1
|
Kuang C, Cao J, Zhou Y, Zhang H, Wang Y, Zhou J. HL-TRP channel is required for various repellents for the parthenogenetic Haemaphysalis longicornis. Parasit Vectors 2025; 18:139. [PMID: 40229849 PMCID: PMC11995592 DOI: 10.1186/s13071-025-06776-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 03/24/2025] [Indexed: 04/16/2025] Open
Abstract
BACKGROUND Ticks can transmit a wide range of pathogens that endanger human and animal health. Although repellents are commonly used for tick control, understanding their mechanisms aren't complete. METHODS The repellent effects of N, N-diethyl-meta-toluamide (DEET); sec-butyl 2-(2-hydroxyethyl) piperidine-1-carboxylate (icaridin); N, N-diethyl-3-methylbenzamide (IR3535); and cinnamaldehyde on the parthenogenetic tick Haemaphysalis longicornis at the nymph stage were assessed using Y-tubes. The involvement of transient receptor potential (HL-TRP) channel molecules in the repellent mechanism was investigated through in situ hybridization, subcellular localization, real-time fluorescence quantitative polymerase chain reaction (PCR), RNA interference, and electroantennography. In addition, the binding affinity of HL-TRP molecules to repellents was predicted using AlphaFold3. RESULTS DEET, icaridin, IR3535, and cinnamaldehyde have been shown to effectively repel nymphs. HL-TRP channel is shared among various arthropods, particularly several species of ticks. It is localized to the cell membrane and Haller's organ. Moreover, microinjection of double-stranded RNA elicited tick repellency behavior, and the electroantennogram responses to those repellents were significantly decreased. The TYR783 site was proposed as an essential binding site to establish hydrogen bonds with icaridin, DEET, and cinnamaldehyde. CONCLUSIONS This exploration of ticks and repellents found that HL-TRP channel functions as a chemosensory receptor for repellents and, thereby, mediates avoidance behavior.
Collapse
Affiliation(s)
- Ceyan Kuang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Jie Cao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Yongzhi Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Houshuang Zhang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Yanan Wang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Jinlin Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| |
Collapse
|
2
|
Stefaniuk-Szmukier M, Bieniek A, Ropka-Molik K, Bellone RR. Genetic testing as a tool for diagnosis of congenital stationary night blindness (CSNB) in white spotted breeds in Poland. J Equine Vet Sci 2025; 147:105405. [PMID: 40021102 DOI: 10.1016/j.jevs.2025.105405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/23/2024] [Accepted: 02/24/2025] [Indexed: 03/03/2025]
Abstract
Congenital stationary night blindness (CSNB) has been connected to the leopard complex spotting phenotype (LP) in various horse breeds. CSNB associated with LP is thought to be caused by a 1378 bp insertion in TRPM1, with homozygotes being nightblind and having few to no spots of pigment in their white patterned area. This study aimed to assess the prevalence of CSNB alleles in tarant-colored horses in Poland through a three-primer system for an allele-specific Polymerase Chain Reaction (PCR). The TRPM1 gene insertion was genotyped in 221 horses belonging to Małopolska, Felin and Shetland Ponies. The chi-square (χ²) test indicates, that χ2 <5.991 suggesting that the population is in Hardy-Weinberg equilibrium. Of the horses carrying the LP allele, 7 % of Małopolska horses, 4,8 % of Felin ponies and 6.25 % of the Shetland ponies were homozygous for the TRMP1 insertion, indicating low-light vision issues, crucial for horses working in dim conditions. This study highlights the utility of genetic testing for accurate phenotype evaluation, and clinical and breeding management.
Collapse
MESH Headings
- Animals
- Horses/genetics
- Night Blindness/genetics
- Night Blindness/veterinary
- Night Blindness/diagnosis
- Night Blindness/epidemiology
- Horse Diseases/genetics
- Horse Diseases/diagnosis
- Horse Diseases/epidemiology
- Poland/epidemiology
- Genetic Testing/methods
- Myopia/genetics
- Myopia/veterinary
- Myopia/diagnosis
- Myopia/epidemiology
- Eye Diseases, Hereditary/genetics
- Eye Diseases, Hereditary/veterinary
- Eye Diseases, Hereditary/diagnosis
- Eye Diseases, Hereditary/epidemiology
- TRPM Cation Channels/genetics
- Genetic Predisposition to Disease
- Genetic Diseases, X-Linked/genetics
- Genetic Diseases, X-Linked/veterinary
- Genetic Diseases, X-Linked/diagnosis
- Genetic Diseases, X-Linked/epidemiology
- Genetic Diseases, Inborn/veterinary
- Genetic Diseases, Inborn/genetics
- Genetic Diseases, Inborn/diagnosis
- Genetic Diseases, Inborn/epidemiology
Collapse
Affiliation(s)
- M Stefaniuk-Szmukier
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1, 32-083 Balice, Poland.
| | - A Bieniek
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1, 32-083 Balice, Poland
| | - K Ropka-Molik
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1, 32-083 Balice, Poland
| | - R R Bellone
- Veterinary Genetics Laboratory, Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA, USA; Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, USA
| |
Collapse
|
3
|
Ncube SM, Nagarajan A, Lang D, Sinkala M, Burmeister CA, Serala K, Blackburn J, Prince S. c-Myc, AKT, Hsc70, and the T-Box Transcription Factor TBX3 Form an Important Oncogenic Signaling Axis in Breast Cancer. Mol Cancer Res 2025; 23:20-32. [PMID: 39264104 DOI: 10.1158/1541-7786.mcr-23-1031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/17/2024] [Accepted: 08/07/2024] [Indexed: 09/13/2024]
Abstract
Breast cancer is the second leading cause of death in women globally, and it remains a health burden due to poor therapy response, cancer cell drug resistance, and the debilitating side effects associated with most therapies. One approach to addressing the need to improve breast cancer therapies has been to elucidate the mechanism(s) underpinning this disease to identify key drivers that can be targeted in molecular therapies. The T-box transcription factor, TBX3, is upregulated in breast cancer, in which it contributes to important oncogenic processes, and it has been validated as a potential therapeutic target. Here, we investigated the molecular mechanisms that upregulate TBX3 in breast cancer, and we show that it involves transcriptional activation by c-Myc, post-translational modification by AKT1 and AKT3, and interaction with the molecular chaperone Hsc70. Together, the results from this study provide evidence that c-Myc, AKT, Hsc70, and TBX3 form part of an important oncogenic pathway in breast cancer and thus reveal versatile ways of interfering with the oncogenic activity of TBX3 for the treatment of this neoplasm. Implications: Targeting the c-Myc/AKT/TBX3/Hsc70 signaling axis may be an effective treatment strategy for TBX3-driven breast cancer.
Collapse
Affiliation(s)
- Stephanie M Ncube
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - ArulJothi Nagarajan
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Department of Genetic Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, India
| | - Dirk Lang
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Musalula Sinkala
- Division of Computational Biology, Department of Integrated Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Carly A Burmeister
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Karabo Serala
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Jonathan Blackburn
- Division of Chemical and Systems Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Sharon Prince
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
4
|
Ahuja K, Raju S, Dahiya S, Motiani RK. ROS and calcium signaling are critical determinant of skin pigmentation. Cell Calcium 2025; 125:102987. [PMID: 39708588 DOI: 10.1016/j.ceca.2024.102987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
Pigmentation is a protective phenomenon that shields skin cells from UV-induced DNA damage. Perturbations in pigmentation pathways predispose to skin cancers and lead to pigmentary disorders. These ailments impart psychological trauma and severely affect the patients' quality of life. Emerging literature suggests that reactive oxygen species (ROS) and calcium (Ca2+) signaling modules regulate physiological pigmentation. Further, pigmentary disorders are associated with dysregulated ROS homeostasis and changes in Ca2+ dynamics. Here, we systemically review the literature that demonstrates key role of ROS and Ca2+ signaling in pigmentation and pigmentary disorders. Further, we discuss recent studies, which have revealed that organelle-specific Ca2+ transport mechanisms are critical determinant of pigmentation. Importantly, we deliberate upon the possibility of clinical management of pigmentary disorders by therapeutically targeting ROS generation and cellular Ca2+ handling toolkit. Finally, we highlight the key outstanding questions in the field that demand critical and timely attention. Although an important role of ROS and Ca2+ signaling in regulating skin pigmentation has emerged, the underlying molecular mechanisms remain poorly understood. In future, it would be vital to investigate in detail the signaling cascades that connect perturbed ROS homeostasis and Ca2+ signaling to human pigmentary disorders.
Collapse
Affiliation(s)
- Kriti Ahuja
- Laboratory of Calciomics and Systemic Pathophysiology (LCSP), Regional Centre for Biotechnology (RCB), Faridabad-121001, Delhi-NCR, India
| | - Sharon Raju
- Laboratory of Calciomics and Systemic Pathophysiology (LCSP), Regional Centre for Biotechnology (RCB), Faridabad-121001, Delhi-NCR, India
| | - Sakshi Dahiya
- Laboratory of Calciomics and Systemic Pathophysiology (LCSP), Regional Centre for Biotechnology (RCB), Faridabad-121001, Delhi-NCR, India
| | - Rajender K Motiani
- Laboratory of Calciomics and Systemic Pathophysiology (LCSP), Regional Centre for Biotechnology (RCB), Faridabad-121001, Delhi-NCR, India.
| |
Collapse
|
5
|
Chen Z, Xie H, Liu J, Zhao J, Huang R, Xiang Y, Wu H, Tian D, Bian E, Xiong Z. Roles of TRPM channels in glioma. Cancer Biol Ther 2024; 25:2338955. [PMID: 38680092 PMCID: PMC11062369 DOI: 10.1080/15384047.2024.2338955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 04/01/2024] [Indexed: 05/01/2024] Open
Abstract
Gliomas are the most common type of primary brain tumor. Despite advances in treatment, it remains one of the most aggressive and deadly tumor of the central nervous system (CNS). Gliomas are characterized by high malignancy, heterogeneity, invasiveness, and high resistance to radiotherapy and chemotherapy. It is urgent to find potential new molecular targets for glioma. The TRPM channels consist of TRPM1-TPRM8 and play a role in many cellular functions, including proliferation, migration, invasion, angiogenesis, etc. More and more studies have shown that TRPM channels can be used as new therapeutic targets for glioma. In this review, we first introduce the structure, activation patterns, and physiological functions of TRPM channels. Additionally, the pathological mechanism of glioma mediated by TRPM2, 3, 7, and 8 and the related signaling pathways are described. Finally, we discuss the therapeutic potential of targeting TRPM for glioma.
Collapse
Affiliation(s)
- Zhigang Chen
- Department of Neurosurgery, The Translational Research Institute for Neurological Disorders, The First Affiliated Hospital (Yijishan Hospital), Wannan Medical College, Wuhu, P. R. China
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Han Xie
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Jun Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - JiaJia Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Ruixiang Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Yufei Xiang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Haoyuan Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Dasheng Tian
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Erbao Bian
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhang Xiong
- Department of Neurosurgery, The Translational Research Institute for Neurological Disorders, The First Affiliated Hospital (Yijishan Hospital), Wannan Medical College, Wuhu, P. R. China
| |
Collapse
|
6
|
Pan T, Gao Y, Xu G, Yu L, Xu Q, Yu J, Liu M, Zhang C, Ma Y, Li Y. Widespread transcriptomic alterations of transient receptor potential channel genes in cancer. Brief Funct Genomics 2024; 23:214-227. [PMID: 37288496 DOI: 10.1093/bfgp/elad023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 06/09/2023] Open
Abstract
Ion channels, in particular transient-receptor potential (TRP) channels, are essential genes that play important roles in many physiological processes. Emerging evidence has demonstrated that TRP genes are involved in a number of diseases, including various cancer types. However, we still lack knowledge about the expression alterations landscape of TRP genes across cancer types. In this review, we comprehensively reviewed and summarised the transcriptomes from more than 10 000 samples in 33 cancer types. We found that TRP genes were widespreadly transcriptomic dysregulated in cancer, which was associated with clinical survival of cancer patients. Perturbations of TRP genes were associated with a number of cancer pathways across cancer types. Moreover, we reviewed the functions of TRP family gene alterations in a number of diseases reported in recent studies. Taken together, our study comprehensively reviewed TRP genes with extensive transcriptomic alterations and their functions will directly contribute to cancer therapy and precision medicine.
Collapse
Affiliation(s)
- Tao Pan
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, Department of Reproductive Medicine, the First Affliated Hospital of Hainan Medical University, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, Hainan 571199, China
| | - Yueying Gao
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, Department of Reproductive Medicine, the First Affliated Hospital of Hainan Medical University, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, Hainan 571199, China
| | - Gang Xu
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, Department of Reproductive Medicine, the First Affliated Hospital of Hainan Medical University, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, Hainan 571199, China
| | | | - Qi Xu
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, Department of Reproductive Medicine, the First Affliated Hospital of Hainan Medical University, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, Hainan 571199, China
| | - Jinyang Yu
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, Department of Reproductive Medicine, the First Affliated Hospital of Hainan Medical University, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, Hainan 571199, China
| | - Meng Liu
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, Department of Reproductive Medicine, the First Affliated Hospital of Hainan Medical University, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, Hainan 571199, China
| | - Can Zhang
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, Department of Reproductive Medicine, the First Affliated Hospital of Hainan Medical University, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, Hainan 571199, China
| | - Yanlin Ma
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, Department of Reproductive Medicine, the First Affliated Hospital of Hainan Medical University, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, Hainan 571199, China
| | - Yongsheng Li
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, Department of Reproductive Medicine, the First Affliated Hospital of Hainan Medical University, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, Hainan 571199, China
| |
Collapse
|
7
|
Gu LH, Wu RR, Zheng XL, Fu A, Xing ZY, Chen YY, He ZC, Lu LZ, Qi YT, Chen AH, Zhang YP, Xu TS, Peng MS, Ma C. Genomic insights into local adaptation and phenotypic diversity of Wenchang chickens. Poult Sci 2024; 103:103376. [PMID: 38228059 PMCID: PMC10823079 DOI: 10.1016/j.psj.2023.103376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/02/2023] [Accepted: 12/08/2023] [Indexed: 01/18/2024] Open
Abstract
Wenchang chicken, a prized local breed in Hainan Province of China renowned for its exceptional adaptability to tropical environments and good meat quality, is deeply favored by the public. However, an insufficient understanding of its population architecture and the unclear genetic basis that governs its typical attributes have posed challenges in the protection and breeding of this precious breed. To address these gaps, we conducted whole-genome resequencing on 200 Wenchang chicken samples derived from 10 distinct strains, and we gathered data on an array of 21 phenotype traits. Population genomics analysis unveiled distinctive population structures in Wenchang chickens, primarily attributed to strong artificial selection for different feather colors. Selection sweep analysis identified a group of candidate genes, including PCDH9, DPF3, CDIN1, and SUGCT, closely linked to adaptations that enhance resilience in tropical island habitats. Genome-wide association studies (GWAS) highlighted potential candidate genes associated with diverse feather color traits, encompassing TYR, RAB38, TRPM1, GABARAPL2, CDH1, ZMIZ1, LYST, MC1R, and SASH1. Through the comprehensive analysis of high-quality genomic and phenotypic data across diverse Wenchang chicken resource groups, this study unveils the intricate genetic backgrounds and population structures of Wenchang chickens. Additionally, it identifies multiple candidate genes linked to environmental adaptation, feather color variations, and production traits. These insights not only provide genetic reference for the purification and breeding of Wenchang chickens but also broaden our understanding of the genetic basis of phenotypic diversity in chickens.
Collapse
Affiliation(s)
- Li-Hong Gu
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou 571199, China
| | - Ran-Ran Wu
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin-Li Zheng
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou 571199, China
| | - An Fu
- Wenchang City Wenchang Chicken Research Institute, Wenchang 571300, China
| | - Zeng-Yang Xing
- Wenchang Long-quan Wenchang Chicken Industrial Co., Ltd., Wenchang 571346, China
| | - Yi-Yong Chen
- Hainan Chuang Wen Wenchang Chicken Industry Co., Ltd., Wenchang 571321, China
| | - Zhong-Chun He
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou 571199, China
| | - Li-Zhi Lu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yan-Tao Qi
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou 571199, China
| | - An-Hong Chen
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou 571199, China
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tie-Shan Xu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Min-Sheng Peng
- Wenchang City Wenchang Chicken Research Institute, Wenchang 571300, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cheng Ma
- Wenchang City Wenchang Chicken Research Institute, Wenchang 571300, China.
| |
Collapse
|
8
|
Zhou Y, Bennett TM, Ruzycki PA, Guo Z, Cao YQ, Shahidullah M, Delamere NA, Shiels A. A Cataract-Causing Mutation in the TRPM3 Cation Channel Disrupts Calcium Dynamics in the Lens. Cells 2024; 13:257. [PMID: 38334649 PMCID: PMC10854584 DOI: 10.3390/cells13030257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/10/2024] Open
Abstract
TRPM3 belongs to the melastatin sub-family of transient receptor potential (TRPM) cation channels and has been shown to function as a steroid-activated, heat-sensitive calcium ion (Ca2+) channel. A missense substitution (p.I65M) in the TRPM3 gene of humans (TRPM3) and mice (Trpm3) has been shown to underlie an inherited form of early-onset, progressive cataract. Here, we model the pathogenetic effects of this cataract-causing mutation using 'knock-in' mutant mice and human cell lines. Trpm3 and its intron-hosted micro-RNA gene (Mir204) were strongly co-expressed in the lens epithelium and other non-pigmented and pigmented ocular epithelia. Homozygous Trpm3-mutant lenses displayed elevated cytosolic Ca2+ levels and an imbalance of sodium (Na+) and potassium (K+) ions coupled with increased water content. Homozygous TRPM3-mutant human lens epithelial (HLE-B3) cell lines and Trpm3-mutant lenses exhibited increased levels of phosphorylated mitogen-activated protein kinase 1/extracellular signal-regulated kinase 2 (MAPK1/ERK2/p42) and MAPK3/ERK1/p44. Mutant TRPM3-M65 channels displayed an increased sensitivity to external Ca2+ concentration and an altered dose response to pregnenolone sulfate (PS) activation. Trpm3-mutant lenses shared the downregulation of genes involved in insulin/peptide secretion and the upregulation of genes involved in Ca2+ dynamics. By contrast, Trpm3-deficient lenses did not replicate the pathophysiological changes observed in Trpm3-mutant lenses. Collectively, our data suggest that a cataract-causing substitution in the TRPM3 cation channel elicits a deleterious gain-of-function rather than a loss-of-function mechanism in the lens.
Collapse
Affiliation(s)
- Yuefang Zhou
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Thomas M. Bennett
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Philip A. Ruzycki
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Zhaohua Guo
- Department of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yu-Qing Cao
- Department of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Mohammad Shahidullah
- Department of Physiology, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Nicholas A. Delamere
- Department of Physiology, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Alan Shiels
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
9
|
Köles L, Ribiczey P, Szebeni A, Kádár K, Zelles T, Zsembery Á. The Role of TRPM7 in Oncogenesis. Int J Mol Sci 2024; 25:719. [PMID: 38255793 PMCID: PMC10815510 DOI: 10.3390/ijms25020719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
This review summarizes the current understanding of the role of transient receptor potential melastatin-subfamily member 7 (TRPM7) channels in the pathophysiology of neoplastic diseases. The TRPM family represents the largest and most diverse group in the TRP superfamily. Its subtypes are expressed in virtually all human organs playing a central role in (patho)physiological events. The TRPM7 protein (along with TRPM2 and TRPM6) is unique in that it has kinase activity in addition to the channel function. Numerous studies demonstrate the role of TRPM7 chanzyme in tumorigenesis and in other tumor hallmarks such as proliferation, migration, invasion and metastasis. Here we provide an up-to-date overview about the possible role of TRMP7 in a broad range of malignancies such as tumors of the nervous system, head and neck cancers, malignant neoplasms of the upper gastrointestinal tract, colorectal carcinoma, lung cancer, neoplasms of the urinary system, breast cancer, malignant tumors of the female reproductive organs, prostate cancer and other neoplastic pathologies. Experimental data show that the increased expression and/or function of TRPM7 are observed in most malignant tumor types. Thus, TRPM7 chanzyme may be a promising target in tumor therapy.
Collapse
Affiliation(s)
- László Köles
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary; (L.K.); (A.S.); (K.K.); (T.Z.)
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary
| | - Polett Ribiczey
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary; (L.K.); (A.S.); (K.K.); (T.Z.)
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary
| | - Andrea Szebeni
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary; (L.K.); (A.S.); (K.K.); (T.Z.)
| | - Kristóf Kádár
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary; (L.K.); (A.S.); (K.K.); (T.Z.)
| | - Tibor Zelles
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary; (L.K.); (A.S.); (K.K.); (T.Z.)
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, H-1083, Budapest, Hungary
| | - Ákos Zsembery
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary; (L.K.); (A.S.); (K.K.); (T.Z.)
| |
Collapse
|
10
|
Shi J, Jiao T, Guo Q, Weng W, Ma L, Zhang Q, Wang L, Zhang J, Chen C, Huang Y, Wang M, Pan R, Tang Y, Hu W, Meng T, Liu SH, Guo J, Kong Y, Meng X. A Cell Surface-Binding Antibody Atlas Nominates a MUC18-Directed Antibody-Drug Conjugate for Targeting Melanoma. Cancer Res 2023; 83:3783-3795. [PMID: 37668527 PMCID: PMC10646479 DOI: 10.1158/0008-5472.can-23-1356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/03/2023] [Accepted: 08/29/2023] [Indexed: 09/06/2023]
Abstract
Recent advances in targeted therapy and immunotherapy have substantially improved the treatment of melanoma. However, therapeutic strategies are still needed for unresponsive or treatment-relapsed patients with melanoma. To discover antibody-drug conjugate (ADC)-tractable cell surface targets for melanoma, we developed an atlas of melanoma cell surface-binding antibodies (pAb) using a proteome-scale antibody array platform. Target identification of pAbs led to development of melanoma cell killing ADCs against LGR6, TRPM1, ASAP1, and MUC18, among others. MUC18 was overexpressed in both tumor cells and tumor-infiltrating blood vessels across major melanoma subtypes, making it a potential dual-compartment and universal melanoma therapeutic target. AMT-253, an MUC18-directed ADC based on topoisomerase I inhibitor exatecan and a self-immolative T moiety, had a higher therapeutic index compared with its microtubule inhibitor-based counterpart and favorable pharmacokinetics and tolerability in monkeys. AMT-253 exhibited MUC18-specific cytotoxicity through DNA damage and apoptosis and a strong bystander killing effect, leading to potent antitumor activities against melanoma cell line and patient-derived xenograft models. Tumor vasculature targeting by a mouse MUC18-specific antibody-T1000-exatecan conjugate inhibited tumor growth in human melanoma xenografts. Combination therapy of AMT-253 with an antiangiogenic agent generated higher efficacy than single agent in a mucosal melanoma model. Beyond melanoma, AMT-253 was also efficacious in a wide range of MUC18-expressing solid tumors. Efficient target/antibody discovery in combination with the T moiety-exatecan linker-payload exemplified here may facilitate discovery of new ADC to improve cancer treatment. SIGNIFICANCE Discovery of melanoma-targeting antibodies using a proteome-scale array and use of a cutting-edge linker-payload system led to development of a MUC18-targeting antibody-exatecan conjugate with clinical potential for treating major melanoma subtypes.
Collapse
Affiliation(s)
- Jing Shi
- Multitude Therapeutics, Shanghai, China
| | - Tao Jiao
- Department of Renal Cancer and Melanoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Qian Guo
- Department of Renal Cancer and Melanoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Weining Weng
- Multitude Therapeutics, Shanghai, China
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Linjie Ma
- Multitude Therapeutics, Shanghai, China
| | | | | | | | | | | | | | | | - Yanfang Tang
- Multitude Therapeutics, Shanghai, China
- Abmart, Shanghai, China
| | - Wenhao Hu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Tao Meng
- MabCare Therapeutics, Shanghai, China
- HySlink Therapeutics, Shanghai, China
| | | | - Jun Guo
- Department of Renal Cancer and Melanoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Yan Kong
- Department of Renal Cancer and Melanoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Xun Meng
- Multitude Therapeutics, Shanghai, China
- Abmart, Shanghai, China
| |
Collapse
|
11
|
Foster HM, Carle MN, Jira LR, Koh DW. TRPM2 Channels: A Potential Therapeutic Target in Melanoma? Int J Mol Sci 2023; 24:10437. [PMID: 37445615 DOI: 10.3390/ijms241310437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/09/2023] [Accepted: 06/15/2023] [Indexed: 07/15/2023] Open
Abstract
The transient receptor potential, the melastatin (TRPM) subfamily, which consists of eight known members, appears to have significant importance in melanoma progression, treatment, and prognosis. As several members were originally cloned from cancerous tissue, initial studies aimed towards identifying TRPM involvement in cancer progression and tumorigenesis. For relevance in skin cancer, previous research has shown roles for several TRPM members in skin cancer progression, growth, and patient prognosis. One unique member, TRPM2, appears to have notable therapeutic potential in the treatment of melanoma. Previous and recent studies have demonstrated increased TRPM2 expression levels in melanoma, as well as important roles for TRPM2 in melanoma growth, proliferation, and survival. TRPM2 is thus an emerging target in the treatment of melanoma, where TRPM2 antagonism may offer an additional treatment option for melanoma patients in the future.
Collapse
Affiliation(s)
- Hattie M Foster
- Department of Pharmaceutical & Biomedical Sciences, Ohio Northern University, Ada, OH 45810, USA
| | - McKenzie N Carle
- Department of Pharmaceutical & Biomedical Sciences, Ohio Northern University, Ada, OH 45810, USA
| | - Lukas R Jira
- Department of Pharmaceutical & Biomedical Sciences, Ohio Northern University, Ada, OH 45810, USA
| | - David W Koh
- Department of Pharmaceutical & Biomedical Sciences, Ohio Northern University, Ada, OH 45810, USA
| |
Collapse
|
12
|
Mirbod SM, Khanahmad H, Amerizadeh A, Amirpour A, Mirbod SM, Zaker E. Viewpoints on the Role of Transient Receptor Potential Melastatin Channels in Cardiovascular System and Disease: A Systematic Review. Curr Probl Cardiol 2023; 48:101012. [PMID: 34644560 DOI: 10.1016/j.cpcardiol.2021.101012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 08/08/2021] [Indexed: 01/04/2023]
Abstract
Transient receptor potential (TRP) family play critical roles in cardiovascular system. TRPM family as largest TRP subfamily is non-voltage Ca2+-activated selective channels which has 8 members. This study aimed to discuss the role of TRPM family in cardiovascular system and diseases. Systematic search was performed covering PubMed, ISI Web of Science, and Google Scholar from inception until June 2021 using related keywords and Mesh terms for English studies with human, animal and in-vitro subjects. Finally 10 studies were selected for data extraction. Reviewing the articles showed that TRPM2, TRPM4, TRPM5, TRPM6 and TRPM7 play important roles in cardiovascular system and diseases. TRPM2 could be activated by reactive oxygen species (ROS) and effects on cardiac injury and cardiac fibrosis. TRPM7 and TRPM6 also have been reported to be associated with cardiac fibrosis and atrial fibrosis development respectively. TRPM4 channels contributed to resting membrane potential of cerebral artery smooth muscle cells and atrial contraction. TRPM5 channels are bitter taste sensors and prevent high salt intake and consequently high blood pressure due to the high salt intake. In conclusion based on the proof of the effectiveness of some members of TRPM family in the cardiovascular system, research on other members of this channel group seems to be useful and necessary to find their possible connection to the cardiovascular system.
Collapse
Affiliation(s)
| | - Hossein Khanahmad
- Department of Genetics and Molecular biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Atefeh Amerizadeh
- Department of Cardiology, Isfahan University of Medical Sciences, Isfahan, Iran; Applied Physiology Research Center, Department of Physiology, Cardiovascular Research Institute, Isfahan University of Medical sciences, Isfahan, Iran
| | - Afshin Amirpour
- Cardiac Rehabilitation Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyedeh Mojgan Mirbod
- Heart Failure Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Erfan Zaker
- Department of Genetics and Molecular biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
13
|
Malik HR, Bertolesi GE, McFarlane S. TRPM8 thermosensation in poikilotherms mediates both skin colour and locomotor performance responses to cold temperature. Commun Biol 2023; 6:127. [PMID: 36721039 PMCID: PMC9889708 DOI: 10.1038/s42003-023-04489-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 01/16/2023] [Indexed: 02/02/2023] Open
Abstract
Thermoregulation is a homeostatic process to maintain an organism's internal temperature within a physiological range compatible with life. In poikilotherms, body temperature fluctuates with that of the environment, with both physiological and behavioral responses employed to modify body temperature. Changing skin colour/reflectance and locomotor activity are both well-recognized temperature regulatory mechanisms, but little is known of the participating thermosensor/s. We find that Xenopus laevis tadpoles put in the cold exhibit a temperature-dependent, systemic, and rapid melanosome aggregation in melanophores, which lightens the skin. Cooling also induces a reduction in the locomotor performance. To identify the cold-sensor, we focus on transient receptor potential (trp) channel genes from a Trpm family. mRNAs for several Trpms are present in Xenopus tails, and Trpm8 protein is present in skin melanophores. Temperature-induced melanosome aggregation is mimicked by the Trpm8 agonist menthol (WS12) and blocked by a Trpm8 antagonist. The degree of skin lightening induced by cooling is correlated with locomotor performance, and both responses are rapidly regulated in a dose-dependent and correlated manner by the WS12 Trpm8 agonist. We propose that TRPM8 serves as a cool thermosensor in poikilotherms that helps coordinate skin lightening and behavioural locomotor performance as adaptive thermoregulatory responses to cold.
Collapse
Affiliation(s)
- Hannan R. Malik
- grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB Canada
| | - Gabriel E. Bertolesi
- grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB Canada
| | - Sarah McFarlane
- grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB Canada
| |
Collapse
|
14
|
Križaj D, Cordeiro S, Strauß O. Retinal TRP channels: Cell-type-specific regulators of retinal homeostasis and multimodal integration. Prog Retin Eye Res 2023; 92:101114. [PMID: 36163161 PMCID: PMC9897210 DOI: 10.1016/j.preteyeres.2022.101114] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 02/05/2023]
Abstract
Transient receptor potential (TRP) channels are a widely expressed family of 28 evolutionarily conserved cationic ion channels that operate as primary detectors of chemical and physical stimuli and secondary effectors of metabotropic and ionotropic receptors. In vertebrates, the channels are grouped into six related families: TRPC, TRPV, TRPM, TRPA, TRPML, and TRPP. As sensory transducers, TRP channels are ubiquitously expressed across the body and the CNS, mediating critical functions in mechanosensation, nociception, chemosensing, thermosensing, and phototransduction. This article surveys current knowledge about the expression and function of the TRP family in vertebrate retinas, which, while dedicated to transduction and transmission of visual information, are highly susceptible to non-visual stimuli. Every retinal cell expresses multiple TRP subunits, with recent evidence establishing their critical roles in paradigmatic aspects of vertebrate vision that include TRPM1-dependent transduction of ON bipolar signaling, TRPC6/7-mediated ganglion cell phototransduction, TRP/TRPL phototransduction in Drosophila and TRPV4-dependent osmoregulation, mechanotransduction, and regulation of inner and outer blood-retina barriers. TRP channels tune light-dependent and independent functions of retinal circuits by modulating the intracellular concentration of the 2nd messenger calcium, with emerging evidence implicating specific subunits in the pathogenesis of debilitating diseases such as glaucoma, ocular trauma, diabetic retinopathy, and ischemia. Elucidation of TRP channel involvement in retinal biology will yield rewards in terms of fundamental understanding of vertebrate vision and therapeutic targeting to treat diseases caused by channel dysfunction or over-activation.
Collapse
Affiliation(s)
- David Križaj
- Departments of Ophthalmology, Neurobiology, and Bioengineering, University of Utah, Salt Lake City, USA
| | - Soenke Cordeiro
- Institute of Physiology, Faculty of Medicine, Christian-Albrechts-University Kiel, Germany
| | - Olaf Strauß
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, a Corporate Member of Freie Universität, Humboldt-University, The Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
15
|
Yepes S, Tucker MA, Koka H, Xiao Y, Zhang T, Jones K, Vogt A, Burdette L, Luo W, Zhu B, Hutchinson A, Yeager M, Hicks B, Brown KM, Freedman ND, Chanock SJ, Goldstein AM, Yang XR. Integrated Analysis of Coexpression and Exome Sequencing to Prioritize Susceptibility Genes for Familial Cutaneous Melanoma. J Invest Dermatol 2022; 142:2464-2475.e5. [PMID: 35181301 PMCID: PMC9378750 DOI: 10.1016/j.jid.2022.01.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 11/17/2022]
Abstract
The application of whole-exome sequencing has led to the identification of high- and moderate-risk variants that contribute to cutaneous melanoma susceptibility. However, confirming disease-causing variants remains challenging. We applied a gene coexpression network analysis to prioritize the candidate genes identified from whole-exome sequencing of 34 melanoma-prone families, with at least three affected members sequenced per family (N = 119 cases). A coexpression network was constructed from genotype-tissue expression project, skin melanoma from the cancer genome atlas, and primary melanocyte cultures. We performed module-specific enrichment and focused on modules associated with pigmentation processes because they are the best-studied and most well-known risk factors for melanoma susceptibility. We found that pigmentation-associated modules across the four expression datasets examined were enriched for well-known melanoma susceptibility genes plus genes associated with pigmentation. We also used network properties to prioritize genes within pigmentation modules as candidate susceptibility genes. Integrating information from coexpression network analysis and variant prioritization, we identified 36 genes (such as DCT, TPCN2, TRPM1, ATP10A, and EPHA5) as potential melanoma risk genes in the families. Our approach also allowed us to link families with private gene mutations on the basis of gene coexpression patterns and thereby may provide an innovative perspective in gene identification in high-risk families.
Collapse
Affiliation(s)
- Sally Yepes
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
| | - Margaret A Tucker
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Hela Koka
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Yanzi Xiao
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Tongwu Zhang
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Kristine Jones
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA; Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc, Frederick, Maryland, USA
| | - Aurelie Vogt
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA; Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc, Frederick, Maryland, USA
| | - Laurie Burdette
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA; Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc, Frederick, Maryland, USA
| | - Wen Luo
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA; Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc, Frederick, Maryland, USA
| | - Bin Zhu
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA; Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc, Frederick, Maryland, USA
| | - Amy Hutchinson
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA; Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc, Frederick, Maryland, USA
| | - Meredith Yeager
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA; Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc, Frederick, Maryland, USA
| | - Belynda Hicks
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA; Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc, Frederick, Maryland, USA
| | - Kevin M Brown
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Neal D Freedman
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Stephen J Chanock
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Alisa M Goldstein
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Xiaohong R Yang
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
16
|
Ding L, Gosh A, Lee DJ, Emri G, Huss WJ, Bogner PN, Paragh G. Prognostic biomarkers of cutaneous melanoma. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2022; 38:418-434. [PMID: 34981569 DOI: 10.1111/phpp.12770] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/02/2021] [Accepted: 12/30/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND/PURPOSE Melanomas account for only approximately 4% of diagnosed skin cancers in the United States but are responsible for the majority of deaths caused by skin cancer. Both genetic factors and ultraviolet (UV) radiation exposure play a role in the development of melanoma. Although melanomas have a strong propensity to metastasize when diagnosed late, melanomas that are diagnosed and treated early pose a low mortality risk. In particular, the identification of patients with increased metastatic risk, who may benefit from early adjuvant therapies, is crucial, especially given the advent of new melanoma treatments. However, the accuracy of classic clinical and histological variables, including the Breslow thickness, presence of ulceration, and lymph node status, might not be sufficient to identify such individuals. Thus, there is a need for the development of additional prognostic melanoma biomarkers that can improve early attempts to stratify melanoma patients and reliably identify high-risk subgroups with the aim of providing effective personalized therapies. METHODS In our current work, we discuss and assess emerging primary melanoma tumor biomarkers and prognostic circulating biomarkers. RESULTS Several promising biomarkers show prognostic value (eg, exosomal MIA (ie, melanoma inhibitory activity), serum S100B, AMLo signatures, and mRNA signatures); however, the scarcity of reliable data precludes the use of these biomarkers in current clinical applications. CONCLUSION Further research is needed on several promising biomarkers for melanoma. Large-scale studies are warranted to facilitate the clinical translation of prognostic biomarker applications for melanoma in personalized medicine.
Collapse
Affiliation(s)
- Liang Ding
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Department of Pathology, Buffalo General Medical Center, State University of New York, Buffalo, New York, USA
| | - Alexandra Gosh
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Delphine J Lee
- Division of Dermatology, Department of Medicine, Harbor-UCLA Medical Center, Torrance, California, USA
- Division of Dermatology, Department of Medicine, The Lundquist Institute, Torrance, California, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Gabriella Emri
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Wendy J Huss
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Paul N Bogner
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Gyorgy Paragh
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| |
Collapse
|
17
|
Hsieh CC, Su YC, Jiang KY, Ito T, Li TW, Kaku-Ito Y, Cheng ST, Chen LT, Hwang DY, Shen CH. TRPM1 promotes tumor progression in acral melanoma by activating the Ca 2+/CaMKIIδ/AKT pathway. J Adv Res 2022; 43:45-57. [PMID: 36585114 PMCID: PMC9811324 DOI: 10.1016/j.jare.2022.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/27/2022] [Accepted: 03/02/2022] [Indexed: 01/07/2023] Open
Abstract
INTRODUCTION Acral melanoma is a predominant and aggressive subtype of melanoma in non-Caucasian populations. There is a lack of genotype-driven therapies for over 50% of patients. TRPM1 (transient receptor potential melastatin 1), a nonspecific cation channel, is mainly expressed in retinal bipolar neurons and skin. Nonetheless, the function of TRPM1 in melanoma progression is poorly understood. OBJECTIVES We investigated the association between TRPM1 and acral melanoma progression and revealed the molecular mechanisms by which TRPM1 promotes tumor progression and malignancy. METHODS TRPM1 expression and CaMKII phosphorylation in tumor specimens were tested by immunohistochemistry analysis and scored by two independent investigators. The functions of TRPM1 and CaMKII were assessed using loss-of-function and gain-of-function approaches and examined by western blotting, colony formation, cell migration and invasion, and xenograft tumor growth assays. The effects of a CaMKII inhibitor, KN93, were evaluated using both in vitro cell and in vivo xenograft mouse models. RESULTS We revealed that TRPM1 protein expression was positively associated with tumor progression and shorter survival in patients with acral melanoma. TRPM1 promoted AKT activation and the colony formation, cell mobility, and xenograft tumor growth of melanoma cells. TRPM1 elevated cytosolic Ca2+ levels and activated CaMKIIδ (Ca2+/calmodulin-dependent protein kinase IIδ) to promote the CaMKIIδ/AKT interaction and AKT activation. The functions of TRPM1 in melanoma cells were suppressed by a CaMKII inhibitor, KN93. Significant upregulation of phospho-CaMKII levels in acral melanomas was related to increased expression of TRPM1. An acral melanoma cell line with high expression of TRPM1, CA11, was isolated from a patient to show the anti-tumor activity of KN93 in vitro and in vivo. CONCLUSIONS TRPM1 promotes tumor progression and malignancy in acral melanoma by activating the Ca2+/CaMKIIδ/AKT pathway. CaMKII inhibition may be a potential therapeutic strategy for treating acral melanomas with high expression of TRPM1.
Collapse
Affiliation(s)
- Chi-Che Hsieh
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan
| | - Yue-Chiu Su
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Kuan-Ying Jiang
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan
| | - Takamichi Ito
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Ting-Wei Li
- Department of Life Sciences, National Cheng Kung University, Tainan 704, Taiwan
| | - Yumiko Kaku-Ito
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Shih-Tsung Cheng
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan,Department of Dermatology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan,Department of Dermatology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Li-Tzong Chen
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan,Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan,Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Daw-Yang Hwang
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan
| | - Che-Hung Shen
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan,Ph.D. Program in Tissue Engineering and Regenerative Medicine, Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan,Corresponding author at: National Institute of Cancer Research, National Health Research Institutes, No. 367, Sheng-Li Rd., North District, Tainan 70456, Taiwan.
| |
Collapse
|
18
|
Fujino T. Transient Receptor Potential Melastatin 8, a sensor of cold temperatures mediates expression of cyclin-dependent kinase inhibitor, p21/Cip1, a regulator of epidermal cell proliferation. J Toxicol Sci 2022; 47:117-123. [PMID: 35236803 DOI: 10.2131/jts.47.117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Transient Receptor Potential Melastatin 8 (TRPM8) is a calcium-permeable, non-selective cation channel of the transient receptor potential superfamily, required for the transduction of moderate cold temperatures. TRPM8 is also known to regulate proliferation of prostate, pancreatic, breast, and melanoma carcinoma cells. Here, we examined a key factor in the regulation of TRPM8-mediated proliferation of epidermal cells, which are directly affected by cold temperatures. Experiments involving knockdown and ectopic expression of TRPM8 in normal keratinocyte HaCaT and squamous carcinoma SAS cells suggest that TRPM8 inhibits cell proliferation by upregulating the expression of cyclin-dependent inhibitor p21/Cip1. Whereas these findings were observed in the absence of an endogenous agonists, additions of the synthetic TRPM8 agonist icilin reduced DNA synthesis in HaCaT cells but stimulated that in SAS cells by altering p21/Cip1 levels in a TRPM8-independent manner, indicating that icilin poses a risk of stimulating carcinoma cell proliferation. Unexpectedly, the TRPM8 blocker, used for the treatment of overactive bladder and bladder pain, N-(3-aminopropyl)-2-{[(3-methylphenyl) methyl] oxy}-N-(2-thienylmethyl) benzamide hydrochloride salt (AMTB) reduced DNA synthesis by upregulating p21/Cip1 expression. However, another TRPM8 blocker, N-(4-Tertiarybutylphenyl)-4-(3-chloropyridin- 2-yl) tetrahydropyrazine-1 (2H)-carbox-amide (BCTC), stimulated DNA synthesis by downregulating p21/Cip1 expression, indicating that it may pose a risk of carcinogenesis associated with dysregulated cell cycles when used to treat overactive bladder and bladder pain.
Collapse
Affiliation(s)
- Tomofumi Fujino
- Department of Hygiene and Health Sciences, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| |
Collapse
|
19
|
Iraci N, Ostacolo C, Medina-Peris A, Ciaglia T, Novoselov AM, Altieri A, Cabañero D, Fernandez-Carvajal A, Campiglia P, Gomez-Monterrey I, Bertamino A, Kurkin AV. In Vitro and In Vivo Pharmacological Characterization of a Novel TRPM8 Inhibitor Chemotype Identified by Small-Scale Preclinical Screening. Int J Mol Sci 2022; 23:2070. [PMID: 35216186 PMCID: PMC8877448 DOI: 10.3390/ijms23042070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/04/2022] [Accepted: 02/11/2022] [Indexed: 11/16/2022] Open
Abstract
Transient receptor potential melastatin type 8 (TRPM8) is a target for the treatment of different physio-pathological processes. While TRPM8 antagonists are reported as potential drugs for pain, cancer, and inflammation, to date only a limited number of chemotypes have been investigated and thus a limited number of compounds have reached clinical trials. Hence there is high value in searching for new TRPM8 antagonistic to broaden clues to structure-activity relationships, improve pharmacological properties and explore underlying molecular mechanisms. To address this, the EDASA Scientific in-house molecular library has been screened in silico, leading to identifying twenty-one potentially antagonist compounds of TRPM8. Calcium fluorometric assays were used to validate the in-silico hypothesis and assess compound selectivity. Four compounds were identified as selective TRPM8 antagonists, of which two were dual-acting TRPM8/TRPV1 modulators. The most potent TRPM8 antagonists (BB 0322703 and BB 0322720) underwent molecular modelling studies to highlight key structural features responsible for drug-protein interaction. The two compounds were also investigated by patch-clamp assays, confirming low micromolar potencies. The most potent compound (BB 0322703, IC50 1.25 ± 0.26 μM) was then profiled in vivo in a cold allodinya model, showing pharmacological efficacy at 30 μM dose. The new chemotypes identified showed remarkable pharmacological properties paving the way to further investigations for drug discovery and pharmacological purposes.
Collapse
Affiliation(s)
- Nunzio Iraci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy;
| | - Carmine Ostacolo
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy; (C.O.); (I.G.-M.)
| | - Alicia Medina-Peris
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Avenida de la Universidad, 03202 Elche, Spain; (A.M.-P.); (D.C.); (A.F.-C.)
| | - Tania Ciaglia
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (T.C.); (P.C.)
| | - Anton M. Novoselov
- Department of Chemistry, Lomonosov Moscow State University, 1/3 Leninsky Gory, 119991 Moscow, Russia; (A.M.N.); (A.A.)
| | - Andrea Altieri
- Department of Chemistry, Lomonosov Moscow State University, 1/3 Leninsky Gory, 119991 Moscow, Russia; (A.M.N.); (A.A.)
- EDASA Scientific srls, Via Stingi 37, 66050 San Salvo, Italy
| | - David Cabañero
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Avenida de la Universidad, 03202 Elche, Spain; (A.M.-P.); (D.C.); (A.F.-C.)
| | - Asia Fernandez-Carvajal
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Avenida de la Universidad, 03202 Elche, Spain; (A.M.-P.); (D.C.); (A.F.-C.)
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (T.C.); (P.C.)
| | - Isabel Gomez-Monterrey
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy; (C.O.); (I.G.-M.)
| | - Alessia Bertamino
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (T.C.); (P.C.)
| | - Alexander V. Kurkin
- Department of Chemistry, Lomonosov Moscow State University, 1/3 Leninsky Gory, 119991 Moscow, Russia; (A.M.N.); (A.A.)
| |
Collapse
|
20
|
Prouteau A, Mottier S, Primot A, Cadieu E, Bachelot L, Botherel N, Cabillic F, Houel A, Cornevin L, Kergal C, Corre S, Abadie J, Hitte C, Gilot D, Lindblad-Toh K, André C, Derrien T, Hedan B. Canine Oral Melanoma Genomic and Transcriptomic Study Defines Two Molecular Subgroups with Different Therapeutical Targets. Cancers (Basel) 2022; 14:cancers14020276. [PMID: 35053440 PMCID: PMC8774001 DOI: 10.3390/cancers14020276] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 02/05/2023] Open
Abstract
Simple Summary In humans, mucosal melanoma (MM) is a rare and aggressive cancer. The canine model is frequently and spontaneously affected by MM, thus facilitating the collection of samples and the study of its genetic bases. Thanks to an integrative genomic and transcriptomic analysis of 32 canine MM samples, we identified two molecular subgroups of MM with a different microenvironment and structural variant (SV) content. We demonstrated that SVs are associated with recurrently amplified regions, and identified new candidate oncogenes (TRPM7, GABPB1, and SPPL2A) for MM. Our findings suggest the existence of two MM molecular subgroups that could benefit from dedicated therapies, such as immune checkpoint inhibitors or targeted therapies, for both human and veterinary medicine. Abstract Mucosal melanoma (MM) is a rare, aggressive clinical cancer. Despite recent advances in genetics and treatment, the prognosis of MM remains poor. Canine MM offers a relevant spontaneous and immunocompetent model to decipher the genetic bases and explore treatments for MM. We performed an integrative genomic and transcriptomic analysis of 32 canine MM samples, which identified two molecular subgroups with a different microenvironment and structural variant (SV) content. The overexpression of genes related to the microenvironment and T-cell response was associated with tumors harboring a lower content of SVs, whereas the overexpression of pigmentation-related pathways and oncogenes, such as TERT, was associated with a high SV burden. Using whole-genome sequencing, we showed that focal amplifications characterized complex chromosomal rearrangements targeting oncogenes, such as MDM2 or CDK4, and a recurrently amplified region on canine chromosome 30. We also demonstrated that the genes TRPM7, GABPB1, and SPPL2A, located in this CFA30 region, play a role in cell proliferation, and thus, may be considered as new candidate oncogenes for human MM. Our findings suggest the existence of two MM molecular subgroups that may benefit from dedicated therapies, such as immune checkpoint inhibitors or targeted therapies, for both human and veterinary medicine.
Collapse
Affiliation(s)
- Anais Prouteau
- IGDR—UMR 6290, CNRS, University of Rennes 1, 35000 Rennes, France; (A.P.); (S.M.); (A.P.); (E.C.); (L.B.); (N.B.); (A.H.); (C.K.); (S.C.); (C.H.); (D.G.); (C.A.)
| | - Stephanie Mottier
- IGDR—UMR 6290, CNRS, University of Rennes 1, 35000 Rennes, France; (A.P.); (S.M.); (A.P.); (E.C.); (L.B.); (N.B.); (A.H.); (C.K.); (S.C.); (C.H.); (D.G.); (C.A.)
| | - Aline Primot
- IGDR—UMR 6290, CNRS, University of Rennes 1, 35000 Rennes, France; (A.P.); (S.M.); (A.P.); (E.C.); (L.B.); (N.B.); (A.H.); (C.K.); (S.C.); (C.H.); (D.G.); (C.A.)
| | - Edouard Cadieu
- IGDR—UMR 6290, CNRS, University of Rennes 1, 35000 Rennes, France; (A.P.); (S.M.); (A.P.); (E.C.); (L.B.); (N.B.); (A.H.); (C.K.); (S.C.); (C.H.); (D.G.); (C.A.)
| | - Laura Bachelot
- IGDR—UMR 6290, CNRS, University of Rennes 1, 35000 Rennes, France; (A.P.); (S.M.); (A.P.); (E.C.); (L.B.); (N.B.); (A.H.); (C.K.); (S.C.); (C.H.); (D.G.); (C.A.)
| | - Nadine Botherel
- IGDR—UMR 6290, CNRS, University of Rennes 1, 35000 Rennes, France; (A.P.); (S.M.); (A.P.); (E.C.); (L.B.); (N.B.); (A.H.); (C.K.); (S.C.); (C.H.); (D.G.); (C.A.)
| | - Florian Cabillic
- Laboratoire de Cytogénétique et Biologie Cellulaire, CHU de Rennes, INSERM, INRA, University of Rennes 1, Nutrition Metabolisms and Cancer, 35000 Rennes, France; (F.C.); (L.C.)
| | - Armel Houel
- IGDR—UMR 6290, CNRS, University of Rennes 1, 35000 Rennes, France; (A.P.); (S.M.); (A.P.); (E.C.); (L.B.); (N.B.); (A.H.); (C.K.); (S.C.); (C.H.); (D.G.); (C.A.)
| | - Laurence Cornevin
- Laboratoire de Cytogénétique et Biologie Cellulaire, CHU de Rennes, INSERM, INRA, University of Rennes 1, Nutrition Metabolisms and Cancer, 35000 Rennes, France; (F.C.); (L.C.)
| | - Camille Kergal
- IGDR—UMR 6290, CNRS, University of Rennes 1, 35000 Rennes, France; (A.P.); (S.M.); (A.P.); (E.C.); (L.B.); (N.B.); (A.H.); (C.K.); (S.C.); (C.H.); (D.G.); (C.A.)
| | - Sébastien Corre
- IGDR—UMR 6290, CNRS, University of Rennes 1, 35000 Rennes, France; (A.P.); (S.M.); (A.P.); (E.C.); (L.B.); (N.B.); (A.H.); (C.K.); (S.C.); (C.H.); (D.G.); (C.A.)
| | - Jérôme Abadie
- Laboniris, Department of Biology, Pathology and Food Sciences, Oniris, 44300 Nantes, France;
| | - Christophe Hitte
- IGDR—UMR 6290, CNRS, University of Rennes 1, 35000 Rennes, France; (A.P.); (S.M.); (A.P.); (E.C.); (L.B.); (N.B.); (A.H.); (C.K.); (S.C.); (C.H.); (D.G.); (C.A.)
| | - David Gilot
- IGDR—UMR 6290, CNRS, University of Rennes 1, 35000 Rennes, France; (A.P.); (S.M.); (A.P.); (E.C.); (L.B.); (N.B.); (A.H.); (C.K.); (S.C.); (C.H.); (D.G.); (C.A.)
| | - Kerstin Lindblad-Toh
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA;
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, SE-751 24 Uppsala, Sweden
| | - Catherine André
- IGDR—UMR 6290, CNRS, University of Rennes 1, 35000 Rennes, France; (A.P.); (S.M.); (A.P.); (E.C.); (L.B.); (N.B.); (A.H.); (C.K.); (S.C.); (C.H.); (D.G.); (C.A.)
| | - Thomas Derrien
- IGDR—UMR 6290, CNRS, University of Rennes 1, 35000 Rennes, France; (A.P.); (S.M.); (A.P.); (E.C.); (L.B.); (N.B.); (A.H.); (C.K.); (S.C.); (C.H.); (D.G.); (C.A.)
- Correspondence: (T.D.); (B.H.); Tel.: +33-2-23-23-43-19 (B.H.)
| | - Benoit Hedan
- IGDR—UMR 6290, CNRS, University of Rennes 1, 35000 Rennes, France; (A.P.); (S.M.); (A.P.); (E.C.); (L.B.); (N.B.); (A.H.); (C.K.); (S.C.); (C.H.); (D.G.); (C.A.)
- Correspondence: (T.D.); (B.H.); Tel.: +33-2-23-23-43-19 (B.H.)
| |
Collapse
|
21
|
TRPM7 Ion Channel: Oncogenic Roles and Therapeutic Potential in Breast Cancer. Cancers (Basel) 2021; 13:cancers13246322. [PMID: 34944940 PMCID: PMC8699295 DOI: 10.3390/cancers13246322] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Breast cancer is the most frequently diagnosed malignant tumor and the second leading cause of cancer death in women worldwide. The risk of developing breast cancer is 12.8%, i.e., 1 in 8 people, and a woman’s risk of dying is approximately 1 in 39. Calcium signals play an important role in various cancers and transport calcium ions may have altered expression in breast cancer, such as the TRPM7 calcium permeant ion channel, where overexpression may be associated with a poor prognosis. This review focuses on the TRPM7 channel, and the oncogenic roles studied so far in breast cancer. The TRPM7 ion channel is suggested as a potential and prospective target in the diagnosis and treatment of breast cancer. Abstract The transient receptor potential melastatin-subfamily member 7 (TRPM7) is a divalent cations permeant channel but also has intrinsic serine/threonine kinase activity. It is ubiquitously expressed in normal tissues and studies have indicated that it participates in important physiological and pharmacological processes through its channel-kinase activity, such as calcium/magnesium homeostasis, phosphorylation of proteins involved in embryogenesis or the cellular process. Accumulating evidence has shown that TRPM7 is overexpressed in human pathologies including breast cancer. Breast cancer is the second leading cause of cancer death in women with an incidence rate increase of around 0.5% per year since 2004. The overexpression of TRPM7 may be associated with a poor prognosis in breast cancer patients, so more efforts are needed to research a new therapeutic target. TRPM7 regulates the levels of Ca2+, which can alter the signaling pathways involved in survival, cell cycle progression, proliferation, growth, migration, invasion, epithelial-mesenchymal transition and thus determines cell behavior, promoting tumor development. This work provides a complete overview of the TRPM7 ion channel and its main involvements in breast cancer. Special consideration is given to the modulation of the channel as a potential target in breast cancer treatment by inhibition of proliferation, migration and invasion. Taken together, these data suggest the potential exploitation of TRPM7 channel-kinase as a therapeutic target and a diagnostic biomarker.
Collapse
|
22
|
Wallander K, Thutkawkorapin J, Sahlin E, Lindblom A, Lagerstedt-Robinson K. Massive parallel sequencing in a family with rectal cancer. Hered Cancer Clin Pract 2021; 19:23. [PMID: 33827643 PMCID: PMC8028209 DOI: 10.1186/s13053-021-00181-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/30/2021] [Indexed: 12/29/2022] Open
Abstract
Background We have previously reported a family with a suspected autosomal dominant rectal and gastric cancer syndrome without any obvious causative genetic variant. Here, we focused the study on a potentially isolated rectal cancer syndrome in this family. Methods We included seven family members (six obligate carriers). Whole-exome sequencing and whole-genome sequencing data were analyzed and filtered for shared coding and splicing sequence and structural variants among the affected individuals. Results When considering family members with rectal cancer or advanced adenomas as affected, we found six new potentially cancer-associated variants in the genes CENPB, ZBTB20, CLINK, LRRC26, TRPM1, and NPEPL1. All variants were missense variants and none of the genes have previously been linked to inherited rectal cancer. No structural variant was found. Conclusion By massive parallel sequencing in a family suspected of carrying a highly penetrant rectal cancer predisposing genetic variant, we found six genetic missense variants with a potential connection to the rectal cancer in this family. One of them could be a high-risk genetic variant, or one or more of them could be low risk variants. The p.(Glu438Lys) variant in the CENPB gene was found to be of particular interest. The CENPB protein binds DNA and helps form centromeres during mitosis. It is involved in the WNT signaling pathway, which is critical for colorectal cancer development and its role in inherited rectal cancer needs to be further examined. Supplementary Information The online version contains supplementary material available at 10.1186/s13053-021-00181-2.
Collapse
Affiliation(s)
- Karin Wallander
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Solna, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Jessada Thutkawkorapin
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Solna, Stockholm, Sweden
| | - Ellika Sahlin
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Solna, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Annika Lindblom
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Solna, Stockholm, Sweden. .,Department of Clinical Genetics, Karolinska University Hospital, Solna, Stockholm, Sweden.
| | - Kristina Lagerstedt-Robinson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Solna, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Solna, Stockholm, Sweden
| |
Collapse
|
23
|
Piaszinski K, Rincic M, Liehr T, Azawi S. Molecular Cytogenetic Characterization of the Murine Melanoma Cell Lines S91 Clone M3 and B16-F1 with Variant B16-4A5. Cytogenet Genome Res 2021; 161:82-92. [PMID: 33596583 DOI: 10.1159/000513174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/19/2020] [Indexed: 11/19/2022] Open
Abstract
Melanoma is considered to be one of the most aggressive human tumors. Thus, early molecular diagnosis with risk factor stratification could be an efficacious strategy to increase the survival rates in affected patients. Murine cell lines B16-F1, B16-4A5, and S91 clone M3 are the ones most commonly applied in melanoma research. However, genetic peculiarities of these 3 cell lines have not been studied in detail before. Here, we closed this gap by molecular cytogenetic and array-comparative genomic hybridization studies and the translation of the characterized imbalances into the human genome. This study revealed severely rearranged karyotypes with in parts similar imbalances for all 3 cell lines. Interestingly, they involve genes known to play major roles in human melanoma. These are specifically the oncogenes and tumor suppressor genes, being associated with aggressive forms of melanoma. B16-F1, B16-4A5, and S91 clone M3 revealed aberrations which were similarly observed in human eye and skin but not in human uveal melanoma. Thus, they can be considered as model systems for advanced eye and skin melanoma.
Collapse
Affiliation(s)
- Katja Piaszinski
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Martina Rincic
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Thomas Liehr
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany,
| | - Shaymaa Azawi
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
24
|
Adiga D, Radhakrishnan R, Chakrabarty S, Kumar P, Kabekkodu SP. The Role of Calcium Signaling in Regulation of Epithelial-Mesenchymal Transition. Cells Tissues Organs 2020; 211:134-156. [PMID: 33316804 DOI: 10.1159/000512277] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 10/13/2020] [Indexed: 11/19/2022] Open
Abstract
Despite substantial advances in the field of cancer therapeutics, metastasis is a significant challenge for a favorable clinical outcome. Epithelial to mesenchymal transition (EMT) is a process of acquiring increased motility, invasiveness, and therapeutic resistance by cancer cells for their sustained growth and survival. A plethora of intrinsic mechanisms and extrinsic microenvironmental factors drive the process of cancer metastasis. Calcium (Ca2+) signaling plays a critical role in dictating the adaptive metastatic cell behavior comprising of cell migration, invasion, angiogenesis, and intravasation. By modulating EMT, Ca2+ signaling can regulate the complexity and dynamics of events leading to metastasis. This review summarizes the role of Ca2+ signal remodeling in the regulation of EMT and metastasis in cancer.
Collapse
Affiliation(s)
- Divya Adiga
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Raghu Radhakrishnan
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
- Center for DNA Repair and Genome Stability (CDRGS), Manipal Academy of Higher Education, Manipal, India
| | - Prashant Kumar
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India,
- Center for DNA Repair and Genome Stability (CDRGS), Manipal Academy of Higher Education, Manipal, India,
| |
Collapse
|
25
|
Jimenez I, Prado Y, Marchant F, Otero C, Eltit F, Cabello-Verrugio C, Cerda O, Simon F. TRPM Channels in Human Diseases. Cells 2020; 9:E2604. [PMID: 33291725 PMCID: PMC7761947 DOI: 10.3390/cells9122604] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/11/2022] Open
Abstract
The transient receptor potential melastatin (TRPM) subfamily belongs to the TRP cation channels family. Since the first cloning of TRPM1 in 1989, tremendous progress has been made in identifying novel members of the TRPM subfamily and their functions. The TRPM subfamily is composed of eight members consisting of four six-transmembrane domain subunits, resulting in homomeric or heteromeric channels. From a structural point of view, based on the homology sequence of the coiled-coil in the C-terminus, the eight TRPM members are clustered into four groups: TRPM1/M3, M2/M8, M4/M5 and M6/M7. TRPM subfamily members have been involved in several physiological functions. However, they are also linked to diverse pathophysiological human processes. Alterations in the expression and function of TRPM subfamily ion channels might generate several human diseases including cardiovascular and neurodegenerative alterations, organ dysfunction, cancer and many other channelopathies. These effects position them as remarkable putative targets for novel diagnostic strategies, drug design and therapeutic approaches. Here, we review the current knowledge about the main characteristics of all members of the TRPM family, focusing on their actions in human diseases.
Collapse
Affiliation(s)
- Ivanka Jimenez
- Faculty of Life Science, Universidad Andrés Bello, Santiago 8370186, Chile; (I.J.); (Y.P.); (F.M.); (C.C.-V.)
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Universidad de Chile, Santiago 8380453, Chile;
| | - Yolanda Prado
- Faculty of Life Science, Universidad Andrés Bello, Santiago 8370186, Chile; (I.J.); (Y.P.); (F.M.); (C.C.-V.)
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Universidad de Chile, Santiago 8380453, Chile;
| | - Felipe Marchant
- Faculty of Life Science, Universidad Andrés Bello, Santiago 8370186, Chile; (I.J.); (Y.P.); (F.M.); (C.C.-V.)
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Universidad de Chile, Santiago 8380453, Chile;
| | - Carolina Otero
- Faculty of Medicine, School of Chemistry and Pharmacy, Universidad Andrés Bello, Santiago 8370186, Chile;
| | - Felipe Eltit
- Vancouver Prostate Centre, Vancouver, BC V6Z 1Y6, Canada;
- Department of Urological Sciences, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
| | - Claudio Cabello-Verrugio
- Faculty of Life Science, Universidad Andrés Bello, Santiago 8370186, Chile; (I.J.); (Y.P.); (F.M.); (C.C.-V.)
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago 7560484, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago 8370146, Chile
| | - Oscar Cerda
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Universidad de Chile, Santiago 8380453, Chile;
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Felipe Simon
- Faculty of Life Science, Universidad Andrés Bello, Santiago 8370186, Chile; (I.J.); (Y.P.); (F.M.); (C.C.-V.)
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Universidad de Chile, Santiago 8380453, Chile;
- Millennium Institute on Immunology and Immunotherapy, Santiago 8370146, Chile
| |
Collapse
|
26
|
RAGE Signaling in Melanoma Tumors. Int J Mol Sci 2020; 21:ijms21238989. [PMID: 33256110 PMCID: PMC7730603 DOI: 10.3390/ijms21238989] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 12/18/2022] Open
Abstract
Despite recent progresses in its treatment, malignant cutaneous melanoma remains a cancer with very poor prognosis. Emerging evidences suggest that the receptor for advance glycation end products (RAGE) plays a key role in melanoma progression through its activation in both cancer and stromal cells. In tumors, RAGE activation is fueled by numerous ligands, S100B and HMGB1 being the most notable, but the role of many other ligands is not well understood and should not be underappreciated. Here, we provide a review of the current role of RAGE in melanoma and conclude that targeting RAGE in melanoma could be an approach to improve the outcomes of melanoma patients.
Collapse
|
27
|
Yang H, Wei Q, Li D, Wang Z. Cancer classification based on chromatin accessibility profiles with deep adversarial learning model. PLoS Comput Biol 2020; 16:e1008405. [PMID: 33166290 PMCID: PMC7676699 DOI: 10.1371/journal.pcbi.1008405] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 11/19/2020] [Accepted: 09/28/2020] [Indexed: 12/13/2022] Open
Abstract
Given the complexity and diversity of the cancer genomics profiles, it is challenging to identify distinct clusters from different cancer types. Numerous analyses have been conducted for this propose. Still, the methods they used always do not directly support the high-dimensional omics data across the whole genome (Such as ATAC-seq profiles). In this study, based on the deep adversarial learning, we present an end-to-end approach ClusterATAC to leverage high-dimensional features and explore the classification results. On the ATAC-seq dataset and RNA-seq dataset, ClusterATAC has achieved excellent performance. Since ATAC-seq data plays a crucial role in the study of the effects of non-coding regions on the molecular classification of cancers, we explore the clustering solution obtained by ClusterATAC on the pan-cancer ATAC dataset. In this solution, more than 70% of the clustering are single-tumor-type-dominant, and the vast majority of the remaining clusters are associated with similar tumor types. We explore the representative non-coding loci and their linked genes of each cluster and verify some results by the literature search. These results suggest that a large number of non-coding loci affect the development and progression of cancer through its linked genes, which can potentially advance cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Hai Yang
- Department of Computer Science and Engineering, East China University of Science and Technology, Shanghai, PR China
| | - Qiang Wei
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Dongdong Li
- Department of Computer Science and Engineering, East China University of Science and Technology, Shanghai, PR China
| | - Zhe Wang
- Department of Computer Science and Engineering, East China University of Science and Technology, Shanghai, PR China
- * E-mail:
| |
Collapse
|
28
|
De Martino E, Brunetti D, Canzonieri V, Conforti C, Eisendle K, Mazzoleni G, Nobile C, Rao F, Zschocke J, Jukic E, Jaschke W, Weinlich G, Zelger B, Schmuth M, Stanta G, Zanconati F, Zalaudek I, Bonin S. The Association of Residential Altitude on the Molecular Profile and Survival of Melanoma: Results of an Interreg Study. Cancers (Basel) 2020; 12:E2796. [PMID: 33003444 PMCID: PMC7599639 DOI: 10.3390/cancers12102796] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/04/2020] [Accepted: 09/22/2020] [Indexed: 12/11/2022] Open
Abstract
Cutaneous melanoma (CM) incidence is rising worldwide and is the primary cause of death from skin disease in the Western world. Personal risk factors linked to environmental ultraviolet radiation (UVR) are well-known etiological factors contributing to its development. Nevertheless, UVR can contribute to the development of CM in different patterns and to varying degrees. The present study aimed at investigating whether altitude of residence can contribute to the development of specific types of CM and/or influence its progression. To this aim, 306 formalin-fixed and paraffin-embedded (FFPE) tissues from primary CM diagnosed in different geographical areas were submitted to B-RAF proto-oncogene serine/threonine kinase (BRAF) and N-RAS proto-oncogene GTPase (NRAS) mutational status detection and mRNA and miRNA profiling by qPCR. Genes were chosen for their functions in specific processes, such as immune response (CD2, PDL1, or CD274) and pigmentation (MITF, TYRP1, and TRPM1). Furthermore, four microRNAs, namely miR-150-5p, miR-155-5p, miR-204-5p, and miR-211-5p, were included in the profiling. Our results highlight differences in the gene expression profile of primary CM with respect to the geographical area and the altitude of residence. Melanoma-specific survival was influenced by the gene expression of mRNA and miRNAs and varied with the altitude of patients' residence. In detail, TYRP1 and miR-204-5p were highly expressed in patients living at higher altitudes, unlike miR-150-5p, miR-155-5p, and miR-211-5p. Since miRNAs are highly regulated by reactive oxygen species, it is possible that different regulatory mechanisms characterize CMs at different altitudes due to the different environment and UVR intensity.
Collapse
Affiliation(s)
- Eleonora De Martino
- DSM-Department of Medical Sciences, University of Trieste, 34149 Trieste, Italy; (E.D.M.); (D.B.); (V.C.); (C.C.); (G.S.); (F.Z.); (I.Z.)
| | - Davide Brunetti
- DSM-Department of Medical Sciences, University of Trieste, 34149 Trieste, Italy; (E.D.M.); (D.B.); (V.C.); (C.C.); (G.S.); (F.Z.); (I.Z.)
| | - Vincenzo Canzonieri
- DSM-Department of Medical Sciences, University of Trieste, 34149 Trieste, Italy; (E.D.M.); (D.B.); (V.C.); (C.C.); (G.S.); (F.Z.); (I.Z.)
- Pathology Unit, IRCCS CRO Aviano-National Cancer Institute, 33081 Aviano, Italy;
| | - Claudio Conforti
- DSM-Department of Medical Sciences, University of Trieste, 34149 Trieste, Italy; (E.D.M.); (D.B.); (V.C.); (C.C.); (G.S.); (F.Z.); (I.Z.)
- ASU GI-Azienda sanitaria universitaria Giuliano Isontina, 34128 Trieste, Italy
| | - Klaus Eisendle
- Azienda Sanitaria dell’Alto Adige, 39100 Bolzano, Italy; (K.E.); (G.M.); (C.N.)
| | - Guido Mazzoleni
- Azienda Sanitaria dell’Alto Adige, 39100 Bolzano, Italy; (K.E.); (G.M.); (C.N.)
| | - Carla Nobile
- Azienda Sanitaria dell’Alto Adige, 39100 Bolzano, Italy; (K.E.); (G.M.); (C.N.)
| | - Federica Rao
- Pathology Unit, IRCCS CRO Aviano-National Cancer Institute, 33081 Aviano, Italy;
| | - Johannes Zschocke
- Institute for Human Genetics, Medical University of Innsbruck, 6020 Innsbruck, Austria; (J.Z.); (E.J.)
| | - Emina Jukic
- Institute for Human Genetics, Medical University of Innsbruck, 6020 Innsbruck, Austria; (J.Z.); (E.J.)
| | - Wolfram Jaschke
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (W.J.); (G.W.); (B.Z.); (M.S.)
| | - Georg Weinlich
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (W.J.); (G.W.); (B.Z.); (M.S.)
| | - Bernhard Zelger
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (W.J.); (G.W.); (B.Z.); (M.S.)
| | - Matthias Schmuth
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (W.J.); (G.W.); (B.Z.); (M.S.)
| | - Giorgio Stanta
- DSM-Department of Medical Sciences, University of Trieste, 34149 Trieste, Italy; (E.D.M.); (D.B.); (V.C.); (C.C.); (G.S.); (F.Z.); (I.Z.)
| | - Fabrizio Zanconati
- DSM-Department of Medical Sciences, University of Trieste, 34149 Trieste, Italy; (E.D.M.); (D.B.); (V.C.); (C.C.); (G.S.); (F.Z.); (I.Z.)
- ASU GI-Azienda sanitaria universitaria Giuliano Isontina, 34128 Trieste, Italy
| | - Iris Zalaudek
- DSM-Department of Medical Sciences, University of Trieste, 34149 Trieste, Italy; (E.D.M.); (D.B.); (V.C.); (C.C.); (G.S.); (F.Z.); (I.Z.)
- ASU GI-Azienda sanitaria universitaria Giuliano Isontina, 34128 Trieste, Italy
| | - Serena Bonin
- DSM-Department of Medical Sciences, University of Trieste, 34149 Trieste, Italy; (E.D.M.); (D.B.); (V.C.); (C.C.); (G.S.); (F.Z.); (I.Z.)
| |
Collapse
|
29
|
Di Martile M, Garzoli S, Ragno R, Del Bufalo D. Essential Oils and Their Main Chemical Components: The Past 20 Years of Preclinical Studies in Melanoma. Cancers (Basel) 2020; 12:cancers12092650. [PMID: 32948083 PMCID: PMC7565555 DOI: 10.3390/cancers12092650] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/07/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary In the last years, targeted therapy and immunotherapy modified the landscape for metastatic melanoma treatment. These therapeutic approaches led to an impressive improvement in patients overall survival. Unfortunately, the emergence of drug resistance and side effects occurring during therapy strongly limit the long-term efficacy of such treatments. Several preclinical studies demonstrate the efficacy of essential oils as antitumoral agents, and clinical trials support their use to reduce side effects emerging during therapy. In this review we have summarized studies describing the molecular mechanism through which essential oils induce in vitro and in vivo cell death in melanoma models. We also pointed to clinical trials investigating the use of essential oils in reducing the side effects experienced by cancer patients or those undergoing anticancer therapy. From this review emerged that further studies are necessary to validate the effectiveness of essential oils for the management of melanoma. Abstract The last two decades have seen the development of effective therapies, which have saved the lives of a large number of melanoma patients. However, therapeutic options are still limited for patients without BRAF mutations or in relapse from current treatments, and severe side effects often occur during therapy. Thus, additional insights to improve treatment efficacy with the aim to decrease the likelihood of chemoresistance, as well as reducing side effects of current therapies, are required. Natural products offer great opportunities for the discovery of antineoplastic drugs, and still represent a useful source of novel molecules. Among them, essential oils, representing the volatile fraction of aromatic plants, are always being actively investigated by several research groups and show promising biological activities for their use as complementary or alternative medicine for several diseases, including cancer. In this review, we focused on studies reporting the mechanism through which essential oils exert antitumor action in preclinical wild type or mutant BRAF melanoma models. We also discussed the latest use of essential oils in improving cancer patients’ quality of life. As evidenced by the many studies listed in this review, through their effect on apoptosis and tumor progression-associated properties, essential oils can therefore be considered as potential natural pharmaceutical resources for cancer management.
Collapse
Affiliation(s)
- Marta Di Martile
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy
- Correspondence: (M.D.M.); (D.D.B.); Tel.: +39-0652666891 (M.D.M.); +39-0652662575 (D.D.B.)
| | - Stefania Garzoli
- Department of Chemistry and Technologies of Drugs, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy; (S.G.); (R.R.)
| | - Rino Ragno
- Department of Chemistry and Technologies of Drugs, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy; (S.G.); (R.R.)
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Donatella Del Bufalo
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy
- Correspondence: (M.D.M.); (D.D.B.); Tel.: +39-0652666891 (M.D.M.); +39-0652662575 (D.D.B.)
| |
Collapse
|
30
|
Azevedo H, Pessoa GC, de Luna Vitorino FN, Nsengimana J, Newton-Bishop J, Reis EM, da Cunha JPC, Jasiulionis MG. Gene co-expression and histone modification signatures are associated with melanoma progression, epithelial-to-mesenchymal transition, and metastasis. Clin Epigenetics 2020; 12:127. [PMID: 32831131 PMCID: PMC7444266 DOI: 10.1186/s13148-020-00910-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND We have previously developed a murine cellular system that models the transformation from melanocytes to metastatic melanoma cells. This model was established by cycles of anchorage impediment of melanocytes and consists of four cell lines: differentiated melanocytes (melan-a), pre-malignant melanocytes (4C), malignant (4C11-), and metastasis-prone (4C11+) melanoma cells. Here, we searched for transcriptional and epigenetic signatures associated with melanoma progression and metastasis by performing a gene co-expression analysis of transcriptome data and a mass-spectrometry-based profiling of histone modifications in this model. RESULTS Eighteen modules of co-expressed genes were identified, and some of them were associated with melanoma progression, epithelial-to-mesenchymal transition (EMT), and metastasis. The genes in these modules participate in biological processes like focal adhesion, cell migration, extracellular matrix organization, endocytosis, cell cycle, DNA repair, protein ubiquitination, and autophagy. Modules and hub signatures related to EMT and metastasis (turquoise, green yellow, and yellow) were significantly enriched in genes associated to patient survival in two independent melanoma cohorts (TCGA and Leeds), suggesting they could be sources of novel prognostic biomarkers. Clusters of histone modifications were also linked to melanoma progression, EMT, and metastasis. Reduced levels of H4K5ac and H4K8ac marks were seen in the pre-malignant and tumorigenic cell lines, whereas the methylation patterns of H3K4, H3K56, and H4K20 were related to EMT. Moreover, the metastatic 4C11+ cell line showed higher H3K9me2 and H3K36me3 methylation, lower H3K18me1, H3K23me1, H3K79me2, and H3K36me2 marks and, in agreement, downregulation of the H3K36me2 methyltransferase Nsd1. CONCLUSIONS We uncovered transcriptional and histone modification signatures that may be molecular events driving melanoma progression and metastasis, which can aid in the identification of novel prognostic genes and drug targets for treating the disease.
Collapse
Affiliation(s)
- Hátylas Azevedo
- Division of Urology, Department of Surgery, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Guilherme Cavalcante Pessoa
- Department of Pharmacology, Universidade Federal de São Paulo (UNIFESP), Rua Pedro de Toledo 669 5 andar, Vila Clementino, São Paulo, SP, 04039032, Brazil
| | | | - Jérémie Nsengimana
- Institute of Medical Research at St James's, University of Leeds School of Medicine, Leeds, UK
- Biostatistics Research Group, Population Health Sciences Institute, Newcastle University, Newcastle, United Kingdom
| | - Julia Newton-Bishop
- Institute of Medical Research at St James's, University of Leeds School of Medicine, Leeds, UK
| | - Eduardo Moraes Reis
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Júlia Pinheiro Chagas da Cunha
- Laboratório de Ciclo Celular, Center of Toxins, Immune Response and Cell Signaling - CeTICS, Instituto Butantan, São Paulo, Brazil
| | - Miriam Galvonas Jasiulionis
- Department of Pharmacology, Universidade Federal de São Paulo (UNIFESP), Rua Pedro de Toledo 669 5 andar, Vila Clementino, São Paulo, SP, 04039032, Brazil.
| |
Collapse
|
31
|
Abstract
Ca2+ is a ubiquitous and dynamic second messenger molecule that is induced by many factors including receptor activation, environmental factors, and voltage, leading to pleiotropic effects on cell function including changes in migration, metabolism and transcription. As such, it is not surprising that aberrant regulation of Ca2+ signals can lead to pathological phenotypes, including cancer progression. However, given the highly context-specific nature of Ca2+-dependent changes in cell function, delineation of its role in cancer has been a challenge. Herein, we discuss the distinct roles of Ca2+ signaling within and between each type of cancer, including consideration of the potential of therapeutic strategies targeting these signaling pathways.
Collapse
Affiliation(s)
- Scott Gross
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Pranava Mallu
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Hinal Joshi
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Bryant Schultz
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Christina Go
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Jonathan Soboloff
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States; Department of Medical Genetics & Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.
| |
Collapse
|
32
|
Liu Y, Mikrani R, He Y, Faran Ashraf Baig MM, Abbas M, Naveed M, Tang M, Zhang Q, Li C, Zhou X. TRPM8 channels: A review of distribution and clinical role. Eur J Pharmacol 2020; 882:173312. [PMID: 32610057 DOI: 10.1016/j.ejphar.2020.173312] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 06/10/2020] [Accepted: 06/23/2020] [Indexed: 12/15/2022]
Abstract
Ion channels are important therapeutic targets due to their plethoric involvement in physiological and pathological consequences. The transient receptor potential cation channel subfamily M member 8 (TRPM8) is a nonselective cation channel that controls Ca2+ homeostasis. It has been proposed to be the predominant thermoreceptor for cellular and behavioral responses to cold stimuli in the transient receptor potential (TRP) channel subfamilies and exploited so far to reach the clinical-stage of drug development. TRPM8 channels can be found in multiple organs and tissues, regulating several important processes such as cell proliferation, migration and apoptosis, inflammatory reactions, immunomodulatory effects, pain, and vascular muscle tension. The related disorders have been expanded to new fields ranging from cancer and migraine to dry eye disease, pruritus, irritable bowel syndrome (IBS), and chronic cough. This review is aimed to summarize the distribution of TRPM8 and disorders related to it from a clinical perspective, so as to broaden the scope of knowledge of researchers to conduct more studies on this subject.
Collapse
Affiliation(s)
- Yuqian Liu
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Jiangsu Province, Nanjing, 211198, PR China
| | - Reyaj Mikrani
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Jiangsu Province, Nanjing, 211198, PR China
| | - Yanjun He
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Jiangsu Province, Nanjing, 211198, PR China
| | - Mirza Muhammad Faran Ashraf Baig
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, PR China
| | - Muhammad Abbas
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, 210023, PR China
| | - Muhammad Naveed
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China
| | - Meng Tang
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Jiangsu Province, Nanjing, 211198, PR China
| | - Qin Zhang
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Jiangsu Province, Nanjing, 211198, PR China
| | - Cuican Li
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Jiangsu Province, Nanjing, 211198, PR China
| | - Xiaohui Zhou
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Jiangsu Province, Nanjing, 211198, PR China; Department of Surgery, Zhongda Hospital Affiliated to Southeast University, Nanjing, Jiangsu Province, 210017, PR China; Department of Surgery, Nanjing Shuiximen Hospital, Jiangsu Province, 210017, PR China.
| |
Collapse
|
33
|
Goto K, Pissaloux D, Durand L, Tirode F, Guillot B, de la Fouchardière A. Novel three-way complex rearrangement of TRPM1-PUM1-LCK in a case of agminated Spitz nevi arising in a giant congenital hyperpigmented macule. Pigment Cell Melanoma Res 2020; 33:767-772. [PMID: 32386465 DOI: 10.1111/pcmr.12884] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/06/2020] [Accepted: 04/20/2020] [Indexed: 11/28/2022]
Abstract
The genetic anomalies associated with the agminated variant of Spitz nevus have so far been limited to HRAS G13R mutations, especially when arising within a nevus spilus. A previous report exposed the case of a man with a giant pigmented macule involving his upper right limb and trunk. Since childhood, Spitz nevi have been periodically arising, within the pigmented area. The histopathology of several lesions displayed the usual criteria of junctional, compound, or intradermal Spitz nevi with a diversity of cytomorphological and architectural features. Some lesions spontaneously regressed. Genetic studies confirmed in three lesions an identical translocation involving TRPM1, PUM1, and LCK. No mutations in HRAS, NRAS, BRAF, or other known fusion genes linked to Spitz nevus were detected. LCK break-apart fluorescence in situ hybridization confirmed the rearrangement was present not only in the melanocytic proliferation but also in the surrounding non-spitzoid melanocytes. This report expands the list of genetic alterations involved both in giant congenital macules and in agminated Spitz nevi, and also extends the concept of mosaicism in melanocytes to gene translocations.
Collapse
Affiliation(s)
- Keisuke Goto
- Department of Pathology, Tokyo Metropolitan Cancer and Infectious Disease Center Komagome Hospital, Tokyo, Japan.,Department of Diagnostic Pathology, Shizuoka Cancer Center Hospital, Nagaizumi, Japan.,Department of Diagnostic Pathology and Cytology, Osaka International Cancer Institute, Osaka, Japan.,Department of Dermatology, Hyogo Cancer Center, Akashi, Japan
| | - Daniel Pissaloux
- Department of Biopathology, Center Léon Bérard, Lyon, France.,INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Equipe Labellisée Ligue contre le Cancer, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | | | - Franck Tirode
- Department of Biopathology, Center Léon Bérard, Lyon, France.,INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Equipe Labellisée Ligue contre le Cancer, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Bernard Guillot
- Department of Dermatology, Saint Eloi University Hospital, CHU Montpellier, Montpellier, France
| | - Arnaud de la Fouchardière
- Department of Biopathology, Center Léon Bérard, Lyon, France.,INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Equipe Labellisée Ligue contre le Cancer, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
34
|
Ye Q, Wen Y, Al-Kuwari N, Chen X. Association Between Parkinson's Disease and Melanoma: Putting the Pieces Together. Front Aging Neurosci 2020; 12:60. [PMID: 32210791 PMCID: PMC7076116 DOI: 10.3389/fnagi.2020.00060] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/20/2020] [Indexed: 12/15/2022] Open
Abstract
Patients with Parkinson’s disease (PD) generally have reduced risk of developing many types of cancers, except melanoma—a malignant tumor of melanin-producing cells in the skin. For decades, a large number of epidemiological studies have reported that the occurrence of melanoma is higher than expected among subjects with PD, and the occurrence of PD is reciprocally higher than expected among patients with melanoma. More recent epidemiological studies further indicated a bidirectional association, not only in the patients themselves but also in their relatives. This association between PD and melanoma offers a unique opportunity to understand PD. Here, we summarize epidemiological, clinical, and biological evidence in regard to shared risk factors and possible underlying mechanisms for these two seemingly distinct conditions.
Collapse
Affiliation(s)
- Qing Ye
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Ya Wen
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.,Ietheory Institute, Burlington, MA, United States
| | - Nasser Al-Kuwari
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Xiqun Chen
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
35
|
Shiels A. TRPM3_miR-204: a complex locus for eye development and disease. Hum Genomics 2020; 14:7. [PMID: 32070426 PMCID: PMC7027284 DOI: 10.1186/s40246-020-00258-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/06/2020] [Indexed: 02/07/2023] Open
Abstract
First discovered in a light-sensitive retinal mutant of Drosophila, the transient receptor potential (TRP) superfamily of non-selective cation channels serve as polymodal cellular sensors that participate in diverse physiological processes across the animal kingdom including the perception of light, temperature, pressure, and pain. TRPM3 belongs to the melastatin sub-family of TRP channels and has been shown to function as a spontaneous calcium channel, with permeability to other cations influenced by alternative splicing and/or non-canonical channel activity. Activators of TRPM3 channels include the neurosteroid pregnenolone sulfate, calmodulin, phosphoinositides, and heat, whereas inhibitors include certain drugs, plant-derived metabolites, and G-protein subunits. Activation of TRPM3 channels at the cell membrane elicits a signal transduction cascade of mitogen-activated kinases and stimulus response transcription factors. The mammalian TRPM3 gene hosts a non-coding microRNA gene specifying miR-204 that serves as both a tumor suppressor and a negative regulator of post-transcriptional gene expression during eye development in vertebrates. Ocular co-expression of TRPM3 and miR-204 is upregulated by the paired box 6 transcription factor (PAX6) and mutations in all three corresponding genes underlie inherited forms of eye disease in humans including early-onset cataract, retinal dystrophy, and coloboma. This review outlines the genomic and functional complexity of the TRPM3_miR-204 locus in mammalian eye development and disease.
Collapse
Affiliation(s)
- Alan Shiels
- Ophthalmology and Visual Sciences, Washington University School of Medicine, 660 S. Euclid Ave., Box 8096, St. Louis, MO, 63110, USA.
| |
Collapse
|
36
|
Santoni G, Morelli MB, Santoni M, Nabissi M, Marinelli O, Amantini C. Targeting Transient Receptor Potential Channels by MicroRNAs Drives Tumor Development and Progression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:605-623. [PMID: 31646527 DOI: 10.1007/978-3-030-12457-1_24] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Transient receptor potential (TRP) cation channel superfamily plays important roles in a variety of cellular processes such polymodal cellular sensing, adhesion, polarity, proliferation, differentiation and apoptosis. The expression of TRP channels is strictly regulated and their de-regulation can stimulate cancer development and progression.In human cancers, specific miRNAs are expressed in different tissues, and changes in the regulation of gene expression mediated by specific miRNAs have been associated with carcinogenesis. Several miRNAs/TRP channel pairs have been reported to play an important role in tumor biology. Thus, the TRPM1 gene regulates melanocyte/melanoma behaviour via TRPM1 and microRNA-211 transcripts. Both miR-211 and TRPM1 proteins are regulated through microphthalmia-associated transcription factor (MIFT) and the expression of miR-211 is decreased during melanoma progression. Melanocyte phenotype and melanoma behaviour strictly depend on dual TRPM1 activity, with loss of TRPM1 protein promoting melanoma aggressiveness and miR-211 expression supporting tumour suppressor. TRPM3 plays a major role in the development and progression of human clear cell renal cell carcinoma (ccRCC) with von Hippel-Lindau (VHL) loss. TRPM3, a direct target of miR-204, is enhanced in ccRCC with inactivated or deleted VHL. Loss of VHL inhibits miR-204 expression that lead to increased oncogenic autophagy. Therefore, the understanding of specific TRP channels/miRNAs molecular pathways in distinct tumors could provide a clinical rationale for target therapy in cancer.
Collapse
Affiliation(s)
- Giorgio Santoni
- School of Pharmacy, Experimental Medicine Section, University of Camerino, Camerino, Italy.
| | - Maria Beatrice Morelli
- School of Pharmacy, Experimental Medicine Section, University of Camerino, Camerino, Italy
| | - Matteo Santoni
- Clinic and Oncology Unit, Macerata Hospital, Macerata, Italy
| | - Massimo Nabissi
- School of Pharmacy, Experimental Medicine Section, University of Camerino, Camerino, Italy
| | - Oliviero Marinelli
- School of Pharmacy, Experimental Medicine Section, University of Camerino, Camerino, Italy
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Consuelo Amantini
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| |
Collapse
|
37
|
Mechanism for Regulation of Melanoma Cell Death via Activation of Thermo-TRPV4 and TRPV2. JOURNAL OF ONCOLOGY 2019; 2019:7362875. [PMID: 30881453 PMCID: PMC6383420 DOI: 10.1155/2019/7362875] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/30/2018] [Accepted: 12/27/2018] [Indexed: 01/08/2023]
Abstract
Background Thermo-TRPs (temperature-sensitive transient receptor potential channels) belong to the TRP (transient receptor potential) channel superfamily. Emerging evidence implied that thermo-TRPs have been involved in regulation of cell fate in certain tumors. However, their distribution profiles and roles in melanoma remain incompletely understood. Methods Western blot and digital PCR approaches were performed to identify the distribution profiles of six thermo-TRPs. MTT assessment was employed to detect cell viability. Flow cytometry was applied to test cell cycle and apoptosis. Calcium imaging was used to determine the function of channels. Five cell lines, including one normal human primary epidermal melanocytes and two human malignant melanoma (A375, G361) and two human metastatic melanoma (A2058, SK-MEL-3) cell lines, were chosen for this research. Results In the present study, six thermo-TRPs including TRPV1/2/3/4, TRPA1, and TRPM8 were examined in human primary melanocytes and melanoma cells. We found that TRPV2/4, TRPA1, and TRPM8 exhibited ectopic distribution both in melanocytes and melanoma cells. Moreover, activation of TRPV2 and TRPV4 could lead to the decline of cell viability for melanoma A2058 and A375 cells. Subsequently, activation of TRPV2 by 2-APB (IC50 = 150 μM) induced cell necrosis in A2058 cells, while activation of TRPV4 by GSK1016790A (IC50 = 10 nM) enhanced apoptosis of A375 cells. Furthermore, TRPV4 mediated cell apoptosis of melanoma via phosphorylation of AKT and was involved in calcium regulation. Conclusion Overall, our studies revealed that TRPV4 and TRPV2 mediated melanoma cell death via channel activation and characterized the mechanism of functional TRPV4 ion channel in regulating AKT pathway driven antitumor process. Thus, they may serve as potential biomarkers for the prognosis and are targeted for the therapeutic use in human melanoma.
Collapse
|
38
|
Analysis of the Methylation Status of CpG Sites Within Cancer-Related Genes in Equine Sarcoids. ANNALS OF ANIMAL SCIENCE 2018. [DOI: 10.2478/aoas-2018-0033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Abstract
In the recent years, particular attention was given to the research aimed at optimizing the use of tumour epigenetic markers. One of the best known epigenetic changes associated with the process of carcinogenesis is aberrant DNA methylation. The aim of the present research was to evaluate the methylation profile of genes potentially important in the diagnosis and/or prognosis of equine sarcoids, the most commonly detected skin tumours in Equidae. The methylation status of potential promoter sequences of nine genes: APC, CCND2, CDKN2B, DCC, RARβ, RASSF1, RASSF5, THBS1 and TRPM1, was determined using bisulfite sequencing polymerase chain reaction (BSP-CR). The results of this study did not reveal any changes in the level of DNA methylation in the analysed group of candidate genes between the tumour and healthy tissues. Despite numerous reports describing the aberrant methylation of the promoters of the analysed genes in human cancers, the data obtained did not confirm the existence of such relationships in the examined tumour tissues, which excludes the possibility of using these genes for the diagnosis of the equine sarcoid.
Collapse
|
39
|
Prevarskaya N, Skryma R, Shuba Y. Ion Channels in Cancer: Are Cancer Hallmarks Oncochannelopathies? Physiol Rev 2018; 98:559-621. [PMID: 29412049 DOI: 10.1152/physrev.00044.2016] [Citation(s) in RCA: 304] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Genomic instability is a primary cause and fundamental feature of human cancer. However, all cancer cell genotypes generally translate into several common pathophysiological features, often referred to as cancer hallmarks. Although nowadays the catalog of cancer hallmarks is quite broad, the most common and obvious of them are 1) uncontrolled proliferation, 2) resistance to programmed cell death (apoptosis), 3) tissue invasion and metastasis, and 4) sustained angiogenesis. Among the genes affected by cancer, those encoding ion channels are present. Membrane proteins responsible for signaling within cell and among cells, for coupling of extracellular events with intracellular responses, and for maintaining intracellular ionic homeostasis ion channels contribute to various extents to pathophysiological features of each cancer hallmark. Moreover, tight association of these hallmarks with ion channel dysfunction gives a good reason to classify them as special type of channelopathies, namely oncochannelopathies. Although the relation of cancer hallmarks to ion channel dysfunction differs from classical definition of channelopathies, as disease states causally linked with inherited mutations of ion channel genes that alter channel's biophysical properties, in a broader context of the disease state, to which pathogenesis ion channels essentially contribute, such classification seems absolutely appropriate. In this review the authors provide arguments to substantiate such point of view.
Collapse
Affiliation(s)
- Natalia Prevarskaya
- INSERM U-1003, Equipe Labellisée par la Ligue Nationale contre le Cancer et LABEX, Université Lille1 , Villeneuve d'Ascq , France ; Bogomoletz Institute of Physiology and International Center of Molecular Physiology, NASU, Kyiv-24, Ukraine
| | - Roman Skryma
- INSERM U-1003, Equipe Labellisée par la Ligue Nationale contre le Cancer et LABEX, Université Lille1 , Villeneuve d'Ascq , France ; Bogomoletz Institute of Physiology and International Center of Molecular Physiology, NASU, Kyiv-24, Ukraine
| | - Yaroslav Shuba
- INSERM U-1003, Equipe Labellisée par la Ligue Nationale contre le Cancer et LABEX, Université Lille1 , Villeneuve d'Ascq , France ; Bogomoletz Institute of Physiology and International Center of Molecular Physiology, NASU, Kyiv-24, Ukraine
| |
Collapse
|
40
|
Hantute-Ghesquier A, Haustrate A, Prevarskaya N, Lehen'kyi V. TRPM Family Channels in Cancer. Pharmaceuticals (Basel) 2018; 11:ph11020058. [PMID: 29875336 PMCID: PMC6027338 DOI: 10.3390/ph11020058] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/28/2018] [Accepted: 06/01/2018] [Indexed: 12/11/2022] Open
Abstract
Members of the TRPM ("Melastatin") family fall into the subclass of the TRP channels having varying permeability to Ca2+ and Mg2+, with three members of the TRPM family being chanzymes, which contain C-terminal enzyme domains. The role of different TRPM members has been shown in various cancers such as prostate cancer for mostly TRPM8 and TRPM2, breast cancer for mostly TRPM2 and TRPM7, and pancreatic cancer for TRPM2/7/8 channels. The role of TRPM5 channels has been shown in lung cancer, TRPM1 in melanoma, and TRPM4 channel in prostate cancer as well. Thus, the TRPM family of channels may represent an appealing target for the anticancer therapy.
Collapse
Affiliation(s)
- Aline Hantute-Ghesquier
- Laboratory of Cell Physiology, INSERM U1003, Laboratory of Excellence Ion Channels Science and Therapeutics, Department of Biology, Faculty of Science and Technologies, University of Lille, 59650 Villeneuve d'Ascq, France.
| | - Aurélien Haustrate
- Laboratory of Cell Physiology, INSERM U1003, Laboratory of Excellence Ion Channels Science and Therapeutics, Department of Biology, Faculty of Science and Technologies, University of Lille, 59650 Villeneuve d'Ascq, France.
- FONDATION ARC, 9 rue Guy Môquet 94830 Villejuif, France.
| | - Natalia Prevarskaya
- Laboratory of Cell Physiology, INSERM U1003, Laboratory of Excellence Ion Channels Science and Therapeutics, Department of Biology, Faculty of Science and Technologies, University of Lille, 59650 Villeneuve d'Ascq, France.
| | - V'yacheslav Lehen'kyi
- Laboratory of Cell Physiology, INSERM U1003, Laboratory of Excellence Ion Channels Science and Therapeutics, Department of Biology, Faculty of Science and Technologies, University of Lille, 59650 Villeneuve d'Ascq, France.
- FONDATION ARC, 9 rue Guy Môquet 94830 Villejuif, France.
| |
Collapse
|
41
|
Downregulated TRPV1 Expression Contributes to Melanoma Growth via the Calcineurin-ATF3-p53 Pathway. J Invest Dermatol 2018; 138:2205-2215. [PMID: 29580868 DOI: 10.1016/j.jid.2018.03.1510] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 03/05/2018] [Accepted: 03/15/2018] [Indexed: 01/22/2023]
Abstract
Melanoma is the most lethal form of skin cancer with increasing incidence over the years. Because of its rapid proliferative and drastic metastatic capacity, the prognosis of melanoma remains dismal, although the targeted therapy and immunotherapy have gained revolutionary progress recently. Therefore, it is of necessity to further clarify the mechanism of melanoma pathogenesis for developing an alternative treatment strategy. Transient receptor potential vanilloid 1 (TRPV1) is a nonselective Ca2+ channel greatly involved in regulating cell apoptosis, proliferation, metabolism, and cancer development, but its role in melanoma remains unknown. Herein, we first found that TRPV1 expression was significantly decreased in melanoma tissues and cell lines, compared with nevus tissues and normal melanocytes, respectively. We then proved that TRPV1 overexpression or its agonist capsaicin treatment inhibited melanoma growth by activating p53 and inducing cell apoptosis. A subsequent mechanistic study revealed that TRPV1 induced Ca2+ influx to regulate p53 activation via calcineurin-ATF3 transcriptional cascade. Finally, the effect of TRPV1 on melanoma growth was proved in vivo. Altogether, our study demonstrates that TRPV1 is a potential tumor suppressor in melanoma.
Collapse
|
42
|
Abstract
Cutaneous melanoma (CM) is a malignancy with increasing occurrence. Its microRNA repertoire has been defined in a number studies, leading to candidates for biological and clinical relevance: miR-200a/b/c, miR-203, miR-205, miR-204, miR-211, miR-23b and miR-26a/b. Our work was aimed to validate the role of these candidate miRNAs in melanoma, using additional patients cohorts and in vitro cultures. miR-26a, miR-204 and miR-211 were more expressed in normal melanocytes, while miR-23b, miR-200b/c, miR-203 and miR-205 in epidermis and keratinocytes. None of the keratinocyte-related miRNAs was associated with any known mutation or with clinical covariates in melanoma. On the other hand, the loss of miR-204 was enriched in melanomas with NRAS sole mutation (Fisher exact test, P = 0.001, Log Odds = 1.67), and less frequent than expected in those harbouring CDKN2A mutations (Fisher exact test, P = 0.001, Log Odds - 1.09). Additionally, miR-204 was associated with better prognosis in two independent melanoma cohorts and its exogenous expression led to growth impairment in melanoma cell lines. Thus, miR-204 represents a relevant mechanism in melanoma, with potential prognostic value and its loss seems to act in the CDKN2A pathway, in cooperation with NRAS.
Collapse
|
43
|
Fattore L, Costantini S, Malpicci D, Ruggiero CF, Ascierto PA, Croce CM, Mancini R, Ciliberto G. MicroRNAs in melanoma development and resistance to target therapy. Oncotarget 2017; 8:22262-22278. [PMID: 28118616 PMCID: PMC5400662 DOI: 10.18632/oncotarget.14763] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 01/10/2017] [Indexed: 12/18/2022] Open
Abstract
microRNAs constitute a complex class of pleiotropic post-transcriptional regulators of gene expression involved in the control of several physiologic and pathologic processes. Their mechanism of action is primarily based on the imperfect matching of a seed region located at the 5′ end of a 21-23 nt sequence with a partially complementary sequence located in the 3′ untranslated region of target mRNAs. This leads to inhibition of mRNA translation and eventually to its degradation. Individual miRNAs are capable of binding to several mRNAs and several miRNAs are capable of influencing the function of the same mRNAs. In recent years networks of miRNAs are emerging as capable of controlling key signaling pathways responsible for the growth and propagation of cancer cells. Furthermore several examples have been provided which highlight the involvement of miRNAs in the development of resistance to targeted drug therapies. In this review we provide an updated overview of the role of miRNAs in the development of melanoma and the identification of the main downstream pathways controlled by these miRNAs. Furthermore we discuss a group of miRNAs capable to influence through their respective up- or down-modulation the development of resistance to BRAF and MEK inhibitors.
Collapse
Affiliation(s)
- Luigi Fattore
- Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale", Napoli, Italia
| | - Susan Costantini
- CROM, Istituto Nazionale Tumori "Fondazione G. Pascale"-IRCCS, Napoli, Italia
| | - Debora Malpicci
- Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi di Catanzaro "Magna Graecia", Catanzaro, Italia
| | - Ciro Francesco Ruggiero
- Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi di Catanzaro "Magna Graecia", Catanzaro, Italia
| | - Paolo Antonio Ascierto
- Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale", Napoli, Italia
| | - Carlo M Croce
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Rita Mancini
- Dipartimento di Medicina Clinica e Molecolare, Sapienza Università di Roma, Roma, Italia
| | - Gennaro Ciliberto
- Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale", Napoli, Italia.,IRCCS Istituto Nazionale Tumori "Regina Elena", Roma, Italy
| |
Collapse
|
44
|
Persad PJ, Heid IM, Weeks DE, Baird PN, de Jong EK, Haines JL, Pericak-Vance MA, Scott WK. Joint Analysis of Nuclear and Mitochondrial Variants in Age-Related Macular Degeneration Identifies Novel Loci TRPM1 and ABHD2/RLBP1. Invest Ophthalmol Vis Sci 2017; 58:4027-4038. [PMID: 28813576 PMCID: PMC5559178 DOI: 10.1167/iovs.17-21734] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Purpose Presently, 52 independent nuclear single nucleotide polymorphisms (nSNPs) have been associated with age-related macular degeneration (AMD) but their effects do not explain all its variance. Genetic interactions between the nuclear and mitochondrial (mt) genome may unearth additional genetic loci previously unassociated with AMD risk. Methods Joint effects of nSNPs and selected mtSNPs were analyzed by two degree of freedom (2df) joint tests of association in the International AMD Genomics Consortium (IAMDGC) dataset (17,832 controls and 16,144 advanced AMD cases of European ancestry). Subjects were genotyped on the Illumina HumanCoreExome array. After imputation using MINIMAC and the 1000 Genomes Project Phase I reference panel, pairwise linkage disequilibrium pruning, and quality control, 3.9 million nSNPs were analyzed for interaction with mtSNPs chosen based on association in this dataset or publications: A4917G, T5004C, G12771A, and C16069T. Results Novel locus TRPM1 was identified with genome-wide significant joint effects (P < 5.0 × 10−8) of two intronic TRPM1 nSNPs and AMD-associated nonsynonymous MT-ND2 mtSNP A4917G. Stratified analysis by mt allele identified an association only in 4917A (major allele) carriers (P = 4.4 × 10−9, odds ratio [OR] = 0.90, 95% confidence interval [CI] = 0.87–0.93). Intronic and intergenic ABHD2/RLBP1 nSNPs demonstrated genome-wide significant joint effects (2df joint test P values from 1.8 × 10−8 to 4.9 × 10−8) and nominally statistically significant interaction effects with MT-ND5 synonymous mtSNP G12771A. Although a positive association was detected in both strata, the association was stronger in 12771A subjects (P = 0.0020, OR = 2.17, 95% CI = 1.34–3.60). Conclusions These results show that joint tests of main effects and gene–gene interaction reveal associations at some novel loci that were missed when considering main effects alone.
Collapse
Affiliation(s)
- Patrice J Persad
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Iris M Heid
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - Daniel E Weeks
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States.,Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Paul N Baird
- Centre for Eye Research Australia, Department of Surgery (Ophthalmology) University of Melbourne, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Eiko K de Jong
- Department of Ophthalmology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jonathan L Haines
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, United States
| | - Margaret A Pericak-Vance
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - William K Scott
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, United States
| | | |
Collapse
|
45
|
Patch-clamp technique to characterize ion channels in enlarged individual endolysosomes. Nat Protoc 2017; 12:1639-1658. [PMID: 28726848 DOI: 10.1038/nprot.2017.036] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
According to proteomics analyses, more than 70 different ion channels and transporters are harbored in membranes of intracellular compartments such as endosomes and lysosomes. Malfunctioning of these channels has been implicated in human diseases such as lysosomal storage disorders, neurodegenerative diseases and metabolic pathologies, as well as in the progression of certain infectious diseases. As a consequence, these channels have engendered very high interest as future drug targets. Detailed electrophysiological characterization of intracellular ion channels is lacking, mainly because standard methods to analyze plasma membrane ion channels, such as the patch-clamp technique, are not readily applicable to intracellular organelles. Here we present a protocol detailing how to implement a manual patch-clamp technique for endolysosomal compartments. In contrast to the alternatively used planar endolysosomal patch-clamp technique, this method is a visually controlled, direct patch-clamp technique similar to conventional patch-clamping. The protocol assumes basic knowledge and experience with patch-clamp methods. Implementation of the method requires up to 1 week, and material preparation takes ∼2-4 d. An individual experiment (i.e., measurement of channel currents across the endolysosomal membrane), including control experiments, can be completed within 1 h. This excludes the time for endolysosome enlargement, which takes between 1 and 48 h, depending on the approach and cell type used. Data analysis requires an additional hour.
Collapse
|
46
|
Hegedüs L, Padányi R, Molnár J, Pászty K, Varga K, Kenessey I, Sárközy E, Wolf M, Grusch M, Hegyi Z, Homolya L, Aigner C, Garay T, Hegedüs B, Tímár J, Kállay E, Enyedi Á. Histone Deacetylase Inhibitor Treatment Increases the Expression of the Plasma Membrane Ca 2+ Pump PMCA4b and Inhibits the Migration of Melanoma Cells Independent of ERK. Front Oncol 2017; 7:95. [PMID: 28596940 PMCID: PMC5442207 DOI: 10.3389/fonc.2017.00095] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/27/2017] [Indexed: 12/13/2022] Open
Abstract
Several new therapeutic options emerged recently to treat metastatic melanoma; however, the high frequency of intrinsic and acquired resistance among patients shows a need for new therapeutic options. Previously, we identified the plasma membrane Ca2+ ATPase 4b (PMCA4b) as a metastasis suppressor in BRAF-mutant melanomas and found that mutant BRAF inhibition increased the expression of the pump, which then inhibited the migratory and metastatic capability of the cells. Earlier it was also demonstrated that histone deacetylase inhibitors (HDACis) upregulated PMCA4b expression in gastric, colon, and breast cancer cells. In this study, we treated one BRAF wild-type and two BRAF-mutant melanoma cell lines with the HDACis, SAHA and valproic acid, either alone, or in combination with the BRAF inhibitor, vemurafenib. We found that HDACi treatment strongly increased the expression of PMCA4b in all cell lines irrespective of their BRAF mutational status, and this effect was independent of ERK activity. Furthermore, HDAC inhibition also enhanced the abundance of the housekeeping isoform PMCA1. Combination of HDACis with vemurafenib, however, did not have any additive effects on either PMCA isoform. We demonstrated that the HDACi-induced increase in PMCA abundance was coupled to an enhanced [Ca2+]i clearance rate and also strongly inhibited both the random and directional movements of A375 cells. The primary role of PMCA4b in these characteristic changes was demonstrated by treatment with the PMCA4-specific inhibitor, caloxin 1c2, which was able to restore the slower Ca2+ clearance rate and higher motility of the cells. While HDAC treatment inhibited cell motility, it decreased only modestly the ratio of proliferative cells and cell viability. Our results show that in melanoma cells the expression of both PMCA4b and PMCA1 is under epigenetic control and the elevation of PMCA4b expression either by HDACi treatment or by the decreased activation of the BRAF-MEK-ERK pathway can inhibit the migratory capacity of the highly motile A375 cells.
Collapse
Affiliation(s)
- Luca Hegedüs
- Department of Thoracic Surgery, Ruhrlandklinik, University Clinic Essen, Essen, Germany.,Department of Pathophysiology and Allergy Research, Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria
| | - Rita Padányi
- 2nd Institute of Pathology, Semmelweis University, Budapest, Hungary
| | - Judit Molnár
- 2nd Institute of Pathology, Semmelweis University, Budapest, Hungary
| | - Katalin Pászty
- Molecular Biophysics Research Group of the Hungarian Academy of Sciences, Department of Biophysics, Semmelweis University, Budapest, Hungary
| | - Karolina Varga
- 2nd Institute of Pathology, Semmelweis University, Budapest, Hungary.,MTA-SE-NAP Brain Metastasis Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
| | - István Kenessey
- 2nd Institute of Pathology, Semmelweis University, Budapest, Hungary
| | - Eszter Sárközy
- 2nd Institute of Pathology, Semmelweis University, Budapest, Hungary
| | - Matthias Wolf
- Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria
| | - Michael Grusch
- Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria
| | - Zoltán Hegyi
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - László Homolya
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Clemens Aigner
- Department of Thoracic Surgery, Ruhrlandklinik, University Clinic Essen, Essen, Germany
| | - Tamás Garay
- Molecular Oncology Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
| | - Balázs Hegedüs
- Department of Thoracic Surgery, Ruhrlandklinik, University Clinic Essen, Essen, Germany.,Molecular Oncology Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
| | - József Tímár
- 2nd Institute of Pathology, Semmelweis University, Budapest, Hungary.,Molecular Oncology Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
| | - Enikö Kállay
- Department of Pathophysiology and Allergy Research, Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria
| | - Ágnes Enyedi
- 2nd Institute of Pathology, Semmelweis University, Budapest, Hungary.,Molecular Oncology Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
| |
Collapse
|
47
|
Yee NS. Role of TRPM7 in Cancer: Potential as Molecular Biomarker and Therapeutic Target. Pharmaceuticals (Basel) 2017; 10:39. [PMID: 28379203 PMCID: PMC5490396 DOI: 10.3390/ph10020039] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 02/22/2017] [Accepted: 03/29/2017] [Indexed: 12/31/2022] Open
Abstract
The transient receptor potential melastatin-subfamily member 7 (TRPM7) is a ubiquitously expressed ion channel with intrinsic kinase activity. Molecular and electrophysiological analyses of the structure and activity of TRPM7 have revealed functional coupling of its channel and kinase activity. Studies have indicated the important roles of TRPM7 channel-kinase in fundamental cellular processes, physiological responses, and embryonic development. Accumulating evidence has shown that TRPM7 is aberrantly expressed and/or activated in human diseases including cancer. TRPM7 plays a variety of functional roles in cancer cells including survival, cell cycle progression, proliferation, growth, migration, invasion, and epithelial-mesenchymal transition (EMT). Data from a study using mouse xenograft of human cancer show that TRPM7 is required for tumor growth and metastasis. The aberrant expression of TRPM7 and its genetic mutations/polymorphisms have been identified in various types of carcinoma. Chemical modulators of TRPM7 channel produced inhibition of proliferation, growth, migration, invasion, invadosome formation, and markers of EMT in cancer cells. Taken together, these studies suggest the potential value of exploiting TRPM7 channel-kinase as a molecular biomarker and therapeutic target in human malignancies.
Collapse
Affiliation(s)
- Nelson S Yee
- Division of Hematology-Oncology, Department of Medicine, PennState Health Milton S. Hershey Medical Center, Program of Experimental Therapeutics, PennState Cancer Institute, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| |
Collapse
|
48
|
Brożyna AA, Guo H, Yang S, Cornelius L, Linette G, Murphy M, Sheehan C, Ross J, Slominski A, Carlson JA. TRPM1
(melastatin) expression is an independent predictor of overall survival in clinical
AJCC
stage I and
II
melanoma patients. J Cutan Pathol 2017; 44:328-337. [DOI: 10.1111/cup.12872] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 11/11/2016] [Accepted: 12/13/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Anna A. Brożyna
- Department of Tumor Pathology and Pathomorphology, Oncology Centre—Prof. Franciszek Łukaszczyk Memorial Hospital, Department of Tumor Pathology and Pathomorphology, Faculty of Health SciencesNicolaus Copernicus University Collegium Medicum in Bydgoszcz Bydgoszcz Poland
| | - Huazhang Guo
- Department of PathologyUniversity of Pittsburgh Medical Center, UPMC Cancer Pavilion Pittsburgh Pennsylvania
| | - Sun‐Eun Yang
- Department of PathologyAlbany Medical College MC‐81 Albany New York
| | - Lynn Cornelius
- Division of Dermatology, Washington University School of Medicine St. Louis Missouri
| | - Gerald Linette
- Division of Oncology, Washington University School of Medicine St. Louis Missouri
| | - Michael Murphy
- Department of Dermatology, MC‐6230University of Connecticut Health Center Farmington Connecticut
| | | | - Jeffrey Ross
- Department of PathologyAlbany Medical College MC‐81 Albany New York
| | - Andrzej Slominski
- Department of DermatologyUniversity of Alabama at Birmingham Birmingham Alabama
| | | |
Collapse
|
49
|
TRP Channels in Skin Biology and Pathophysiology. Pharmaceuticals (Basel) 2016; 9:ph9040077. [PMID: 27983625 PMCID: PMC5198052 DOI: 10.3390/ph9040077] [Citation(s) in RCA: 330] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/08/2016] [Accepted: 12/09/2016] [Indexed: 11/17/2022] Open
Abstract
Ion channels of the Transient Receptor Potential (TRP) family mediate the influx of monovalent and/or divalent cations into cells in response to a host of chemical or physical stimuli. In the skin, TRP channels are expressed in many cell types, including keratinocytes, sensory neurons, melanocytes, and immune/inflammatory cells. Within these diverse cell types, TRP channels participate in physiological processes ranging from sensation to skin homeostasis. In addition, there is a growing body of evidence implicating abnormal TRP channel function, as a product of excessive or deficient channel activity, in pathological skin conditions such as chronic pain and itch, dermatitis, vitiligo, alopecia, wound healing, skin carcinogenesis, and skin barrier compromise. These diverse functions, coupled with the fact that many TRP channels possess pharmacologically accessible sites, make this family of proteins appealing therapeutic targets for skin disorders.
Collapse
|
50
|
Evaluation of the TRPM2 channel as a biomarker in breast cancer using public databases analysis. BOLETIN MEDICO DEL HOSPITAL INFANTIL DE MEXICO 2016; 73:397-404. [PMID: 29421284 DOI: 10.1016/j.bmhimx.2016.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 10/17/2016] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Breast cancer is one of the most common malignancies affecting women. Recent investigations have revealed a major role of ion channels in cancer. The transient receptor potential melastatin-2 (TRPM2) is a plasma membrane and lysosomal channel with important roles in cell migration and cell death in immune cells and tumor cells. METHODS In this study, we investigated the prognostic value of TRPM2 channel in breast cancer, analyzing public databases compiled in Oncomine™ (Thermo Fisher, Ann Arbor, MI) and online Kaplan-Meier Plotter platforms. RESULTS The results revealed that TRPM2 mRNA overexpression is significant in situ and invasive breast carcinoma compared to normal breast tissue. Furthermore, multi-gene validation using Oncomine™ showed that this channel is coexpressed with proteins related to cellular migration, transformation, and apoptosis. On the other hand, Kaplan-Meier analysis exhibited that low expression of TRPM2 could be used to predict poor outcome in ER- and HER2+ breast carcinoma patients. CONCLUSIONS TRPM2 is a promising biomarker for aggressiveness of breast cancer, and a potential target for the development of new therapies.
Collapse
|