1
|
Bour F, Khalilollah S, Omraninava M, Mirzaie MS, Taghiloo S, Mehrparvar S, Nasiry D, Raoofi A. Three-dimensional bioengineered dermal derived matrix scaffold in combination with adipose-derived stem cells accelerate diabetic wound healing. Tissue Cell 2024; 87:102302. [PMID: 38219451 DOI: 10.1016/j.tice.2024.102302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/18/2023] [Accepted: 01/02/2024] [Indexed: 01/16/2024]
Abstract
Due to the multifactorial nature of diabetic wounds, the most effective treatments require combinatorial approach. Herein we investigated whether engraftment of a bioengineered three-dimensional dermal derived matrix scaffold (DDMS) in combination with adipose-derived stem cells (ADSs), could accelerate diabetic wound healing. Diabetic animals were randomly planned into the control group, DDMS group, ADS group, and DDMS+ADS group. On days 7, 14, and 21, tissue samples were obtained for stereological, molecular, and tensiometrical assessments. We found that the wound contraction rate, the total volumes of new epidermis and dermis, the numerical densities of fibroblasts and blood vessels, collagen density, and tensiometrical parameters were meaningfully greater in the treated groups than in the control group, and these changes were more obvious in the DDMS+ADS ones (p < 0.05). Moreover, the expression of TGF-β, bFGF, and VEGF genes were considerably upregulated in treated groups compared to the control group and were greater in the DDMS+ADS group (p < 0.05). This is while expression of TNF-α and IL-1β, as well as the numerical densities of neutrophils and macrophages decreased more considerably in the DDMS+ADS group than in the other groups (p < 0.05). Overall, it was found that using both DDMS engraftment and ADS transplantation has more impact on diabetic wound healing.
Collapse
Affiliation(s)
- Fatemeh Bour
- Babol University of Medical Sciences, Babol, Iran
| | - Shayan Khalilollah
- School of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Melody Omraninava
- Health Reproductive Research Center, Islamic Azad University, Sari, Iran
| | | | - Saeid Taghiloo
- School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sophia Mehrparvar
- Student Research Committee, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Davood Nasiry
- Department of Paramedicine, Amol School of Paramedical Sciences, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Amir Raoofi
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran.
| |
Collapse
|
2
|
Browne S, Petit N, Quondamatteo F. Functionalised biomaterials as synthetic extracellular matrices to promote vascularisation and healing of diabetic wounds. Cell Tissue Res 2024; 395:133-145. [PMID: 38051351 DOI: 10.1007/s00441-023-03849-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 11/24/2023] [Indexed: 12/07/2023]
Abstract
Diabetic foot ulcers (DFU) are a type of chronic wound that constitute one of the most serious and debilitating complications associated with diabetes. The lack of clinically efficacious treatments to treat these recalcitrant wounds can lead to amputations for those worst affected. Biomaterial-based approaches offer great hope in this regard, as they provide a template for cell infiltration and tissue repair. However, there is an additional need to treat the underlying pathophysiology of DFUs, in particular insufficient vascularization of the wound which significantly hampers healing. Thus, the addition of pro-angiogenic moieties to biomaterials is a promising strategy to promote the healing of DFUs and other chronic wounds. In this review, we discuss the potential of biomaterials as treatments for DFU and the approaches that can be taken to functionalise these biomaterials such that they promote vascularisation and wound healing in pre-clinical models.
Collapse
Affiliation(s)
- Shane Browne
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123, St Stephen's Green, Dublin 2, Dublin, Ireland.
- CÚRAM, Centre for Research in Medical Devices, University of Galway, H91 W2TY, Galway, Ireland.
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland.
| | - Noémie Petit
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123, St Stephen's Green, Dublin 2, Dublin, Ireland
| | - Fabio Quondamatteo
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123, St Stephen's Green, Dublin 2, Dublin, Ireland.
| |
Collapse
|
3
|
Systematic Review: Targeted Molecular Imaging of Angiogenesis and Its Mediators in Rheumatoid Arthritis. Int J Mol Sci 2022; 23:ijms23137071. [PMID: 35806074 PMCID: PMC9267012 DOI: 10.3390/ijms23137071] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/23/2022] [Accepted: 06/23/2022] [Indexed: 12/14/2022] Open
Abstract
Extensive angiogenesis is a characteristic feature in the synovial tissue of rheumatoid arthritis (RA) from a very early stage of the disease onward and constitutes a crucial event for the development of the proliferative synovium. This process is markedly intensified in patients with prolonged disease duration, high disease activity, disease severity, and significant inflammatory cell infiltration. Angiogenesis is therefore an interesting target for the development of new therapeutic approaches as well as disease monitoring strategies in RA. To this end, nuclear imaging modalities represent valuable non-invasive tools that can selectively target molecular markers of angiogenesis and accurately and quantitatively track molecular changes in multiple joints simultaneously. This systematic review summarizes the imaging markers used for single photon emission computed tomography (SPECT) and/or positron emission tomography (PET) approaches, targeting pathways and mediators involved in synovial neo-angiogenesis in RA.
Collapse
|
4
|
Hussain Z, Thu HE, Rawas-Qalaji M, Naseem M, Khan S, Sohail M. Recent developments and advanced strategies for promoting burn wound healing. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
5
|
Morbidelli L, Genah S, Cialdai F. Effect of Microgravity on Endothelial Cell Function, Angiogenesis, and Vessel Remodeling During Wound Healing. Front Bioeng Biotechnol 2021; 9:720091. [PMID: 34631676 PMCID: PMC8493071 DOI: 10.3389/fbioe.2021.720091] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/03/2021] [Indexed: 12/24/2022] Open
Abstract
Wound healing is a complex phenomenon that involves different cell types with various functions, i.e., keratinocytes, fibroblasts, and endothelial cells, all influenced by the action of soluble mediators and rearrangement of the extracellular matrix (ECM). Physiological angiogenesis occurs in the granulation tissue during wound healing to allow oxygen and nutrient supply and waste product removal. Angiogenesis output comes from a balance between pro- and antiangiogenic factors, which is finely regulated in a spatial and time-dependent manner, in order to avoid insufficient or excessive nonreparative neovascularization. The understanding of the factors and mechanisms that control angiogenesis and their change following unloading conditions (in a real or simulated space environment) will allow to optimize the tissue response in case of traumatic injury or medical intervention. The potential countermeasures under development to optimize the reparative angiogenesis that contributes to tissue healing on Earth will be discussed in relation to their exploitability in space.
Collapse
Affiliation(s)
| | - Shirley Genah
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Francesca Cialdai
- ASA Campus Joint Laboratory, ASA Research Division & Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| |
Collapse
|
6
|
Oudart JB, Villemin M, Brassart B, Sellier C, Terryn C, Dupont-Deshorgue A, Monboisse JC, Maquart FX, Ramont L, Brassart-Pasco S. F4, a collagen XIX-derived peptide, inhibits tumor angiogenesis through αvβ3 and α5β1 integrin interaction. Cell Adh Migr 2021; 15:215-223. [PMID: 34308743 PMCID: PMC8312610 DOI: 10.1080/19336918.2021.1951425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
We previously demonstrated that F4 peptide (CNPEDCLYPVSHAHQR) from collagen XIX was able to inhibit melanoma cell migrationin vitro and cancer progression in a mouse melanoma model. The aim of the present work was to study the anti-angiogenic properties of F4 peptide. We demonstrated that F4 peptide inhibited VEGF-induced pseudo-tube formation on Matrigel by endothelial cells and endothelial sprouting in a rat aortic ring assay. By affinity chromatography, we identified αvβ3 and α5β1 integrins as potential receptors for F4 peptide on endothelial cell surface. Using solid phase assays, we proved the direct interaction between F4 and both integrins. Taken together, our results demonstrate that F4 peptide is a potent antitumor agent inhibiting both angiogenesis and tumor cell migration.
Collapse
Affiliation(s)
- Jean-Baptiste Oudart
- UMR CNRS/URCA 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), Reims, France.,CHU Reims, Service Biochimie-Pharmacologie-Toxicologie, Reims, France
| | - Matthieu Villemin
- UMR CNRS/URCA 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), Reims, France
| | - Bertrand Brassart
- UMR CNRS/URCA 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), Reims, France
| | - Christèle Sellier
- UMR CNRS/URCA 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), Reims, France
| | - Christine Terryn
- PICT, Université de Reims Champagne Ardenne (URCA), Reims, France
| | - Aurélie Dupont-Deshorgue
- UMR CNRS/URCA 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), Reims, France
| | - Jean Claude Monboisse
- UMR CNRS/URCA 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), Reims, France.,CHU Reims, Service Biochimie-Pharmacologie-Toxicologie, Reims, France
| | - François-Xavier Maquart
- UMR CNRS/URCA 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), Reims, France.,CHU Reims, Service Biochimie-Pharmacologie-Toxicologie, Reims, France
| | - Laurent Ramont
- UMR CNRS/URCA 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), Reims, France.,CHU Reims, Service Biochimie-Pharmacologie-Toxicologie, Reims, France
| | - Sylvie Brassart-Pasco
- UMR CNRS/URCA 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), Reims, France
| |
Collapse
|
7
|
Das A, Masry MSE, Gnyawali SC, Ghatak S, Singh K, Stewart R, Lewis M, Saha A, Gordillo G, Khanna S. Skin Transcriptome of Middle-Aged Women Supplemented With Natural Herbo-mineral Shilajit Shows Induction of Microvascular and Extracellular Matrix Mechanisms. J Am Coll Nutr 2019; 38:526-536. [PMID: 31161927 PMCID: PMC7027386 DOI: 10.1080/07315724.2018.1564088] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/21/2018] [Accepted: 12/23/2018] [Indexed: 12/20/2022]
Abstract
Objective: Shilajit is a pale-brown to blackish-brown organic mineral substance available from Himalayan rocks. We demonstrated that in type I obese humans, shilajit supplementation significantly upregulated extracellular matrix (ECM)-related genes in the skeletal muscle. Such an effect was highly synergistic with exercise. The present study (clinicaltrials.gov NCT02762032) aimed to evaluate the effects of shilajit supplementation on skin gene expression profile and microperfusion in healthy adult females. Methods: The study design comprised six total study visits including a baseline visit (V1) and a final 14-week visit (V6) following oral shilajit supplementation (125 or 250 mg bid). A skin biopsy of the left inner upper arm of each subject was collected at visit 2 and visit 6 for gene expression profiling using Affymetrix Clariom™ D Assay. Skin perfusion was determined by MATLAB processing of dermascopic images. Transcriptome data were normalized and subjected to statistical analysis. The differentially regulated genes were subjected to Ingenuity Pathway Analysis (IPA®). The expression of the differentially regulated genes identified by IPA® were verified using real-time polymerase chain reaction (RT-PCR). Results: Supplementation with shilajit for 14 weeks was not associated with any reported adverse effect within this period. At a higher dose (250 mg bid), shilajit improved skin perfusion when compared to baseline or the placebo. Pathway analysis identified shilajit-inducible genes relevant to endothelial cell migration, growth of blood vessels, and ECM which were validated by quantitative real-time polymerase chain reaction (RT-PCR) analysis. Conclusions: This work provides maiden evidence demonstrating that oral shilajit supplementation in adult healthy women induced genes relevant to endothelial cell migration and growth of blood vessels. Shilajit supplementation improved skin microperfusion.
Collapse
Affiliation(s)
- Amitava Das
- Department of Surgery, Indiana Center for Regenerative
Medicine and Engineering, Indiana University School of Medicine, Indianapolis,
IN
- Department of Surgery, The Ohio State University, Wexner
Medical Center, Columbus, Ohio
| | - Mohamed S. El Masry
- Department of Surgery, Indiana Center for Regenerative
Medicine and Engineering, Indiana University School of Medicine, Indianapolis,
IN
- Department of Surgery, The Ohio State University, Wexner
Medical Center, Columbus, Ohio
- Department of Plastic and Reconstructive Surgery, Zagazig
University, Zagazig, Egypt
| | - Surya C. Gnyawali
- Department of Surgery, The Ohio State University, Wexner
Medical Center, Columbus, Ohio
| | - Subhadip Ghatak
- Department of Surgery, The Ohio State University, Wexner
Medical Center, Columbus, Ohio
- Department of Plastic Surgery, Indiana University School of
Medicine, Indianapolis, IN
| | - Kanhaiya Singh
- Department of Surgery, Indiana Center for Regenerative
Medicine and Engineering, Indiana University School of Medicine, Indianapolis,
IN
- Department of Surgery, The Ohio State University, Wexner
Medical Center, Columbus, Ohio
| | - Richard Stewart
- Department of Surgery, The Ohio State University, Wexner
Medical Center, Columbus, Ohio
| | - Madeline Lewis
- Department of Surgery, The Ohio State University, Wexner
Medical Center, Columbus, Ohio
| | - Abhijoy Saha
- Department of Statistics, The Ohio State University,
Columbus, OH, USA
| | - Gayle Gordillo
- Department of Plastic Surgery, Indiana University School of
Medicine, Indianapolis, IN
- Department of Plastic Surgery, The Ohio State University,
Wexner Medical Center, Columbus, Ohio
| | - Savita Khanna
- Department of Surgery, The Ohio State University, Wexner
Medical Center, Columbus, Ohio
- Department of Plastic Surgery, Indiana University School of
Medicine, Indianapolis, IN
| |
Collapse
|
8
|
Browne S, Healy KE. Matrix-assisted cell transplantation for tissue vascularization. Adv Drug Deliv Rev 2019; 146:155-169. [PMID: 30605738 DOI: 10.1016/j.addr.2018.12.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 10/30/2018] [Accepted: 12/27/2018] [Indexed: 12/20/2022]
Abstract
Cell therapy offers much promise for the treatment of ischemic diseases by augmenting tissue vasculogenesis. Matrix-assisted cell transplantation (MACT) has been proposed as a solution to enhance cell survival and integration with host tissue following transplantation. By designing semi synthetic matrices (sECM) with the correct physical and biochemical signals, encapsulated cells are directed towards a more angiogenic phenotype. In this review, we describe the choice of cells suitable for pro-angiogenic therapies, the properties that should be considered when designing sECM for transplantation and their relative importance. Pre-clinical models where MACT has been successfully applied to promote angiogenesis are reviewed to show the great potential of this strategy to treat ischemic conditions.
Collapse
Affiliation(s)
- Shane Browne
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA; Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA; Centre for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland
| | - Kevin E Healy
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA; Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
9
|
Sun L, Jiang W, Zhang H, Guo Y, Chen W, Jin Y, Chen H, Du K, Dai H, Ji J, Wang B. Photosensitizer-Loaded Multifunctional Chitosan Nanoparticles for Simultaneous in Situ Imaging, Highly Efficient Bacterial Biofilm Eradication, and Tumor Ablation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:2302-2316. [PMID: 30596498 DOI: 10.1021/acsami.8b19522] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In recent decades, bacterial and viral infections and chronic inflammatory response have emerged as important causes of cancer. Also, infections remain a significant cause of morbidity and mortality in cancer patients. In this work, carboxymethyl chitosan nanoparticles (CMC NPs) were synthesized in a facile and green way and further combined with ammonium methylbenzene blue (MB) as a cross-linking agent as well as a fluorescent molecule and a photosensitizer for self-imaging photodynamic therapy (PDT). The obtained CMC-MB NPs exhibited an apparent pH-responsive release behavior of MB, which was released for a prolonged period in a simulated physiological environment (pH 7.4) for more than 15 days and the time reduced to only 3.5 h in acidic conditions (pH 5.5). When irradiated by a 650 nm laser at 202 mW/cm2 for 5 min, the CMC-MB NPs showed efficient bactericidal and biofilm eradication properties as well as suppression of tumor cell growth in a similar acidified microenvironment. Furthermore, in an in vivo rabbit wound bacterial infection model, the rapid sterilization of CMC-MB NPs played a crucial role in bacterial infections, inflammation inhibition, and wound healing. As a PDT treatment against cancer, the CMC-MB NPs also exhibited an efficient antitumor therapeutic effect in a subcutaneous tumor mice model.
Collapse
Affiliation(s)
- Lin Sun
- School of Ophthalmology & Optometry, Eye Hospital , Wenzhou Medical University , Wenzhou 325027 , China
| | - Wenya Jiang
- School of Ophthalmology & Optometry, Eye Hospital , Wenzhou Medical University , Wenzhou 325027 , China
| | - Hengrui Zhang
- School of Ophthalmology & Optometry, Eye Hospital , Wenzhou Medical University , Wenzhou 325027 , China
- Wenzhou Institute of Biomaterials and Engineering , Chinese Academy of Sciences , Wenzhou 325000 , China
| | - Yishun Guo
- School of Ophthalmology & Optometry, Eye Hospital , Wenzhou Medical University , Wenzhou 325027 , China
| | - Wei Chen
- School of Ophthalmology & Optometry, Eye Hospital , Wenzhou Medical University , Wenzhou 325027 , China
- Wenzhou Institute of Biomaterials and Engineering , Chinese Academy of Sciences , Wenzhou 325000 , China
| | - Yingying Jin
- School of Ophthalmology & Optometry, Eye Hospital , Wenzhou Medical University , Wenzhou 325027 , China
| | - Hao Chen
- School of Ophthalmology & Optometry, Eye Hospital , Wenzhou Medical University , Wenzhou 325027 , China
- Wenzhou Institute of Biomaterials and Engineering , Chinese Academy of Sciences , Wenzhou 325000 , China
| | - Kanghui Du
- School of Ophthalmology & Optometry, Eye Hospital , Wenzhou Medical University , Wenzhou 325027 , China
| | - Hangdong Dai
- School of Ophthalmology & Optometry, Eye Hospital , Wenzhou Medical University , Wenzhou 325027 , China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Bailiang Wang
- School of Ophthalmology & Optometry, Eye Hospital , Wenzhou Medical University , Wenzhou 325027 , China
- Wenzhou Institute of Biomaterials and Engineering , Chinese Academy of Sciences , Wenzhou 325000 , China
| |
Collapse
|
10
|
Diaz C, Neubauer S, Rechenmacher F, Kessler H, Missirlis D. Recruitment of integrin ανβ3 to integrin α5β1-induced clusters enables focal adhesion maturation and cell spreading. J Cell Sci 2019; 133:jcs.232702. [DOI: 10.1242/jcs.232702] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 11/25/2019] [Indexed: 12/17/2022] Open
Abstract
The major fibronectin (FN) binding integrins α5β1 and αvβ3 exhibit cooperativity during cell adhesion, migration and mechanosensing, through mechanisms that are not yet fully resolved. Exploiting mechanically-tunable, nano-patterned substrates, and peptidomimetic ligands designed to selectively bind corresponding integrins, we report that focal adhesions (FAs) of endothelial cells assembled on integrin α5β1-selective substrates, rapidly recruit αvβ3 integrins, but not vice versa. Blocking of integrin αvβ3 hindered FA maturation and cell spreading on α5β1-selective substrates, indicating a mechanism dependent on extracellular ligand binding and highlighting the requirement of αvβ3 engagement for efficient adhesion. Recruitment of αvβ3 integrins additionally occurred on hydrogel substrates of varying mechanical properties, above a threshold stiffness supporting FA formation. Mechanistic studies revealed the need for soluble factors present in serum to allow recruitment, and excluded exogenous, or endogenous, FN as the responsible ligand for integrin αvβ3 accumulation to adhesion clusters. Our findings highlight a novel mechanism of integrin co-operation and the critical role for αvβ3 integrins in promoting cell adhesion on α5β1-selective substrates.
Collapse
Affiliation(s)
- Carolina Diaz
- Department of Cellular Biophysics, Max Planck Institute for Medical Research; postal address: Jahnstr. 29, D-69120, Heidelberg, Germany
- Department of Biophysical Chemistry, Physical Chemistry Institute, Heidelberg University; postal address: INF 253, D-69120 Heidelberg, Germany
| | - Stefanie Neubauer
- Institute for Advanced Study and Center for Integrated Protein Science (CIPSM), Technische Universität München; postal address: Lichtenbergstr. 4, D-85747, Garching, Germany
| | - Florian Rechenmacher
- Institute for Advanced Study and Center for Integrated Protein Science (CIPSM), Technische Universität München; postal address: Lichtenbergstr. 4, D-85747, Garching, Germany
| | - Horst Kessler
- Institute for Advanced Study and Center for Integrated Protein Science (CIPSM), Technische Universität München; postal address: Lichtenbergstr. 4, D-85747, Garching, Germany
| | - Dimitris Missirlis
- Department of Cellular Biophysics, Max Planck Institute for Medical Research; postal address: Jahnstr. 29, D-69120, Heidelberg, Germany
- Department of Biophysical Chemistry, Physical Chemistry Institute, Heidelberg University; postal address: INF 253, D-69120 Heidelberg, Germany
| |
Collapse
|
11
|
Villain G, Lelievre E, Broekelmann T, Gayet O, Havet C, Werkmeister E, Mecham R, Dusetti N, Soncin F, Mattot V. MAGP
‐1 and fibronectin control
EGFL
7 functions by driving its deposition into distinct endothelial extracellular matrix locations. FEBS J 2018; 285:4394-4412. [DOI: 10.1111/febs.14680] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 08/31/2018] [Accepted: 10/16/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Gaëlle Villain
- CNRS Institut Pasteur de Lille UMR 8161 – M3T – Mechanisms of Tumorigenesis and Target Therapies Univ. Lille France
| | - Etienne Lelievre
- CNRS Institut Pasteur de Lille UMR 8161 – M3T – Mechanisms of Tumorigenesis and Target Therapies Univ. Lille France
| | - Tom Broekelmann
- Department of Cell Biology and Physiology Washington University School of Medicine St. Louis MO USA
| | - Odile Gayet
- Centre de Recherche en Cancérologie de Marseille (CRCM) INSERM U1068 CNRS UMR 7258 Aix‐Marseille Université and Institut Paoli‐Calmettes, Parc Scientifique et Technologique de Luminy France
| | - Chantal Havet
- CNRS Institut Pasteur de Lille UMR 8161 – M3T – Mechanisms of Tumorigenesis and Target Therapies Univ. Lille France
| | - Elisabeth Werkmeister
- Cellular Microbiology and Physics of Infection Group – Center for Infection and Immunity of Lille CNRS UMR8204 Inserm U1019 CHU Lille Institut Pasteur de Lille Univ. Lille. France
| | - Robert Mecham
- Department of Cell Biology and Physiology Washington University School of Medicine St. Louis MO USA
| | - Nelson Dusetti
- Centre de Recherche en Cancérologie de Marseille (CRCM) INSERM U1068 CNRS UMR 7258 Aix‐Marseille Université and Institut Paoli‐Calmettes, Parc Scientifique et Technologique de Luminy France
| | - Fabrice Soncin
- CNRS Institut Pasteur de Lille UMR 8161 – M3T – Mechanisms of Tumorigenesis and Target Therapies Univ. Lille France
| | - Virginie Mattot
- CNRS Institut Pasteur de Lille UMR 8161 – M3T – Mechanisms of Tumorigenesis and Target Therapies Univ. Lille France
| |
Collapse
|
12
|
Herrera A, Herrera M, Guerra-Perez N, Galindo-Pumariño C, Larriba MJ, García-Barberán V, Gil B, Giménez-Moyano S, Ferreiro-Monteagudo R, Veguillas P, Candia A, Peña R, Pinto J, García-Bermejo ML, Muñoz A, García de Herreros A, Bonilla F, Carrato A, Peña C. Endothelial cell activation on 3D-matrices derived from PDGF-BB-stimulated fibroblasts is mediated by Snail1. Oncogenesis 2018; 7:76. [PMID: 30250018 PMCID: PMC6155204 DOI: 10.1038/s41389-018-0085-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 08/26/2018] [Indexed: 01/26/2023] Open
Abstract
Carcinomas, such as colon cancer, initiate their invasion by rescuing the innate plasticity of both epithelial cells and stromal cells. Although Snail is a transcriptional factor involved in the Epithelial-Mesenchymal Transition, in recent years, many studies have also identified the major role of Snail in the activation of Cancer-Associated Fibroblast (CAF) cells and the remodeling of the extracellular matrix. In CAFs, Platelet-derived growth factor (PDGF) receptor signaling is a major functional determinant. High expression of both SNAI1 and PDGF receptors is associated with poor prognosis in cancer patients, but the mechanism(s) that underlie these connections are not understood. In this study, we demonstrate that PDGF-activated fibroblasts stimulate extracellular matrix (ECM) fiber remodeling and deposition. Furthermore, we describe how SNAI1, through the FAK pathway, is a necessary factor for ECM fiber organization. The parallel-oriented fibers are used by endothelial cells as “tracks”, facilitating their activation and the creation of tubular structures mimicking in vivo capillary formation. Accordingly, Snail1 expression in fibroblasts was required for the co-adjuvant effect of these cells on matrix remodeling and neoangiogenesis when co-xenografted in nude mice. Finally, in tumor samples from colorectal cancer patients a direct association between stromal SNAI1 expression and the endothelial marker CD34 was observed. In summary, our results advance the understanding of PDGF/SNAI1-activated CAFs in matrix remodeling and angiogenesis stimulation.
Collapse
Affiliation(s)
- Alberto Herrera
- Department of Medical Oncology, Hospital Universitario Puerta de Hierro de Majadahonda, Majadahonda, Madrid, Spain
| | - Mercedes Herrera
- Department of Medical Oncology, Hospital Universitario Puerta de Hierro de Majadahonda, Majadahonda, Madrid, Spain.,Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Natalia Guerra-Perez
- Medical Oncology Department, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Cristina Galindo-Pumariño
- Medical Oncology Department, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - María Jesús Larriba
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, CIBERONC, Madrid, Spain
| | - Vanesa García-Barberán
- Department of Medical Oncology, Hospital Universitario Puerta de Hierro de Majadahonda, Majadahonda, Madrid, Spain.,Laboratory of Molecular Oncology, IIS Hospital Clínico San Carlos, CIBERONC, Madrid, Spain
| | - Beatriz Gil
- Department of Medical Oncology, Hospital Universitario Puerta de Hierro de Majadahonda, Majadahonda, Madrid, Spain.,Laboratorio de Oncología Traslacional y Nuevas Terapias. Instituto de Investigación i+12, Madrid, Spain
| | - Sara Giménez-Moyano
- Biomarkers and Therapeutic Targets Lab, Pathology Department, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Reyes Ferreiro-Monteagudo
- Medical Oncology Department, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Pilar Veguillas
- Surgery Department, Hospital Universitario de Guadalajara, Guadalajara, Spain
| | - Antonio Candia
- Pathology Department, Hospital Universitario de Guadalajara, Guadalajara, Spain
| | - Raúl Peña
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain
| | - Jesús Pinto
- Pathology Department, Virgen de la Concha Hospital, Zamora, Castilla y León, Spain
| | - Mª Laura García-Bermejo
- Laboratorio de Oncología Traslacional y Nuevas Terapias. Instituto de Investigación i+12, Madrid, Spain
| | - Alberto Muñoz
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, CIBERONC, Madrid, Spain
| | | | | | - Alfredo Carrato
- Medical Oncology Department, Ramon y Cajal University Hospital, IRYCIS, CIBERONC, Alcala University, Madrid, Spain
| | - Cristina Peña
- Department of Medical Oncology, Hospital Universitario Puerta de Hierro de Majadahonda, Majadahonda, Madrid, Spain. .,Medical Oncology Department, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), CIBERONC, Madrid, Spain.
| |
Collapse
|
13
|
Kaessmeyer S, Sehl J, Khiao In M, Merle R, Richardson K, Plendl J. Subcellular Interactions during Vascular Morphogenesis in 3D Cocultures between Endothelial Cells and Fibroblasts. Int J Mol Sci 2017; 18:ijms18122590. [PMID: 29194374 PMCID: PMC5751193 DOI: 10.3390/ijms18122590] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/23/2017] [Accepted: 11/28/2017] [Indexed: 12/28/2022] Open
Abstract
Background: Increasing the complexity of in vitro systems to mimic three-dimensional tissues and the cellular interactions within them will increase the reliability of data that were previously collected with in vitro systems. In vivo vascularization is based on complex and clearly defined cell–matrix and cell–cell interactions, where the extracellular matrix (ECM) seems to play a very important role. The aim of this study was to monitor and visualize the subcellular and molecular interactions between endothelial cells (ECs), fibroblasts, and their surrounding microenvironment during vascular morphogenesis in a three-dimensional coculture model. Methods: Quantitative and qualitative analyses during the generation of a coculture tissue construct consisting of endothelial cells and fibroblasts were done using transmission electron microscopy and immunohistochemistry. Results: Dynamic interactions were found in cocultures between ECs, between fibroblasts (FBs), between ECs and FBs, and between the cells and the ECM. Microvesicles were involved in intercellular information transfer. FBs took an active and physical part in the angiogenesis process. The ECM deposited by the cells triggered endothelial angiogenic activity. Capillary-like tubular structures developed and matured. Moreover, some ECM assembled into a basement membrane (BM) having three different layers equivalent to those seen in vivo. Finally, the three-dimensional in vitro construct mirrored the topography of histological tissue sections. Conclusion: Our results visualize the importance of the physical contact between all cellular and acellular components of the cocultures.
Collapse
Affiliation(s)
- Sabine Kaessmeyer
- Department of Veterinary Medicine, Institute of Veterinary Anatomy, Freie Universitaet Berlin, Koserstraße 20, 14195 Berlin, Germany.
| | - Julia Sehl
- Department of Veterinary Medicine, Institute of Veterinary Anatomy, Freie Universitaet Berlin, Koserstraße 20, 14195 Berlin, Germany.
| | - Maneenooch Khiao In
- Department of Veterinary Medicine, Institute of Veterinary Anatomy, Freie Universitaet Berlin, Koserstraße 20, 14195 Berlin, Germany.
| | - Roswitha Merle
- Department of Veterinary Medicine, Institute of Veterinary Epidemiology and Biostatistics, Freie Universitaet Berlin, Koenigsweg 67, 14163 Berlin, Germany.
| | - Ken Richardson
- College of Veterinary Medicine, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia.
| | - Johanna Plendl
- Department of Veterinary Medicine, Institute of Veterinary Anatomy, Freie Universitaet Berlin, Koserstraße 20, 14195 Berlin, Germany.
| |
Collapse
|
14
|
Patra C, Boccaccini A, Engel F. Vascularisation for cardiac tissue engineering: the extracellular matrix. Thromb Haemost 2017; 113:532-47. [DOI: 10.1160/th14-05-0480] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 09/03/2014] [Indexed: 02/07/2023]
Abstract
SummaryCardiovascular diseases present a major socio-economic burden. One major problem underlying most cardiovascular and congenital heart diseases is the irreversible loss of contractile heart muscle cells, the cardiomyocytes. To reverse damage incurred by myocardial infarction or by surgical correction of cardiac malformations, the loss of cardiac tissue with a thickness of a few millimetres needs to be compensated. A promising approach to this issue is cardiac tissue engineering. In this review we focus on the problem of in vitro vascularisation as implantation of cardiac patches consisting of more than three layers of cardiomyocytes (> 100 μm thick) already results in necrosis. We explain the need for vascularisation and elaborate on the importance to include non-myocytes in order to generate functional vascularised cardiac tissue. We discuss the potential of extracellular matrix molecules in promoting vascularisation and introduce nephronectin as an example of a new promising candidate. Finally, we discuss current biomaterial- based approaches including micropatterning, electrospinning, 3D micro-manufacturing technology and porogens. Collectively, the current literature supports the notion that cardiac tissue engineering is a realistic option for future treatment of paediatric and adult patients with cardiac disease.
Collapse
|
15
|
Moriya J, Minamino T. Angiogenesis, Cancer, and Vascular Aging. Front Cardiovasc Med 2017; 4:65. [PMID: 29114540 PMCID: PMC5660731 DOI: 10.3389/fcvm.2017.00065] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/09/2017] [Indexed: 12/14/2022] Open
Abstract
Several lines of evidence have revealed that the angiogenic response to ischemic injury declines with age, which might account for the increased morbidity and mortality of cardiovascular disease (CVD) among the elderly. While impairment of angiogenesis with aging leads to delayed wound healing or exacerbation of atherosclerotic ischemic diseases, it also inhibits the progression of cancer. Age-related changes of angiogenesis have been considered to at least partly result from vascular aging or endothelial cell senescence. There is considerable evidence supporting the hypothesis that vascular cell senescence contributes to the pathogenesis of age-related CVD, suggesting that vascular aging could be an important therapeutic target. Since therapeutic angiogenesis is now regarded as a promising concept for patients with ischemic CVD, it has become even more important to understand the detailed molecular mechanisms underlying impairment of angiogenesis in older patients. To improve the usefulness of therapeutic angiogenesis, approaches are needed that can compensate for impaired angiogenic capacity in the elderly while not promoting the development or progression of malignancy. In this review, we briefly outline the mechanisms of angiogenesis and vascular aging, followed by a description of how vascular aging leads to impairment of angiogenesis. We also examine potential therapeutic approaches that could enhance angiogenesis and/or vascular function in the elderly, as well as discussing the possibility of anti-senescence therapy or reversal of endothelial cell senescence.
Collapse
Affiliation(s)
- Junji Moriya
- Office of Cellular and Tissue-Based Products, Pharmaceuticals and Medical Devices Agency, Tokyo, Japan
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
16
|
Lee Y, Balikov DA, Lee JB, Lee SH, Lee SH, Lee JH, Park KD, Sung HJ. In Situ Forming Gelatin Hydrogels-Directed Angiogenic Differentiation and Activity of Patient-Derived Human Mesenchymal Stem Cells. Int J Mol Sci 2017; 18:E1705. [PMID: 28777301 PMCID: PMC5578095 DOI: 10.3390/ijms18081705] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 07/30/2017] [Accepted: 08/01/2017] [Indexed: 12/23/2022] Open
Abstract
Directing angiogenic differentiation of mesenchymal stem cells (MSCs) still remains challenging for successful tissue engineering. Without blood vessel formation, stem cell-based approaches are unable to fully regenerate damaged tissues due to limited support for cell viability and desired tissue/organ functionality. Herein, we report in situ cross-linkable gelatin-hydroxyphenyl propionic acid (GH) hydrogels that can induce pro-angiogenic profiles of MSCs via purely material-driven effects. This hydrogel directed endothelial differentiation of mouse and human patient-derived MSCs through integrin-mediated interactions at the cell-material interface, thereby promoting perfusable blood vessel formation in vitro and in vivo. The causative roles of specific integrin types (α₁ and αvβ₃) in directing endothelial differentiation were verified by blocking the integrin functions with chemical inhibitors. In addition, to verify the material-driven effect is not species-specific, we confirmed in vitro endothelial differentiation and in vivo blood vessel formation of patient-derived human MSCs by this hydrogel. These findings provide new insight into how purely material-driven effects can direct endothelial differentiation of MSCs, thereby promoting vascularization of scaffolds towards tissue engineering and regenerative medicine applications in humans.
Collapse
Affiliation(s)
- Yunki Lee
- Department of Biomedical Engineering, Vanderbilt University, Nasville, TN 37235, USA.
| | - Daniel A Balikov
- Department of Biomedical Engineering, Vanderbilt University, Nasville, TN 37235, USA.
| | - Jung Bok Lee
- Department of Biomedical Engineering, Vanderbilt University, Nasville, TN 37235, USA.
| | - Sue Hyun Lee
- Department of Biomedical Engineering, Vanderbilt University, Nasville, TN 37235, USA.
| | - Seung Hwan Lee
- Severance Biomedical Science Institute, College of Medicine, Yonsei University, Seoul 120-752, Korea.
| | - Jong Hun Lee
- Department of Urology, College of Medicine, Yonsei University, Seoul 120-752, Korea.
| | - Ki Dong Park
- Department of Food Science and Biotechnology, College of Life Science, CHA University, Gyeonggi 443-742, Korea.
| | - Hak-Joon Sung
- Department of Biomedical Engineering, Vanderbilt University, Nasville, TN 37235, USA.
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea.
| |
Collapse
|
17
|
Safarzadeh E, Orangi M, Mohammadi H, Babaie F, Baradaran B. Myeloid-derived suppressor cells: Important contributors to tumor progression and metastasis. J Cell Physiol 2017; 233:3024-3036. [DOI: 10.1002/jcp.26075] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 06/28/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Elham Safarzadeh
- Immunology Research Center; Tabriz University of Medical Sciences; Tabriz Iran
- Faculty of Medicine, Department of Immunology; Tabriz University of Medical Sciences; Tabriz Iran
| | - Mona Orangi
- Immunology Research Center; Tabriz University of Medical Sciences; Tabriz Iran
- Faculty of Medicine, Department of Immunology; Tabriz University of Medical Sciences; Tabriz Iran
| | - Hamed Mohammadi
- Immunology Research Center; Tabriz University of Medical Sciences; Tabriz Iran
- Faculty of Medicine, Department of Immunology; Tabriz University of Medical Sciences; Tabriz Iran
| | - Farhad Babaie
- Immunology Research Center; Tabriz University of Medical Sciences; Tabriz Iran
- Faculty of Medicine, Department of Immunology; Tabriz University of Medical Sciences; Tabriz Iran
| | - Behzad Baradaran
- Immunology Research Center; Tabriz University of Medical Sciences; Tabriz Iran
- Faculty of Medicine, Department of Immunology; Tabriz University of Medical Sciences; Tabriz Iran
| |
Collapse
|
18
|
Muppala S, Xiao R, Krukovets I, Verbovetsky D, Yendamuri R, Habib N, Raman P, Plow E, Stenina-Adognravi O. Thrombospondin-4 mediates TGF-β-induced angiogenesis. Oncogene 2017; 36:5189-5198. [PMID: 28481870 PMCID: PMC5589494 DOI: 10.1038/onc.2017.140] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 03/24/2017] [Accepted: 04/10/2017] [Indexed: 12/12/2022]
Abstract
TGF-β is a multifunctional cytokine affecting many cell types and implicated in tissue remodeling processes. Due to its many functions and cell-specific effects, the consequences of TGF-β signaling are process-and stage-dependent, and it is not uncommon that TGF-β exerts distinct and sometimes opposing effects on a disease progression depending on the stage and on the pathological changes associated with the stage. The mechanisms underlying cell- and process-specific effects of TGF-β are poorly understood. We are describing a novel pathway that mediates induction of angiogenesis in response to TGF-β1. We found that in endothelial cells (EC) TSP-4, a secreted extracellular matrix (ECM) protein is upregulated in response to TGF-β1 and mediates the effects of TGF-β1 on angiogenesis. Upregulation of TSP-4 does not require the synthesis of new protein, is not caused by decreased secretion of TSP-4, and is mediated by activation of SMAD3. Using Thbs4−/− mice and TSP-4 shRNA, we found that TSP-4 mediated pro-angiogenic functions on cultured EC and angiogenesis in vivo in response to TGF-β1. We observed ~ 3-fold increases in tumor mass and levels of angiogenesis markers in animals injected with TGF-β1, and these effects did not occur in Thbs4−/− animals. Injections of an inhibitor of TGF-β1 signaling SB431542 also decreased the weights of tumors and cancer angiogenesis. Our results from in vivo angiogenesis models and cultured EC document that TSP-4 mediates upregulation of angiogenesis by TGF-β1. Upregulation of pro-angiogenic TSP-4 and selective effects of TSP-4 on EC may contribute to stimulation of tumor growth by TGF-β despite the inhibition of cancer cell proliferation.
Collapse
Affiliation(s)
- S Muppala
- Department of Molecular Cardiology, Cleveland Clinic, Cleveland, OH, USA
| | - R Xiao
- Department of Molecular Cardiology, Cleveland Clinic, Cleveland, OH, USA
| | - I Krukovets
- Department of Molecular Cardiology, Cleveland Clinic, Cleveland, OH, USA
| | - D Verbovetsky
- Department of Molecular Cardiology, Cleveland Clinic, Cleveland, OH, USA
| | - R Yendamuri
- Department of Molecular Cardiology, Cleveland Clinic, Cleveland, OH, USA
| | - N Habib
- Department of Molecular Cardiology, Cleveland Clinic, Cleveland, OH, USA
| | - P Raman
- Department of Integrative Medical Sciences, North Ohio Medical University, Rootstown, OH, USA
| | - E Plow
- Department of Molecular Cardiology, Cleveland Clinic, Cleveland, OH, USA
| | | |
Collapse
|
19
|
Takahashi H, Kato K, Ueyama K, Kobayashi M, Baik G, Yukawa Y, Suehiro JI, Matsunaga YT. Visualizing dynamics of angiogenic sprouting from a three-dimensional microvasculature model using stage-top optical coherence tomography. Sci Rep 2017; 7:42426. [PMID: 28186184 PMCID: PMC5301260 DOI: 10.1038/srep42426] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 01/09/2017] [Indexed: 12/15/2022] Open
Abstract
Three-dimensional (3D) in vitro microvasculature in a polydimethylsiloxane-based microdevice was developed as a physiologically relevant model of angiogenesis. The angiogenic process is monitored using stage-top optical coherence tomography (OCT). OCT allows non-invasive monitoring of the 3D structures of the prepared host microvasculature and sprouted neovasculature without fluorescence staining. OCT monitoring takes only a few minutes to scan through the several-millimetre scale range, which provides the advantage of rapid observation of living samples. The obtained OCT cross-sectional images capture 3D features of the angiogenic sprouting process and provide information on the dynamics of luminal formation. The stage-top system used in this study enables the observer to visualize the in vitro dynamics of 3D cultured cells simply and conveniently, offering an alternative monitoring method for studies on angiogenesis and providing quantitative information about vascular morphological changes.
Collapse
Affiliation(s)
- Haruko Takahashi
- Center for International Research on Integrative Biomedical Systems, Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Keisuke Kato
- R&D Department 1, Screen Holdings Co., Ltd., 322 Furukawa-cho, Hazukashi, Fushimi-ku, Kyoto 612-8486, Japan
| | - Kenji Ueyama
- R&D Department 1, Screen Holdings Co., Ltd., 322 Furukawa-cho, Hazukashi, Fushimi-ku, Kyoto 612-8486, Japan
| | - Masayoshi Kobayashi
- R&D Department 1, Screen Holdings Co., Ltd., 322 Furukawa-cho, Hazukashi, Fushimi-ku, Kyoto 612-8486, Japan
| | - Gunwoong Baik
- Center for International Research on Integrative Biomedical Systems, Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Yasuhiro Yukawa
- Center for Interdisciplinary Research on Micro-Nano Methods, Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Jun-ichi Suehiro
- Department of Pharmacology and Toxicology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi, Tokyo 181-8611, Japan
| | - Yukiko T. Matsunaga
- Center for International Research on Integrative Biomedical Systems, Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
20
|
Abstract
Retinal fibrosis, characterized by dysregulation of extracellular matrix (ECM) protein deposition by retinal endothelial cells, pigment epithelial cells, and other resident cell-types, is a unifying feature of several common retinal diseases. Fibronectin is an early constituent of newly deposited ECM and serves as a template for assembly of other ECM proteins, including collagens. Under physiologic conditions, fibronectin is found in all layers of Bruch's membrane. Proliferative vitreoretinopathy (PVR), a complication of retinal surgery, is characterized by ECM accumulation. Among the earliest histologic manifestations of diabetic retinopathy (DR) is capillary basement membrane thickening, which occurs due to perturbations in ECM homeostasis. Neovascularization, the hallmark of late stage DR as well as exudative age-related macular degeneration (AMD), involves ECM assembly as a scaffold for the aberrant new vessel architecture. Rodent models of retinal injury demonstrate a key role for fibronectin in complications characteristic of PVR, including retinal detachment. In mouse models of DR, reducing fibronectin gene expression has been shown to arrest the accumulation of ECM in the capillary basement membrane. Alterations in matrix metalloproteinase activity thought to be important in the pathogenesis of AMD impact the turnover of fibronectin matrix as well as collagens. Growth factors involved in PVR, AMD, and DR, such as PDGF and TGFβ, are known to stimulate fibronectin matrix assembly. A deeper understanding of how pathologic ECM deposition contributes to disease progression may help to identify novel targets for therapeutic intervention.
Collapse
Affiliation(s)
- Charles G Miller
- Department of Ophthalmology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854-5635, USA
| | - Greg Budoff
- Department of Ophthalmology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854-5635, USA
| | - Jonathan L Prenner
- Department of Ophthalmology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854-5635, USA
- NJ Retina, New Brunswick, NJ 08901-2066, USA
| | - Jean E Schwarzbauer
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014, USA
| |
Collapse
|
21
|
Milan PB, Lotfibakhshaiesh N, Joghataie MT, Ai J, Pazouki A, Kaplan DL, Kargozar S, Amini N, Hamblin MR, Mozafari M, Samadikuchaksaraei A. Accelerated wound healing in a diabetic rat model using decellularized dermal matrix and human umbilical cord perivascular cells. Acta Biomater 2016; 45:234-246. [PMID: 27591919 PMCID: PMC5069185 DOI: 10.1016/j.actbio.2016.08.053] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 08/27/2016] [Accepted: 08/30/2016] [Indexed: 12/21/2022]
Abstract
UNLABELLED There is an unmet clinical need for novel wound healing strategies to treat full thickness skin defects, especially in diabetic patients. We hypothesized that a scaffold could perform dual roles of a biomechanical support and a favorable biochemical environment for stem cells. Human umbilical cord perivascular cells (HUCPVCs) have been recently reported as a type of mesenchymal stem cell that can accelerate early wound healing in skin defects. However, there are only a limited number of studies that have incorporated these cells into natural scaffolds for dermal tissue engineering. The aim of the present study was to promote angiogenesis and accelerate wound healing by using HUCPVCs and decellularized dermal matrix (DDM) in a rat model of diabetic wounds. The DDM scaffolds were prepared from harvested human skin samples and histological, ultrastructural, molecular and mechanical assessments were carried out. In comparison with the control (without any treatment) and DDM alone group, full thickness excisional wounds treated with HUCPVCs-loaded DDM scaffolds demonstrated an accelerated wound closure rate, faster re-epithelization, more granulation tissue formation and decreased collagen deposition. Furthermore, immunofluorescence analysis showed that the VEGFR-2 expression and vascular density in the HUCPVCs-loaded DDM scaffold treated group were also significantly higher than the other groups at 7days post implantation. Since the rates of angiogenesis, re-epithelization and formation of granulation tissue are directly correlated with full thickness wound healing in patients, the proposed HUCPVCs-loaded DDM scaffolds may fulfil a role neglected by current treatment strategies. This pre-clinical proof-of-concept study warrants further clinical evaluation. STATEMENT OF SIGNIFICANCE The aim of the present study was to design a novel tissue-engineered system to promote angiogenesis, re-epithelization and granulation of skin tissue using human umbilical cord perivascular stem cells and decellularized dermal matrix natural scaffolds in rat diabetic wound models. The authors of this research article have been working on stem cells and tissue engineering scaffolds for years. According to our knowledge, there is a lack of an efficient system for the treatment of skin defects using tissue engineering strategy. Since the rates of angiogenesis, re-epithelization and granulation tissue are directly correlated with full thickness wound healing, the proposed HUCPVCs-loaded DDM scaffolds perfectly fills the niche neglected by current treatment strategies. This pre-clinical study demonstrates the proof-of-concept that necessitates clinical evaluations.
Collapse
Affiliation(s)
- P Brouki Milan
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| | - N Lotfibakhshaiesh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| | - M T Joghataie
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| | - J Ai
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| | - A Pazouki
- Minimally Invasive Surgery Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| | - D L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA 02155, United States.
| | - S Kargozar
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| | - N Amini
- Cellular and Molecular Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| | - M R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, 50 Blossom Street, Boston, MA 02114, United States; Department of Dermatology, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, United States; Harvard-MIT Division of Health Sciences and Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States.
| | - M Mozafari
- Cellular and Molecular Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran; Bioengineering Research Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| | - A Samadikuchaksaraei
- Cellular and Molecular Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran; Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| |
Collapse
|
22
|
Kim TH, Kim SH, Jung Y. The effects of nanotopography and coculture systems to promote angiogenesis for wound repair. Nanomedicine (Lond) 2016; 11:2997-3007. [DOI: 10.2217/nnm-2016-0237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Insufficient angiogenesis in severe wounds delays wound repair because of a lack of blood supply to the wound site. Therefore, pro-angiogenic therapeutics may enhance wound repair. Many studies have investigated various physical and biochemical cues to improve angiogenesis, such as biocompatible materials, surface modifications, angiogenic factors and coculture systems using various cell types. However, the present capability to mimic the micro- and nanostructure of the natural microenvironment, particularly its porous, fibrous features, is limited. Nanotopography may represent a promising tool to overcome these limitations. Here, we discuss various approaches to the use of nanotopography to enhance angiogenesis and consider the combination of coculture systems with nanotopography to mimic the native environment for promotion of angiogenesis in wound healing and repair.
Collapse
Affiliation(s)
- Tae Hee Kim
- Biomaterials Research Center, Korea Institute of Science & Technology, 5, Hwanrangno 14 Gil, Seoungbuk-gu, Seoul 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science & Technology, Korea University, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Soo Hyun Kim
- Biomaterials Research Center, Korea Institute of Science & Technology, 5, Hwanrangno 14 Gil, Seoungbuk-gu, Seoul 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science & Technology, Korea University, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Department of Biomedical Engineering, Korea University of Science & Technology, Hwanrangno 14 Gil, Seoungbuk-gu, Seoul 02792, Republic of Korea
| | - Youngmee Jung
- Biomaterials Research Center, Korea Institute of Science & Technology, 5, Hwanrangno 14 Gil, Seoungbuk-gu, Seoul 02792, Republic of Korea
- Department of Biomedical Engineering, Korea University of Science & Technology, Hwanrangno 14 Gil, Seoungbuk-gu, Seoul 02792, Republic of Korea
| |
Collapse
|
23
|
Wu QH, Ma Y, Ruan CC, Yang Y, Liu XH, Ge Q, Kong LR, Zhang JW, Yan C, Gao PJ. Loss of osteoglycin promotes angiogenesis in limb ischaemia mouse models via modulation of vascular endothelial growth factor and vascular endothelial growth factor receptor 2 signalling pathway. Cardiovasc Res 2016; 113:70-80. [DOI: 10.1093/cvr/cvw220] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 08/29/2016] [Accepted: 09/21/2016] [Indexed: 01/22/2023] Open
|
24
|
Tabola R, Augoff K, Lewandowski A, Ziolkowski P, Szelachowski P, Grabowski K. Esophageal anastomosis - how the granulation phase of wound healing improves the incidence of anastomotic leakage. Oncol Lett 2016; 12:2038-2044. [PMID: 27602135 DOI: 10.3892/ol.2016.4873] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 06/02/2016] [Indexed: 12/22/2022] Open
Abstract
A two-stage esophagectomy with an interval for reconstruction of the esophagus creates an opportunity for the esophageal stump to recover from vessel injury and allows the formation of granulation tissue rich in proangiogenic factors, including transforming growth factor β (TGF-β) and vascular endothelial growth factor A (VEGF-A), which may have an impact on anastomosis healing. The present study comprised 25 patients (27 in total, 2 succumbed to complications following surgery) who underwent two-stage esophagectomy for squamous cell carcinoma in the Department of Gastrointestinal and General Surgery, Wrocław Medical University (Wrocław, Poland) between January 2007 and December 2012. Immunohistochemical staining for VEGF-A and TGF-β was performed to evaluate esophageal wall specimens at the time of esophagostomy construction and prior to anastomosis, in which the cervical esophagus was connected with the colon or ileum. At the time of reconstructive surgery, a significant increase in microvessel density was observed in all esophageal specimens (P<0.03). Significant differences were also identified in the immunohistochemical staining intensity of TGF-β and VEGF-A in the epithelium of all esophageal specimens between biopsies obtained from normal esophageal tissues at the time of esophagectomy and during reconstructive surgery. Delayed anastomosis construction provides an advantage for the esophageal stump to accumulate proangiogenic growth factors, which overlap with the subsequent proliferative stage of the anastomosed tissue and thus supports its recovery, creating an optimal environment for the healing of any fistulas.
Collapse
Affiliation(s)
- Renata Tabola
- Department of Gastrointestinal and General Surgery, Wrocław Medical University, 50-369 Wrocław, Poland
| | - Katarzyna Augoff
- Department of Gastrointestinal and General Surgery, Wrocław Medical University, 50-369 Wrocław, Poland
| | - Andrzej Lewandowski
- Department of Gastrointestinal and General Surgery, Wrocław Medical University, 50-369 Wrocław, Poland
| | - Piotr Ziolkowski
- Department of Pathomorphology, Wrocław Medical University, 50-369 Wrocław, Poland
| | - Piotr Szelachowski
- Department of Gastrointestinal and General Surgery, Wrocław Medical University, 50-369 Wrocław, Poland
| | - Krzysztof Grabowski
- Department of Gastrointestinal and General Surgery, Wrocław Medical University, 50-369 Wrocław, Poland
| |
Collapse
|
25
|
Allipour Birgani S, Mailänder M, Wasle I, Dietrich H, Gruber J, Distler O, Sgonc R. Efficient therapy of ischaemic lesions with VEGF121-fibrin in an animal model of systemic sclerosis. Ann Rheum Dis 2016; 75:1399-406. [PMID: 26362758 PMCID: PMC4766736 DOI: 10.1136/annrheumdis-2015-207548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 07/01/2015] [Accepted: 08/01/2015] [Indexed: 11/17/2022]
Abstract
BACKGROUND In systemic sclerosis (SSc), chronic and uncontrolled overexpression of vascular endothelial growth factor (VEGF) results in chaotic vessels, and intractable fingertip ulcers. Vice versa, VEGF is a potent mediator of angiogenesis if temporally and spatially controlled. We have addressed this therapeutic dilemma in SSc by a novel approach using a VEGF121 variant that covalently binds to fibrin and gets released on demand by cellular enzymatic activity. Using University of California at Davis (UCD)-206 chickens, we tested the hypothesis that cell-demanded release of fibrin-bound VEGF121 leads to the formation of stable blood vessels, and clinical improvement of ischaemic lesions. METHODS Ninety-one early and late ischaemic comb and neck skin lesions of UCD-206 chickens were treated locally with VEGF121-fibrin, fibrin alone, or left untreated. After 1 week of treatment the clinical outcome was assessed. Angiogenesis was studied by immunofluorescence staining of vascular markers quantitatively analysed using TissueQuest. RESULTS Overall, 79.3% of the lesions treated with VEGF121-fibrin showed clinical improvement, whereas 71.0% of fibrin treated controls, and 93.1% of untreated lesions deteriorated. This was accompanied by significantly increased growth of stable microvessels, upregulation of the proangiogenic VEGFR-2 and its regulator TAL-1, and increase of endogenous endothelial VEGF expression. CONCLUSIONS Our findings in the avian model of SSc suggest that cell-demanded release of VEGF121 from fibrin matrix induces controlled angiogenesis by differential regulation of VEGFR-1 and VEGFR-2 expression, shifting the balance towards the proangiogenic VEGFR-2. The study shows the potential of covalently conjugated VEGF-fibrin matrices for the therapy of ischaemic lesions such as fingertip ulcers.
Collapse
Affiliation(s)
- Shadab Allipour Birgani
- Division of Experimental Pathophysiology and Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Marion Mailänder
- Division of Experimental Pathophysiology and Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Ines Wasle
- Division of Experimental Pathophysiology and Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Hermann Dietrich
- Central Laboratory Animal Facilities, Medical University of Innsbruck, Innsbruck, Austria
| | - Johann Gruber
- Department of Internal Medicine VI, Medical University of Innsbruck, Innsbruck, Austria
| | - Oliver Distler
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Roswitha Sgonc
- Division of Experimental Pathophysiology and Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
26
|
Loyau T, Hennequet-Antier C, Coustham V, Berri C, Leduc M, Crochet S, Sannier M, Duclos MJ, Mignon-Grasteau S, Tesseraud S, Brionne A, Métayer-Coustard S, Moroldo M, Lecardonnel J, Martin P, Lagarrigue S, Yahav S, Collin A. Thermal manipulation of the chicken embryo triggers differential gene expression in response to a later heat challenge. BMC Genomics 2016; 17:329. [PMID: 27142519 PMCID: PMC4855354 DOI: 10.1186/s12864-016-2661-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/25/2016] [Indexed: 12/18/2022] Open
Abstract
Background Meat type chickens have limited capacities to cope with high environmental temperatures, this sometimes leading to mortality on farms and subsequent economic losses. A strategy to alleviate this problem is to enhance adaptive capacities to face heat exposure using thermal manipulation (TM) during embryogenesis. This strategy was shown to improve thermotolerance during their life span. The aim of this study was to determine the effects of TM (39.5 °C, 12 h/24 vs 37.8 °C from d7 to d16 of embryogenesis) and of a subsequent heat challenge (32 °C for 5 h) applied on d34 on gene expression in the Pectoralis major muscle (PM). A chicken gene expression microarray (8 × 60 K) was used to compare muscle gene expression profiles of Control (C characterized by relatively high body temperatures, Tb) and TM chickens (characterized by a relatively low Tb) reared at 21 °C and at 32 °C (CHC and TMHC, respectively) in a dye-swap design with four comparisons and 8 broilers per treatment. Real-time quantitative PCR (RT-qPCR) was subsequently performed to validate differential expression in each comparison. Gene ontology, clustering and network building strategies were then used to identify pathways affected by TM and heat challenge. Results Among the genes differentially expressed (DE) in the PM (1.5 % of total probes), 28 were found to be differentially expressed between C and TM, 128 between CHC and C, and 759 between TMHC and TM. No DE gene was found between TMHC and CHC broilers. The majority of DE genes analyzed by RT-qPCR were validated. In the TM/C comparison, DE genes were involved in energy metabolism and mitochondrial function, cell proliferation, vascularization and muscle growth; when comparing heat-exposed chickens to their own controls, TM broilers developed more specific pathways than C, especially involving genes related to metabolism, stress response, vascularization, anti-apoptotic and epigenetic processes. Conclusions This study improved the understanding of the long-term effects of TM on PM muscle. TM broilers displaying low Tb may have lower metabolic intensity in the muscle, resulting in decreased metabolic heat production, whereas modifications in vascularization may enhance heat loss. These specific changes could in part explain the better adaptation of TM broilers to heat. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2661-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Marco Moroldo
- CRB GADIE, INRA, Domaine de Vilvert, 78350, Jouy-en-Josas, France
| | | | - Patrice Martin
- GABI, INRA, Plateforme de Microgénomique Iso Cell Express (ICE), 78350, Jouy-en-Josas, France
| | | | - Shlomo Yahav
- Institute of Animal Science, The Volcani Center, Bet Dagan, P.O. Box 6, 50250, Israel
| | | |
Collapse
|
27
|
Xu K, Shuai Q, Li X, Zhang Y, Gao C, Cao L, Hu F, Akaike T, Wang JX, Gu Z, Yang J. Human VE-Cadherin Fusion Protein as an Artificial Extracellular Matrix Enhancing the Proliferation and Differentiation Functions of Endothelial Cell. Biomacromolecules 2016; 17:756-66. [DOI: 10.1021/acs.biomac.5b01467] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ke Xu
- The Key Laboratory of Bioactive Materials,
Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Qizhi Shuai
- The Key Laboratory of Bioactive Materials,
Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Xiaoning Li
- The Key Laboratory of Bioactive Materials,
Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Yan Zhang
- The Key Laboratory of Bioactive Materials,
Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Chao Gao
- The Key Laboratory of Bioactive Materials,
Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Lei Cao
- The Key Laboratory of Bioactive Materials,
Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Feifei Hu
- The Key Laboratory of Bioactive Materials,
Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Toshihiro Akaike
- Biomaterials
Center for Regenerative Medical Engineering, Foundation for Advancement of International Science, Tsukuba, Japan
| | - Jian-xi Wang
- National
Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Zhongwei Gu
- National
Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Jun Yang
- The Key Laboratory of Bioactive Materials,
Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China
| |
Collapse
|
28
|
Abstract
Although lipotransfer, or fat grafting, is a commonly used procedure in aesthetic and reconstructive surgery, there is still variability in graft survival and neoadipogenesis from one procedure to the next. A better understanding of the sequential molecular events occurring with grafting would allow us to strategize methods to improve the regenerative potency of the grafted tissue. These steps begin with an autophagic process, followed by the inclusion of stromal vascular fraction and matrix components. By tailoring and modifying each of these steps for a particular type of aesthetic or reconstructive procedure, strategic sequencing represents a dynamic approach to lipotransfer with the aim of maximizing adipocyte viability and growth. In the implementation of the strategic sequence, it remains important to consider the clinical viability of each step and its compliance with the US Food and Drug Administration regulations. This review highlights the basic science behind clinically translatable approaches to supplementing various fat grafting procedures.
Collapse
|
29
|
Peters EB, Christoforou N, Leong KW, Truskey GA, West JL. Poly(ethylene glycol) Hydrogel Scaffolds Containing Cell-Adhesive and Protease-Sensitive Peptides Support Microvessel Formation by Endothelial Progenitor Cells. Cell Mol Bioeng 2015; 9:38-54. [PMID: 27042236 DOI: 10.1007/s12195-015-0423-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The development of stable, functional microvessels remains an important obstacle to overcome for tissue engineered organs and treatment of ischemia. Endothelial progenitor cells (EPCs) are a promising cell source for vascular tissue engineering as they are readily obtainable and carry the potential to differentiate towards all endothelial phenotypes. The aim of this study was to investigate the ability of human umbilical cord blood-derived EPCs to form vessel-like structures within a tissue engineering scaffold material, a cell-adhesive and proteolytically degradable poly(ethylene glycol) (PEG) hydrogel. EPCs in co-culture with angiogenic mural cells were encapsulated in hydrogel scaffolds by mixing with polymeric precursors and using a mild photocrosslinking process to form hydrogels with homogeneously dispersed cells. EPCs formed 3D microvessels networks that were stable for at least 30 days in culture, without the need for supplemental angiogenic growth factors. These 3D EPC microvessels displayed aspects of physiological microvasculature with lumen formation, expression of endothelial cell proteins (connexin 32, VE-cadherin, eNOS), basement membrane formation with collagen IV and laminin, perivascular investment of PDGFR-β and α-SMA positive cells, and EPC quiescence (<1% proliferating cells) by 2 weeks of co-culture. Our findings demonstrate the development of a novel, reductionist system that is well-defined and reproducible for studying progenitor cell-driven microvessel formation.
Collapse
Affiliation(s)
- Erica B Peters
- Fitzpatrick CIEMAS Building, Room 1427, Box 90281, Duke University, Department of Biomedical Engineering, Durham, NC 27708
| | - Nicolas Christoforou
- P.O. Box 127788, Khalifa University, Department of Biomedical Engineering, Abu Dhabi, UAE
| | - Kam W Leong
- 1210 Amsterdam Avenue, Mail Code 8904, Columbia University, Department of Biomedical Engineering, New York, NY 10027
| | - George A Truskey
- Fitzpatrick CIEMAS Building, Room 1427, Box 90281, Duke University, Department of Biomedical Engineering, Durham, NC 27708
| | - Jennifer L West
- Fitzpatrick CIEMAS Building, Room 1427, Box 90281, Duke University, Department of Biomedical Engineering, Durham, NC 27708
| |
Collapse
|
30
|
Nijaguna MB, Patil V, Urbach S, Shwetha SD, Sravani K, Hegde AS, Chandramouli BA, Arivazhagan A, Marin P, Santosh V, Somasundaram K. Glioblastoma-derived Macrophage Colony-stimulating Factor (MCSF) Induces Microglial Release of Insulin-like Growth Factor-binding Protein 1 (IGFBP1) to Promote Angiogenesis. J Biol Chem 2015; 290:23401-15. [PMID: 26245897 DOI: 10.1074/jbc.m115.664037] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Indexed: 01/08/2023] Open
Abstract
Glioblastoma (grade IV glioma/GBM) is the most common primary adult malignant brain tumor with poor prognosis. To characterize molecular determinants of tumor-stroma interaction in GBM, we profiled 48 serum cytokines and identified macrophage colony-stimulating factor (MCSF) as one of the elevated cytokines in sera from GBM patients. Both MCSF transcript and protein were up-regulated in GBM tissue samples through a spleen tyrosine kinase (SYK)-dependent activation of the PI3K-NFκB pathway. Ectopic overexpression and silencing experiments revealed that glioma-secreted MCSF has no role in autocrine functions and M2 polarization of macrophages. In contrast, silencing expression of MCSF in glioma cells prevented tube formation of human umbilical vein endothelial cells elicited by the supernatant from monocytes/microglial cells treated with conditioned medium from glioma cells. Quantitative proteomics based on stable isotope labeling by amino acids in cell culture showed that glioma-derived MCSF induces changes in microglial secretome and identified insulin-like growth factor-binding protein 1 (IGFBP1) as one of the MCSF-regulated proteins secreted by microglia. Silencing IGFBP1 expression in microglial cells or its neutralization by an antibody reduced the ability of supernatants derived from microglial cells treated with glioma cell-conditioned medium to induce angiogenesis. In conclusion, this study shows up-regulation of MCSF in GBM via a SYK-PI3K-NFκB-dependent mechanism and identifies IGFBP1 released by microglial cells as a novel mediator of MCSF-induced angiogenesis, of potential interest for developing targeted therapy to prevent GBM progression.
Collapse
Affiliation(s)
- Mamatha Bangalore Nijaguna
- From the Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Vikas Patil
- From the Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Serge Urbach
- the Institut de Génomique Fonctionnelle, CNRS UMR 5203, F-34094 Montpellier, France, INSERM U1191, F-34094 Montpellier, France, the Université de Montpellier, F-34094 Montpellier, France
| | | | | | - Alangar S Hegde
- the Sri Satya Sai Institute of Higher Medical Sciences, Bangalore 560066, India
| | | | | | - Philippe Marin
- the Institut de Génomique Fonctionnelle, CNRS UMR 5203, F-34094 Montpellier, France, INSERM U1191, F-34094 Montpellier, France, the Université de Montpellier, F-34094 Montpellier, France
| | | | - Kumaravel Somasundaram
- From the Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India,
| |
Collapse
|
31
|
Najjar M, Manzoli V, Abreu M, Villa C, Martino MM, Molano RD, Torrente Y, Pileggi A, Inverardi L, Ricordi C, Hubbell JA, Tomei AA. Fibrin gels engineered with pro-angiogenic growth factors promote engraftment of pancreatic islets in extrahepatic sites in mice. Biotechnol Bioeng 2015; 112:1916-26. [PMID: 25786390 DOI: 10.1002/bit.25589] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 01/21/2015] [Accepted: 03/09/2015] [Indexed: 01/08/2023]
Abstract
With a view toward reduction of graft loss, we explored pancreatic islet transplantation within fibrin matrices rendered pro-angiogenic by incorporation of minimal doses of vascular endothelial growth factor-A165 and platelet-derived growth factor-BB presented complexed to a fibrin-bound integrin-binding fibronectin domain. Engineered matrices allowed for extended release of pro-angiogenic factors and for their synergistic signaling with extracellular matrix-binding domains in the post-transplant period. Aprotinin addition delayed matrix degradation and prolonged pro-angiogenic factor availability within the graft. Both subcutaneous (SC) and epididymal fat pad (EFP) sites were evaluated. We show that in the SC site, diabetes reversal in mice transplanted with 1,000 IEQ of syngeneic islets was not observed for islets transplanted alone, while engineered matrices resulted in a diabetes median reversal time (MDRT) of 38 days. In the EFP site, the MDRT with 250 IEQ of syngeneic islets within the engineered matrices was 24 days versus 86 days for islets transplanted alone. Improved function of engineered grafts was associated with enhanced and earlier (by day 7) angiogenesis. Our findings show that by engineering the transplant site to promote prompt re-vascularization, engraftment and long-term function of islet grafts can be improved in relevant extrahepatic sites.
Collapse
Affiliation(s)
- Mejdi Najjar
- Diabetes Research Institute, University of Miami Miller School of Medicine, 1450 NW 10th Avenue, Miami, Florida
| | - Vita Manzoli
- Diabetes Research Institute, University of Miami Miller School of Medicine, 1450 NW 10th Avenue, Miami, Florida.,Department of Electronics, Information and Bioengineering, Politecnico di Milano, Italy
| | - Maria Abreu
- Diabetes Research Institute, University of Miami Miller School of Medicine, 1450 NW 10th Avenue, Miami, Florida
| | - Chiara Villa
- Diabetes Research Institute, University of Miami Miller School of Medicine, 1450 NW 10th Avenue, Miami, Florida.,Department of Pathophysiology and Transplantation, Universitá degli Studi di Milano, Italy.,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Italy
| | - Mikaël M Martino
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - R Damaris Molano
- Diabetes Research Institute, University of Miami Miller School of Medicine, 1450 NW 10th Avenue, Miami, Florida
| | - Yvan Torrente
- Diabetes Research Institute, University of Miami Miller School of Medicine, 1450 NW 10th Avenue, Miami, Florida.,Department of Pathophysiology and Transplantation, Universitá degli Studi di Milano, Italy.,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Italy
| | - Antonello Pileggi
- Diabetes Research Institute, University of Miami Miller School of Medicine, 1450 NW 10th Avenue, Miami, Florida.,Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida.,Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida.,Department of Biomedical Engineering, University of Miami, Miami, Florida
| | - Luca Inverardi
- Diabetes Research Institute, University of Miami Miller School of Medicine, 1450 NW 10th Avenue, Miami, Florida.,Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida.,Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Camillo Ricordi
- Diabetes Research Institute, University of Miami Miller School of Medicine, 1450 NW 10th Avenue, Miami, Florida.,Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida.,Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida.,Department of Biomedical Engineering, University of Miami, Miami, Florida.,Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Jeffrey A Hubbell
- Diabetes Research Institute, University of Miami Miller School of Medicine, 1450 NW 10th Avenue, Miami, Florida.,Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Institute for Molecular Engineering, University of Chicago, Illinois
| | - Alice A Tomei
- Diabetes Research Institute, University of Miami Miller School of Medicine, 1450 NW 10th Avenue, Miami, Florida. .,Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida. .,Department of Biomedical Engineering, University of Miami, Miami, Florida.
| |
Collapse
|
32
|
Clegg LW, Mac Gabhann F. Site-Specific Phosphorylation of VEGFR2 Is Mediated by Receptor Trafficking: Insights from a Computational Model. PLoS Comput Biol 2015; 11:e1004158. [PMID: 26067165 PMCID: PMC4466579 DOI: 10.1371/journal.pcbi.1004158] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 01/25/2015] [Indexed: 02/05/2023] Open
Abstract
Matrix-binding isoforms and non-matrix-binding isoforms of vascular endothelial growth factor (VEGF) are both capable of stimulating vascular remodeling, but the resulting blood vessel networks are structurally and functionally different. Here, we develop and validate a computational model of the binding of soluble and immobilized ligands to VEGF receptor 2 (VEGFR2), the endosomal trafficking of VEGFR2, and site-specific VEGFR2 tyrosine phosphorylation to study differences in induced signaling between these VEGF isoforms. In capturing essential features of VEGFR2 signaling and trafficking, our model suggests that VEGFR2 trafficking parameters are largely consistent across multiple endothelial cell lines. Simulations demonstrate distinct localization of VEGFR2 phosphorylated on Y1175 and Y1214. This is the first model to clearly show that differences in site-specific VEGFR2 activation when stimulated with immobilized VEGF compared to soluble VEGF can be accounted for by altered trafficking of VEGFR2 without an intrinsic difference in receptor activation. The model predicts that Neuropilin-1 can induce differences in the surface-to-internal distribution of VEGFR2. Simulations also show that ligated VEGFR2 and phosphorylated VEGFR2 levels diverge over time following stimulation. Using this model, we identify multiple key levers that alter how VEGF binding to VEGFR2 results in different coordinated patterns of multiple downstream signaling pathways. Specifically, simulations predict that VEGF immobilization, interactions with Neuropilin-1, perturbations of VEGFR2 trafficking, and changes in expression or activity of phosphatases acting on VEGFR2 all affect the magnitude, duration, and relative strength of VEGFR2 phosphorylation on tyrosines 1175 and 1214, and they do so predictably within our single consistent model framework. Vascular endothelial growth factor (VEGF) is an important regulator of blood vessel growth. To date, therapies attempting to harness the VEGF system to promote blood vessel growth (e.g. for wound healing or ischemic disease) have achieved only limited success. To improve VEGF-based therapies, we need to better understand how VEGF promotes development of functional blood vessels. We have developed a computational model of VEGF binding to the receptor VEGFR2, trafficking of VEGFR2 through endosomal compartments in the cell, and activation of VEGFR2 on several tyrosine residues. The pattern of tyrosines activated on VEGFR2 influences cell behavior, promoting cell survival, proliferation, or migration. The combination of these cues influences the diameter of vessels, degree of branching, and leakiness of the resultant vessel network. Our model shows that changes in VEGFR2 trafficking as a result of VEGF immobilization to the extracellular matrix are sufficient to describe observed changes in the pattern of VEGFR2 activation compared to stimulation with purely soluble VEGF. This model can be used to predict how VEGF immobilization, interactions with co-receptors or proteins that deactivate VEGFR2, and changes to VEGFR2 trafficking can be tuned to promote development of functional blood vessel networks for tissue engineering applications.
Collapse
Affiliation(s)
- Lindsay Wendel Clegg
- Institute for Computational Medicine and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail:
| | - Feilim Mac Gabhann
- Institute for Computational Medicine and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
33
|
Roy S, Bae E, Amin S, Kim D. Extracellular matrix, gap junctions, and retinal vascular homeostasis in diabetic retinopathy. Exp Eye Res 2015; 133:58-68. [PMID: 25819455 DOI: 10.1016/j.exer.2014.08.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 08/19/2014] [Accepted: 08/20/2014] [Indexed: 12/15/2022]
Abstract
The vascular basement membrane (BM) contains extracellular matrix (ECM) proteins that assemble in a highly organized manner to form a supportive substratum for cell attachment facilitating myriad functions that are vital to cell survival and overall retinal homeostasis. The BM provides a microenvironment in which bidirectional signaling through integrins regulates cell attachment, turnover, and functionality. In diabetic retinopathy, the BM undergoes profound structural and functional changes, and recent studies have brought to light the implications of such changes. Thickened vascular BM in the retinal capillaries actively participate in the development and progression of characteristic changes associated with diabetic retinopathy. High glucose (HG)-induced compromised cell-cell communication via gap junctions (GJ) in retinal vascular cells may disrupt homeostasis in the retinal microenvironment. In this review, the role of altered ECM synthesis, compromised GJ activity, and disturbed retinal homeostasis in the development of retinal vascular lesions in diabetic retinopathy are discussed.
Collapse
Affiliation(s)
- Sayon Roy
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Boston University School of Medicine, Boston, MA, USA.
| | - Edward Bae
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Boston University School of Medicine, Boston, MA, USA
| | - Shruti Amin
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Boston University School of Medicine, Boston, MA, USA
| | - Dongjoon Kim
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
34
|
Abstract
The vascular network carries blood throughout the body, delivering oxygen to tissues and providing a pathway for communication between distant organs. The network is hierarchical and structured, but also dynamic, especially at the smaller scales. Remodeling of the microvasculature occurs in response to local changes in oxygen, gene expression, cell-cell communication, and chemical and mechanical stimuli from the microenvironment. These local changes occur as a result of physiological processes such as growth and exercise, as well as acute and chronic diseases including stroke, cancer, and diabetes, and pharmacological intervention. While the vasculature is an important therapeutic target in many diseases, drugs designed to inhibit vascular growth have achieved only limited success, and no drug has yet been approved to promote therapeutic vascular remodeling. This highlights the challenges involved in identifying appropriate therapeutic targets in a system as complex as the vasculature. Systems biology approaches provide a means to bridge current understanding of the vascular system, from detailed signaling dynamics measured in vitro and pre-clinical animal models of vascular disease, to a more complete picture of vascular regulation in vivo. This will translate to an improved ability to identify multi-component biomarkers for diagnosis, prognosis, and monitoring of therapy that are easy to measure in vivo, as well as better drug targets for specific disease states. In this review, we summarize systems biology approaches that have advanced our understanding of vascular function and dysfunction in vivo, with a focus on computational modeling.
Collapse
Affiliation(s)
- Lindsay E Clegg
- Institute for Computational Medicine and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
| | | |
Collapse
|
35
|
Regulation of valve endothelial cell vasculogenic network architectures with ROCK and Rac inhibitors. Microvasc Res 2015; 98:108-18. [PMID: 25660064 PMCID: PMC4974942 DOI: 10.1016/j.mvr.2015.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 01/03/2015] [Accepted: 01/26/2015] [Indexed: 12/31/2022]
Abstract
OBJECTIVE The age- and disease-dependent presence of microvessels within heart valves is an understudied characteristic of these tissues. Neovascularization involves endothelial cell (EC) migration and cytoskeletal reorientation, which are heavily regulated by the Rho family of GTPases. Given that valve ECs demonstrate unique mesenchymal transdifferentiation and cytoskeletal mechanoresponsiveness, compared to vascular ECs, this study quantified the effect of inhibiting two members of the Rho family on vasculogenic network formation by valve ECs. APPROACH AND RESULTS A tubule-like structure vasculogenesis assay (assessing lacunarity, junction density, and vessel density) was performed with porcine aortic valve ECs treated with small molecule inhibitors of Rho-associated serine-threonine protein kinase (ROCK), Y-27632, or the Rac1 inhibitor, NSC-23766. Actin coordination, cell number, and cell migration were assessed through immunocytochemistry, MTT assay, and scratch wound healing assay. ROCK inhibition reduced network lacunarity and interrupted proper cell-cell adhesion and actin coordination. Rac1 inhibition increased lacunarity and delayed actin-mediated network formation. ROCK inhibition alone significantly inhibited migration, whereas both ROCK and Rac1 inhibition significantly reduced cell number over time compared to controls. Compared to a vascular EC line, the valve ECs generated a network with larger total vessel length, but a less smooth appearance. CONCLUSIONS Both ROCK and Rac1 inhibition interfered with key processes in vascular network formation by valve ECs. This is the first report of manipulation of valve EC vasculogenic organization in response to small molecule inhibitors. Further study is warranted to comprehend this facet of valvular cell biology and pathology and how it differs from vascular biology.
Collapse
|
36
|
Du P, Hwang MP, Noh YK, Subbiah R, Kim IG, Bae SE, Park K. Fibroblast-derived matrix (FDM) as a novel vascular endothelial growth factor delivery platform. J Control Release 2014; 194:122-9. [DOI: 10.1016/j.jconrel.2014.08.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 08/21/2014] [Accepted: 08/26/2014] [Indexed: 10/24/2022]
|
37
|
Ricard-Blum S, Salza R. Matricryptins and matrikines: biologically active fragments of the extracellular matrix. Exp Dermatol 2014; 23:457-63. [DOI: 10.1111/exd.12435] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2014] [Indexed: 12/21/2022]
Affiliation(s)
- Sylvie Ricard-Blum
- Institut de Biologie et Chimie des Protéines; UMR 5086 CNRS; Université Lyon 1; Lyon Cedex 07 France
| | - Romain Salza
- Institut de Biologie et Chimie des Protéines; UMR 5086 CNRS; Université Lyon 1; Lyon Cedex 07 France
| |
Collapse
|
38
|
Macrophages in cardiac homeostasis, injury responses and progenitor cell mobilisation. Stem Cell Res 2014; 13:705-14. [PMID: 25087895 DOI: 10.1016/j.scr.2014.06.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 06/26/2014] [Indexed: 12/23/2022] Open
Abstract
Macrophages are an immune cell type found in every organ of the body. Classically, macrophages are recognised as housekeeping cells involved in the detection of foreign antigens and danger signatures, and the clearance of tissue debris. However, macrophages are increasingly recognised as a highly versatile cell type with a diverse range of functions that are important for tissue homeostasis and injury responses. Recent research findings suggest that macrophages contribute to tissue regeneration and may play a role in the activation and mobilisation of stem cells. This review describes recent advances in our understanding of the role played by macrophages in cardiac tissue maintenance and repair following injury. We examine the involvement of exogenous and resident tissue macrophages in cardiac inflammatory responses and their potential activity in regulating cardiac regeneration.
Collapse
|
39
|
Intussusceptive angiogenesis: expansion and remodeling of microvascular networks. Angiogenesis 2014; 17:499-509. [PMID: 24668225 DOI: 10.1007/s10456-014-9428-3] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 03/20/2014] [Indexed: 01/25/2023]
Abstract
Intussusceptive angiogenesis is a dynamic intravascular process capable of dramatically modifying the structure of the microcirculation. The distinctive structural feature of intussusceptive angiogenesis is the intussusceptive pillar--a cylindrical microstructure that spans the lumen of small vessels and capillaries. The extension of the intussusceptive pillar appears to be a mechanism for pruning redundant or inefficient vessels, modifying the branch angle of bifurcating vessels and duplicating existing vessels. Despite the biological importance and therapeutic potential, intussusceptive angiogenesis remains a mystery, in part, because it is an intravascular process that is unseen by conventional light microscopy. Here, we review several fundamental questions in the context of our current understanding of both intussusceptive and sprouting angiogenesis. (1) What are the physiologic signals that trigger pillar formation? (2) What endothelial and blood flow conditions specify pillar location? (3) How do pillars respond to the mechanical influence of blood flow? (4) What biological influences contribute to pillar extension? The answers to these questions are likely to provide important insights into the structure and function of microvascular networks.
Collapse
|
40
|
Lucena SE, Romo K, Suntravat M, Sánchez EE. Anti-angiogenic activities of two recombinant disintegrins derived from the Mohave and Prairie rattlesnakes. Toxicon 2013; 78:10-7. [PMID: 24269784 DOI: 10.1016/j.toxicon.2013.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 11/06/2013] [Accepted: 11/12/2013] [Indexed: 01/20/2023]
Abstract
Angiogenesis plays a crucial role in the growth and spread of cancer. New vascularization nourishes cancer cells with oxygen and nutrients, allowing these cells to grow, invade nearby tissue, spread to other parts of the body, and form new colonies of cancer cells. Tumor angiogenesis consists of endothelial cell proliferation, migration, and tube formation into the tumor mass. The study of natural and synthetic angiogenesis inhibitors is a promising area for therapeutics since tumors cannot grow or spread without the formation of new blood vessels. Anti-angiogenic activities have been identified in peptides known as disintegrins. Disintegrins are a family of small proteins (45-84 amino acids in length), many which are found in snake venom that function as potent inhibitors of both platelet aggregation and integrin-dependent cell adhesion. This study reports two recombinant disintegrins (r-mojastin 1 and r-viridistatin 2) inhibiting, with similar effectiveness, distinct steps in angiogenesis such as proliferation, adhesion to fibronectin, migration, and tube formation in vitro and in vivo. Both recombinant disintegrins bind to α(v)β₃ and α(v)β₅ receptors that are upregulated in tumor endothelial cells, having a higher binding activity to α(v)β₃ integrin.
Collapse
Affiliation(s)
- Sara E Lucena
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, MSC 224, 975 West Avenue B, Kingsville, TX 78363, USA
| | - Karen Romo
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, MSC 224, 975 West Avenue B, Kingsville, TX 78363, USA
| | - Montamas Suntravat
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, MSC 224, 975 West Avenue B, Kingsville, TX 78363, USA
| | - Elda E Sánchez
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, MSC 224, 975 West Avenue B, Kingsville, TX 78363, USA; Department of Chemistry, Texas A&M University-Kingsville, MSC 161, Kingsville, TX 78363, USA.
| |
Collapse
|
41
|
Zeng KW, Li N, Dong X, Ma ZZ, Jiang Y, Jin HW, Tu PF. Sprengerinin C exerts anti-tumorigenic effects in hepatocellular carcinoma via inhibition of proliferation and angiogenesis and induction of apoptosis. Eur J Pharmacol 2013; 714:261-73. [DOI: 10.1016/j.ejphar.2013.04.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/15/2013] [Accepted: 04/18/2013] [Indexed: 11/30/2022]
|
42
|
The promotion of endothelial cell attachment and spreading using FNIII10 fused to VEGF-A165. Biomaterials 2013; 34:5958-68. [DOI: 10.1016/j.biomaterials.2013.04.050] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 04/24/2013] [Indexed: 11/20/2022]
|
43
|
Krisp C, Jacobsen F, McKay MJ, Molloy MP, Steinstraesser L, Wolters DA. Proteome analysis reveals antiangiogenic environments in chronic wounds of diabetes mellitus type 2 patients. Proteomics 2013; 13:2670-81. [PMID: 23798543 DOI: 10.1002/pmic.201200502] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 06/03/2013] [Accepted: 06/04/2013] [Indexed: 12/24/2022]
Abstract
In contrast to normal healing wounds, chronic wounds commonly show disturbances in proteins regulating wound healing processes, particularly those involved in cell proliferation and protein degradation. Multidimensional protein identification technology MS/MS was conducted to investigate and compare the protein composition of chronic diabetic foot exudates to exudates from split-skin donor sites of burn victims otherwise healthy. Spectral counting revealed 188 proteins differentially expressed (more than twofold and p-value <0.05) in chronic wounds. Most were involved in biological processes including inflammation, angiogenesis, and cell mortality. Increased expression of the inflammatory response stimulating S100 proteins, predominantly S100A8 and S100A9 (almost tenfold), was identified. Matrix metalloproteinases (MMPs) MMP1, MMP2, and MMP8 were identified to be elevated in chronic wounds with significant impact on collagen degradation and tissue destruction. Further, proteins with antiangiogenic properties were found at higher expression levels in chronic wounds. Reduced angiogenesis leads to drastic shortage in nutrition supply and causes increased cell death, demonstrated by Annexin A5 exclusively found in chronic wound exudates. However, excessive nucleic and cytosolic material infers cell death occurring not only by apoptosis but also by necrosis. In conclusion, mass spectrometric investigation of exudates from chronic wounds demonstrated dramatic impairment in wound repair with excessive inflammation, antiangiogenic environment, and accelerated cell death.
Collapse
Affiliation(s)
- Christoph Krisp
- Department of Analytical Chemistry, Biomolecular Mass Spectrometry, Ruhr-University Bochum, Bochum, Germany; Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia
| | | | | | | | | | | |
Collapse
|
44
|
Engineering strategies to control vascular endothelial growth factor stability and levels in a collagen matrix for angiogenesis: the role of heparin sodium salt and the PLGA-based microsphere approach. Acta Biomater 2013; 9:7389-98. [PMID: 23523534 DOI: 10.1016/j.actbio.2013.03.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 03/12/2013] [Accepted: 03/13/2013] [Indexed: 02/02/2023]
Abstract
New vessel formation is the result of the complex orchestration of various elements, such as cells, signalling molecules and extracellular matrix (ECM). In order to establish the suitable conditions for an effective cell response, the influence of vascular endothelial growth factor (VEGF) complexation with heparin sodium salt (Hp) on its pro-angiogenic activity has been evaluated by an in vitro capillary-like tube formation assay. VEGF with or without Hp was embedded into collagen gels, and the activated matrices were characterized in terms of VEGF activity and release kinetics. Taking into account the crucial role of Hp in VEGF stability and activity, VEGF/Hp complex was then encapsulated into microspheres based on poly(lactide-co-glycolide) (PLGA), and microsphere properties, VEGF/Hp release kinetics and VEGF in vitro activity over time were evaluated. Integrated microsphere/collagen matrices were developed in order to provide a continuous release of active VEGF/Hp inside the matrix but also a VEGF gradient at the boundary, which is an essential condition for endothelial cell attraction and scaffold invasion. The results confirmed a strong influence of Hp on VEGF configuration and, consequently, on its activity, while the encapsulation of VEGF/Hp complex in PLGA-microspheres guaranteed a sustained release of active VEGF for more than 30days. This paper confirms the importance of VEGF stability and signal presentation to cells for an effective proangiogenic activity and highlights how the combination of two stabilizing approaches, namely VEGF/Hp complexation and entrapment within PLGA-based microspheres, may be a very effective strategy to achieve this goal.
Collapse
|
45
|
Feigl B, Hutmacher D. Eyes on 3D-current 3D biomimetic disease concept models and potential applications in age-related macular degeneration. Adv Healthc Mater 2013; 2:1056-62. [PMID: 24000403 DOI: 10.1002/adhm.201200445] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Three-dimensional cellular models that mimic disease are being increasingly investigated and have opened an exciting new research area into understanding pathomechanisms. The advantage of 3D in vitro disease models is that they allow systematic and in depth studies of physiological and pathophysiological processes with less costs and ethical concerns that have arisen with animal models. The purpose of the 30 approach is to allow crosstalk between cells and microenvironment, and with cues from the microenvironment,cells can assemble their niche similar to in vivo conditions. The use of 3D models for mimicking disease processes such as cancer, osteoarthritis etc., Is only emerging and allows multidisciplinary teams consisting of tissue engineers, biologist biomaterial scientists and clinicians to work closely together. While in vitro systems require rigorous testing before they can be considered as replicates of the in vivo model, major steps have been made,suggesting that they will become powerful tools for studying physiological and pathophysiological processes. This paper aims to summarize some of the existing 3D models and proposes a novel 3D model of the eye structures that are involved in the most common cause of blindness in the Western World,namely age-related macular degeneration (AMD).
Collapse
|
46
|
Gustafsson Y, Haag J, Jungebluth P, Lundin V, Lim ML, Baiguera S, Ajalloueian F, Del Gaudio C, Bianco A, Moll G, Sjöqvist S, Lemon G, Teixeira AI, Macchiarini P. Viability and proliferation of rat MSCs on adhesion protein-modified PET and PU scaffolds. Biomaterials 2012; 33:8094-103. [PMID: 22901964 DOI: 10.1016/j.biomaterials.2012.07.060] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 07/28/2012] [Indexed: 12/14/2022]
Abstract
In 2011, the first in-man successful transplantation of a tissue engineered trachea-bronchial graft, using a synthetic POSS-PCU nanocomposite construct seeded with autologous stem cells, was performed. To further improve this technology, we investigated the feasibility of using polymers with a three dimensional structure more closely mimicking the morphology and size scale of native extracellular matrix (ECM) fibers. We therefore investigated the in vitro biocompatibility of electrospun polyethylene terephthalate (PET) and polyurethane (PU) scaffolds, and determined the effects on cell attachment by conditioning the fibers with adhesion proteins. Rat mesenchymal stromal cells (MSCs) were seeded on either PET or PU fiber-layered culture plates coated with laminin, collagen I, fibronectin, poly-D-lysine or gelatin. Cell density, proliferation, viability, morphology and mRNA expression were evaluated. MSC cultures on PET and PU resulted in similar cell densities and amounts of proliferating cells, with retained MSC phenotype compared to data obtained from tissue culture plate cultures. Coating the scaffolds with adhesion proteins did not increase cell density or cell proliferation. Our data suggest that both PET and PU mats, matching the dimensions of ECM fibers, are biomimetic scaffolds and, because of their high surface area-to-volume provided by the electrospinning procedure, makes them per se suitable for cell attachment and proliferation without any additional coating.
Collapse
Affiliation(s)
- Ylva Gustafsson
- Advanced Center for Translational Regenerative Medicine (ACTREM), Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Skarmoutsou E, D'Amico F, Marchini M, Malaponte G, Scorza R, Mazzarino MC. Association of TIMP-1 +372 SNP with digital ulcer manifestation in female systemic sclerosis patients. Hum Immunol 2012; 73:950-3. [PMID: 22820628 DOI: 10.1016/j.humimm.2012.07.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 06/28/2012] [Accepted: 07/11/2012] [Indexed: 11/26/2022]
Abstract
A candidate gene for TIMP-1 gene located on the X-chromosome (rs4898) was selected for a control case study to investigate a possible association of this SNP with the susceptibility to systemic sclerosis and its digit ulcer manifestation. A total of 461 individuals of Italian Caucasian origin (228 SSc patients and 233 healthy control subjects) were genotyped for TIMP-1 +372 T/C single nucleotide polymorphism rs4898. Subgroups were analyzed according to the presence or absence of digital ulcers. The CC genotype and C allele frequencies were significantly lower in female SSc patients than in controls (OR 0.53, CI 0.29-0.96, p=0.03 and OR 0.72, CI 0.53-0.98 p=0.04, respectively). CC genotypes frequency was lower also in female patients with ulcers than those without ulcers (OR 0.37, CI 0.14-1.00, p=0.03). Furthermore, CC genotype and C allele frequencies were lower also in female patients with ulcers in comparison to female healthy control subjects (OR 0.27, CI 0.10-0.70, p=0.004; OR 0.60, CI 0.40-0.89, p=0.01, respectively). The TIMP-1 rs4898 polymorphism may play a protective role in the susceptibility to SSC in females, and in particular to digital ulcer formation.
Collapse
Affiliation(s)
- Evangelia Skarmoutsou
- Department of Bio-medical Sciences, University of Catania, via Androne 83, I-95124 Catania, Italy.
| | | | | | | | | | | |
Collapse
|
48
|
Diederichs S, Baral K, Tanner M, Richter W. Interplay between local versus soluble transforming growth factor-beta and fibrin scaffolds: role of cells and impact on human mesenchymal stem cell chondrogenesis. Tissue Eng Part A 2012; 18:1140-50. [PMID: 22480213 DOI: 10.1089/ten.tea.2011.0426] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Structural extracellular matrix molecules gain increasing attention as scaffolds for cartilage tissue engineering owing to their natural role as a growth factor repository. We recently observed that a collagen-type I/III (Col-I/III) matrix, human recombinant transforming growth factor-beta (TGF-β) protein, and fibrin hydrogel (FG) combined to a biphasic construct provided sufficient long-term TGF-β support to drive in vitro chondrogenesis of human mesenchymal stem cells (hMSC). Here we ask whether FG and Col-I/III can both retain TGF-β, describe the influence of cell seeding on TGF-β release, and compare the molecular path of hMSC chondrogenic differentiation under soluble versus local TGF-β supply. Release of growth factor from scaffolds augmented with increasing amounts of TGF-β was analyzed over 7 days and chondrogenesis was assessed over 42 days. Low TGF-β release rates from Col-I/III as opposed to higher release from FG indicated that both molecules retained TGF-β, with Col-I/III being the superior storage component. Cell seeding enhanced TGF-β retention in FG by about threefold and almost stopped release beyond 24 h. TGF-β remained bioactive and supported MSC chondrogenesis without impairing the amount of proteoglycan and collagen-type II deposition per cell and per construct compared to standard scaffold-free MSC pellets supplied with soluble TGF-β. Local TGF-β, however, mediated lower cell content, less collagen-type X relative to collagen-type II deposition and no matrix metalloproteinase-13 up-regulation. In conclusion, cells quickly halted release of local TGF-β from FG, turning FG and Col-I/III into attractive TGF-β repositories capable to drive full hMSC chondrogenesis, but via a modulated differentiation pathway. Since only part of the changes was reproduced by transient soluble TGF-β supply, release kinetics alone could not explain the molecular differences, suggesting that local TGF-β acts distinct from its soluble counterpart.
Collapse
Affiliation(s)
- Solvig Diederichs
- Research Center for Experimental Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany
| | | | | | | |
Collapse
|
49
|
Manole CG, Cismaşiu V, Gherghiceanu M, Popescu LM. Experimental acute myocardial infarction: telocytes involvement in neo-angiogenesis. J Cell Mol Med 2012; 15:2284-96. [PMID: 21895968 PMCID: PMC3822940 DOI: 10.1111/j.1582-4934.2011.01449.x] [Citation(s) in RCA: 171] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We used rat experimental myocardial infarction to study the ultrastructural recovery, especially neo-angiogenesis in the infarction border zone. We were interested in the possible role(s) of telocytes (TCs), a novel type of interstitial cell very recently discovered in myocardim (see http://www.telocytes.com). Electron microscopy, immunocytochemistry and analysis of several proangiogenic microRNAs provided evidence for TC involvement in neo-angiogenesis after myocardial infarction. Electron microscopy showed the close spatial association of TCs with neoangiogenetic elements. Higher resolution images provided the following information: (a) the intercellular space between the abluminal face of endothelium and its surrounding TCs is frequently less than 50 nm; (b) TCs establish multiple direct nanocontacts with endothelial cells, where the extracellular space seems obliterated; such nanocontacts have a length of 0.4–1.5 μm; (c) the absence of basal membrane on the abluminal face of endothelial cell. Besides the physical contacts (either nanoscopic or microscopic) TCs presumably contribute to neo-angiognesis via paracrine secretion (as shown by immunocytochemistry for VEGF or NOS2). Last but not least, TCs contain measurable quantities of angiogenic microRNAs (e.g. let-7e, 10a, 21, 27b, 100, 126-3p, 130a, 143, 155, 503). Taken together, the direct (physical) contact of TCs with endothelial tubes, as well as the indirect (chemical) positive influence within the ‘angiogenic zones’, suggests an important participation of TCs in neo-angiogenesis during the late stage of myocardial infarction.
Collapse
Affiliation(s)
- C G Manole
- Department of Cellular and Molecular Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | | | | | | |
Collapse
|
50
|
Patel AS, Smith A, Attia RQ, Mattock K, Humphries J, Lyons O, Saha P, Modarai B, Jayasinghe SN. Encapsulation of angiogenic monocytes using bio-spraying technology. Integr Biol (Camb) 2012; 4:628-32. [DOI: 10.1039/c2ib20033c] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|