toxicity of carfilzomib- or bortezomib-based regimens for treatment of transplant-ineligible patients with newly diagnosed multiple myeloma by performing a meta-analysis of randomized controlled trials (RCTs). METHODS Data mining was conducted in March 2022 across PubMed, EMBASE and ClinicalTrials.gov. All published RCTs which assessed efficacy and toxicity of carfilzomib-based regimens treatment for transplant-ineligible patients with newly diagnosed multiple myeloma when compared with a bortezomib-based regimens were included. RESULTS Our meta-analysis showed that the overall response rate (ORR) (Odds ratio = 1.33, 95% CI 1.05-1.69, P = .02) was significantly higher in the carfilzomib-based regimens group than in the bortezomib-based regimens group. However, the difference in ORR did not translate into improvements in progression-free survival (PFS), overall survival (OS) and complete response rate (CRR). Adverse events of grade 3 or worse that occurred with a higher incidence in the carfilzomib-based regimens group compared with the bortezomib-based regimens group were dyspnea, hypertension, acute kidney injury, and heart failure. CONCLUSIONS The carfilzomib-based regimens did not improve PFS, OS and CRR compared with the bortezomib-based regimens in transplant-ineligible patients with newly diagnosed multiple myeloma, and they showed higher toxicity.
Collapse
Affiliation(s)
- Chunhong Xie
- Department of Hematology, Affiliated Liuzhou People’s Hospital of Guangxi Medical University, Liuzhou, Guangxi, China
| | - Min Wei
- Department of Hematology, Affiliated Liuzhou People’s Hospital of Guangxi Medical University, Liuzhou, Guangxi, China
| | - Feiyan Yang
- Department of Hematology, Affiliated Liuzhou People’s Hospital of Guangxi Medical University, Liuzhou, Guangxi, China
| | - Qin Liu
- Department of Hematology, Affiliated Liuzhou People’s Hospital of Guangxi Medical University, Liuzhou, Guangxi, China
| | - Fuzhen Wu
- Department of Hematology, Affiliated Liuzhou People’s Hospital of Guangxi Medical University, Liuzhou, Guangxi, China
| | - Jinxiong Huang
- Department of Hematology, Affiliated Liuzhou People’s Hospital of Guangxi Medical University, Liuzhou, Guangxi, China
- *Correspondence: Jinxiong Huang, Department of Hematology, Affiliated Liuzhou People’s Hospital of Guangxi Medical University, No. 8, Wenchang Road, Liuzhou 545006, Guangxi, China (e-mail: )
| |
Collapse
|
2
|
Danieli MG, Antonelli E, Piga MA, Claudi I, Palmeri D, Tonacci A, Allegra A, Gangemi S. Alarmins in autoimmune diseases. Autoimmun Rev 2022; 21:103142. [PMID: 35853572 DOI: 10.1016/j.autrev.2022.103142] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/10/2022] [Indexed: 12/18/2022]
Abstract
Alarmins are endogenous, constitutively expressed, chemotacting and immune activating proteins or peptides released because of non-programmed cell death (i.e. infections, trauma, etc). They are considered endogenous damage-associated molecular patterns (DAMPs), able to induce a sterile inflammation. In the last years, several studies highlighted a possible role of different alarmins in the pathogenesis of various autoimmune and immune-mediated diseases. We reviewed the relevant literature about this topic, for about 160 articles. Particularly, we focused on systemic autoimmune diseases (systemic lupus erythematosus, rheumatoid arthritis, idiopathic inflammatory myopathies, ANCA-associated vasculitides, Behçet's disease) and cutaneous organ-specific autoimmune diseases (vitiligo, psoriasis, alopecia, pemphigo). Finally, we discussed about future perspectives and potential therapeutic implications of alarmins in autoimmune diseases. In fact, identification of receptors and downstream signal transducers of alarmins may lead to the identification of antagonistic inhibitors and agonists, with the capacity to modulate alarmins-related pathways and potential therapeutic applicability.
Collapse
Affiliation(s)
- Maria Giovanna Danieli
- Clinica Medica, Dipartimento di Scienze Cliniche e Molecolari, Università Politecnica delle Marche, via Tronto 10/A, 60126 Torrette di Ancona, Italy; Postgraduate School of Allergy and Clinical Immunology, Università Politecnica delle Marche, via Tronto 10/A, 60126 Ancona, Italy.
| | - Eleonora Antonelli
- PostGraduate School of Internal Medicine, Università Politecnica delle Marche, via Tronto 10/A, 60126 Ancona, Italy.
| | - Mario Andrea Piga
- Postgraduate School of Allergy and Clinical Immunology, Università Politecnica delle Marche, via Tronto 10/A, 60126 Ancona, Italy.
| | - Ilaria Claudi
- Postgraduate School of Allergy and Clinical Immunology, Università Politecnica delle Marche, via Tronto 10/A, 60126 Ancona, Italy.
| | - Davide Palmeri
- Postgraduate School of Allergy and Clinical Immunology, Università Politecnica delle Marche, via Tronto 10/A, 60126 Ancona, Italy.
| | - Alessandro Tonacci
- Institute of Clinical Physiology, National Research Council of Italy (IFC-CNR), Via G. Moruzzi 1, 56124 Pisa, Italy.
| | - Alessandro Allegra
- Division of Haematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy.
| | - Sebastiano Gangemi
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy.
| |
Collapse
|
3
|
Allegra A, Casciaro M, Lo Presti E, Musolino C, Gangemi S. Harnessing Unconventional T Cells and Innate Lymphoid Cells to Prevent and Treat Hematological Malignancies: Prospects for New Immunotherapy. Biomolecules 2022; 12:biom12060754. [PMID: 35740879 PMCID: PMC9221132 DOI: 10.3390/biom12060754] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/21/2022] [Accepted: 05/26/2022] [Indexed: 11/18/2022] Open
Abstract
Unconventional T cells and innate lymphoid cells (ILCs) make up a heterogeneous set of cells that characteristically show prompt responses toward specific antigens. Unconventional T cells recognize non-peptide antigens, which are bound and presented by diverse non-polymorphic antigen-presenting molecules and comprise γδ T cells, MR1-restricted mucosal-associated invariant T cells (MAITs), and natural killer T cells (NKTs). On the other hand, ILCs lack antigen-specific receptors and act as the innate counterpart to the T lymphocytes found in the adaptive immune response. The alteration of unconventional T cells and ILCs in frequency and functionality is correlated with the onset of several autoimmune diseases, allergy, inflammation, and tumor. However, depending on the physio-pathological framework, unconventional T cells may exhibit either protective or pathogenic activity in a range of neoplastic diseases. Nonetheless, experimental models and clinical studies have displayed that some unconventional T cells are potential therapeutic targets, as well as prognostic and diagnostic markers. In fact, cell-mediated immune response in tumors has become the focus in immunotherapy against neoplastic disease. This review concentrates on the present knowledge concerning the function of unconventional T cell sets in the antitumor immune response in hematological malignancies, such as acute and chronic leukemia, multiple myeloma, and lymphoproliferative disorders. Moreover, we discuss the possibility that modulating the activity of unconventional T cells could be useful in the treatment of hematological neoplasms, in the prevention of specific conditions (such as graft versus host disease), and in the formulation of an effective anticancer vaccine therapy. The exact knowledge of the role of these cells could represent the prerequisite for the creation of a new form of immunotherapy for hematological neoplasms.
Collapse
Affiliation(s)
- Alessandro Allegra
- Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, Division of Hematology, University of Messina, 98125 Messina, Italy; (A.A.); (C.M.)
| | - Marco Casciaro
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy;
- Correspondence: ; Tel.: +39-090-221-2013
| | - Elena Lo Presti
- National Research Council (CNR)—Institute for Biomedical Research and Innovation (IRIB), 90146 Palermo, Italy;
| | - Caterina Musolino
- Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, Division of Hematology, University of Messina, 98125 Messina, Italy; (A.A.); (C.M.)
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy;
| |
Collapse
|
4
|
Allegra A, Casciaro M, Barone P, Musolino C, Gangemi S. Epigenetic Crosstalk between Malignant Plasma Cells and the Tumour Microenvironment in Multiple Myeloma. Cancers (Basel) 2022; 14:cancers14112597. [PMID: 35681577 PMCID: PMC9179362 DOI: 10.3390/cancers14112597] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/12/2022] [Accepted: 05/23/2022] [Indexed: 12/20/2022] Open
Abstract
In multiple myeloma, cells of the bone marrow microenvironment have a relevant responsibility in promoting the growth, survival, and drug resistance of multiple myeloma plasma cells. In addition to the well-recognized role of genetic lesions, microenvironmental cells also present deregulated epigenetic systems. However, the effect of epigenetic changes in reshaping the tumour microenvironment is still not well identified. An assortment of epigenetic regulators, comprising histone methyltransferases, histone acetyltransferases, and lysine demethylases, are altered in bone marrow microenvironmental cells in multiple myeloma subjects participating in disease progression and prognosis. Aberrant epigenetics affect numerous processes correlated with the tumour microenvironment, such as angiogenesis, bone homeostasis, and extracellular matrix remodelling. This review focuses on the interplay between epigenetic alterations of the tumour milieu and neoplastic cells, trying to decipher the crosstalk between these cells. We also evaluate the possibility of intervening specifically in modified signalling or counterbalancing epigenetic mechanisms.
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (P.B.); (C.M.)
- Correspondence:
| | - Marco Casciaro
- Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, School of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy; (M.C.); (S.G.)
| | - Paola Barone
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (P.B.); (C.M.)
| | - Caterina Musolino
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (P.B.); (C.M.)
| | - Sebastiano Gangemi
- Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, School of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy; (M.C.); (S.G.)
| |
Collapse
|
5
|
Allegra A, Cicero N, Tonacci A, Musolino C, Gangemi S. Circular RNA as a Novel Biomarker for Diagnosis and Prognosis and Potential Therapeutic Targets in Multiple Myeloma. Cancers (Basel) 2022; 14:cancers14071700. [PMID: 35406472 PMCID: PMC8997050 DOI: 10.3390/cancers14071700] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 01/27/2023] Open
Abstract
Circular RNAs (circRNAs) are a novel type of covalently closed RNAs involved in several physiological and pathological processes. They display tissue-specific expression and are constant, abundant, and highly conserved, making them perfect markers for diagnosis and prognosis. Several studies have proposed that circRNAs are also differentially produced in malignancies where they have oncogenic effects. Furthermore, circRNAs affecting microRNAs modify the expression profile of several transcription factors which play essential roles in tumors. CircRNAs within the hematopoietic compartment were identified as modulators of mechanisms able to enhance or suppress tumor progression in blood malignancies. Moreover, several circRNAs were suggested to confer resistance to the conventional drugs employed in hematopoietic cancers. In this review, we highlight the growing role and the controlling mechanisms by which circRNAs modify multiple myeloma genesis. We propose that circRNAs can be considered as potential diagnostic and prognostic markers, can induce chemoresistance, and might represent novel therapeutic targets for multiple myeloma.
Collapse
Affiliation(s)
- Alessandro Allegra
- Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, Division of Hematology, University of Messina, 98125 Messina, Italy;
- Correspondence:
| | - Nicola Cicero
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy;
| | - Alessandro Tonacci
- Clinical Physiology Institute, National Research Council of Italy (IFC-CNR), 56124 Pisa, Italy;
| | - Caterina Musolino
- Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, Division of Hematology, University of Messina, 98125 Messina, Italy;
| | - Sebastiano Gangemi
- Allergy and Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy;
| |
Collapse
|
6
|
Allegra A, Petrarca C, Di Gioacchino M, Casciaro M, Musolino C, Gangemi S. Exosome-Mediated Therapeutic Strategies for Management of Solid and Hematological Malignancies. Cells 2022; 11:cells11071128. [PMID: 35406692 PMCID: PMC8997895 DOI: 10.3390/cells11071128] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 12/24/2022] Open
Abstract
Exosomes are small membrane vesicles of endocytic origin containing cytokines, RNAs, growth factors, proteins, lipids, and metabolites. They have been identified as fundamental intercellular communication controllers in several diseases and an enormous volume of data confirmed that exosomes could either sustain or inhibit tumor onset and diffusion in diverse solid and hematological malignancies by paracrine signaling. Thus, exosomes might constitute a promising cell-free tumor treatment alternative. This review focuses on the effects of exosomes in the treatment of tumors, by discussing the most recent and promising data from in vitro and experimental in vivo studies and the few existing clinical trials. Exosomes are extremely promising as transporters of drugs, antagomir, genes, and other therapeutic substances that can be integrated into their core via different procedures. Moreover, exosomes can augment or inhibit non-coding RNAs, change the metabolism of cancer cells, and modify the function of immunologic effectors thus modifying the tumor microenvironment transforming it from pro-tumor to antitumor milieu. Here, we report the development of currently realized exosome modifiers that offer indications for the forthcoming elaboration of other more effective methods capable of enhancing the activity of the exosomes.
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy;
- Correspondence: (A.A.); (M.D.G.)
| | - Claudia Petrarca
- Center for Advanced Studies and Technology, G. D’Annunzio University, 66100 Chieti, Italy;
- Department of Medicine and Aging Sciences, G. D’Annunzio University, 66100 Chieti, Italy
| | - Mario Di Gioacchino
- Center for Advanced Studies and Technology, G. D’Annunzio University, 66100 Chieti, Italy;
- Institute for Clinical Immunotherapy and Advanced Biological Treatments, 65100 Pescara, Italy
- Correspondence: (A.A.); (M.D.G.)
| | - Marco Casciaro
- Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, School of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy; (M.C.); (S.G.)
| | - Caterina Musolino
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy;
| | - Sebastiano Gangemi
- Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, School of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy; (M.C.); (S.G.)
| |
Collapse
|
7
|
Specialized Intercellular Communications via Tunnelling Nanotubes in Acute and Chronic Leukemia. Cancers (Basel) 2022; 14:cancers14030659. [PMID: 35158927 PMCID: PMC8833474 DOI: 10.3390/cancers14030659] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/20/2022] [Accepted: 01/27/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Tunneling nanotubes (TNTs) are cytoplasmic channels which regulate the contacts between cells and allow the transfer of several elements, including ions, mitochondria, microvesicles, exosomes, lysosomes, proteins, and microRNAs. Through this transport, TNTs are implicated in different physiological and pathological phenomena, such as immune response, cell proliferation and differentiation, embryogenesis, programmed cell death, and angiogenesis. TNTs can promote cancer progression, transferring substances capable of altering apoptotic dynamics, modifying the metabolism and energy balance, inducing changes in immunosurveillance, or affecting the response to chemotherapy. In this review, we evaluated their influence on hematologic malignancies’ progression and resistance to therapies, focusing on acute and chronic myeloid and acute lymphoid leukemia. Abstract Effectual cell-to-cell communication is essential to the development and differentiation of organisms, the preservation of tissue tasks, and the synchronization of their different physiological actions, but also to the proliferation and metastasis of tumor cells. Tunneling nanotubes (TNTs) are membrane-enclosed tubular connections between cells that carry a multiplicity of cellular loads, such as exosomes, non-coding RNAs, mitochondria, and proteins, and they have been identified as the main participants in healthy and tumoral cell communication. TNTs have been described in numerous tumors in in vitro, ex vivo, and in vivo models favoring the onset and progression of tumors. Tumor cells utilize TNT-like membranous channels to transfer information between themselves or with the tumoral milieu. As a result, tumor cells attain novel capabilities, such as the increased capacity of metastasis, metabolic plasticity, angiogenic aptitude, and chemoresistance, promoting tumor severity. Here, we review the morphological and operational characteristics of TNTs and their influence on hematologic malignancies’ progression and resistance to therapies, focusing on acute and chronic myeloid and acute lymphoid leukemia. Finally, we examine the prospects and challenges for TNTs as a therapeutic approach for hematologic diseases by examining the development of efficient and safe drugs targeting TNTs.
Collapse
|
8
|
Machine Learning and Deep Learning Applications in Multiple Myeloma Diagnosis, Prognosis, and Treatment Selection. Cancers (Basel) 2022; 14:cancers14030606. [PMID: 35158874 PMCID: PMC8833500 DOI: 10.3390/cancers14030606] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Multiple myeloma is a malignant neoplasm of plasma cells with complex pathogenesis. With major progresses in multiple myeloma research, it is essential that we reconsider our methods for diagnosing and monitoring multiple myeloma disease. This fact needs the integration of serology, histology, radiology, and genetic data; therefore, multiple myeloma study has generated massive quantities of granular high-dimensional data exceeding human understanding. With improved computational techniques, artificial intelligence tools for data processing and analysis are becoming more and more relevant. Artificial intelligence represents a wide set of algorithms for which machine learning and deep learning are presently among the most impactful. This review focuses on artificial intelligence applications in multiple myeloma research, first illustrating machine learning and deep learning procedures and workflow, followed by how these algorithms are used for multiple myeloma diagnosis, prognosis, bone lesions identification, and evaluation of response to the treatment. Abstract Artificial intelligence has recently modified the panorama of oncology investigation thanks to the use of machine learning algorithms and deep learning strategies. Machine learning is a branch of artificial intelligence that involves algorithms that analyse information, learn from that information, and then employ their discoveries to make abreast choice, while deep learning is a field of machine learning basically represented by algorithms inspired by the organization and function of the brain, named artificial neural networks. In this review, we examine the possibility of the artificial intelligence applications in multiple myeloma evaluation, and we report the most significant experimentations with respect to the machine and deep learning procedures in the relevant field. Multiple myeloma is one of the most common haematological malignancies in the world, and among them, it is one of the most difficult ones to cure due to the high occurrence of relapse and chemoresistance. Machine learning- and deep learning-based studies are expected to be among the future strategies to challenge this negative-prognosis tumour via the detection of new markers for their prompt discovery and therapy selection and by a better evaluation of its relapse and survival.
Collapse
|
9
|
Allegra A, Rizzo V, Innao V, Alibrandi A, Mazzeo A, Leanza R, Terranova C, Gentile L, Girlanda P, Allegra AG, Alonci A, Musolino C. Diagnostic utility of Sudoscan for detecting bortezomib-induced painful neuropathy: a study on 18 patients with multiple myeloma. Arch Med Sci 2022; 18:696-703. [PMID: 35591819 PMCID: PMC9102521 DOI: 10.5114/aoms/114269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 11/16/2019] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION In the past few years, treatment of multiple myeloma has undergone a deep change for the employment of novel treatment comprising proteasome inhibitors. Bortezomib is a first-line drug in therapy of multiple myeloma. The onset of peripheral neuropathy is a dose-limiting collateral effect of the drug. This neuropathy is a distal symmetric neuropathy that affects both large and small fibers. Nerve conduction study (NCS) can be used for the diagnosis of bortezomib neuropathy, but this technique demonstrates alterations of the large nerve fibers. Sudoscan is a novel technique utilized to offer an evaluation of sudomotor function. The main objective of this study was to compare the sensitivity and diagnostic specificity of Sudoscan with respect to the nerve conduction study after bortezomib treatment. MATERIAL AND METHODS A total of 18 multiple myeloma patients were studied, 10 (55.5%) men and 8 (44.5%) women. Patients were analyzed at baseline and after 6 months of treatment with bortezomib. Subjects were submitted to nerve conduction study and electrochemical skin conductance evaluation with the Sudoscan device. Patients were also submitted to a clinical measure of pain and neuropathy. RESULTS At baseline NCS showed that only the mean sural SAP amplitude was below the 2SD lower limit of normal in 3 (16.7%) patients, while at same time we found an alteration of Sudoscan profiles in 2 (11.1%) patients. After 6 months of treatment, the NCS profiles were altered in 13 (72.2%) patients, and the Sudoscan profiles were modified in 11 (61.1%) subjects. CONCLUSIONS Our results suggest that Sudoscan can be considered for the diagnosis of bortezomib-induced neuropathy. It is objective, reproducible, and surely easier than the traditional nerve conduction study. Sudoscan may be a useful help to manage the therapeutic interventions in multiple myeloma.
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Messina, Italy
| | - Vincenzo Rizzo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Vanessa Innao
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Messina, Italy
| | - Angela Alibrandi
- Department of Economics, Unit of Statistical and Mathematical Sciences, University of Messina, Messina, Italy
| | - Anna Mazzeo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Rossana Leanza
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Messina, Italy
| | - Carmen Terranova
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Luca Gentile
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Paolo Girlanda
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Andrea Gaetano Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Messina, Italy
| | - Andrea Alonci
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Messina, Italy
| | - Caterina Musolino
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Messina, Italy
| |
Collapse
|
10
|
Allegra A, Di Gioacchino M, Tonacci A, Petrarca C, Musolino C, Gangemi S. Multiple Myeloma Cell-Derived Exosomes: Implications on Tumorigenesis, Diagnosis, Prognosis and Therapeutic Strategies. Cells 2021; 10:2865. [PMID: 34831088 PMCID: PMC8616233 DOI: 10.3390/cells10112865] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 12/16/2022] Open
Abstract
Multiple myeloma (MM) is a hematological disease that is still not curable. The bone marrow milieu, with cellular and non-cellular elements, participate in the creation of a pro-tumoral environment enhancing growth and survival of MM plasma cells. Exosomes are vesicles oscillating in dimension between 50 nm and 100 nm in size that can be released by various cells and contribute to the pathogenesis and progression of MM. Exosomes enclose proteins, cytokines, lipids, microRNAs, long noncoding RNAs, and circular RNAs able to regulate interactions between MM plasma cells and adjacent cells. Through exosomes, mesenchymal stem cells confer chemoresistance to MM cells, while myeloma cells promote angiogenesis, influence immune response, cause bone lesions, and have an impact on the outcome of MM patients. In this review, we analyze the role played by exosomes in the progression of monoclonal gammopathies and the effects on the proliferation of neoplastic plasma cells, and discuss the possible employment of exosomes as potential targets for the treatment of MM patients.
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy;
| | - Mario Di Gioacchino
- Center for Advanced Studies and Technology, G. D’Annunzio University, 66100 Chieti, Italy;
- Institute for Clinical Immunotherapy and Advanced Biological Treatments, 65100 Pescara, Italy
| | - Alessandro Tonacci
- National Research Council of Italy (IFC-CNR), Clinical Physiology Institute, 56124 Pisa, Italy;
| | - Claudia Petrarca
- Center for Advanced Studies and Technology, G. D’Annunzio University, 66100 Chieti, Italy;
- Institute for Clinical Immunotherapy and Advanced Biological Treatments, 65100 Pescara, Italy
- National Research Council of Italy (IFC-CNR), Clinical Physiology Institute, 56124 Pisa, Italy;
- Department of Medicine and Science of Ageing, G. D’Annunzio University, 66100 Chieti, Italy
| | - Caterina Musolino
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy;
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, Unit and School of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy;
| |
Collapse
|
11
|
Nanomedicine for Immunotherapy Targeting Hematological Malignancies: Current Approaches and Perspective. NANOMATERIALS 2021; 11:nano11112792. [PMID: 34835555 PMCID: PMC8619332 DOI: 10.3390/nano11112792] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/04/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022]
Abstract
Conventional chemotherapy has partial therapeutic effects against hematological malignancies and is correlated with serious side effects and great risk of relapse. Recently, immunotherapeutic drugs have provided encouraging results in the treatment of hematological malignancies. Several immunotherapeutic antibodies and cell therapeutics are in dynamic development such as immune checkpoint blockades and CAR-T treatment. However, numerous problems restrain the therapeutic effectiveness of tumor immunotherapy as an insufficient anti-tumor immune response, the interference of an immune-suppressive bone marrow, or tumoral milieu with the discharge of immunosuppressive components, access of myeloid-derived suppressor cells, monocyte intrusion, macrophage modifications, all factors facilitating the tumor to escape the anti-cancer immune response, finally reducing the efficiency of the immunotherapy. Nanotechnology can be employed to overcome each of these aspects, therefore having the possibility to successfully produce anti-cancer immune responses. Here, we review recent findings on the use of biomaterial-based nanoparticles in hematological malignancies immunotherapy. In the future, a deeper understanding of tumor immunology and of the implications of nanomedicine will allow nanoparticles to revolutionize tumor immunotherapy, and nanomedicine approaches will reveal their great potential for clinical translation.
Collapse
|
12
|
Allegra A, Sant'Antonio E, Musolino C, Ettari R. New insights into neuropeptides regulation of immune system and hemopoiesis: effects on hematologic malignancies. Curr Med Chem 2021; 29:2412-2437. [PMID: 34521320 DOI: 10.2174/0929867328666210914120228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/29/2021] [Accepted: 08/04/2021] [Indexed: 11/22/2022]
Abstract
Several neurotransmitters and neuropeptides were reported to join to or to cooperate with different cells of the immune system, bone marrow, and peripheral cells and numerous data support that neuroactive molecules might control immune system activity and hemopoiesis operating on lymphoid organs, and the primary hematopoietic unit, the hematopoietic niche. Furthermore, many compounds seem to be able to take part to the leukemogenesis and lymphomagenesis process, and in the onset of multiple myeloma. In this review, we will assess the possibility that neurotransmitters and neuropeptides may have a role in the onset of haematological neoplasms, may affect the response to treatment or may represent a useful starting point for a new therapeutic approach. More in vivo investigations are needed to evaluate neuropeptide's role in haematological malignancies and the possible utilization as an antitumor therapeutic target. Comprehending the effect of the pharmacological administration of neuropeptide modulators on hematologic malignancies opens up new possibilities in curing clonal hematologic diseases to achieve more satisfactory outcomes.
Collapse
Affiliation(s)
- Alessandro Allegra
- Department of Human Pathology in Adulthood and Childhood, University of Messina. Italy
| | | | - Caterina Musolino
- Department of Human Pathology in Adulthood and Childhood, University of Messina. Italy
| | - Roberta Ettari
- Department of Chemical, Biological, Pharmaceutical and Environmental Chemistry, University of Messina. Italy
| |
Collapse
|
13
|
Murdaca G, Allegra A, Paladin F, Calapai F, Musolino C, Gangemi S. Involvement of Alarmins in the Pathogenesis and Progression of Multiple Myeloma. Int J Mol Sci 2021; 22:9039. [PMID: 34445745 PMCID: PMC8396675 DOI: 10.3390/ijms22169039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVE Multiple Myeloma (MM) is a haematological disease resulting from the neoplastic transformation of plasma cells. The uncontrolled growth of plasma cells in the bone marrow and the delivery of several cytokines causes bone erosion that often does not regress, even in the event of disease remission. MM is characterised by a multi-step evolutionary path, which starts with an early asymptomatic stage defined as monoclonal gammopathy of undetermined significance (MGUS) evolving to overt disease. DATA SOURCES AND STUDY SELECTION We have selected scientific publications on the specific topics "alarmis, MGUS, and MM", drawing from PubMed. The keywords we used were alarmines, MGUS, MM, and immune system. RESULTS The analysis confirms the pivotal role of molecules such as high-mobility group box-1, heat shock proteins, and S100 proteins in the induction of neoangiogenesis, which represents a milestone in the negative evolution of MM as well as other haematological and non-haematological tumours. CONCLUSIONS Modulation of the host immune system and the inhibition of neoangiogenesis may represent the therapeutic target for the treatment of MM that is capable of promoting better survival and reducing the risk of RRMM.
Collapse
Affiliation(s)
- Giuseppe Murdaca
- Department of Internal Medicine, University of Genoa, Ospedale Policlinico San Martino IRCCS, 20132 Genoa, Italy;
| | - Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (A.A.); (C.M.)
| | - Francesca Paladin
- Department of Internal Medicine, University of Genoa, Ospedale Policlinico San Martino IRCCS, 20132 Genoa, Italy;
| | - Fabrizio Calapai
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy;
| | - Caterina Musolino
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (A.A.); (C.M.)
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy;
| |
Collapse
|
14
|
Allegra A, Imbesi C, Bitto A, Ettari R. Drug Repositioning for the Treatment of Hematologic Disease: Limits, Challenges and Future Perspectives. Curr Med Chem 2021; 28:2195-2217. [PMID: 33138750 DOI: 10.2174/0929867327999200817102154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 11/22/2022]
Abstract
Drug repositioning is a strategy to identify new uses for approved or investigational drugs that are used off-label outside the scope of the original medical indication. In this review, we report the most relevant studies about drug repositioning in hematology, reporting the signalling pathways and molecular targets of these drugs, and describing the biological mechanisms which are responsible for their anticancer effects. Although the majority of studies on drug repositioning in hematology concern acute myeloid leukemia and multiple myeloma, numerous studies are present in the literature on the possibility of using these drugs also in other hematological diseases, such as acute lymphoblastic leukemia, chronic myeloid leukemia, and lymphomas. Numerous anti-infectious drugs and chemical entities used for the therapy of neurological or endocrine diseases, oral antidiabetics, statins and medications used to treat high blood pressure and heart failure, bisphosphonate and natural substance such as artemisin and curcumin, have found a place in the treatment of hematological diseases. Moreover, several molecules drastically reversed the resistance of the tumor cells to the chemotherapeutic drugs both in vitro and in vivo.
Collapse
Affiliation(s)
- Alessandro Allegra
- Department of Human Pathology in Adulthood and Childhood, University of Messina, Messina, Italy
| | - Chiara Imbesi
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Alessandra Bitto
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Roberta Ettari
- Department of Chemical, Biological, Pharmaceutical and Environmental Chemistry, University of Messina, Messina, Italy
| |
Collapse
|
15
|
New Insights into YES-Associated Protein Signaling Pathways in Hematological Malignancies: Diagnostic and Therapeutic Challenges. Cancers (Basel) 2021; 13:cancers13081981. [PMID: 33924049 PMCID: PMC8073623 DOI: 10.3390/cancers13081981] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/03/2021] [Accepted: 04/16/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary YES-associated protein (YAP) is a co-transcriptional activator that binds to transcriptional factors to increase the rate of transcription of a set of genes, and it can intervene in the onset and progression of different tumors. Most of the data in the literature refer to the effects of the YAP system in solid neoplasms. In this review, we analyze the possibility that YAP can also intervene in hematological neoplasms such as lymphomas, multiple myeloma, and acute and chronic leukemias, modifying the phenomena of cell proliferation and cell death. The possibilities of pharmacological intervention related to the YAP system in an attempt to use its modulation therapeutically are also discussed. Abstract The Hippo/YES-associated protein (YAP) signaling pathway is a cell survival and proliferation-control system with its main activity that of regulating cell growth and organ volume. YAP operates as a transcriptional coactivator in regulating the onset, progression, and treatment response in numerous human tumors. Moreover, there is evidence suggesting the involvement of YAP in the control of the hematopoietic system, in physiological conditions rather than in hematological diseases. Nevertheless, several reports have proposed that the effects of YAP in tumor cells are cell-dependent and cell-type-determined, even if YAP usually interrelates with extracellular signaling to stimulate the onset and progression of tumors. In the present review, we report the most recent findings in the literature on the relationship between the YAP system and hematological neoplasms. Moreover, we evaluate the possible therapeutic use of the modulation of the YAP system in the treatment of malignancies. Given the effects of the YAP system in immunosurveillance, tumorigenesis, and chemoresistance, further studies on interactions between the YAP system and hematological malignancies will offer very relevant information for the targeting of these diseases employing YAP modifiers alone or in combination with chemotherapy drugs.
Collapse
|
16
|
Potential Role of microRNAs in inducing Drug Resistance in Patients with Multiple Myeloma. Cells 2021; 10:cells10020448. [PMID: 33672466 PMCID: PMC7923438 DOI: 10.3390/cells10020448] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/08/2021] [Accepted: 02/17/2021] [Indexed: 02/06/2023] Open
Abstract
The prognosis for newly diagnosed subjects with multiple myeloma (MM) has significantly progressed in recent years. However, most MM patients relapse and after several salvage therapies, the onset of multidrug resistance provokes the occurrence of a refractory disease. A continuous and bidirectional exchange of information takes place between the cells of the microenvironment and neoplastic cells to solicit the demands of cancer cells. Among the molecules serving as messengers, there are microRNAs (miRNA), a family of small noncoding RNAs that regulate gene expression. Numerous miRNAs are associated with drug resistance, also in MM, and the modulation of their expression or activity might be explored to reverse it. In this review we report the most recent studies concerning the relationship between miRNAs and chemoresistance to the most frequently used drugs, such as proteasome inhibitors, steroids, alkylating agents and immunomodulators. The experimental use of antagomirs or miRNA mimics have successfully been proven to counteract chemoresistance and display synergistic effects with antimyeloma drugs which could represent a fundamental moment to overcome resistance in MM treatment.
Collapse
|
17
|
Oncolytic Viruses and Hematological Malignancies: A New Class of Immunotherapy Drugs. ACTA ACUST UNITED AC 2020; 28:159-183. [PMID: 33704184 PMCID: PMC7816176 DOI: 10.3390/curroncol28010019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023]
Abstract
The use of viruses for tumour treatment has been imagined more than one hundred years ago, when it was reported that viral diseases were occasionally leading to a decrease in neoplastic lesions. Oncolytic viruses (OVs) seem to have a specific tropism for tumour cells. Previously, it was hypothesised that OVs’ antineoplastic actions were mainly due to their ability to contaminate, proliferate and destroy tumour cells and the immediate destructive effect on cells was believed to be the single mechanism of action of OVs’ action. Instead, it has been established that oncolytic viruses operate via a multiplicity of systems, including mutation of tumour milieu and a composite change of the activity of immune effectors. Oncolytic viruses redesign the tumour environment towards an antitumour milieu. The aim of our work is to evaluate the findings present in the literature about the use of OVs in the cure of haematological neoplastic pathologies such as multiple myeloma, acute and chronic myeloid leukaemia, and lymphoproliferative diseases. Further experimentations are essential to recognize the most efficient virus or treatment combinations for specific haematological diseases, and the combinations able to induce the strongest immune response.
Collapse
|
18
|
Caserta S, Innao V, Musolino C, Allegra A. Immune checkpoint inhibitors in multiple myeloma: A review of the literature. Pathol Res Pract 2020; 216:153114. [PMID: 32853951 DOI: 10.1016/j.prp.2020.153114] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022]
Abstract
The human immune system has structures called checkpoints controlling the intensity and the duration of immune responses. In the last years, studies and research have been concentrating on creating new drugs recognized as Immune Checkpoint Inhibitors that have been launched in clinical practice to treat patients with several types of cancer, including multiple myeloma. Multiple myeloma is characterized by dysfunctions in humoral and cellular immunity altering immune surveillance and support tumor advancement to escape: in particular, the disease causes the inactivation of T-cells because of their bond with antigens shown in cancer cells. It can be stated that checkpoint inhibitors "inhibit the inhibition" of cell-mediated immunity and induce tumor cells apoptosis. In this review we have focused our attention on summarizing current information about Immune Checkpoint Inhibitors which have been developed in the last years to treat multiple myeloma; particular consideration will be dedicated to describing their mechanism of action and their potential use in therapy. Further investigations are necessary in this field to define the possibility of an effective and safe inclusion of these drugs in clinical practice.
Collapse
Affiliation(s)
- Santino Caserta
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, Via Consolare Valeria 98125 Messina, Italy.
| | - Vanessa Innao
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, Via Consolare Valeria 98125 Messina, Italy.
| | - Caterina Musolino
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, Via Consolare Valeria 98125 Messina, Italy.
| | - Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, Via Consolare Valeria 98125 Messina, Italy.
| |
Collapse
|
19
|
Altered Long Noncoding RNA Expression Profile in Multiple Myeloma Patients with Bisphosphonate-Induced Osteonecrosis of the Jaw. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9879876. [PMID: 32714991 PMCID: PMC7354644 DOI: 10.1155/2020/9879876] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/07/2020] [Accepted: 06/13/2020] [Indexed: 02/07/2023]
Abstract
Bisphosphonates (BPs) are inhibitors of osteoclast-mediated bone resorption used for the treatment of multiple myeloma (MM) patients with osteolytic lesions. Bisphosphonate-induced osteonecrosis of the jaw (BONJ) is an infrequent drug-caused adverse event of these agents. Long noncoding RNAs (lncRNAs) are a set of more than 200 base pairs, noncoding RNA molecules, which are critical posttranscriptional regulators of gene expression. Our study was aimed at evaluating 17 lncRNAs, whose targets were previously validated as key elements in MM, bone metabolism, and angiogenesis in MM subjects without BONJ (MM group), in MM subjects with BONJ (BONJ group), and a group of healthy controls (CTRL group). Our results demonstrated a different lncRNA profile in BONJ patients compared to MM patients and controls. Two lncRNAs (DANCR and MALAT1) were both downregulated compared to controls and MM, twelve (HOTAIR, MEG3, TP73-AS1, HOTTIP, HIF1A-AS2, MANTIS, CTD-2201E18, CTD1-2003C8, R-471B22, RP1-43E13, RP11-553L6.5, and RP1-286D6) were overexpressed in MM with BONJ, and one (H19) was upregulated compared with only MM. Two lncRNAs (JHDMD1 and MTMR9LP) had higher expression, but these differences were not statistically significant. The examined lncRNAs target several genes and metabolic pathways. An altered lncRNA signature could contribute to the onset of BONJ or have a protective action. Targeting these lncRNAs could offer a possibility for the prevention or therapy of BONJ.
Collapse
|
20
|
Allegra A, Innao V, Allegra AG, Leanza R, Musolino C. Selective Inhibitors of Nuclear Export in the Treatment of Hematologic Malignancies. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2019; 19:689-698. [PMID: 31543372 DOI: 10.1016/j.clml.2019.08.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/08/2019] [Accepted: 08/22/2019] [Indexed: 02/07/2023]
Abstract
The correct localization of molecules between nucleus and cytoplasm is fundamental for cellular homeostasis and is controlled by a bidirectional transport system. Exportin 1 (XPO1) regulates the passage of numerous cancer-related proteins. In this review, we summarize the development of a novel class of antitumor agents, known as selective inhibitors of nuclear export (SINEs). We report results of preclinical studies and clinical trials, and discuss the mechanism of action of SINEs and their effects in multiple myeloma, non-Hodgkin lymphomas, lymphoblastic leukemia, and acute and chronic myeloid leukemia. In the future, the numerous experimental studies currently underway will allow us to define the role of SINEs and will possibly permit these substances to be introduced into daily clinical practice.
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi," University of Messina, Messina, Italy.
| | - Vanessa Innao
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi," University of Messina, Messina, Italy
| | - Andrea Gaetano Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi," University of Messina, Messina, Italy
| | - Rossana Leanza
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi," University of Messina, Messina, Italy
| | - Caterina Musolino
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi," University of Messina, Messina, Italy
| |
Collapse
|
21
|
Otto PI, Guimarães SEF, Verardo LL, Azevedo ALS, Vandenplas J, Sevillano CA, Marques DBD, Pires MDFA, de Freitas C, Verneque RS, Martins MF, Panetto JCC, Carvalho WA, Gobo DOR, da Silva MVGB, Machado MA. Genome-wide association studies for heat stress response in Bos taurus × Bos indicus crossbred cattle. J Dairy Sci 2019; 102:8148-8158. [PMID: 31279558 DOI: 10.3168/jds.2018-15305] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 05/05/2019] [Indexed: 12/13/2022]
Abstract
Heat stress is an important issue in the global dairy industry. In tropical areas, an alternative to overcome heat stress is the use of crossbred animals or synthetic breeds, such as the Girolando. In this study, we performed a genome-wide association study (GWAS) and post-GWAS analyses for heat stress in an experimental Gir × Holstein F2 population. Rectal temperature (RT) was measured in heat-stressed F2 animals, and the variation between 2 consecutive RT measurements (ΔRT) was used as the dependent variable. Illumina BovineSNP50v1 BeadChip (Illumina Inc., San Diego, CA) and single-SNP approach were used for GWAS. Post-GWAS analyses were performed by gene ontology terms enrichment and gene-transcription factor (TF) networks, generated from enriched TF. The breed origin of marker alleles in the F2 population was assigned using the breed of origin of alleles (BOA) approach. Heritability and repeatability estimates (± standard error) for ΔRT were 0.13 ± 0.08 and 0.29 ± 0.06, respectively. Association analysis revealed 6 SNP significantly associated with ΔRT. Genes involved with biological processes in response to heat stress effects (LIF, OSM, TXNRD2, and DGCR8) were identified as putative candidate genes. After performing the BOA approach, the 10% of F2 animals with the lowest breeding values for ΔRT were classified as low-ΔRT, and the 10% with the highest breeding values for ΔRT were classified as high-ΔRT. On average, 49.4% of low-ΔRT animals had 2 alleles from the Holstein breed (HH), and 39% had both alleles from the Gir breed (GG). In high-ΔRT animals, the average proportion of animals for HH and GG were 1.4 and 50.2%, respectively. This study allowed the identification of candidate genes for ΔRT in Gir × Holstein crossbred animals. According to the BOA approach, Holstein breed alleles could be associated with better response to heat stress effects, which could be explained by the fact that Holstein animals are more affected by heat stress than Gir animals and thus require a genetic architecture to defend the body from the deleterious effects of heat stress. Future studies can provide further knowledge to uncover the genetic architecture underlying heat stress in crossbred cattle.
Collapse
Affiliation(s)
- Pamela I Otto
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil
| | - Simone E F Guimarães
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil
| | - Lucas L Verardo
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil
| | | | - Jeremie Vandenplas
- Wageningen University and Research Animal Breeding and Genomics, Wageningen 6700, the Netherlands
| | - Claudia A Sevillano
- Wageningen University and Research Animal Breeding and Genomics, Wageningen 6700, the Netherlands; Topigs Norsvin Research Center, Beuningen 6640, the Netherlands
| | - Daniele B D Marques
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil
| | | | - Célio de Freitas
- Embrapa Dairy Cattle Research Center, Juiz de Fora 36038-330, Brazil
| | - Rui S Verneque
- Embrapa Dairy Cattle Research Center, Juiz de Fora 36038-330, Brazil
| | | | | | | | - Diego O R Gobo
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil
| | | | - Marco A Machado
- Embrapa Dairy Cattle Research Center, Juiz de Fora 36038-330, Brazil.
| |
Collapse
|
22
|
Allegra A, Innao V, Allegra AG, Pugliese M, Di Salvo E, Ventura-Spagnolo E, Musolino C, Gangemi S. Lymphocyte Subsets and Inflammatory Cytokines of Monoclonal Gammopathy of Undetermined Significance and Multiple Myeloma. Int J Mol Sci 2019; 20:ijms20112822. [PMID: 31185596 PMCID: PMC6600674 DOI: 10.3390/ijms20112822] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/29/2019] [Accepted: 06/08/2019] [Indexed: 01/10/2023] Open
Abstract
Almost all multiple myeloma (MM) cases have been demonstrated to be linked to earlier monoclonal gammopathy of undetermined significance (MGUS). Nevertheless, there are no identified characteristics in the diagnosis of MGUS that have been helpful in differentiating subjects whose cancer may progress to a malignant situation. Regarding malignancy, the role of lymphocyte subsets and cytokines at the beginning of neoplastic diseases is now incontestable. In this review, we have concentrated our attention on the equilibrium between the diverse lymphocyte subsets and the cytokine system and summarized the current state of knowledge, providing an overview of the condition of the entire system in MGUS and MM. In an age where the therapy of neoplastic monoclonal gammopathies largely relies on drugs capable of acting on the immune system (immunomodulants, immunological checkpoint inhibitors, CAR-T), detailed knowledge of the the differences existing in benign and neoplastic forms of gammopathy is the main foundation for the adequate and optimal use of new drugs.
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, 98125 Messina, Italy.
| | - Vanessa Innao
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, 98125 Messina, Italy.
| | - Andrea Gaetano Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, 98125 Messina, Italy.
| | - Marta Pugliese
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, 98125 Messina, Italy.
| | - Eleonora Di Salvo
- National Research Council of Italy (CNR)-Institute of Applied Science and Intelligent System (ISASI), 98164 Messina, Italy.
| | - Elvira Ventura-Spagnolo
- Legal Medicine Section, Department for Health Promotion and Mother-Child Care, University of Palermo, 90127 Palermo, Italy.
| | - Caterina Musolino
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, 98125 Messina, Italy.
| | - Sebastiano Gangemi
- School and Division of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University Hospital "G. Martino", Via Consolare Valeria SNC, 98125 Messina, Italy.
| |
Collapse
|
23
|
Therapeutic Modulation of Autophagy in Leukaemia and Lymphoma. Cells 2019; 8:cells8020103. [PMID: 30704144 PMCID: PMC6406467 DOI: 10.3390/cells8020103] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/26/2019] [Accepted: 01/28/2019] [Indexed: 02/07/2023] Open
Abstract
Haematopoiesis is a tightly orchestrated process where a pool of hematopoietic stem and progenitor cells (HSPCs) with high self-renewal potential can give rise to both lymphoid and myeloid lineages. The HSPCs pool is reduced with ageing resulting in few HSPC clones maintaining haematopoiesis thereby reducing blood cell diversity, a phenomenon called clonal haematopoiesis. Clonal expansion of HSPCs carrying specific genetic mutations leads to increased risk for haematological malignancies. Therefore, it comes as no surprise that hematopoietic tumours develop in higher frequency in elderly people. Unfortunately, elderly patients with leukaemia or lymphoma still have an unsatisfactory prognosis compared to younger ones highlighting the need to develop more efficient therapies for this group of patients. Growing evidence indicates that macroautophagy (hereafter referred to as autophagy) is essential for health and longevity. This review is focusing on the role of autophagy in normal haematopoiesis as well as in leukaemia and lymphoma development. Attenuated autophagy may support early hematopoietic neoplasia whereas activation of autophagy in later stages of tumour development and in response to a variety of therapies rather triggers a pro-tumoral response. Novel insights into the role of autophagy in haematopoiesis will be discussed in light of designing new autophagy modulating therapies in hematopoietic cancers.
Collapse
|
24
|
Inflammatory and Anti-Inflammatory Equilibrium, Proliferative and Antiproliferative Balance: The Role of Cytokines in Multiple Myeloma. Mediators Inflamm 2017; 2017:1852517. [PMID: 29089667 PMCID: PMC5635476 DOI: 10.1155/2017/1852517] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/11/2017] [Indexed: 12/23/2022] Open
Abstract
Multiple myeloma (MM) is typically exemplified by a desynchronized cytokine system with increased levels of inflammatory cytokines. We focused on the contrast between inflammatory and anti-inflammatory systems by assessing the role of cytokines and their influence on MM. The aim of this review is to summarize the available information to date concerning this equilibrium to provide an overview of the research exploring the roles of serum cytokines in MM. However, the association between MM and inflammatory cytokines appears to be inadequate, and other functions, such as pro-proliferative or antiproliferative effects, can assume the role of cytokines in the genesis and progression of MM. It is possible that inflammation, when guided by cancer-specific Th1 cells, may inhibit tumour onset and progression. In a Th1 microenvironment, proinflammatory cytokines (e.g., IL-6 and IL-1) may contribute to tumour eradication by attracting leucocytes from the circulation and by increasing CD4 + T cell activity. Hence, caution should be used when considering therapies that target factors with pro- or anti-inflammatory activity. Drugs that may reduce the tumour-suppressive Th1-driven inflammatory immune response should be avoided. A better understanding of the relationship between inflammation and myeloma will ensure more effective therapeutic interventions.
Collapse
|
25
|
Ettari R, Zappalà M, Grasso S, Musolino C, Innao V, Allegra A. Immunoproteasome-selective and non-selective inhibitors: A promising approach for the treatment of multiple myeloma. Pharmacol Ther 2017; 182:176-192. [PMID: 28911826 DOI: 10.1016/j.pharmthera.2017.09.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The ubiquitin-proteasome system (UPS) is the major non-lysosomal proteolytic system for the degradation of abnormal or damaged proteins no longer required. The proteasome is involved in degradation of numerous proteins which regulate the cell cycle, indicating a role in controlling cell proliferation and maintaining cell survival. Defects in the UPS can lead to anarchic cell proliferation and to tumor development. For these reasons UPS inhibition has become a significant new strategy for drug development in cancer treatment. In addition to the constitutive proteasome, which is expressed in all cells and tissues, higher organisms such as vertebrates possess two immune-type proteasomes, the thymoproteasome and the immunoproteasome. The thymoproteasome is specifically expressed by thymic cortical epithelial cells and has a role in positive selection of CD8+ T cells, whereas the immunoproteasome is predominantly expressed in monocytes and lymphocytes and is responsible for the generation of antigenic peptides for cell-mediated immunity. Recent studies demonstrated that the immunoproteasome has a preservative role during oxidative stress and is up-regulated in a number of pathological disorders including cancer, inflammatory and autoimmune diseases. As a consequence, immunoproteasome-selective inhibitors are currently the focus of anticancer drug design. At present, the commercially available proteasome inhibitors bortezomib and carfilzomib which have been validated in multiple myeloma and other model systems, appear to target both the constitutive and immunoproteasomes, indiscriminately. This lack of specificity may, in part, explain some of the side effects of these agents, such as peripheral neuropathy and gastrointestinal effects, which may be due to targeting of the constitutive proteasome in these tissues. In contrast, by selectively inhibiting the immunoproteasome, it may be possible to maintain the antimyeloma and antilymphoma efficacy while reducing these toxicities, thereby increasing the therapeutic index. This review article will be focused on the discussion of the most promising immunoproteasome specific inhibitors which have been developed in recent years. Particular attention will be devoted to the description of their mechanism of action, their structure-activity relationship, and their potential application in therapy.
Collapse
Affiliation(s)
- Roberta Ettari
- Dipartimento di Scienze del Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università degli Studi di Messina, Viale Annunziata, 98168 Messina, Italy
| | - Maria Zappalà
- Dipartimento di Scienze del Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università degli Studi di Messina, Viale Annunziata, 98168 Messina, Italy
| | - Silvana Grasso
- Dipartimento di Scienze del Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università degli Studi di Messina, Viale Annunziata, 98168 Messina, Italy
| | - Caterina Musolino
- Division of Hematology, Department of Patologia Umana dell'Adulto e dell'Età Evolutiva, University of Messina, Via Consolare Valeria, 90100 Messina, Italy
| | - Vanessa Innao
- Division of Hematology, Department of Patologia Umana dell'Adulto e dell'Età Evolutiva, University of Messina, Via Consolare Valeria, 90100 Messina, Italy
| | - Alessandro Allegra
- Division of Hematology, Department of Patologia Umana dell'Adulto e dell'Età Evolutiva, University of Messina, Via Consolare Valeria, 90100 Messina, Italy.
| |
Collapse
|
26
|
Caruso Bavisotto C, Cappello F, Macario AJL, Conway de Macario E, Logozzi M, Fais S, Campanella C. Exosomal HSP60: a potentially useful biomarker for diagnosis, assessing prognosis, and monitoring response to treatment. Expert Rev Mol Diagn 2017; 17:815-822. [PMID: 28718351 DOI: 10.1080/14737159.2017.1356230] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Cell-to-cell communication is imperative for life and it is mediated by sending and receiving information via the secretion and subsequent receptor-mediated detection of biological molecules. Exosomes (EXs) secreted from cells to the extracellular environment play an important role in intercellular communication in normal and pathological conditions. Areas covered: New evidence indicates that tumor cells-derived EXs contribute to cancer progression through the modulation of tumor microenvironment. The exosomal heat shock protein 60 (HSP60) is very likely a key player in intercellular cross-talk, particularly during the progress of diseases, such as cancer. Many studies have focused on the extracellular roles played by HSP60 that pertain to cancer development and immune system stimulation. Our experimental data in vitro and in vivo demonstrated that HSP60 occurs on the surface of EXs secreted by tumour cells. Expert commentary: Exosomal HSP60 has great potential for clinical applications, as a 'liquid biopsy', including its use as biomarker for diagnostics, assessing prognosis, and monitoring disease progression and response to treatment, particularly in cancer.
Collapse
Affiliation(s)
- Celeste Caruso Bavisotto
- a Department of Experimental Biomedicine and Clinical Neurosciences, Section of Human Anatomy , University of Palermo , Palermo , Italy.,b Euro-Mediterranean Institute of Science and Technology (IEMEST) , Palermo , Italy
| | - Francesco Cappello
- a Department of Experimental Biomedicine and Clinical Neurosciences, Section of Human Anatomy , University of Palermo , Palermo , Italy.,b Euro-Mediterranean Institute of Science and Technology (IEMEST) , Palermo , Italy
| | - Alberto J L Macario
- b Euro-Mediterranean Institute of Science and Technology (IEMEST) , Palermo , Italy.,c Department of Microbiology and Immunology, School of Medicine , University of Maryland at Baltimore; and IMET , Baltimore , MD , USA
| | - Everly Conway de Macario
- b Euro-Mediterranean Institute of Science and Technology (IEMEST) , Palermo , Italy.,c Department of Microbiology and Immunology, School of Medicine , University of Maryland at Baltimore; and IMET , Baltimore , MD , USA
| | - Mariantonia Logozzi
- d Department of Therapeutic Research and Medicines Evaluation , National Institute of Health , Rome , Italy
| | - Stefano Fais
- b Euro-Mediterranean Institute of Science and Technology (IEMEST) , Palermo , Italy.,d Department of Therapeutic Research and Medicines Evaluation , National Institute of Health , Rome , Italy
| | - Claudia Campanella
- a Department of Experimental Biomedicine and Clinical Neurosciences, Section of Human Anatomy , University of Palermo , Palermo , Italy
| |
Collapse
|
27
|
Innao V, Allegra A, Russo S, Gerace D, Vaddinelli D, Alonci A, Allegra AG, Musolino C. Standardisation of minimal residual disease in multiple myeloma. Eur J Cancer Care (Engl) 2017; 26. [PMID: 28671297 DOI: 10.1111/ecc.12732] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2017] [Indexed: 12/16/2022]
Abstract
The assessment of the effectiveness of chemotherapy in oncology cannot disregard the concept of minimal residual disease (MRD). In fact, the efforts of numerous scientific groups all over the world are currently focusing on this issue, with the sole purpose of defining sensitive, effective assessment criteria that are, above all, able to give acceptable, easily repeatable results worldwide. Regarding this issue, especially with the advent of new drugs, multiple myeloma is one of the haematologic malignancies for which a consensus has not yet been reached. In this review, we analyse various techniques that have been used to improve the sensitivity of response, aimed at reducing the cut-off values previously allowed, as well as serological values like serum-free light chain, or immunophenotypic tools on bone marrow or peripheral blood, like multi-parameter flow cytometry, or molecular ones such as allele-specific oligonucleotide (ASO)-qPCR and next-generation/high-throughput sequencing technologies (NGS). Moreover, our discussion makes a brief reference to promising techniques, such as mass spectrometry for identifying Ig light chain (LC) in peripheral blood, and the assessment of gene expression profile not only in defining prognostic risk at the diagnosis but also as a tool for evaluation of response.
Collapse
Affiliation(s)
- V Innao
- Division of Hematology, Dipartimento di Patologia Umana dell'Adulto e dell'Età Evolutiva, Policlinico G Martino, University of Messina, Messina, Italy
| | - A Allegra
- Division of Hematology, Dipartimento di Patologia Umana dell'Adulto e dell'Età Evolutiva, Policlinico G Martino, University of Messina, Messina, Italy
| | - S Russo
- Division of Hematology, Dipartimento di Patologia Umana dell'Adulto e dell'Età Evolutiva, Policlinico G Martino, University of Messina, Messina, Italy
| | - D Gerace
- Division of Hematology, Dipartimento di Patologia Umana dell'Adulto e dell'Età Evolutiva, Policlinico G Martino, University of Messina, Messina, Italy
| | - D Vaddinelli
- Division of Hematology, Dipartimento di Patologia Umana dell'Adulto e dell'Età Evolutiva, Policlinico G Martino, University of Messina, Messina, Italy
| | - A Alonci
- Division of Hematology, Dipartimento di Patologia Umana dell'Adulto e dell'Età Evolutiva, Policlinico G Martino, University of Messina, Messina, Italy
| | - A G Allegra
- Division of Hematology, Dipartimento di Patologia Umana dell'Adulto e dell'Età Evolutiva, Policlinico G Martino, University of Messina, Messina, Italy
| | - C Musolino
- Division of Hematology, Dipartimento di Patologia Umana dell'Adulto e dell'Età Evolutiva, Policlinico G Martino, University of Messina, Messina, Italy
| |
Collapse
|
28
|
Design, synthesis and biological evaluation of 7-(aryl)-2,3-dihydro-[1,4]dioxino[2,3- g ]quinoline derivatives as potential Hsp90 inhibitors and anticancer agents. Bioorg Med Chem 2017; 25:1294-1302. [DOI: 10.1016/j.bmc.2016.12.050] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 12/18/2016] [Accepted: 12/29/2016] [Indexed: 01/16/2023]
|
29
|
Vaccination of multiple myeloma: Current strategies and future prospects. Crit Rev Oncol Hematol 2015; 96:339-54. [PMID: 26123319 DOI: 10.1016/j.critrevonc.2015.06.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 05/06/2015] [Accepted: 06/09/2015] [Indexed: 01/21/2023] Open
Abstract
Tumor immunotherapy holds great promise in controlling multiple myeloma (MM) and may provide an alternative treatment modality to conventional chemotherapy for MM patients. For this reason, a major area of investigation is the development of cancer vaccines to generate myeloma-specific immunity. Several antigens that are able to induce specific T-cell responses are involved in different critical mechanisms for cell differentiation, inhibition of apoptosis, demethylation and proliferation. Strategies under development include infusion of vaccine-primed and ex vivo expanded/costimulated autologous T cells after high-dose melphalan, genetic engineering of autologous T cells with receptors for myeloma-specific epitopes, administration of dendritic cell/plasma cell fusions and administration expanded marrow-infiltrating lymphocytes. In addition, novel immunomodulatory drugs may synergize with immunotherapies. The task ahead is to evaluate these approaches in appropriate clinical settings, and to couple them with strategies to overcome mechanisms of immunoparesis as a means to induce more robust clinically significant immune responses.
Collapse
|
30
|
Abstract
Multiple myeloma (MM) is the second most common hematological malignancy and is characterized by the aberrant proliferation of terminally differentiated plasma B cells with impairment in apoptosis capacity. Particularly, osteolytic bone diseases and renal failure resulting from hyperparaproteinemia and hypercalcemia have been the major serious sequelae that are inextricably linked with MM tumor progression. Despite the introduction of new treatment regimens, problematic neuropathy, thrombocytopenia, drug resistance and high MM relapse rates continue to plague the current therapies. New chemical agents are in development on the basis of understanding several signaling pathways and molecular mechanisms like tumor necrosis factor-α, proteasome, PI3K and MARKs. This review focuses on the most recent patents and clinical trials in the development of new medicine for the treatment of multiple myeloma. Furthermore, the important signaling pathways involved in the proliferation, survival and apoptosis of myeloma cells will be discussed.
Collapse
|
31
|
Tomcik M, Zerr P, Pitkowski J, Palumbo-Zerr K, Avouac J, Distler O, Becvar R, Senolt L, Schett G, Distler JH. Heat shock protein 90 (Hsp90) inhibition targets canonical TGF-β signalling to prevent fibrosis. Ann Rheum Dis 2014; 73:1215-22. [PMID: 23661493 DOI: 10.1136/annrheumdis-2012-203095] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVES Targeted therapies for systemic sclerosis (SSc) and other fibrotic diseases are not yet available. We evaluated the efficacy of heat shock protein 90 (Hsp90) inhibition as a novel approach to inhibition of aberrant transforming growth factor (TGF)-β signalling and for the treatment of fibrosis in preclinical models of SSc. METHODS Expression of Hsp90 was quantified by quantitative PCR, western blot and immunohistochemistry. The effects of Hsp90 inhibition were analysed in cultured fibroblasts, in bleomycin-induced dermal fibrosis, in tight-skin (Tsk-1) mice and in mice overexpressing a constitutively active TGF-β receptor I (TβRI). RESULTS Expression of Hsp90β was increased in SSc skin and in murine models of SSc in a TGF-β-dependent manner. Inhibition of Hsp90 by 17-dimethylaminoethylamino-17-demethoxy-geldanamycin (17-DMAG) inhibited canonical TGF-β signalling and completely prevented the stimulatory effects of TGF-β on collagen synthesis and myofibroblast differentiation. Treatment with 17-DMAG decreased the activation of canonical TGF-β signalling in murine models of SSc and exerted potent antifibrotic effects in bleomycin-induced dermal fibrosis, in Tsk-1 mice and in mice overexpressing a constitutively active TβRI. Dermal thickness, number of myofibroblasts and hydroxyproline content were all significantly reduced on treatment with 17-DMAG. No toxic effects were observed with 17-DMAG at antifibrotic doses. CONCLUSIONS Hsp90 is upregulated in SSc and is critical for TGF-β signalling. Pharmacological inhibition of Hsp90 effectively blocks the profibrotic effects of TGF-β in cultured fibroblasts and in different preclinical models of SSc. These results have translational implications, as several Hsp90 inhibitors are in clinical trials for other indications.
Collapse
Affiliation(s)
- Michal Tomcik
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University of Erlangen-Nuremberg, , Erlangen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Quach H, Prince HM, Spencer A. Managing multiple myeloma in the elderly: are we making progress? Expert Rev Hematol 2014; 4:301-15. [DOI: 10.1586/ehm.11.18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
33
|
Tovar N, Fernández de Larrea C, Pedrosa F, Aróstegui JI, Cibeira MT, Rosiñol L, Elena M, Filella X, Yagüe J, Bladé J. Differential humoral responses against heat-shock proteins after autologous stem cell transplantation in multiple myeloma. Ann Hematol 2013; 93:107-11. [PMID: 24218189 DOI: 10.1007/s00277-013-1942-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 10/15/2013] [Indexed: 01/08/2023]
Abstract
Heat-shock proteins (HSP) are important molecules in the pathogenesis of multiple myeloma (MM). Their blockages by drugs or cellular immune response have been investigated, and a possible association with the presence of oligoclonal bands (OB) has been postulated in patients with MM after allogenic stem cell transplantation. The aim of the present study was to ascertain the serum antibody levels against three HSP (60, 70 and 90) by ELISA in patients with MM in complete remission after autologous stem cell transplantation (ASCT), with or without OB, and compare them with those patients with stable gammopathy of undetermined significance (MGUS) and healthy controls. Our results in samples after ASCT showed no differential levels of anti-HSP according to the presence or absence of the oligoclonal response. However, higher levels of anti-HSP90 were found in patients with stable MGUS in comparison with MM patients (p = 0.004). In the same line, a longer progression-free survival was observed in those patients who presented higher anti-HSP90 levels after ASCT (p = 0.042). These results suggest, for first time, the potential of anti-HSP90 humoral immune response for long-term control of malignant plasma cell disorders.
Collapse
Affiliation(s)
- Natalia Tovar
- Department of Hematology, Amyloidosis and Myeloma Unit, Hospital Clínic, Barcelona, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Roesch F, Meziane O, Kula A, Nisole S, Porrot F, Anderson I, Mammano F, Fassati A, Marcello A, Benkirane M, Schwartz O. Hyperthermia stimulates HIV-1 replication. PLoS Pathog 2012; 8:e1002792. [PMID: 22807676 PMCID: PMC3395604 DOI: 10.1371/journal.ppat.1002792] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 05/24/2012] [Indexed: 01/05/2023] Open
Abstract
HIV-infected individuals may experience fever episodes. Fever is an elevation of the body temperature accompanied by inflammation. It is usually beneficial for the host through enhancement of immunological defenses. In cultures, transient non-physiological heat shock (42–45°C) and Heat Shock Proteins (HSPs) modulate HIV-1 replication, through poorly defined mechanisms. The effect of physiological hyperthermia (38–40°C) on HIV-1 infection has not been extensively investigated. Here, we show that culturing primary CD4+ T lymphocytes and cell lines at a fever-like temperature (39.5°C) increased the efficiency of HIV-1 replication by 2 to 7 fold. Hyperthermia did not facilitate viral entry nor reverse transcription, but increased Tat transactivation of the LTR viral promoter. Hyperthermia also boosted HIV-1 reactivation in a model of latently-infected cells. By imaging HIV-1 transcription, we further show that Hsp90 co-localized with actively transcribing provirus, and this phenomenon was enhanced at 39.5°C. The Hsp90 inhibitor 17-AAG abrogated the increase of HIV-1 replication in hyperthermic cells. Altogether, our results indicate that fever may directly stimulate HIV-1 replication, in a process involving Hsp90 and facilitation of Tat-mediated LTR activity. Fever is a complex reaction triggered in response to pathogen infection. It induces diverse effects on the human body and especially on the immune system. The functions of immune cells are positively affected by fever, helping them to fight infection. Fever consists in a physiological elevation of temperature and in inflammation. While the role of inflammatory molecules on HIV-1 replication has been widely studied, little is known about the direct effect of temperature on viral replication. Here, we report that hyperthermia (39.5°C) boosts HIV-1 replication in CD4+ T cells. In single-cycle infection experiments, hyperthermia increased HIV-1 infection up to 7-fold. This effect was mediated in part by an increased activation of the HIV-1 promoter by the viral protein Tat. Our results also indicate that hyperthermia may help HIV-1 to reactivate from latency. We also show that the Heat Shock Protein Hsp90, which levels are increased at 39.5°C, mediates in a large part the positive effect of hyperthermia on HIV-1 infection. Our work suggests that in HIV-1-infected patients, fever episodes may facilitate viral replication.
Collapse
Affiliation(s)
- Ferdinand Roesch
- Institut Pasteur, Unité Virus et Immunité, Département de Virologie, Paris, France
- CNRS, URA3015, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
| | - Oussama Meziane
- Institut de Génétique Humaine, Laboratoire de Virologie Moléculaire, Montpellier, France
- CNRS, UPR1142, Montpellier, France
| | - Anna Kula
- Laboratory of Molecular Virology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Sébastien Nisole
- Institut Pasteur, Unité de Virologie Moléculaire et Vaccinologie, Paris, France
| | - Françoise Porrot
- Institut Pasteur, Unité Virus et Immunité, Département de Virologie, Paris, France
- CNRS, URA3015, Paris, France
| | - Ian Anderson
- Wohl Virion Centre, Division of Infection and Immunity, MRC Centre for Medical & Molecular Virology, University College London, London, United Kingdom
| | - Fabrizio Mammano
- INSERM U941, Hôpital Saint Louis, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, IUH, UMRS 941, Paris, France
| | - Ariberto Fassati
- Wohl Virion Centre, Division of Infection and Immunity, MRC Centre for Medical & Molecular Virology, University College London, London, United Kingdom
| | - Alessandro Marcello
- Laboratory of Molecular Virology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Monsef Benkirane
- Institut de Génétique Humaine, Laboratoire de Virologie Moléculaire, Montpellier, France
- CNRS, UPR1142, Montpellier, France
| | - Olivier Schwartz
- Institut Pasteur, Unité Virus et Immunité, Département de Virologie, Paris, France
- CNRS, URA3015, Paris, France
- * E-mail:
| |
Collapse
|
35
|
Madden LA, Hayman YA, Underwood C, Vince RV, Greenman J, Allsup D, Ali S. Increased inducible heat shock protein 72 expression associated with PBMC isolated from patients with haematological tumours. Scandinavian Journal of Clinical and Laboratory Investigation 2012; 72:380-6. [PMID: 22548611 DOI: 10.3109/00365513.2012.681683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Heat shock protein 72 (Hsp72) is a highly inducible stress protein and molecular chaperone. Cancers have been shown to be associated with increased Hsp72 expression within the tumour itself and this may lead to resistance to apoptosis. METHODS Peripheral blood mononuclear cells (PBMC) were isolated from patients diagnosed with chronic lymphocytic leukaemia (CLL) (n = 27) and chronic myelomonocytic leukaemia (CMML) (n = 16) and Hsp72 expression was characterized on both the cell surface and intracellularly by flow cytometry. To allow for comparison PBMC from breast cancer patients (n = 25) and healthy volunteers (n = 19) were included. RESULTS Both lymphocytes and monocytes from CLL and CMML patients showed high levels of total Hsp72 expression (4-6 fold increase) in comparison to breast cancer and healthy subjects. The majority of Hsp72 in these tumours was determined to be cell-surface expressed (64-93% of cell total Hsp72). CONCLUSIONS A correlation was observed between lymphocyte and monocyte total Hsp72 expression (p < 0.001) suggesting a common stress response pathway may exist in these blood cells and there are stress conditions present within the circulation. Hsp72 expression was not found to be related to white blood cell count.
Collapse
Affiliation(s)
- Leigh A Madden
- Postgraduate Medical Institute, University of Hull, Hull, UK.
| | | | | | | | | | | | | |
Collapse
|
36
|
Ambade A, Catalano D, Lim A, Mandrekar P. Inhibition of heat shock protein (molecular weight 90 kDa) attenuates proinflammatory cytokines and prevents lipopolysaccharide-induced liver injury in mice. Hepatology 2012; 55:1585-95. [PMID: 22105779 PMCID: PMC3342823 DOI: 10.1002/hep.24802] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 11/02/2011] [Indexed: 01/18/2023]
Abstract
UNLABELLED Endotoxin-mediated proinflammatory cytokines play a significant role in the pathogenesis of acute and chronic liver diseases. Heat shock protein 90 (molecular weight, 90 kDa) (hsp90) functions as an important chaperone of lipopolysaccharide (LPS) signaling and is required for the production of proinflammatory cytokines. We hypothesized that inhibition of hsp90 would prevent LPS-induced liver injury by decreasing proinflammatory cytokines. C57BL/6 mice were injected intraperitoneally with an hsp90 inhibitor, 17-dimethylamino-ethylamino-17-demethoxygeldanamycin (17-DMAG), and LPS. Parameters of liver injury, proinflammatory cytokines, and associated mechanisms were studied by in vivo and in vitro experiments. Inhibition of hsp90 by 17-DMAG prevented LPS-induced increases in serum alanine aminotransferase activity and significantly reduced serum tumor necrosis factor alpha (TNFα) and interleukin-6 (IL-6) protein as well as messenger RNA (mRNA) in liver. Enhanced DNA-binding activity of heat shock transcription factor 1 (HSF1) and induction of target gene heat shock protein 70 (molecular weight, 70 kDa) confirmed hsp90 inhibition in liver. 17-DMAG treatment decreased cluster of differentiation 14 mRNA and LPS-induced nuclear factor kappa light-chain enhancer of activated B cells (NFκB) DNA binding without affecting Toll-like receptor 4 mRNA in liver. Mechanistic studies revealed that 17-DMAG-mediated inhibition of TNFα showed no effect on LPS-induced NFκB promoter-driven reporter activity, but significantly decreased TNFα promoter-driven reporter activity. Chromatin immunoprecipitation assays showed that 17-DMAG enhanced HSF1 binding to the TNFα promoter, but not the IL-6 promoter, suggesting HSF1 mediated direct inhibition of TNFα, but not IL-6. We show that HSF1 indirectly regulates IL-6 by the induction of another transcription factor, activating transcription factor 3. Inhibition of HSF1, using small interfering RNA, prevented 17-DMAG-mediated down-regulation of NFκB-binding activity, TNFα, and IL-6 induction, supporting a repressive role for HSF1 on proinflammatory cytokine genes during hsp90 inhibition. CONCLUSION Hsp90 inhibition in vivo reduces proinflammatory cytokines and prevents LPS-induced liver injury likely through repressive action of HSF1. Our results suggest a novel application for 17-DMAG in alleviating LPS-induced liver injury.
Collapse
|
37
|
Ishii T, Seike T, Nakashima T, Juliger S, Maharaj L, Soga S, Akinaga S, Cavenagh J, Joel S, Shiotsu Y. Anti-tumor activity against multiple myeloma by combination of KW-2478, an Hsp90 inhibitor, with bortezomib. Blood Cancer J 2012; 2:e68. [PMID: 22829970 PMCID: PMC3346683 DOI: 10.1038/bcj.2012.13] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 03/16/2012] [Accepted: 03/23/2012] [Indexed: 11/09/2022] Open
Abstract
Heat shock protein 90 (Hsp90) is a promising target for anti-tumor therapy. We previously reported the anti-tumor activity of a novel Hsp90 inhibitor, KW-2478, in multiple myeloma (MM) as a single agent. In this study, we examined the combinational effect of KW-2478 and bortezomib, a proteasome inhibitor, in vitro and in vivo. In vitro, KW-2478 enhanced bortezomib-induced cell growth inhibition, both in MM cell lines and primary patient MM cells. The combination of KW-2478 and bortezomib also induced caspase activation in MM cell lines. Interestingly, the combination synergistically enhanced the expression of Hsp70B, a homolog of Hsp70, in human MM cells and peripheral blood mononuclear cells, indicating Hsp70B could be a surrogate biomarker for the combination of Hsp90 and proteasome inhibitors. In vivo, the combination of KW-2478 with bortezomib showed synergistic anti-tumor activity without significant body weight loss in a subcutaneously inoculated human myeloma model. Furthermore, the combination also showed synergistic reduction of tumor burden in bone marrow in an orthotopic myeloma model. Our results strongly suggest that combination of KW-2478 with bortezomib could exhibit enhanced anti-tumor activity against human myeloma.
Collapse
|