1
|
Schalich KM, Buendia MA, Kaur H, Choksi YA, Washington MK, Codreanu GS, Sherrod SD, McLean JA, Peek, Jr. RM, Acra SA, Townsend SD, Yan F. A human milk oligosaccharide prevents intestinal inflammation in adulthood via modulating gut microbial metabolism. mBio 2024; 15:e0029824. [PMID: 38441000 PMCID: PMC11005405 DOI: 10.1128/mbio.00298-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 03/06/2024] Open
Abstract
Observational evidence suggests that human milk oligosaccharides (HMOs) promote the growth of commensal bacteria in early life and adulthood. However, the mechanisms by which HMOs benefit health through modulation of gut microbial homeostasis remain largely unknown. 2'-fucosyllactose (2'-FL) is the most abundant oligosaccharide in human milk and contributes to the essential health benefits associated with human milk consumption. Here, we investigated how 2'-FL prevents colitis in adulthood through its effects on the gut microbial community. We found that the gut microbiota from adult mice that consumed 2'-FL exhibited an increase in abundance of several health-associated genera, including Bifidobacterium and Lactobacillus. The 2'-FL-modulated gut microbial community exerted preventive effects on colitis in adult mice. By using Bifidobacterium infantis as a 2'-FL-consuming bacterial model, exploratory metabolomics revealed novel 2'-FL-enriched secretory metabolites by Bifidobacterium infantis, including pantothenol. Importantly, pantothenate significantly protected the intestinal barrier against oxidative stress and mitigated colitis in adult mice. Furthermore, microbial metabolic pathway analysis identified 26 dysregulated metabolic pathways in fecal microbiota from patients with ulcerative colitis, which were significantly regulated by 2'-FL treatment in adult mice, indicating that 2'-FL has the potential to rectify dysregulated microbial metabolism in colitis. These findings support the contribution of the 2'-FL-shaped gut microbial community and bacterial metabolite production to the protection of intestinal integrity and prevention of intestinal inflammation in adulthood.IMPORTANCEAt present, neither basic research nor clinical studies have revealed the exact biological functions or mechanisms of action of individual oligosaccharides during development or in adulthood. Thus, it remains largely unknown whether human milk oligosaccharides could serve as effective therapeutics for gastrointestinal-related diseases. Results from the present study uncover 2'-FL-driven alterations in bacterial metabolism and identify novel B. infantis-secreted metabolites following the consumption of 2'-FL, including pantothenol. This work further demonstrates a previously unrecognized role of pantothenate in significantly protecting the intestinal barrier against oxidative stress and mitigating colitis in adult mice. Remarkably, 2'-FL-enhanced bacterial metabolic pathways are found to be dysregulated in the fecal microbiota of ulcerative colitis patients. These novel metabolic pathways underlying the bioactivities of 2'-FL may lay a foundation for applying individual oligosaccharides for prophylactic intervention for diseases associated with impaired intestinal homeostasis.
Collapse
Affiliation(s)
- Kasey M. Schalich
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Matthew A. Buendia
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Harpreet Kaur
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Yash A. Choksi
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - M. Kay Washington
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Gabriela S. Codreanu
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
- Center for Innovative Technology, Vanderbilt University, Nashville, Tennessee, USA
| | - Stacy D. Sherrod
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
- Center for Innovative Technology, Vanderbilt University, Nashville, Tennessee, USA
| | - John A. McLean
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
- Center for Innovative Technology, Vanderbilt University, Nashville, Tennessee, USA
| | - Richard M. Peek, Jr.
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sari A. Acra
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Steven D. Townsend
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Fang Yan
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
2
|
Wiegand C, Dirksen A, Tittelbach J. Treatment with a red-laser-based wound therapy device exerts positive effects in models of delayed keratinocyte and fibroblast wound healing. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2024; 40:e12926. [PMID: 37957888 DOI: 10.1111/phpp.12926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/21/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND Light therapy is widely used in medicine. Specifically, photobiomodulation has been shown to exert beneficial effects in wound healing disorders, which present a major challenge in health care. The study's aim was providing information on the effect of a novel, red-laser-based wound therapy device (WTD) on keratinocytes and fibroblasts during wound healing under optimal and non-optimal conditions. METHODS The scratch wound assay was employed as a wound healing model for mechanical damage with readjustment of specific cell milieus, explicitly chronic TH1 inflammation and TH2-dominant conditions. Furthermore, gene expression analysis of pro-inflammatory cytokines (IL1A, IL6, CXCL8), growth factors (TGFB1, PDGFC), transcription factors (NFKB1, TP53) and heat shock proteins (HSP90AA1, HSPA1A, HSPD1) as well as desmogleins (DSG1, DSG3) in keratinocytes and collagen (COL1A1, COL3A1) in fibroblasts was performed after WTD treatment. RESULTS It was shown that WTD treatment is biocompatible and supports scratch wound closure under non-optimal conditions. A distinct enhancement of desmoglein and collagen gene expression as well as induction of early growth factor gene expression was observed under chronic inflammatory conditions. Moreover, WTD increased HSPD1 transcript levels in keratinocytes and augmented collagen expression in fibroblasts during wound healing under TH2 conditions. WTD treatment also alleviated the inflammatory response in keratinocytes and induced early growth factor gene expression in fibroblasts under physiological conditions. CONCLUSION Positive effects described for wound treatment with WTD could be replicated in vitro and seem to be to be conferred by a direct influence on cellular processes taking place in keratinocytes and fibroblasts during wound healing.
Collapse
Affiliation(s)
- Cornelia Wiegand
- Department of Dermatology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | | | - Jörg Tittelbach
- Department of Dermatology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
3
|
Knorring GY. [Use of dexpanthenol in corneal damage]. Vestn Oftalmol 2023; 139:122-128. [PMID: 38235638 DOI: 10.17116/oftalma2023139061122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Issues of regeneration of the cornea, which is the most vulnerable structure of the eyeball, suffering from various diseases and injuries, burns, when wearing contact lenses and glaucoma, are highly relevant for ophthalmologists. It is also necessary to minimize damage and stimulate corneal epithelization during and after the use of steroidal and non-steroidal anti-inflammatory drugs, antibacterial drugs and antiseptics, which have a cytotoxic effect and often inhibit regeneration processes, potentially even leading to the development of corneal epithelial defects. This review analyzes the effectiveness of a promising drug 5% dexpanthenol in terms of improving the reparative processes and the function of epithelial cells.
Collapse
Affiliation(s)
- G Yu Knorring
- A.I. Evdokimov Moscow State University of Medicine and Dentistry, Moscow, Russia
| |
Collapse
|
4
|
Turan Ç, Öner Ü. Lip Mesotherapy with Dexpanthenol as a Novel Approach to Prevent Isotretinoin-Associated Cheilitis. Dermatol Pract Concept 2023; 13:dpc.1301a12. [PMID: 36892384 PMCID: PMC9946106 DOI: 10.5826/dpc.1301a12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2022] [Indexed: 02/04/2023] Open
Abstract
INTRODUCTION Isotretinoin (ISO)-associated cheilitis is the most common side effect and the most common reason for discontinuation of ongoing therapy. So, various lip balms are also routinely recommended for all patients. OBJECTIVES We aimed to investigate the effectiveness of local intradermal injections (mesotherapy) of dexpanthenol into the lips to prevent ISO-associated cheilitis. METHODS This pilot study was conducted on patients over the age of 18 using ISO (about 0.5 mg/kg/day). All patients were prescribed only hamamelis virginiana distillate in ointment form as a lip balm. In the mesotherapy group (n=28), 0.1 ml of dexpanthenol was injected into each lip tubercle (4 points total) to the submucosal level. The patients in the control group (n=26) used only the ointment. "ISO cheilitis grading scale (ICGS)" was used in the evaluation of ISO-associated cheilitis. The patients were followed for 2 months. RESULTS Although there was an increase in ICGS scores in the mesotherapy group compared to the baseline, no statistically significant change was observed after treatment (p=0.545). However, in the control group, there was a statistically significant increase in ICGS scores in the 1st and 2nd months compared to the baseline (p<0.001). Lip balms were needed significantly less frequently in the mesotherapy group compared to the control, both in the 1st and 2nd months (p=0.006, p=0.045; respectively). CONCLUSIONS Lip mesotherapy with dexpanthenol will be a useful option for preventing ISO-associated cheilitis because of its easy application, cost-effectiveness, low complication risk, and high patient satisfaction.
Collapse
Affiliation(s)
- Çağrı Turan
- Department of Dermatology and Venereology, Medical Park Ankara Hospital, Ankara, Turkey
| | - Ümran Öner
- Department of Dermatology and Venereology, Kastamonu University School of Medicine, Kastamonu, Turkey
| |
Collapse
|
5
|
Scott LN, Fiume M, Bergfeld WF, Belsito DV, Hill RA, Klaassen CD, Liebler DC, Marks JG, Shank RC, Slaga TJ, Snyder PW, Heldreth B. Safety Assessment of Panthenol, Pantothenic Acid, and Derivatives as Used in Cosmetics. Int J Toxicol 2022; 41:77-128. [PMID: 36177798 DOI: 10.1177/10915818221124809] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The Expert Panel for Cosmetic Ingredient Safety (Panel) assessed the safety of Panthenol, Pantothenic Acid, and 5 derivatives as used in cosmetics. These ingredients named in this report are reported to function in cosmetics as hair conditioning agents, and Panthenol also is reported to function as a skin-conditioning agent-humectant and a solvent. The Panel reviewed relevant data for these ingredients, and concluded that these 7 ingredients are safe in cosmetics in the present practices of use concentration described in this safety assessment.
Collapse
Affiliation(s)
- Laura N Scott
- Former Cosmetic Ingredient Review Scientific Analyst/Writer
| | | | | | | | - Ronald A Hill
- Former Expert Panel for Cosmetic Ingredient Safety Member
| | | | | | - James G Marks
- Former Expert Panel for Cosmetic Ingredient Safety Member
| | - Ronald C Shank
- Former Expert Panel for Cosmetic Ingredient Safety Member
| | | | | | | |
Collapse
|
6
|
Yildizhan E, Ulger BV, Akkus M, Akinci D, Basol O. Comparison of topical sucralfate with dexpanthenol in rat wound model. Int J Exp Pathol 2022; 103:164-170. [PMID: 35441448 PMCID: PMC9264344 DOI: 10.1111/iep.12441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/28/2022] [Accepted: 03/21/2022] [Indexed: 11/30/2022] Open
Abstract
Wound healing is a dynamic process initiated in response to injury. There are many factors that have detrimental effects on the wound healing process. Numerous studies have been conducted for improving wound healing processes. Dexpanthenol is widely used to accelerate wound healing. Sucralfate is used for the treatment of peptic ulcers. We aimed to compare the efficacy of topical Dexpanthenol and Sucralfate in an experimental wound model in rats via histopathological examinations and immune histochemical determinations, as well, to evaluate their effects on EGF levels. Three different groups were formed: the Control Group, the Dexpanthenol Group and the Sucralfate Group. Full-thickness skin wounds were created on the back of each rat and isotonic saline was applied to the wounds of the rats in the control group, Bepanthol® cream was applied in Dexpanthenol Group and 10% Sucralfate cream was applied in Sucralfate Group, once a day. On the 7th, 14th and 21st days the wounds were measured and seven rats from each group were sacrificed and the wounds were excised for histopathological examination. Sucralfate increased wound healing rates by increasing neovascularization, fibroblast activation, reepithelialization and collagen density, as well as dexpanthenol. Our study revealed that the dexpanthenol and sucralfate groups were better than the control group in terms of their effects on wound healing, however there was no statistically significant difference among these two groups. Sucralfate improves EGF expression in skin wounds and has positive results on skin wound healing comparable to dexpanthenol.
Collapse
Affiliation(s)
- Eda Yildizhan
- Department of Histology and Embryology, Faculty of Medicine, Dicle University, Diyarbakır, Turkey
| | - Burak Veli Ulger
- Department of General Surgery, Faculty of Medicine, Dicle University, Diyarbakır, Turkey
| | - Murat Akkus
- Department of Histology and Embryology, Faculty of Medicine, Dicle University, Diyarbakır, Turkey
| | - Dilara Akinci
- Department of Histology and Embryology, Faculty of Medicine, Dicle University, Diyarbakır, Turkey
| | - Omer Basol
- Department of General Surgery, Gazi Yasargil E.A.H., Diyarbakır, Turkey
| |
Collapse
|
7
|
Wiegand C, Hipler UC, Elsner P, Tittelbach J. Keratinocyte and Fibroblast Wound Healing In Vitro Is Repressed by Non-Optimal Conditions but the Reparative Potential Can Be Improved by Water-Filtered Infrared A. Biomedicines 2021; 9:biomedicines9121802. [PMID: 34944618 PMCID: PMC8698951 DOI: 10.3390/biomedicines9121802] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/19/2021] [Accepted: 11/26/2021] [Indexed: 11/16/2022] Open
Abstract
It is a general goal to improve wound healing, especially of chronic wounds. As light therapy has gained increasing attention, the positive influence on healing progression of water-filtered infrared A (wIRA), a special form of thermal radiation, has been investigated and compared to the detrimental effects of UV-B irradiation on wound closure in vitro. Models of keratinocyte and fibroblast scratches help to elucidate effects on epithelial and dermal healing. This study further used the simulation of non-optimal settings such as S. aureus infection, chronic inflammation, and anti-inflammatory conditions to determine how these affect scratch wound progression and whether wIRA treatment can improve healing. Gene expression analysis for cytokines (IL1A, IL6, CXCL8), growth (TGFB1, PDGFC) and transcription factors (NFKB1, TP53), heat shock proteins (HSP90AA1, HSPA1A, HSPD1), keratinocyte desmogleins (DSG1, DSG3), and fibroblast collagen (COL1A1, COL3A1) was performed. Keratinocyte and fibroblast wound healing under non-optimal conditions was found to be distinctly reduced in vitro. wIRA treatment could counteract the inflammatory response in infected keratinocytes as well as under chronic inflammatory conditions by decreasing pro-inflammatory cytokine gene expression and improve wound healing. In contrast, in the anti-inflammatory setting, wIRA radiation could re-initiate the acute inflammatory response necessary after injury to stimulate the regenerative processes and advance scratch closure.
Collapse
|
8
|
MMP-3 plays a major role in calcium pantothenate-promoted wound healing after fractional ablative laser treatment. Lasers Med Sci 2021; 37:887-894. [PMID: 33990899 PMCID: PMC8918166 DOI: 10.1007/s10103-021-03328-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 04/28/2021] [Indexed: 02/03/2023]
Abstract
Ablative fractional laser treatment leads to a loss of matrix metalloproteinase-3 (MMP-3) expression; therefore, in the present in vitro study, we addressed the role of MMP-3 and its regulation by calcium pantothenate in wound healing processes at the molecular level. Utilizing confocal laser microscopy, we investigated MMP-3 protein expression in fractional ablative CO2 laser-irradiated skin models. In addition, we established full-thickness 3D skin models using fibroblasts and keratinocytes with a MMP-3 knockdown that were irradiated with a fractional ablative Er:YAG laser to set superficial injuries with standardized dimensions and minimal thermal damage to the surrounding tissue. We revealed an upregulation of MMP-3 protein expression in laser-irradiated skin models receiving aftercare treatment with calcium pantothenate. Skin models with MMP-3 knockdown exhibited a slower wound closure after laser treatment compared to controls. Gene expression profiling detected an MMP-3 knockdown-dependent upregulation of cytokines and chemokines (e.g. IL-36B, CXCL17, IL-37, CXCL5), antimicrobial peptides (e.g., S100A7, S100A12), epidermal crosslinking enzymes (TGM5), and differentiation markers (e.g., LOR, KRT1, FLG2). We also detected a downregulation of cathepsin V and MMP-10, both of which play a prominent role in wound healing processes. After fractional ablative laser injury, an aftercare treatment with calcium pantothenate accelerated wound closure in MMP-3 expressing models faster than in MMP-3 knockdown models. Our data substantiate a major role of MMP-3 in wound healing processes after ablative laser treatments. For the first time, we could show that calcium pantothenate exerts its wound healing-promoting effects at least partly via MMP-3.
Collapse
|
9
|
Muranova LK, Shatov VM, Bukach OV, Gusev NB. Cardio-Vascular Heat Shock Protein (cvHsp, HspB7), an Unusual Representative of Small Heat Shock Protein Family. BIOCHEMISTRY (MOSCOW) 2021; 86:S1-S11. [PMID: 33827396 DOI: 10.1134/s0006297921140017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
HspB7 is one of ten human small heat shock proteins. This protein is expressed only in insulin-dependent tissues (heart, skeletal muscle, and fat tissue), and expression of HspB7 is regulated by many different factors. Single nucleotide polymorphism is characteristic for the HspB7 gene and this polymorphism correlates with cardio-vascular diseases and obesity. HspB7 has an unusual N-terminal sequence, a conservative α-crystallin domain, and very short C-terminal domain lacking conservative IPV tripeptide involved in a small heat shock proteins oligomer formation. Nevertheless, in the isolated state HspB7 forms both small oligomers (probably dimers) and very large oligomers (aggregates). HspB7 is ineffective in suppression of amorphous aggregation of model proteins induced by heating or reduction of disulfide bonds, however it is very effective in prevention of aggregation of huntingtin fragments enriched with Gln residues. HspB7 can be an effective sensor of electrophilic agents. This protein interacts with the contractile and cytoskeleton proteins (filamin C, titin, and actin) and participates in protection of the contractile apparatus and cytoskeleton from different adverse conditions. HspB7 possesses tumor suppressive activity. Further investigations are required to understand molecular mechanisms of HspB7 participation in numerous biological processes.
Collapse
Affiliation(s)
- Lydia K Muranova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Vladislav M Shatov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Olesya V Bukach
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Nikolai B Gusev
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
10
|
Wang Z, Nan W, Si H, Wang S, Zhang H, Li G. Pantothenic acid promotes dermal papilla cell proliferation in hair follicles of American minks via inhibitor of DNA Binding 3/Notch signaling pathway. Life Sci 2020; 252:117667. [PMID: 32304761 DOI: 10.1016/j.lfs.2020.117667] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 03/31/2020] [Accepted: 04/09/2020] [Indexed: 11/18/2022]
Abstract
AIMS Pantothenic acid (PA) has been applied to treat alopecia, but the underlying mechanism is still unclear. Our study aims to explore the underlying mechanism of PA in regulating hair follicle (HF) growth. MAIN METHODS Mink HFs and dermal papilla (DP) cells were isolated and cultured in vitro. HFs and DP cells were treated with 0, 10, 20, 40 μg/ml PA. The effect of PA on HF growth, DP cell proliferation, cell cycle distribution, cell migration, and insulin-like growth factor-1 (IGF-1) and vascular endothelial growth factor (VEGF) expressions in DP cells was measured. Moreover, the effect of PA on inhibitor of DNA binding 3 (ID3)/Notch signaling pathway was analyzed. Subsequently, ID3 was silenced to validate whether ID3/Notch signaling pathway was involved in regulating DP cell proliferation by PA. KEY FINDINGS Both 20 μg/ml and 40 μg/ml PA promoted HF growth, G1/S transition of DP cells and IGF-1 and VEGF expressions in DP cells, while only 20 μg/ml PA promoted cell viability and the migration of DP cells. Thus 20 μg/ml PA was chosen for the following experiments. PA treatment was found to up-regulate ID3 expression but down-regulate Notch receptor 1 (Notch1) and Notch signaling targets expressions. Furthermore, ID3 knockdown reversed PA-induced cell proliferation and inhibition of Notch1 and Notch signaling targets expressions, indicating that PA-induced DP cell proliferation and inhibition of Notch signaling were mediated via up-regulation of ID3. SIGNIFICANCE This study provides an underlying mechanism related to the effect of PA on stimulating DP cell proliferation.
Collapse
Affiliation(s)
- Zhuo Wang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin 130112, People's Republic of China
| | - Weixiao Nan
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin 130112, People's Republic of China
| | - Huazhe Si
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin 130112, People's Republic of China
| | - Shiyong Wang
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, People's Republic of China
| | - Haihua Zhang
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, People's Republic of China.
| | - Guangyu Li
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin 130112, People's Republic of China.
| |
Collapse
|
11
|
Gorski J, Proksch E, Baron JM, Schmid D, Zhang L. Dexpanthenol in Wound Healing after Medical and Cosmetic Interventions (Postprocedure Wound Healing). Pharmaceuticals (Basel) 2020; 13:ph13070138. [PMID: 32610604 PMCID: PMC7407203 DOI: 10.3390/ph13070138] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/26/2020] [Accepted: 06/26/2020] [Indexed: 12/27/2022] Open
Abstract
With the availability of new technologies, the number of subjects undergoing medical and cosmetic interventions is increasing. Many procedures (e.g., ablative fractional laser treatment) resulting in superficial/minor wounds require appropriate aftercare to prevent complications in wound healing and poor cosmetic outcome. We review the published evidence of the usefulness of topical dexpanthenol in postprocedure wound healing and the associated mechanisms of action at the molecular level. A search in the PubMed and Embase databases was performed to query the terms dexpanthenol, panthenol, superficial wound, minor wound, wound healing, skin repair, and postprocedure. Search results were categorized as clinical trials and in vitro studies. In vitro and clinical studies provided evidence that topically applied dexpanthenol promotes superficial and postprocedure wound healing. Latest findings confirmed that dexpanthenol upregulates genes that are critical for the healing process. The gene expression data are of clinical relevance as evidenced by prospective clinical studies indicating that topical dexpanthenol accelerates wound healing with rapid re-epithelialization and restoration of skin barrier function following skin injury. It can therefore be inferred that topical dexpanthenol represents an appropriate and state-of-the-art treatment option for superficial postprocedure wounds, especially when applied early after the superficial skin damage.
Collapse
Affiliation(s)
- Julian Gorski
- Bayer Vital GmbH, Building K 56, D-51368 Leverkusen, Germany;
| | - Ehrhardt Proksch
- Department of Dermatology, University of Kiel, Schittenhelmstrasse 7, D-24105 Kiel, Germany;
| | - Jens Malte Baron
- Department of Dermatology and Allergology, RWTH Aachen University, Pauwelsstrasse 30, D-52074 Aachen, Germany;
| | - Daphne Schmid
- Bayer Consumer Care AG, Peter Merian-Strasse 84, CH-4002 Basel, Switzerland;
| | - Lei Zhang
- Bayer Consumer Care AG, Peter Merian-Strasse 84, CH-4002 Basel, Switzerland;
- Correspondence: ; Tel.: +41-58-272-7497; Fax: +41-58-272-7902
| |
Collapse
|
12
|
Baron JM, Glatz M, Proksch E. Optimal Support of Wound Healing: New Insights. Dermatology 2020; 236:593-600. [PMID: 31955162 DOI: 10.1159/000505291] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 12/07/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The ultimate goal of wound healing following minor injury is to form a tissue regenerate that has functionality and visual appearance as close to the original skin as possible. The body's physiological response to any wound is traditionally characterised by three distinct steps: inflammation, proliferation and remodelling. SUMMARY New insights suggest that the three phases overlap (and even occur in parallel) in both time and space in the wound, necessitating a clinical approach that targets each stage simultaneously to ensure rapid repair and wound closure without further complications. Ingredients that exhibit activity across each of the three phases, such as dexpanthenol, are of value in the context of minor wound care and scar management. Key Messages: In addition to treatment and ingredient selection, it is also important to consider broader clinical best practices and self-care options that can be used to optimise the management of minor wounds. An individualised approach that can account for a patient's unique requirements and preferences is critical in achieving effective wound recovery.
Collapse
Affiliation(s)
- Jens Malte Baron
- Department of Dermatology and Allergology, RWTH Aachen University, Aachen, Germany,
| | - Martin Glatz
- Department of Dermatology, University Hospital of Zurich, Zurich, Switzerland
| | | |
Collapse
|
13
|
Gheita AA, Gheita TA, Kenawy SA. The potential role of B5: A stitch in time and switch in cytokine. Phytother Res 2019; 34:306-314. [DOI: 10.1002/ptr.6537] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 09/23/2019] [Accepted: 10/09/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Alaa A. Gheita
- Plastic Surgery Department, Faculty of MedicineCairo University Cairo Egypt
- Egyptian Society of Plastic and Reconstructive Surgeons Egypt
| | - Tamer A. Gheita
- Rheumatology and Clinical Immunology Department, Faculty of MedicineCairo University Cairo Egypt
- Graduate Studies and Research AffairCairo University Cairo Egypt
| | - Sanaa A. Kenawy
- Pharmacology Department, Faculty of PharmacyCairo University Cairo Egypt
- Royal College of SurgeonsLondon University London UK
| |
Collapse
|
14
|
Comparative Study of the Therapeutic Effect of Panthenol Gel and Mebo Ointment on Metacarpal Wound Healing in Donkeys. J Equine Vet Sci 2019. [DOI: 10.1016/j.jevs.2018.11.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Planz V, Wang J, Windbergs M. Establishment of a cell-based wound healing assay for bio-relevant testing of wound therapeutics. J Pharmacol Toxicol Methods 2017; 89:19-25. [PMID: 29038019 DOI: 10.1016/j.vascn.2017.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 09/11/2017] [Accepted: 10/11/2017] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Predictive in vitro testing of novel wound therapeutics requires adequate cell-based bio-assays. Such assays represent an integral part during preclinical development as pre-step before entering in vivo studies. Simple "scratch tests" based on defected skin cell monolayers exist, however these can solely be used for testing liquids, as cell monolayer destruction and excessive hydration limit their applicability for (semi-)solid systems like wound dressings. In this context, a cell-based wound healing assay is introduced for rapid and predictive testing of wound therapeutics independent of their physical state in a bio-relevant environment. METHODS A novel wound healing assay was established for bio-relevant and predictive testing of (semi-) solid wound therapeutics. RESULTS The assay allows for physiologically relevant hydration of the tested wound therapeutics at the air-liquid interface and their removal without cell monolayer disruption. In a proof-of-concept study, the applicability and discriminative power could be demonstrated by examining unloaded and drug-loaded wound dressings with two different established wound healing actives (dexpanthenol and metyrapone) and their effect on skin cell behavior. The influence of the released drug on the cells´ healing behavior could successfully be monitored over time. Wound size assessment after 96h resulted in an eight fold smaller wound area for drug treated models compared to the ones treated with unloaded fibers and non-treated wounds. DISCUSSION This assay provides valuable first insights towards the establishment of a valid screening and evaluation tool for preclinical wound therapeutic development from liquid to (semi-)solid systems to improve predictability in a simple, yet standardized way.
Collapse
Affiliation(s)
- Viktoria Planz
- Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life Sciences, Goethe University, 60438 Frankfurt am Main, Germany; Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Department of Drug Delivery (DDEL), Saarland University, 66123 Saarbruecken, Germany
| | - Jing Wang
- Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life Sciences, Goethe University, 60438 Frankfurt am Main, Germany; Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Department of Drug Delivery (DDEL), Saarland University, 66123 Saarbruecken, Germany
| | - Maike Windbergs
- Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life Sciences, Goethe University, 60438 Frankfurt am Main, Germany; Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Department of Drug Delivery (DDEL), Saarland University, 66123 Saarbruecken, Germany.
| |
Collapse
|
16
|
Proksch E, de Bony R, Trapp S, Boudon S. Topical use of dexpanthenol: a 70th anniversary article. J DERMATOL TREAT 2017; 28:766-773. [PMID: 28503966 DOI: 10.1080/09546634.2017.1325310] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Approximately 70 years ago, the first topical dexpanthenol-containing formulation (Bepanthen™ Ointment) has been developed. Nowadays, various topical dexpanthenol preparations exist, tailored according to individual requirements. Topical dexpanthenol has emerged as frequently used formulation in the field of dermatology and skin care. Various studies confirmed dexpanthenol's moisturizing and skin barrier enhancing potential. It prevents skin irritation, stimulates skin regeneration and promotes wound healing. Two main directions in the use of topical dexpanthenol-containing formulations have therefore been pursued: as skin moisturizer/skin barrier restorer and as facilitator of wound healing. This 70th anniversary paper reviews studies with topical dexpanthenol in skin conditions where it is most frequently used. Although discovered decades ago, the exact mechanisms of action of dexpanthenol have not been fully elucidated yet. With the adoption of new technologies, new light has been shed on dexpanthenol's mode of action at the molecular level. It appears that dexpanthenol increases the mobility of stratum corneum molecular components which are important for barrier function and modulates the expression of genes important for wound healing. This review will update readers on recent advances in this field.
Collapse
Affiliation(s)
- Ehrhardt Proksch
- a Department of Dermatology , University of Kiel , Kiel , Germany
| | | | - Sonja Trapp
- b Bayer Consumer Care AG , Basel , Switzerland
| | | |
Collapse
|
17
|
Schmitt L, Amann PM, Marquardt Y, Heise R, Czaja K, Gerber PA, Steiner T, Hölzle F, Baron JM. Molecular effects of fractional ablative erbium:YAG laser treatment with multiple stacked pulses on standardized human three-dimensional organotypic skin models. Lasers Med Sci 2017; 32:805-814. [PMID: 28299490 DOI: 10.1007/s10103-017-2175-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 02/20/2017] [Indexed: 11/25/2022]
Abstract
The molecular changes in gene expression following ablative laser treatment of skin lesions, such as atrophic scars and UV-damaged skin, are not completely understood. A standardized in vitro model of human skin, to study the effects of laser treatment on human skin, has been recently developed. Therefore, the aim of the investigation was to examine morphological and molecular changes caused by fractional ablative erbium:YAG laser treatment on an in vitro full-thickness 3D standardized organotypic model of human skin. A fractional ablative erbium:YAG laser was used to irradiate organotypic human 3D models. Laser treatments were performed at four different settings using a variety of stacked pulses with similar cumulative total energy fluence (60 J/cm2). Specimens were harvested at specified time points and real-time PCR (qRT-PCR) and microarray studies were performed. Frozen sections were examined histologically. Three days after erbium:YAG laser treatment, a significantly increased mRNA expression of matrix metalloproteinases and their inhibitors (MMP1, MMP2, MMP3, TIMP1, and TIMP2), chemokines (CXCL1, CXCL2, CXCL5, and CXCL6), and cytokines such as IL6, IL8, and IL24 could be detected. qRT-PCR studies confirmed the enhanced mRNA expression of IL6, IL8, IL24, CXCLs, and MMPs. In contrast, the mRNA expression of epidermal differentiation markers, such as keratin-associated protein 4, filaggrin, filaggrin 2, and loricrin, and antimicrobial peptides (S100A7A, S100A9, and S100A12) as well as CASP14, DSG2, IL18, and IL36β was reduced. Four different settings with similar cumulative doses have been tested (N10%, C10%, E10%, and W25%). These laser treatments resulted in different morphological changes and effects on gene regulations. Longer pulse durations (1000 μs) especially had the strongest impact on gene expression and resulted in an upregulation of genes, such as collagen-1A2, collagen-5A2, and collagen-6A2, as well as FGF2. Histologically, all treatment settings resulted in a complete regeneration of the epidermis 3 days after irradiation. Fractional ablative erbium:YAG laser treatment with a pulse stacking technique resulted in histological alterations and shifts in the expression of various genes related to epidermal differentiation, inflammation, and dermal remodeling depending on the treatment setting applied. A standardized in vitro 3D model of human skin proved to be a useful tool for exploring the effects of various laser settings both on skin morphology and gene expression during wound healing. It provides novel data on the gene expression and microscopic architecture of the exposed skin. This may enhance our understanding of laser treatment at a molecular level.
Collapse
Affiliation(s)
- Laurenz Schmitt
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany.
| | - P M Amann
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Y Marquardt
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - R Heise
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - K Czaja
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - P A Gerber
- Department of Dermatology and Allergology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - T Steiner
- Department of Oral and Maxillofacial Surgery, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Interdisciplinary Center for Laser Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - F Hölzle
- Department of Oral and Maxillofacial Surgery, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Interdisciplinary Center for Laser Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Jens Malte Baron
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany.
- Interdisciplinary Center for Laser Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
18
|
Differential Effects of Hormones on Cellular Metabolism in Keratoconus In Vitro. Sci Rep 2017; 7:42896. [PMID: 28211546 PMCID: PMC5314412 DOI: 10.1038/srep42896] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 01/18/2017] [Indexed: 12/28/2022] Open
Abstract
Keratoconus (KC) is a corneal thinning disease with an onset commonly immediately post-puberty and stabilization by 40 to 50 years of age. The role of hormones in regulating corneal tissue structure in homeostatic and pathological conditions is unknown. Our group recently linked altered hormone levels to KC. Our current study sought to investigate and delineate the effects of exogenous hormones, such as androgen, luteotropin, and estrogen, on corneal stroma bioenergetics. We utilized our established 3D in vitro model to characterize the effects of DHEA, prolactin, 17β-estradiol on insulin-growth factor-1 and -2 (IGF-1, -2) signaling and metabolic function in primary corneal fibroblasts from healthy controls (HCFs) and KC patients (HKCs). Our data showed that exogenous DHEA significantly downregulated IGF-1 and its receptor in both HCFs and HKCs with HKCs showing consistently lower basal pentose phosphate flux. Prolactin caused no significant change in IGF-1 levels and an increase in IGF-2 in HKCs correlating with an increase in ATP and NADH levels. 17β-estradiol led to a significant upregulation in pentose phosphate flux and glycolytic intermediates in HCFs. Our results identified hormone-specific responses regulated in HKCs compared to HCFs revealing a novel role for hormones on bioenergetics in KC.
Collapse
|
19
|
Rasmussen MR, Nielsen KL, Laursen MR, Nielsen CB, Svendsen P, Dimke H, Christensen EI, Johannsen M, Moestrup SK. Untargeted Metabolomics Analysis of ABCC6-Deficient Mice Discloses an Altered Metabolic Liver Profile. J Proteome Res 2016; 15:4591-4600. [PMID: 27758107 DOI: 10.1021/acs.jproteome.6b00669] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Loss-of-function mutations in the transmembrane ABCC6 transport protein cause pseudoxanthoma elasticum (PXE), an ectopic, metabolic mineralization disorder that affects the skin, eye, and vessels. ABCC6 is assumed to mediate efflux of one or several small molecule compounds from the liver cytosol to the circulation. Untargeted metabolomics using liquid chromatography-mass spectrometry was employed to inspect liver cytosolic extracts from mice with targeted disruption of the Abcc6 gene. Absence of the ABCC6 protein induced an altered profile of metabolites in the liver causing accumulation of compounds as more features were upregulated than downregulated in ABCC6-deficient mice. However, no differences of the identified metabolites in liver could be detected in plasma, whereas urine reflected some of the changes. Of note, N-acetylated amino acids and pantothenic acid (vitamin B5), which is involved in acetylation reactions, were accumulated in the liver. None of the identified metabolites seems to explain mineralization in extrahepatic tissues, but the present study now shows that abrogated ABCC6 function does cause alterations in the metabolic profile of the liver in accordance with PXE being a metabolic disease originating from liver disturbance. Further studies of these changes and the further identification of yet unknown metabolites may help to clarify the liver-related pathomechanism of PXE.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Søren K Moestrup
- Department of Clinical Biochemistry, Pharmacology, Odense University Hospital , Odense 5000, Denmark
| |
Collapse
|
20
|
Hänel KH, Pfaff CM, Cornelissen C, Amann PM, Marquardt Y, Czaja K, Kim A, Lüscher B, Baron JM. Control of the Physical and Antimicrobial Skin Barrier by an IL-31-IL-1 Signaling Network. THE JOURNAL OF IMMUNOLOGY 2016; 196:3233-44. [PMID: 26944931 DOI: 10.4049/jimmunol.1402943] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 02/08/2016] [Indexed: 12/27/2022]
Abstract
Atopic dermatitis, a chronic inflammatory skin disease with increasing prevalence, is closely associated with skin barrier defects. A cytokine related to disease severity and inhibition of keratinocyte differentiation is IL-31. To identify its molecular targets, IL-31-dependent gene expression was determined in three-dimensional organotypic skin models. IL-31-regulated genes are involved in the formation of an intact physical skin barrier. Many of these genes were poorly induced during differentiation as a consequence of IL-31 treatment, resulting in increased penetrability to allergens and irritants. Furthermore, studies employing cell-sorted skin equivalents in SCID/NOD mice demonstrated enhanced transepidermal water loss following s.c. administration of IL-31. We identified the IL-1 cytokine network as a downstream effector of IL-31 signaling. Anakinra, an IL-1R antagonist, blocked the IL-31 effects on skin differentiation. In addition to the effects on the physical barrier, IL-31 stimulated the expression of antimicrobial peptides, thereby inhibiting bacterial growth on the three-dimensional organotypic skin models. This was evident already at low doses of IL-31, insufficient to interfere with the physical barrier. Together, these findings demonstrate that IL-31 affects keratinocyte differentiation in multiple ways and that the IL-1 cytokine network is a major downstream effector of IL-31 signaling in deregulating the physical skin barrier. Moreover, by interfering with IL-31, a currently evaluated drug target, we will have to consider that low doses of IL-31 promote the antimicrobial barrier, and thus a complete inhibition of IL-31 signaling may be undesirable.
Collapse
Affiliation(s)
- Kai H Hänel
- Department of Dermatology and Allergology, Medical School, RWTH Aachen University, 52074 Aachen, Germany; Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, 52074 Aachen, Germany; and
| | - Carolina M Pfaff
- Department of Dermatology and Allergology, Medical School, RWTH Aachen University, 52074 Aachen, Germany; Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, 52074 Aachen, Germany; and
| | - Christian Cornelissen
- Department of Dermatology and Allergology, Medical School, RWTH Aachen University, 52074 Aachen, Germany; Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, 52074 Aachen, Germany; and
| | - Philipp M Amann
- Department of Dermatology and Allergology, Medical School, RWTH Aachen University, 52074 Aachen, Germany
| | - Yvonne Marquardt
- Department of Dermatology and Allergology, Medical School, RWTH Aachen University, 52074 Aachen, Germany
| | - Katharina Czaja
- Department of Dermatology and Allergology, Medical School, RWTH Aachen University, 52074 Aachen, Germany
| | - Arianna Kim
- Department of Dermatology, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Bernhard Lüscher
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, 52074 Aachen, Germany; and
| | - Jens M Baron
- Department of Dermatology and Allergology, Medical School, RWTH Aachen University, 52074 Aachen, Germany;
| |
Collapse
|
21
|
Marquardt Y, Amann PM, Heise R, Czaja K, Steiner T, Merk HF, Skazik‐Voogt C, Baron JM. Characterization of a novel standardized human three‐dimensional skin wound healing model using non‐sequential fractional ultrapulsed CO
2
laser treatments. Lasers Surg Med 2015; 47:257-65. [DOI: 10.1002/lsm.22341] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2014] [Indexed: 01/13/2023]
Affiliation(s)
- Yvonne Marquardt
- Department of Dermatology and AllergologyRWTH Aachen UniversityAachenGermany
| | - Philipp M. Amann
- Department of Dermatology and AllergologyRWTH Aachen UniversityAachenGermany
| | - Ruth Heise
- Department of Dermatology and AllergologyRWTH Aachen UniversityAachenGermany
| | - Katharina Czaja
- Department of Dermatology and AllergologyRWTH Aachen UniversityAachenGermany
| | - Timm Steiner
- Department of Oral and Maxillofacial SurgeryMedical FacultyRWTH Aachen UniversityAachenGermany
| | - Hans F. Merk
- Department of Dermatology and AllergologyRWTH Aachen UniversityAachenGermany
| | | | - Jens M. Baron
- Department of Dermatology and AllergologyRWTH Aachen UniversityAachenGermany
| |
Collapse
|
22
|
Topical N-acetylcysteine improves wound healing comparable to dexpanthenol: an experimental study. Int Surg 2015; 100:656-61. [PMID: 25583306 DOI: 10.9738/intsurg-d-14-00227.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In this study, we aimed to compare the effects of dexpanthenol and N-acetylcysteine on wound healing. The wound healing process is a multifaceted sequence of activities associated with tissue restoration process. A number of investigations and clinical studies have been performed to determine new approaches for the improvement of wound healing. A total of 30 rats were divided into 3 equal groups. A linear 2-cm incision was made in the rats' skin. No treatment was administered in the first (control) group. Dexpanthenol cream was administered to the rats in the second group and 3% N-acetylcysteine cream was administered to the rats in the third group. The wound areas of all of the rats were measured on certain days. On the 21st day, all wounds were excised and histologically evaluated. The epithelialization and granulation rates between the groups were revealed to be similar in microscopic evaluations. Although the fibrosis was remarkable in the control group as compared with the other groups, it was similar in N-acetylcysteine and dexpanthenol groups. Angiogenesis rate was remarkable in the N-acetylcysteine group compared with the others. In multiple-comparison analysis, Dexpanthenol and N-acetylcysteine groups had similar results in terms of wound healing rates (P < 0.05), which were both higher than in the control group (P > 0.05). The efficacy of N-acetylcysteine in wound healing is comparable to dexpanthenol, and both substances can be used to improve wound healing.
Collapse
|
23
|
|
24
|
Chikin VV. Topical methylprednisolone aceponate and dexpanthenol in the treatment of patients with atopic dermatitis. VESTNIK DERMATOLOGII I VENEROLOGII 2014. [DOI: 10.25208/0042-4609-2014-90-5-112-116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
The goals of the topical treatment of patients suffering from atopic dermatitis are suppression of the inflammatory reaction in the skin, elimination of itching, and recovery of the damaged protective lipid barrier of the epidermis. In this connection, topical glucocorticosteroids and skin moisturizers are used in the therapy of patients suffering from atopic dermatitis. Methylprednisolone aceponate (MPA, Advantan) being a topical glucocorticosteroid is characterized by high efficacy and safety. MPA is marked by the fast development of the therapeutic effect. This drug can be used for children older than 4 months and can be applied once a day. The availability of four dosage forms of MPA (emulsion, cream, ointment and fatty ointment) enables physicians to select a therapy with the use of this drug depending on the stage and localization of the skin lesion. Dexpanthenol (Bepanthen) being a tissue repair stimulator moisturizes the skin, protects the skin against an irritant effect, and restores the protective lipid barrier of the epidermis. The use of a combination of MPA being a topical glucocorticosteroid and dexpanthenol being a tissue repair stimulator can enhance the efficacy of the treatment of patients suffering from atopic dermatitis.
Collapse
|
25
|
Kuzaj P, Kuhn J, Michalek RD, Karoly ED, Faust I, Dabisch-Ruthe M, Knabbe C, Hendig D. Large-scaled metabolic profiling of human dermal fibroblasts derived from pseudoxanthoma elasticum patients and healthy controls. PLoS One 2014; 9:e108336. [PMID: 25265166 PMCID: PMC4181624 DOI: 10.1371/journal.pone.0108336] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 08/29/2014] [Indexed: 12/18/2022] Open
Abstract
Mutations in the ABC transporter ABCC6 were recently identified as cause of Pseudoxanthoma elasticum (PXE), a rare genetic disorder characterized by progressive mineralization of elastic fibers. We used an untargeted metabolic approach to identify biochemical differences between human dermal fibroblasts from healthy controls and PXE patients in an attempt to find a link between ABCC6 deficiency, cellular metabolic alterations and disease pathogenesis. 358 compounds were identified by mass spectrometry covering lipids, amino acids, peptides, carbohydrates, nucleotides, vitamins and cofactors, xenobiotics and energy metabolites. We found substantial differences in glycerophospholipid composition, leucine dipeptides, and polypeptides as well as alterations in pantothenate and guanine metabolism to be significantly associated with PXE pathogenesis. These findings can be linked to extracellular matrix remodeling and increased oxidative stress, which reflect characteristic hallmarks of PXE. Our study could facilitate a better understanding of biochemical pathways involved in soft tissue mineralization.
Collapse
Affiliation(s)
- Patricia Kuzaj
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Joachim Kuhn
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Ryan D. Michalek
- Metabolon, Inc., Durham, North Carolina, United States of America
| | - Edward D. Karoly
- Metabolon, Inc., Durham, North Carolina, United States of America
| | - Isabel Faust
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Mareike Dabisch-Ruthe
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Cornelius Knabbe
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Doris Hendig
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| |
Collapse
|
26
|
Ulger BV, Kapan M, Uslukaya O, Bozdag Z, Turkoglu A, Alabalık U, Onder A. Comparing the effects of nebivolol and dexpanthenol on wound healing: an experimental study. Int Wound J 2014; 13:367-71. [PMID: 25040679 DOI: 10.1111/iwj.12314] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 05/14/2014] [Indexed: 12/26/2022] Open
Abstract
Wound healing is a dynamic, interactive process that is initiated in response to injury. A number of investigations and clinical studies have been performed to determine new approaches for the improvement of wound healing. The aim of this study was to compare the effects of dexpanthenol, a molecule that is widely used for improving wound healing, and nebivolol, a molecule that increases nitric oxide release, on wound healing. A total of 30 rats were divided into three equal groups (n = 10). A linear 2 cm incision was made in the rats' skin. No treatment was administered in the first (control) group. Dexpanthenol cream was administered to the rats in the second group and 5% nebivolol cream was administered to the rats in the third group. The wound areas of all of the rats were measured on certain days. On the 21(st) day, all wounds were excised and histologically evaluated. The wound healing rates of the dexpanthenol and nebivolol groups were higher than those of the control group (P < 0·05). However, the wound healing rates of the dexpanthenol and nebivolol groups were not significantly different. Nebivolol and dexpanthenol have comparable effects on wound healing.
Collapse
Affiliation(s)
- Burak V Ulger
- Department of General Surgery, Dicle University Medical Faculty, Diyarbakır, Turkey
| | - Murat Kapan
- Department of General Surgery, Dicle University Medical Faculty, Diyarbakır, Turkey
| | - Omer Uslukaya
- Department of General Surgery, Dicle University Medical Faculty, Diyarbakır, Turkey
| | - Zubeyir Bozdag
- Department of General Surgery, Dicle University Medical Faculty, Diyarbakır, Turkey
| | - Ahmet Turkoglu
- Department of General Surgery, Dicle University Medical Faculty, Diyarbakır, Turkey
| | - Ulas Alabalık
- Department of Pathology, Dicle University Medical Faculty, Diyarbakır, Turkey
| | - Akın Onder
- Department of General Surgery, Dicle University Medical Faculty, Diyarbakır, Turkey
| |
Collapse
|
27
|
Ebeling S, Naumann K, Pollok S, Wardecki T, Vidal-y-Sy S, Nascimento JM, Boerries M, Schmidt G, Brandner JM, Merfort I. From a traditional medicinal plant to a rational drug: understanding the clinically proven wound healing efficacy of birch bark extract. PLoS One 2014; 9:e86147. [PMID: 24465925 PMCID: PMC3899119 DOI: 10.1371/journal.pone.0086147] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 12/05/2013] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Birch bark has a long lasting history as a traditional medicinal remedy to accelerate wound healing. Recently, the efficacy of birch bark preparations has also been proven clinically. As active principle pentacyclic triterpenes are generally accepted. Here, we report a comprehensive study on the underlying molecular mechanisms of the wound healing properties of a well-defined birch bark preparation named as TE (triterpene extract) as well as the isolated single triterpenes in human primary keratinocytes and porcine ex-vivo wound healing models. METHODOLOGY/PRINCIPAL FINDINGS We show positive wound healing effects of TE and betulin in scratch assay experiments with primary human keratinocytes and in a porcine ex-vivo wound healing model (WHM). Mechanistical studies elucidate that TE and betulin transiently upregulate pro-inflammatory cytokines, chemokines and cyclooxygenase-2 on gene and protein level. For COX-2 and IL-6 this increase of mRNA is due to an mRNA stabilizing effect of TE and betulin, a process in which p38 MAPK and HuR are involved. TE promotes keratinocyte migration, putatively by increasing the formation of actin filopodia, lamellipodia and stress fibers. Detailed analyses show that the TE components betulin, lupeol and erythrodiol exert this effect even in nanomolar concentrations. Targeting the actin cytoskeleton is dependent on the activation of Rho GTPases. CONCLUSION/SIGNIFICANCE Our results provide insights to understand the molecular mechanism of the clinically proven wound healing effect of birch bark. TE and betulin address the inflammatory phase of wound healing by transient up-regulation of several pro-inflammatory mediators. Further, they enhance migration of keratinocytes, which is essential in the second phase of wound healing. Our results, together with the clinically proven efficacy, identify birch bark as the first medical plant with a high potential to improve wound healing, a field which urgently needs effective remedies.
Collapse
Affiliation(s)
- Sandra Ebeling
- Pharmaceutical Biology and Biotechnology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Katrin Naumann
- Pharmaceutical Biology and Biotechnology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Simone Pollok
- Department of Dermatology and Venerology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Tina Wardecki
- Pharmaceutical Biology and Biotechnology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Sabine Vidal-y-Sy
- Department of Dermatology and Venerology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Juliana M. Nascimento
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Melanie Boerries
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Gudula Schmidt
- Institute for Experimental and Clinical Pharmacology and Toxicology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Johanna M. Brandner
- Department of Dermatology and Venerology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Irmgard Merfort
- Pharmaceutical Biology and Biotechnology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| |
Collapse
|
28
|
IL-31 regulates differentiation and filaggrin expression in human organotypic skin models. J Allergy Clin Immunol 2012; 129:426-33, 433.e1-8. [DOI: 10.1016/j.jaci.2011.10.042] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 10/17/2011] [Accepted: 10/28/2011] [Indexed: 10/14/2022]
|
29
|
Heise R, Skazik C, Marquardt Y, Czaja K, Sebastian K, Kurschat P, Gan L, Denecke B, Ekanayake-Bohlig S, Wilhelm KP, Merk H, Baron J. Dexpanthenol Modulates Gene Expression in Skin Wound Healing in vivo. Skin Pharmacol Physiol 2012; 25:241-8. [DOI: 10.1159/000341144] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 06/18/2012] [Indexed: 11/19/2022]
|
30
|
Wu NL, Chiang YC, Huang CC, Fang JY, Chen DF, Hung CF. Zeaxanthin inhibits PDGF-BB-induced migration in human dermal fibroblasts. Exp Dermatol 2011; 19:e173-81. [PMID: 20482615 DOI: 10.1111/j.1600-0625.2009.01036.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Zeaxanthin is the dihydroxy carotenoid and is distributed in our daily foods. Various natural carotenoids, including zeaxanthin, have been shown to inhibit proliferation of several types of cancer cells, but available data on the effect of zeaxanthin on skin fibroblasts and melanoma cells are limited. Platelet-derived growth factor (PDGF) functions as a chemotactic factor for dermal fibroblasts and plays an important role in the progression of melanoma. In this study, we investigated the effects of zeaxanthin on the migration of skin fibroblasts induced by PDGF-BB and melanoma cells. We demonstrated that zeaxanthin inhibited PDGF-BB-induced skin fibroblast migration on collagen and gelatin by a modified Boyden chamber system. The electric cell-substrate impedance sensing (ECIS) method also showed similar inhibitory effects of zeaxanthin on the migration of fibroblasts. In functional studies, zeaxanthin decreased melanoma-induced fibroblast migration in a non-contact coculture system and also the migration stimulated by melanoma-derived conditioned medium. Further analysis showed that zeaxanthin attenuated PDGF-BB and melanoma-conditioned medium induced phosphorylation of PDGFR-beta and MAP kinase in a concentration-dependent manner in human skin fibroblasts. However, these effects did not result from direct interaction of zeaxanthin with PDGF-BB. Thus, our results provide the first evidence showing that zeaxanthin is an effective inhibitor of migration of stromal fibroblasts induced by PDGF-BB and melanoma cells and this effect may further support its antitumor potential.
Collapse
Affiliation(s)
- Nan-Lin Wu
- Department of Dermatology, Mackay Memorial Hospital, Hsinchu, Taiwan
| | | | | | | | | | | |
Collapse
|
31
|
Kobayashi D, Kusama M, Onda M, Nakahata N. The Effect of Pantothenic Acid Deficiency on Keratinocyte Proliferation and the Synthesis of Keratinocyte Growth Factor and Collagen in Fibroblasts. J Pharmacol Sci 2011; 115:230-234. [DOI: 10.1254/jphs.10224sc] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Accepted: 12/03/2010] [Indexed: 10/18/2022] Open
|
32
|
Vos MJ, Zijlstra MP, Kanon B, van Waarde-Verhagen MA, Brunt ER, Oosterveld-Hut HM, Carra S, Sibon OC, Kampinga HH. HSPB7 is the most potent polyQ aggregation suppressor within the HSPB family of molecular chaperones. Hum Mol Genet 2010; 19:4677-93. [DOI: 10.1093/hmg/ddq398] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|