1
|
Li J, Mei B, Feng L, Wang X, Wang D, Huang J, Zhang G. Amitriptyline revitalizes ICB response via dually inhibiting Kyn/Indole and 5-HT pathways of tryptophan metabolism in ovarian cancer. iScience 2024; 27:111488. [PMID: 39759009 PMCID: PMC11697709 DOI: 10.1016/j.isci.2024.111488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/26/2024] [Accepted: 11/25/2024] [Indexed: 01/07/2025] Open
Abstract
Reprogramming tryptophan metabolism (TRP) may be able to overcome immunosuppression and restore the immune checkpoint blockade (ICB) response in patients with epithelial ovarian cancer (EOC) resistant to ICB therapy because TRP metabolism is involved in the kynurenine/indole and serotonin pathways of tryptophan metabolism. Herein, employing amitriptyline (AMI), an antagonist of TLR4 and serotonin transporter (SERT), we revealed that AMI remodels the immunological landscape of EOC. In particular, AMI lowered the expression of IDO1, IL-4I1, and PD-L1, the quantity of KYN and indoles, and the level of immunosuppressive immune cells MDSC, Tregs, and CD8+CD39+/PD-1+ T cell. AMI boosted the killing potential of anti-PD-1-directed CD8+T cells and worked in concert with PD-1 inhibitors to suppress tumor growth and to prolong the survival of EOC-bearing mice. This work highlights AMI as an effective regulator of ICB response by manipulating EOC cell TRP metabolism, indicating it could be a potential strategy for improving EOC ICB therapy.
Collapse
Affiliation(s)
- Junyang Li
- Department Gynecological Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Bingjie Mei
- Department Gynecological Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Lu Feng
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Xiaoxin Wang
- Department Gynecological Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Dengfeng Wang
- Department Gynecological Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Jianming Huang
- Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Guonan Zhang
- Department Gynecological Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China
| |
Collapse
|
2
|
Miras I, Estévez-García P, Muñoz-Galván S. Clinical and molecular features of platinum resistance in ovarian cancer. Crit Rev Oncol Hematol 2024; 201:104434. [PMID: 38960218 DOI: 10.1016/j.critrevonc.2024.104434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024] Open
Abstract
Ovarian cancer is the most lethal of all the gynecological tumors despite remarkable advances in our understanding of its molecular biology. The cornerstone treatment remains cytoreductive surgery followed by platinum-based chemotherapy. Recently, the addition of targeted therapies, such as PARP inhibitors, as first-line maintenance has led to outstanding improvements, mainly in BRCA mutated and homologous recombination deficient tumors. However, a significant proportion of patients will experience recurrence, primarily due to platinum resistance, which ultimately result in fatality. Among these patients, primary platinum-resistant have a particularly dismal prognosis due to their low response to current available therapies, historical exclusion from clinical trials, and the absence of validated biomarkers. In this review, we discuss the concept of platinum resistance in ovarian cancer, the clinical and molecular characteristics of this resistance, and the current and new treatment options for these patients.
Collapse
Affiliation(s)
- Isabel Miras
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Seville, Spain; Medical Oncology Department. Hospital Universitario Virgen del Rocío, Seville, Spain
| | - Purificación Estévez-García
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Seville, Spain; Medical Oncology Department. Hospital Universitario Virgen del Rocío, Seville, Spain; CIBER de CANCER, Institute of Health Carlos III, Madrid, Spain
| | - Sandra Muñoz-Galván
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Seville, Spain; CIBER de CANCER, Institute of Health Carlos III, Madrid, Spain.
| |
Collapse
|
3
|
Ulevicius J, Jasukaitiene A, Bartkeviciene A, Dambrauskas Z, Gulbinas A, Urboniene D, Paskauskas S. Dysregulation of Peripheral Blood Mononuclear Cells and Immune-Related Proteins during the Early Post-Operative Immune Response in Ovarian Cancer Patients. Cancers (Basel) 2023; 16:190. [PMID: 38201617 PMCID: PMC10778568 DOI: 10.3390/cancers16010190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Surgical treatment is a cornerstone of ovarian cancer (OC) therapy and exerts a substantial influence on the immune system. Immune responses also play a pivotal and intricate role in OC progression. The aim of this study was to investigate the dynamics of immune-related protein expression and the activity of peripheral blood mononuclear cells (PBMCs) in OC patients, both before surgery and during the early postoperative phase. The study cohort comprised 23 OC patients and 20 non-cancer controls. A comprehensive analysis of PBMCs revealed significant pre-operative downregulation in the mRNA expression of multiple immune-related proteins, including interleukins, PD-1, PD-L1, and HO-1. This was followed by further dysregulation during the first 5 post-operative days. Although most serum interleukin concentrations showed only minor changes, a distinct increase in IL-6 and HO-1 levels was observed post-operatively. Reduced metabolic and phagocytic activity and increased production of reactive oxygen species (ROS) were observed on day 1 post-surgery. These findings suggest a shift towards immune tolerance during the early post-operative phase of OC, potentially creating a window for treatment. Further research into post-operative PBMC activity could lead to the development of new or improved treatment strategies for OC.
Collapse
Affiliation(s)
- Jonas Ulevicius
- Laboratory of Surgical Gastroenterology, Institute for Digestive Research, Medical Academy, Lithuanian University of Health Sciences, A. Mickeviciaus g. 9, LT-44307 Kaunas, Lithuania; (A.J.); (A.B.); (Z.D.); (A.G.)
| | - Aldona Jasukaitiene
- Laboratory of Surgical Gastroenterology, Institute for Digestive Research, Medical Academy, Lithuanian University of Health Sciences, A. Mickeviciaus g. 9, LT-44307 Kaunas, Lithuania; (A.J.); (A.B.); (Z.D.); (A.G.)
| | - Arenida Bartkeviciene
- Laboratory of Surgical Gastroenterology, Institute for Digestive Research, Medical Academy, Lithuanian University of Health Sciences, A. Mickeviciaus g. 9, LT-44307 Kaunas, Lithuania; (A.J.); (A.B.); (Z.D.); (A.G.)
| | - Zilvinas Dambrauskas
- Laboratory of Surgical Gastroenterology, Institute for Digestive Research, Medical Academy, Lithuanian University of Health Sciences, A. Mickeviciaus g. 9, LT-44307 Kaunas, Lithuania; (A.J.); (A.B.); (Z.D.); (A.G.)
| | - Antanas Gulbinas
- Laboratory of Surgical Gastroenterology, Institute for Digestive Research, Medical Academy, Lithuanian University of Health Sciences, A. Mickeviciaus g. 9, LT-44307 Kaunas, Lithuania; (A.J.); (A.B.); (Z.D.); (A.G.)
| | - Daiva Urboniene
- Department of Laboratory Medicine, Medical Academy, Lithuanian University of Health Sciences, A. Mickeviciaus g. 9, LT-44307 Kaunas, Lithuania;
| | - Saulius Paskauskas
- Department of Obstetrics and Gynecology, Medical Academy, Lithuanian University of Health Sciences, A. Mickeviciaus g. 9, LT-44307 Kaunas, Lithuania;
| |
Collapse
|
4
|
Christodoulou MI, Zaravinos A. Single-Cell Analysis in Immuno-Oncology. Int J Mol Sci 2023; 24:8422. [PMID: 37176128 PMCID: PMC10178969 DOI: 10.3390/ijms24098422] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
The complexity of the cellular and non-cellular milieu surrounding human tumors plays a decisive role in the course and outcome of disease. The high variability in the distribution of the immune and non-immune compartments within the tumor microenvironments (TME) among different patients governs the mode of their response or resistance to current immunotherapeutic approaches. Through deciphering this diversity, one can tailor patients' management to meet an individual's needs. Single-cell (sc) omics technologies have given a great boost towards this direction. This review gathers recent data about how multi-omics profiling, including the utilization of single-cell RNA sequencing (scRNA-seq), assay for transposase-accessible chromatin with sequencing (scATAC-seq), T-cell receptor sequencing (scTCR-seq), mass, tissue-based, or microfluidics cytometry, and related bioinformatics tools, contributes to the high-throughput assessment of a large number of analytes at single-cell resolution. Unravelling the exact TCR clonotype of the infiltrating T cells or pinpointing the classical or novel immune checkpoints across various cell subsets of the TME provide a boost to our comprehension of adaptive immune responses, their antigen specificity and dynamics, and grant suggestions for possible therapeutic targets. Future steps are expected to merge high-dimensional data with tissue localization data, which can serve the investigation of novel multi-modal biomarkers for the selection and/or monitoring of the optimal treatment from the current anti-cancer immunotherapeutic armamentarium.
Collapse
Affiliation(s)
- Maria-Ioanna Christodoulou
- Tumor Immunology and Biomarkers Group, Basic and Translational Cancer Research Center (BTCRC), 1516 Nicosia, Cyprus
- Department of Life Sciences, School of Sciences, European University Cyprus, 2404 Nicosia, Cyprus
| | - Apostolos Zaravinos
- Department of Life Sciences, School of Sciences, European University Cyprus, 2404 Nicosia, Cyprus
- Cancer Genetics, Genomics and Systems Biology Group, Basic and Translational Cancer Research Center (BTCRC), 1516 Nicosia, Cyprus
| |
Collapse
|
5
|
Identification and Characterization of an Ageing-Associated 13-lncRNA Signature That Predicts Prognosis and Immunotherapy in Hepatocellular Carcinoma. JOURNAL OF ONCOLOGY 2023; 2023:4615297. [PMID: 36844873 PMCID: PMC9957638 DOI: 10.1155/2023/4615297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/28/2022] [Accepted: 10/13/2022] [Indexed: 02/19/2023]
Abstract
Background In cancer pathology, cell senescence not only alters cell function but also reshapes the immune microenvironments in tumours. However, the association between cell senescence, tumour microenvironment, and disease progression of hepatocellular carcinoma (HCC) is yet to be fully understood. Therefore, the role of cell senescence-related genes and long noncoding RNAs (lncRNAs) in evaluating the clinical prognosis and immune cell infiltration (ICI) of HCC patients requires further investigation. Methods The limma R package was utilised to investigate differentially expressed genes according to the multiomics data. The CIBERSORT R package was utilised to assess ICI, and unsupervised cluster analysis was conducted using the R software's ConsensusClusterPlus package. A polygenic prognostic model of lncRNAs was constructed by conducting univariate and least absolute shrinkage and selection operator (Lasso) cox proportional-hazards regression analyses. The time-dependent receiver operating characteristic (ROC) curves were used for validation. We utilised the survminer R package to evaluate the tumour mutational burden (TMB). Moreover, the gene set enrichment analysis (GSEA) helped in pathway enrichment analysis, and the immune infiltration level of the model was evaluated using the IMvigor210 cohort. Results The identification of 36 prognosis-related genes was achieved based on their differential expression between healthy and liver cancer tissues. Liver cancer individuals were categorised into 3 independent senescence subtypes using the gene list, revealing considerable survival differences (variations). We observed that the prognosis of patients in the ARG-ST2 subtype was substantially better as compared to that in the ARG-ST3 subtype. Differences were observed in gene expression profiles among the three subtypes, with the differentially expressed genes predominantly associated with cell cycle control. The enrichment of upregulated genes in the ARG-ST3 subtype was observed in pathways related to biological processes, for instance, organelle fission, nuclear division, and chromosome recombination. ICI in the ARG-ST1 and ARG-ST2 subtypes, with relatively better prognosis, was substantially higher as compared to the ARG-ST3 subtype. Furthermore, a risk-score model, which can be employed as a reliable prognostic factor in an independent manner for individuals suffering from liver cancer, was constructed based on 13 cell senescence-related lncRNAs (MIR99AHG, LINC01224, LINC01138, SLC25A30AS1, AC006369.2, SOCS2AS1, LINC01063, AC006037.2, USP2AS1, FGF14AS2, LINC01116, KIF25AS1, and AC002511.2). The individuals with higher risk scores had noticeably poor prognoses in contrast with those having low-risk scores. Moreover, increased levels of TMB and ICI were observed in individuals with low-risk scores and gaining more benefit from immune checkpoint therapy. Conclusion Cell senescence is an essential factor in HCC onset and progression. We identified 13 senescence-related lncRNAs as HCC prognostic markers, which can help understand their function in the onset and progression of HCC and guide clinical diagnosis and treatment.
Collapse
|
6
|
Tertiary Lymphoid Structures Are Associated with a Favorable Prognosis in High-Grade Serous Ovarian Cancer Patients. Reprod Sci 2023:10.1007/s43032-023-01188-x. [PMID: 36759495 DOI: 10.1007/s43032-023-01188-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023]
Abstract
There was accumulating evidence indicating that tertiary lymphoid structures (TLSs) were strongly associated with improved survival and clinical outcome in several solid tumors. In this study, we intended to assess the presence of TLSs and their potential clinical significance in high-grade serous ovarian cancer (HGSOC). TCGA (The Cancer Genome Atlas) cohort included RNA-seq data of 376 HGSOC patients, of which 74 patients included available hematoxylin-eosin (H&E) sections; GEO (Gene Expression Omnibus) cohort, GSE140082, included microarray data of 212 HGSOC patients. TLSs were counted by pathological sections, and the relative abundance of TLSs was assessed by the unsupervised consensus clustering of 12-chemokine transcriptome signatures. The potential associations between TLSs and clinical prognosis, tumor microenvironment (TME), and immunotherapy response of HGSOC were further performed based on transcriptome data. In the H&E sections of HGSOC, TLSs were predominantly located in the stroma and invasive margin of the tumor. Pathological counting results suggested that the expression of 12 chemokines was significantly higher in samples abundant with TLSs than that in the lack of TLSs. Consensus clustering of both TCGA and GEO cohorts divided HGSOC patients into two clusters with different TLSs abundance: low- and high-TLSs. Based on transcriptome analysis, the high-TLS cluster was characterized by better clinical prognosis, a higher degree of immune infiltration, more biological pathways, higher tumor mutational burden score, and higher expression of immune checkpoints. In conclusion, TLSs strongly correlated with the immune-responsive microenvironment and remained a favorable prognostic factor independent of other clinical characteristics in HGSOC. The presence of TLSs was also associated with a potentially favorable response to immune checkpoint blockade (ICB) therapy in HGSOC.
Collapse
|
7
|
Singla RK, Sharma P, Kumar D, Gautam RK, Goyal R, Tsagkaris C, Dubey AK, Bansal H, Sharma R, Shen B. The role of nanomaterials in enhancing natural product translational potential and modulating endoplasmic reticulum stress in the treatment of ovarian cancer. Front Pharmacol 2022; 13:987088. [PMID: 36386196 PMCID: PMC9643842 DOI: 10.3389/fphar.2022.987088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/03/2022] [Indexed: 10/21/2023] Open
Abstract
Ovarian cancer, and particularly its most frequent type, epithelial ovarian carcinoma, constitutes one of the most dangerous malignant tumors among females. Substantial evidence has described the potential of phytochemicals against ovarian cancer. The effect of natural compounds on endoplasmic reticulum (ER) stress is of great relevance in this regard. In ovarian cancer, the accumulation of misfolded proteins in the ER lumen results in decompensated ER stress. This leads to deregulation in the physiological processes for the posttranslational modification of proteins, jeopardizes cellular homeostasis, and increases apoptotic signaling. Several metabolites and metabolite extracts of phytochemical origin have been studied in the context of ER stress in ovarian cancer. Resveratrol, quercetin, curcumin, fucosterol, cleistopholine, fucoidan, and epicatechin gallate, among others, have shown inhibitory potential against ER stress. The chemical structure of each compound plays an important role concerning its pharmacodynamics, pharmacokinetics, and overall effectiveness. Studying and cross-comparing the chemical features that render different phytochemicals effective in eliciting particular anti-ER stress actions can help improve drug design or develop multipotent combination regimens. Many studies have also investigated the properties of formulations such as nanoparticles, niosomes, liposomes, and intravenous hydrogel based on curcumin and quercetin along with some other phytomolecules in ovarian cancer. Overall, the potential of phytochemicals in targeting genetic mechanisms of ovarian cancer warrants further translational and clinical investigation.
Collapse
Affiliation(s)
- Rajeev K. Singla
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Pooja Sharma
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
- Khalsa College of Pharmacy, Amritsar, India
| | - Dinesh Kumar
- Chitkara University School of Pharmacy, Chitkara University, Himachal Pradesh, India
| | - Rupesh K. Gautam
- Department of Pharmacology, Indore Institute of Pharmacy, IIST Campus, Opposite IIM Indore, Indore, India
| | - Rajat Goyal
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, India
| | | | | | - Himangini Bansal
- Delhi Institute of Pharmaceutical Sciences and Research, New Delhi, India
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, BHU, Varanasi, India
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Zheng A, Zhang L, Yang J, Yin X, Zhang T, Wu X, Ma X. Physical activity prevents tumor metastasis through modulation of immune function. Front Pharmacol 2022; 13:1034129. [PMID: 36313283 PMCID: PMC9596782 DOI: 10.3389/fphar.2022.1034129] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 09/20/2022] [Indexed: 01/10/2023] Open
Abstract
Metastasis is responsible for 90% of deaths in cancer patients. Most patients diagnosed with metastatic cancer will die within 5 years. PA is good for health and has become an emerging adjuvant therapy for cancer survivors. Regular moderate exercise substantially lowers the incidence and recurrence of several cancers, alleviates cancer-related adverse events, enhances the efficacy of anti-cancer treatments, and improves the quality of life of cancer patients. Revealing the mechanisms of PA inhibiting tumor metastasis could upgrade our understanding of cancer biology and help researchers explore new therapeutic strategies to improve survival in cancer patients. However, it remains poorly understood how physical activity prevents metastasis by modulating tumor behavior. The immune system is involved in each step of tumor metastasis. From invasion to colonization, immune cells interact with tumor cells to secret cytokines and proteases to remodel the tumor microenvironment. Substantial studies demonstrated the ability of physical activity to induce antitumor effects of immune cells. This provides the possibility that physical activity can modulate immune cells behavior to attenuate tumor metastasis. The purpose of this review is to discuss and summarize the critical link between immune function and exercise in metastasis prevention.
Collapse
Affiliation(s)
- Aiping Zheng
- Division of Biotherapy, Cancer Center, West China Hospital, Cancer Center, Sichuan University, Chengdu, China
- Head and Neck Oncology Ward, Cancer Center, West China Hospital, Cancer Center, Sichuan University, Chengdu, China
| | - Lei Zhang
- Department of Obstetrics & Gynecology, Chengdu First People’s Hospital & Chengdu Integrated TCM & Western Medicine Hospital, Chengdu, China
| | - Jiaqing Yang
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaomeng Yin
- Division of Biotherapy, Cancer Center, West China Hospital, Cancer Center, Sichuan University, Chengdu, China
| | - Tao Zhang
- Division of Biotherapy, Cancer Center, West China Hospital, Cancer Center, Sichuan University, Chengdu, China
| | - Xin Wu
- Head and Neck Oncology Ward, Cancer Center, West China Hospital, Cancer Center, Sichuan University, Chengdu, China
- Head and Neck Oncology Ward, Division of Radiotherapy Oncology, Cancer Center, West China Hospital, Chengdu, China
- *Correspondence: Xin Wu, ; Xuelei Ma,
| | - Xuelei Ma
- Division of Biotherapy, Cancer Center, West China Hospital, Cancer Center, Sichuan University, Chengdu, China
- *Correspondence: Xin Wu, ; Xuelei Ma,
| |
Collapse
|
9
|
Wang H, Liu J, Yang J, Wang Z, Zhang Z, Peng J, Wang Y, Hong L. A novel tumor mutational burden-based risk model predicts prognosis and correlates with immune infiltration in ovarian cancer. Front Immunol 2022; 13:943389. [PMID: 36003381 PMCID: PMC9393426 DOI: 10.3389/fimmu.2022.943389] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/18/2022] [Indexed: 11/29/2022] Open
Abstract
Tumor mutational burden (TMB) has been reported to determine the response to immunotherapy, thus affecting the patient’s prognosis in many cancers. However, it is unclear whether TMB or TMB-related signature could be used as prognostic indicators for ovarian cancer (OC), as its potential association with immune infiltration remains poorly understood. Therefore, this study aimed to develop a novel TMB-related risk model (TMBrisk) to predict the prognosis of OC patients on the basis of exploring TMB-related genes, and to explore the potential association between TMB/TMBrisk and immune infiltration. The mutational landscape, TMB scores, and correlations between TMB and clinical characteristics and immune infiltration were investigated in The Cancer Genome Atlas (TCGA)-OV cohort. Differentially expressed gene (DEG) analyses and weighted gene co-expression network analysis (WGCNA) were performed to derive TMB-related genes. TMBrisk was constructed by Cox regression and further validated in Gene Expression Omnibus (GEO) datasets. The mRNA and protein expression levels and biological functions of TMBrisk hub genes were verified through Gene Expression Profiling Interactive Analysis (GEPIA), GSCA Lite, the Human Protein Atlas (HPA) database, and RT-qPCR. TMBrisk-related biological phenotypes were analyzed in function enrichment and tumor immune infiltration signature. Potential therapeutic regimens were inferred utilizing the Genomics of Drug Sensitivity in Cancer (GDSC) database and connectivity map (CMap). According to our results, higher TMB was associated with better survival and higher CD8+ T cell, regulatory T cell, and NK cell infiltration. TMBrisk was developed based on CBWD1, ST7L, RFX5-AS1, C3orf38, LRFN1, LEMD1, and HMGB1. High TMBrisk was identified as a poor factor for prognosis in TCGA and GEO datasets; the high-TMBrisk group comprised more higher-grade (G2 and G3) and advanced clinical stage (stage III/IV) tumors. Meanwhile, higher TMBrisk was associated with an immunosuppressive phenotype, with less infiltration of a majority of immunocytes and less expression of several genes of the human leukocyte antigen (HLA) family. Moreover, a nomogram containing TMBrisk showed a strong predictive ability demonstrated by time-dependent ROC analysis. Overall, this novel TMB-related risk model (TMBrisk) could predict prognosis, evaluate immune infiltration, and discover new therapeutic regimens in OC, which is very promising in clinical promotion.
Collapse
|
10
|
Peres LC, Colin-Leitzinger C, Sinha S, Marks JR, Conejo-Garcia JR, Alberg AJ, Bandera EV, Berchuck A, Bondy ML, Christensen BC, Cote ML, Doherty JA, Moorman PG, Peters ES, Segura CM, Nguyen JV, Schwartz AG, Terry PD, Wilson CM, Fridley BL, Schildkraut JM. Racial Differences in the Tumor Immune Landscape and Survival of Women with High-Grade Serous Ovarian Carcinoma. Cancer Epidemiol Biomarkers Prev 2022; 31:1006-1016. [PMID: 35244678 PMCID: PMC9081269 DOI: 10.1158/1055-9965.epi-21-1334] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/24/2022] [Accepted: 02/22/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Tumor-infiltrating lymphocytes (TIL) confer a survival benefit among patients with ovarian cancer; however, little work has been conducted in racially diverse cohorts. METHODS The current study investigated racial differences in the tumor immune landscape and survival of age- and stage-matched non-Hispanic Black and non-Hispanic White women with high-grade serous ovarian carcinoma (HGSOC) enrolled in two population-based studies (n = 121 in each racial group). We measured TILs (CD3+), cytotoxic T cells (CD3+CD8+), regulatory T cells (CD3+FoxP3+), myeloid cells (CD11b+), and neutrophils (CD11b+CD15+) via multiplex immunofluorescence. Multivariable Cox proportional hazard regression was used to estimate the association between immune cell abundance and survival overall and by race. RESULTS Overall, higher levels of TILs, cytotoxic T cells, myeloid cells, and neutrophils were associated with better survival in the intratumoral and peritumoral region, irrespective of tissue compartment (tumor, stroma). Improved survival was noted for T-regulatory cells in the peritumoral region and in the stroma of the intratumoral region, but no association for intratumoral T-regulatory cells. Despite similar abundance of immune cells across racial groups, associations with survival among non-Hispanic White women were consistent with the overall findings, but among non-Hispanic Black women, most associations were attenuated and not statistically significant. CONCLUSIONS Our results add to the existing evidence that a robust immune infiltrate confers a survival advantage among women with HGSOC; however, non-Hispanic Black women may not experience the same survival benefit as non-Hispanic White women with HGSOC. IMPACT This study contributes to our understanding of the immunoepidemiology of HGSOC in diverse populations.
Collapse
Affiliation(s)
- Lauren C. Peres
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | | | - Sweta Sinha
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Jeffrey R. Marks
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina
| | - Jose R. Conejo-Garcia
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Anthony J. Alberg
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina
| | - Elisa V. Bandera
- Department of Population Science, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Andrew Berchuck
- Department of Gynecologic Oncology, Duke University School of Medicine, Durham, North Carolina
| | - Melissa L. Bondy
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, California
| | - Brock C. Christensen
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire
- Department of Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire
- Department of Molecular and Systems Biology, Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire
| | - Michele L. Cote
- Population Studies and Disparities Research Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Jennifer Anne Doherty
- Department of Population Health Sciences, University of Utah, Salt Lake City, Utah
- Huntsman Cancer Institute, Salt Lake City, Utah
| | - Patricia G. Moorman
- Department of Community and Family Medicine, Duke University Medical Center, Durham, North Carolina
| | - Edward S. Peters
- Department of Epidemiology, College of Public Health, University of Nebraska Medical Center, Omaha, Nebraska
| | - Carlos Moran Segura
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Jonathan V. Nguyen
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Ann G. Schwartz
- Population Studies and Disparities Research Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Paul D. Terry
- Department of Medicine, University of Tennessee Medical Center – Knoxville, Knoxville, Tennessee
| | - Christopher M. Wilson
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Brooke L. Fridley
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Joellen M. Schildkraut
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| |
Collapse
|
11
|
Yang L, Xie HJ, Li YY, Wang X, Liu XX, Mai J. Molecular mechanisms of platinum‑based chemotherapy resistance in ovarian cancer (Review). Oncol Rep 2022; 47:82. [PMID: 35211759 PMCID: PMC8908330 DOI: 10.3892/or.2022.8293] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/14/2022] [Indexed: 12/24/2022] Open
Abstract
Cisplatin is one of the most effective chemotherapy drugs for ovarian cancer, but resistance is common. The initial response to platinum‑based chemotherapy is as high as 80%, but in most advanced patients, final relapse and death are caused by acquired drug resistance. The development of resistance to therapy in ovarian cancer is a significant hindrance to therapeutic efficacy. The resistance of ovarian cancer cells to chemotherapeutic mechanisms is rather complex and includes multidrug resistance, DNA damage repair, cell metabolism, oxidative stress, cell cycle regulation, cancer stem cells, immunity, apoptotic pathways, autophagy and abnormal signaling pathways. The present review provided an update of recent developments in our understanding of the mechanisms of ovarian cancer platinum‑based chemotherapy resistance, discussed current and emerging approaches for targeting these patients and presented challenges associated with these approaches, with a focus on development and overcoming resistance.
Collapse
Affiliation(s)
- Ling Yang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University; Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan 610041, P.R. China
| | - Hong-Jian Xie
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University; Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan 610041, P.R. China
| | - Ying-Ying Li
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University; Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan 610041, P.R. China
| | - Xia Wang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University; Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan 610041, P.R. China
| | - Xing-Xin Liu
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University; Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan 610041, P.R. China
| | - Jia Mai
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University; Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
12
|
Overexpression of CAPG Is Associated with Poor Prognosis and Immunosuppressive Cell Infiltration in Ovarian Cancer. DISEASE MARKERS 2022; 2022:9719671. [PMID: 35186171 PMCID: PMC8849939 DOI: 10.1155/2022/9719671] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/09/2022] [Accepted: 01/18/2022] [Indexed: 12/17/2022]
Abstract
Historically, immunotherapies have only resulted in a partial response from patients with advanced ovarian cancer, resulting in poor clinical efficacy. A full understanding of immune-related gene expression and immunocyte infiltration in ovarian cancer would be instrumental for the improved implementation of immunotherapy. The Capping Actin Protein, Gelsolin-Like (CAPG) gene encodes an actin-regulatory protein, which plays important roles in tumor progression and immune regulation. This study is aimed at identifying the potential therapeutic and prognostic roles of CAPG in ovarian cancer. CAPG expression and clinical information were investigated in the data collected from TCGA, Oncomine, GEPIA, UALCAN, and Kaplan-Meier plotter. CAPG coexpression networks were evaluated by LinkedOmics, GeneMANIA, and NetworkAnalyst. The correlation of CAPG with immune infiltrates was analyzed via TIMER, ImmuCellAI, and GEPIA. Our result showed that patients with high tumoral CAPG expression had significantly shorter 5-year overall survival. Functional enrichment analysis indicated that CAPG-related phenotypes were largely involved in inflammatory response, chemokine and cytokine signaling, cell adhesion, and Toll-like receptor signaling pathways. CAPG expression was positively correlated with infiltrating levels of regulatory T cells (Tregs), tumor-associated macrophages (TAMs), and exhausted T cells (Texs) while being negatively correlated with infiltrating levels of natural killer T cells (NKTs) and neutrophils in ovarian cancer. Moreover, the expression of FOXP3, CD25, CD127, CCR8, and TGFβ in respect to Tregs; CCL2 and CD68 in respect to TAM; CD163, VSIG4, and MS4A4A in respect to M2 macrophages; CD33 and CD11b in respect to myeloid-derived suppressor cells (MDSCs); and PD1, CTLA4, LAG3, TIM3, GZMB, 2B4, and TIGIT in respect to Texs was significantly correlated with CAPG expression in ovarian cancer. These findings suggest that CAPG may contribute to the immunosuppressive tumor microenvironment in ovarian cancer, leading to an exhausted T cell phenotype and tumor progression. Therefore, CAPG can be used as a potential biomarker for determining prognosis and immunotherapy effectiveness in ovarian cancer.
Collapse
|
13
|
Curcumin encapsulation in functional PLGA nanoparticles: A promising strategy for cancer therapies. Adv Colloid Interface Sci 2022; 300:102582. [PMID: 34953375 DOI: 10.1016/j.cis.2021.102582] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 11/26/2021] [Accepted: 12/03/2021] [Indexed: 02/08/2023]
Abstract
Nanoparticles have emerged as promising drug delivery systems for the treatment of several diseases. Novel cancer therapies have exploited these particles as alternative adjuvant therapies to overcome the traditional limitations of radio and chemotherapy. Curcumin is a natural bioactive compound found in turmeric, that has been reported to show anticancer activity against several types of tumors. Despite some biological limitations regarding its absorption in the human body, curcumin encapsulation in poly(lactic-co-glycolic acid) (PLGA), a non-toxic, biodegradable and biocompatible polymer, represents an effective strategy to deliver a drug to a tumor site. Furthermore, PLGA nanoparticles can be engineered with targeting moieties to reach specific cancer cells, thus enhancing the antitumor effects of curcumin. We herein aim to bring an up-to-date summary of the recently developed strategies for curcumin delivery to different types of cancer cells through encapsulation in PLGA nanoparticles, correlating their effects with those of curcumin on the biological capabilities acquired by cancer cells (cancer hallmarks). We discuss the targeting strategies proposed for advanced curcumin delivery and the respective improvements achieved for each cancer cell analyzed, in addition to exploring the encapsulation techniques employed. The conjugation of correct encapsulation techniques with tumor-oriented targeting design can result in curcumin-loaded PLGA nanoparticles that can successfully integrate the elaborate network of development of alternative cancer treatments along with traditional ones. Finally, the current challenges and future demands to launch these nanoparticles in oncology are comprehensively examined.
Collapse
|
14
|
Quan Q, Xiong X, Wu S, Yu M. Identification of Immune-Related Key Genes in Ovarian Cancer Based on WGCNA. Front Genet 2021; 12:760225. [PMID: 34868239 PMCID: PMC8634599 DOI: 10.3389/fgene.2021.760225] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/20/2021] [Indexed: 12/21/2022] Open
Abstract
Background: Ovarian cancer (OV) is a fatal gynecologic malignancy and has poor survival rate in women over the age of forty. In our study, we aimed to identify genes related to immune microenvironment regulations and explore genes associated with OV prognosis. Methods: The RNA-seq data of GDC TCGA Ovarian Cancer cohort of 376 patients was retrieved from website. Weighted gene co-expression network analysis (WGCNA) and ESTIMATE algorithm were applied to identify the key genes associated with the immune scores. The correlation between key genes and 22 immune cell types were estimated by using CIBERSORT algorithms. Results: WGCNA showed that the pink module was most correlated with the immune score. Seven of 14 key genes (FCRL3, IFNG, KCNA3, LY9, PLA2G2D, THEMIS, and TRAT1) were significantly associated with the OS of OV patients. Correlation analysis showed our key genes positively related to M1 macrophages, CD8 T cells, plasma cells, regulatory T (Treg) cells and activated memory CD4 T cells, and negatively related to naive CD4 T cells, M0 macrophages, activated dendritic cells (DCs) and memory B cells. Kaplan-Meier survival analysis showed that lower abundances of neutrophils and higher abundances of M1 macrophages, plasma cells, T cells gamma delta (γδT) cells and follicular helper T (Tfh) cells predicted better OV prognosis. Conclusion: Forteen key genes related to the immune infiltrating of OV were identified, and seven of them were significantly related to prognosis. These key genes have potential roles in tumor infiltrating immune cells differentiation and proliferation. This study provided potential prognostic markers and immunotherapy targets for OV.
Collapse
Affiliation(s)
- Qingli Quan
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,School of Life Sciences, Fudan University, Shanghai, China
| | - Xinxin Xiong
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Shanyun Wu
- Department of Biology, Faculty of Science, University of British Columbia, Vancouver, BC, Canada
| | - Meixing Yu
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
15
|
Dholakia J, Scalise CB, Katre AA, Goldsberry WN, Meza-Perez S, Randall TD, Norian LA, Novak L, Arend RC. Sequential modulation of the Wnt/β-catenin signaling pathway enhances tumor-intrinsic MHC I expression and tumor clearance. Gynecol Oncol 2021; 164:170-180. [PMID: 34844776 DOI: 10.1016/j.ygyno.2021.09.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND Progress in immunotherapy use for gynecologic malignancies is hampered by poor tumor antigenicity and weak T cell infiltration of the tumor microenvironment (TME). Wnt/β-catenin pathway modulation demonstrated patient benefit in clinical trials as well as enhanced immune cell recruitment in preclinical studies. The purpose of this study was to characterize the pathways by which Wnt/β-catenin modulation facilitates a more immunotherapy-favorable TME. METHODS Human tumor samples and in vivo patient-derived xenograft and syngeneic murine models were administered Wnt/β-catenin modulating agents DKN-01 and CGX-1321 individually or in sequence. Analytical methods included immunohistochemistry, flow cytometry, multiplex cytokine/chemokine array, and RNA sequencing. RESULTS DKK1 blockade via DKN-01 increased HLA/MHC expression in human and murine tissues, correlating with heightened expression of known MHC I regulators: NFkB, IL-1, LPS, and IFNy. PORCN inhibition via CGX-1321 increased production of T cell chemoattractant CXCL10, providing a mechanism for observed increases in intra-tumoral T cells. Diverse leukocyte recruitment was noted with elevations in B cells and macrophages, with increased tumor expression of population-specific chemokines. Sequential DKK1 blockade and PORCN inhibition decreased tumor burden as evidenced by reduced omental weights. CONCLUSIONS Wnt/β-catenin pathway modulation increases MHC I expression and promotes tumor leukocytic infiltration, facilitating a pro-immune TME associated with decreased tumor burden. This intervention overcomes common tumor immune-evasion mechanisms and may render ovarian tumors susceptible to immunotherapy.
Collapse
Affiliation(s)
- Jhalak Dholakia
- University of Alabama in Birmingham, Division of Gynecologic Oncology, Birmingham, AL, United States of America
| | - Carly B Scalise
- University of Alabama in Birmingham, Division of Gynecologic Oncology, Birmingham, AL, United States of America
| | - Ashwini A Katre
- University of Alabama in Birmingham, Division of Gynecologic Oncology, Birmingham, AL, United States of America
| | - Whitney N Goldsberry
- University of Alabama in Birmingham, Division of Gynecologic Oncology, Birmingham, AL, United States of America
| | - Selene Meza-Perez
- University of Alabama at Birmingham, Division of Immunology & Rheumatology, Birmingham, AL, United States of America
| | - Troy D Randall
- University of Alabama at Birmingham, Division of Immunology & Rheumatology, Birmingham, AL, United States of America; University of Alabama at Birmingham, O'Neal Comprehensive Cancer Center, Birmingham, AL, United States of America
| | - Lyse A Norian
- University of Alabama at Birmingham, O'Neal Comprehensive Cancer Center, Birmingham, AL, United States of America; University of Alabama at Birmingham, Department of Nutrition Sciences, Birmingham, AL, United States of America
| | - Lea Novak
- University of Alabama at Birmingham, Department of Anatomic Pathology, Birmingham, AL, United States of America
| | - Rebecca C Arend
- University of Alabama in Birmingham, Division of Gynecologic Oncology, Birmingham, AL, United States of America; University of Alabama at Birmingham, O'Neal Comprehensive Cancer Center, Birmingham, AL, United States of America.
| |
Collapse
|
16
|
Pisano S, Lenna S, Healey GD, Izardi F, Meeks L, Jimenez YS, Velazquez OS, Gonzalez D, Conlan RS, Corradetti B. Assessment of the immune landscapes of advanced ovarian cancer in an optimized in vivo model. Clin Transl Med 2021; 11:e551. [PMID: 34709744 PMCID: PMC8506632 DOI: 10.1002/ctm2.551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Ovarian cancer (OC) is typically diagnosed late, associated with high rates of metastasis and the onset of ascites during late stage disease. Understanding the tumor microenvironment and how it impacts the efficacy of current treatments, including immunotherapies, needs effective in vivo models that are fully characterized. In particular, understanding the role of immune cells within the tumor and ascitic fluid could provide important insights into why OC fails to respond to immunotherapies. In this work, we comprehensively described the immune cell infiltrates in tumor nodules and the ascitic fluid within an optimized preclinical model of advanced ovarian cancer. METHODS Green Fluorescent Protein (GFP)-ID8 OC cells were injected intraperitoneally into C57BL/6 mice and the development of advanced stage OC monitored. Nine weeks after tumor injection, mice were sacrificed and tumor nodules analyzed to identify specific immune infiltrates by immunohistochemistry. Ascites, developed in tumor bearing mice over a 10-week period, was characterized by mass cytometry (CyTOF) to qualitatively and quantitatively assess the distribution of the immune cell subsets, and their relationship to ascites from ovarian cancer patients. RESULTS Tumor nodules in the peritoneal cavity proved to be enriched in T cells, antigen presenting cells and macrophages, demonstrating an active immune environment and cell-mediated immunity. Assessment of the immune landscape in the ascites showed the predominance of CD8+ , CD4+ , B- , and memory T cells, among others, and the coexistance of different immune cell types within the same tumor microenvironment. CONCLUSIONS We performed, for the first time, a multiparametric analysis of the ascitic fluid and specifically identify immune cell populations in the peritoneal cavity of mice with advanced OC. Data obtained highlights the impact of CytOF as a diagnostic tool for this malignancy, with the opportunity to concomitantly identify novel targets, and define personalized therapeutic options.
Collapse
Affiliation(s)
- Simone Pisano
- Department of NanomedicineHouston Methodist Research InstituteHoustonTexas
- Center for NanoHealthSwansea University Medical SchoolSwanseaUK
| | - Stefania Lenna
- Department of NanomedicineHouston Methodist Research InstituteHoustonTexas
| | | | | | - Lucille Meeks
- Department of NanomedicineHouston Methodist Research InstituteHoustonTexas
| | - Yajaira S. Jimenez
- Department of NanomedicineHouston Methodist Research InstituteHoustonTexas
- Texas A&M Health Science CenterCollege of MedicineBryanTexas
| | - Oscar S Velazquez
- Department of NanomedicineHouston Methodist Research InstituteHoustonTexas
| | | | - Robert Steven Conlan
- Department of NanomedicineHouston Methodist Research InstituteHoustonTexas
- Center for NanoHealthSwansea University Medical SchoolSwanseaUK
| | - Bruna Corradetti
- Department of NanomedicineHouston Methodist Research InstituteHoustonTexas
- Center for NanoHealthSwansea University Medical SchoolSwanseaUK
- Texas A&M Health Science CenterCollege of MedicineBryanTexas
| |
Collapse
|
17
|
Abstract
Over the past decade, 3D culture models of human and animal cells have found their way into tissue differentiation, drug development, personalized medicine and tumour behaviour studies. Embryoid bodies (EBs) are in vitro 3D cultures established from murine pluripotential stem cells, whereas tumoroids are patient-derived in vitro 3D cultures. This thesis aims to describe a new implication of an embryoid body model and to characterize the patient-specific microenvironment of the parental tumour in relation to tumoroid growth rate. In this thesis, we described a high-throughput monitoring method, where EBs are used as a dynamic angiogenesis model. In this model, digital image analysis (DIA) is implemented on immunohistochemistry (IHC) stained sections of the cultures over time. Furthermore, we have investigated the correlation between the genetic profile and inflammatory microenvironment of parental tumours on the in vitro growth rate of tumoroids. The EBs were cultured in spinner flasks. The samples were collected at days 4, 6, 9, 14, 18 and 21, dehydrated and embedded in paraffin. The histological sections were IHC stained for the endothelial marker CD31 and digitally scanned. The virtual whole-image slides were digitally analysed by Visiopharm® software. Histological evaluation showed vascular-like structures over time. The quantitative DIA was plausible to monitor significant increase in the total area of the EBs and an increase in endothelial differentiation. The tumoroids were established from 32 colorectal adenocarcinomas. The in vitro growth rate of the tumoroids was followed by automated microscopy over an 11-day period. The parental tumours were analysed by next-generation sequencing for KRAS, TP53, PIK3CA, SMAD4, MAP2K1, BRAF, FGFR3 and FBXW7 status. The tumoroids established from KRAS-mutated parental tumours showed a significantly higher growth rate compared to their wild-type counterparts. The density of CD3+ T lymphocytes and CD68+ macrophages was calculated in the centre of the tumours and at the invasive margin of the tumours. The high density of CD3+ cells and the low density of CD68+ cells showed a significant correlation with a higher growth rate of the tumoroids. In conclusion, a novel approach for histological monitoring of endothelial differentiation is presented in the stem cell-derived EBs. Furthermore, the KRAS status and density of CD3+ T cells and macrophages in the parental tumour influence the growth rate of the tumoroids. Our results indicate that these parameters should be included when tumoroids are to be implemented in personalized medicine.
Collapse
Affiliation(s)
- Nabi Mousavi
- Department of Pathology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
18
|
Liang H, Dong J, Cheng Z, Li Q, Feng D, Ling B. B-cell receptor-associated protein 31 promotes migration and invasion in ovarian cancer cells. Exp Ther Med 2021; 22:858. [PMID: 34178131 DOI: 10.3892/etm.2021.10290] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 05/10/2021] [Indexed: 12/15/2022] Open
Abstract
B cell receptor associated protein 31 (BAP31) is a member of the B cell receptor that functions as a transporter for numerous types of newly formed proteins from the endoplasmic reticulum to the Golgi apparatus. Previous studies found that that BAP31 serves an important role in the pathogenesis of malignancy but its specific effect on ovarian cancer is not clear. The present study aimed to investigate whether BAP31 affects ovarian cancer and its underlying mechanism. In the present study, ovarian cancer tissue, human ovarian normal epithelial cell line IOSE80 and five ovarian cancer cell lines (A2780, Hey-T30, COC1, SKOV3 and OVCAR3) underwent reverse transcription-quantitative PCR, western blotting, Cell Counting Kit-8, Transwell and co-immunoprecipitation (Co-IP) assay and transcriptome sequencing. Previous studies showed that compared with healthy tissues, the expression level of BAP31 protein was found to be significantly higher in various types of cancer tissues, implying that BAP31 may serve an important role in the pathogenesis of cancer. The present study found that BAP31 expression was upregulated in five ovarian cancer cell lines and ovarian cancer tissue, such that BAP31 knockdown [performed using two short hairpin (sh)RNA plasmids] decreased proliferation, invasion and migration. In addition, BAP31 knockdown was found to downregulate the expression of N-cadherin and upregulate the expression of E-cadherin on transcriptional level by controlling the nuclear aggregation of TWIST1, a transcriptional regulator of N-cadherin and E-cadherin. There was no interaction between BAP31 and E-cadherin or N-cadherin using Co-IP detection, while BAP31, E-cadherin and N-cadherin interacted with TWIST1 protein. E-cadherin and N-cadherin expression levels recovered when TWIST1 was overexpressed in the shBCAP31 cells. These results suggest that BAP31 can regulate the migration and invasion of ovarian cancer cells through the epithelial-mesenchymal transition pathway at the transcriptional level, which may be beneficial for the identification of potentially novel targets for ovarian cancer therapy.
Collapse
Affiliation(s)
- Haiyan Liang
- Department of Gynecology and Obstetrics, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Jiqiao Dong
- GeneX Health Life Co., Ltd., Beijing 100195, P.R. China
| | - Ziyan Cheng
- The Experimental High School Attached To Beijing Normal University, Beijing 100032, P.R. China
| | - Qian Li
- Department of Gynecology and Obstetrics, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Dingqing Feng
- Department of Gynecology and Obstetrics, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Bin Ling
- Department of Gynecology and Obstetrics, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| |
Collapse
|
19
|
Chaudhari S, Dey Pereira S, Asare-Warehene M, Naha R, Kabekkodu SP, Tsang BK, Satyamoorthy K. Comorbidities and inflammation associated with ovarian cancer and its influence on SARS-CoV-2 infection. J Ovarian Res 2021; 14:39. [PMID: 33632295 PMCID: PMC7906086 DOI: 10.1186/s13048-021-00787-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 02/09/2021] [Indexed: 12/29/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) worldwide is a major public health concern. Cancer patients are considered a vulnerable population to SARS-CoV-2 infection and may develop several COVID-19 symptoms. The heightened immunocompromised state, prolonged chronic pro-inflammatory milieu coupled with comorbid conditions are shared in both disease conditions and may influence patient outcome. Although ovarian cancer (OC) and COVID-19 are diseases of entirely different primary organs, both diseases share similar molecular and cellular characteristics in their microenvironment suggesting a potential cooperativity leading to poor outcome. In COVID-19 related cases, hospitalizations and deaths worldwide are lower in women than in males; however, comorbidities associated with OC may increase the COVID-19 risk in women. The women at the age of 50-60 years are at greater risk of developing OC as well as SARS-CoV-2 infection. Increased levels of gonadotropin and androgen, dysregulated renin-angiotensin-aldosterone system (RAAS), hyper-coagulation and chronic inflammation are common conditions observed among OC and severe cases of COVID-19. The upregulation of common inflammatory cytokines and chemokines such as tumor necrosis factor α (TNF-α), interleukin (IL)-1β, IL-2, IL-6, IL-10, interferon-γ-inducible protein 10 (IP-10), granulocyte colony-stimulating factor (G-CSF), monocyte chemoattractant protein-1 (MCP-1), macrophage colony-stimulating factor (M-CSF), among others in the sera of COVID-19 and OC subjects suggests potentially similar mechanism(s) involved in the hyper-inflammatory condition observed in both disease states. Thus, it is conceivable that the pathogenesis of OC may significantly contribute to the potential infection by SARS-CoV-2. Our understanding of the influence and mechanisms of SARS-CoV-2 infection on OC is at an early stage and in this article, we review the underlying pathogenesis presented by various comorbidities of OC and correlate their influence on SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Sima Chaudhari
- Department of Cell and Molecular Biology, Manipal School of Life Science, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Satyajit Dey Pereira
- Department of Cell and Molecular Biology, Manipal School of Life Science, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Meshach Asare-Warehene
- Chronic Disease Program, Ottawa Hospital Research Institute and Department of Obstetrics & Gynecology and Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Ritam Naha
- Department of Cell and Molecular Biology, Manipal School of Life Science, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Science, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Benjamin K Tsang
- Chronic Disease Program, Ottawa Hospital Research Institute and Department of Obstetrics & Gynecology and Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Science, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
20
|
Batchu RB, Gruzdyn OV, Kolli BK, Dachepalli R, Umar PS, Rai SK, Singh N, Tavva PS, Weaver DW, Gruber SA. IL-10 Signaling in the Tumor Microenvironment of Ovarian Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1290:51-65. [PMID: 33559854 DOI: 10.1007/978-3-030-55617-4_3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Unlike other malignancies, ovarian cancer (OC) creates a complex tumor microenvironment with distinctive peritoneal ascites consisting of a mixture of several immunosuppressive cells which impair the ability of the patient's immune system to fight the disease. The poor survival rates observed in advanced stage OC patients and the lack of effective conventional therapeutic options have been attributed in large part to the immature dendritic cells (DCs), IL-10 secreting regulatory T cells, tumor-associated macrophages, myeloid-derived suppressor cells, and cancer stem cells that secrete inhibitory cytokines. This review highlights the critical role played by the intraperitoneal presence of IL-10 in the generation of an immunosuppressive tumor microenvironment. Further, the effect of antibody neutralization of IL-10 on the efficacy of DC and chimeric antigen receptor T-cell vaccines will be discussed. Moreover, we will review the influence of IL-10 in the promotion of cancer stemness in concert with the NF-κB signaling pathway with regard to OC progression. Finally, understanding the role of IL-10 and its crosstalk with various cells in the ascitic fluid may contribute to the development of novel immunotherapeutic approaches with the potential to kill drug-resistant OC cells while minimizing toxic side effects.
Collapse
Affiliation(s)
- Ramesh B Batchu
- Wayne State University School of Medicine, Detroit, MI, USA. .,John D. Dingell VA Medical Center, Detroit, MI, USA.
| | - Oksana V Gruzdyn
- Wayne State University School of Medicine, Detroit, MI, USA.,John D. Dingell VA Medical Center, Detroit, MI, USA
| | - Bala K Kolli
- Wayne State University School of Medicine, Detroit, MI, USA.,John D. Dingell VA Medical Center, Detroit, MI, USA.,Med Manor Organics Pvt. Ltd., Hyderabad, India
| | | | - Prem S Umar
- Med Manor Organics Pvt. Ltd., Hyderabad, India
| | | | | | | | | | - Scott A Gruber
- Wayne State University School of Medicine, Detroit, MI, USA.,John D. Dingell VA Medical Center, Detroit, MI, USA
| |
Collapse
|
21
|
Huang YW, Pan P, Echeveste CE, Wang HT, Oshima K, Lin CW, Yearsley M, Xiao J, Chen J, Sun C, Yu J, Wang LS. Transplanting fecal material from wild-type mice fed black raspberries alters the immune system of recipient mice. FOOD FRONTIERS 2020; 1:253-259. [PMID: 34308364 PMCID: PMC8301209 DOI: 10.1002/fft2.34] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
By constantly stimulating intestinal immunity, gut microbes play important regulatory roles, and their possible involvement in human physical and mental disorders beyond intestinal diseases suggests the importance of maintaining homeostasis in the gut microbiota. Both transplantation of fecal microbiota and dietary interventions have been shown to restore microbial homeostasis in recipients. In the current study with wild-type mice, we combined these two approaches to determine if transplanting fecal material from mice fed black raspberries (BRB, 5%) altered recipients' immune system. The donors received a control or 5% BRB diet, and fecal transplantation was performed every other day 15 times into recipients fed control diet. Afterward, we used flow cytometry to analyze populations of CD3+ T, CD4+ T, CD8+ T cells, and NK cells among bone marrow cells, splenocytes, and peripheral blood mononuclear cells (PBMCs) collected from the recipients. We found that BRB-fecal material that contained both fecal microbiota and their metabolites increased NK cell populations among bone marrow cells, splenocytes, and PBMCs, and raised levels of CD8+ T cells in splenocytes. Our findings suggest that fecal transplantation can modulate the immune system and might therefore be valuable for managing a range of physical and mental disorders.
Collapse
Affiliation(s)
- Yi-Wen Huang
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Wauwatosa, Wisconsin
| | - Pan Pan
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Wauwatosa, Wisconsin
| | - Carla Elena Echeveste
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Wauwatosa, Wisconsin
| | - Hsin-Tzu Wang
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Wauwatosa, Wisconsin
| | - Kiyoko Oshima
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Chien-Wei Lin
- Division of Biostatistics, Medical College of Wisconsin, Wauwatosa, Wisconsin
| | - Martha Yearsley
- Department of Pathology, The Ohio State University, Columbus, Ohio
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau, China
| | - Jiebiao Chen
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Chongde Sun
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Jianhua Yu
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center and Beckman Research Institute, Duarte, California
| | - Li-Shu Wang
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Wauwatosa, Wisconsin
| |
Collapse
|
22
|
Brunekreeft KL, Paijens ST, Wouters MC, Komdeur FL, Eggink FA, Lubbers JM, Workel HH, Van Der Slikke EC, Pröpper NE, Leffers N, Adam J, Pijper H, Plat A, Kol A, Nijman HW, De Bruyn M. Deep immune profiling of ovarian tumors identifies minimal MHC-I expression after neoadjuvant chemotherapy as negatively associated with T-cell-dependent outcome. Oncoimmunology 2020; 9:1760705. [PMID: 32923120 PMCID: PMC7458665 DOI: 10.1080/2162402x.2020.1760705] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 01/30/2020] [Indexed: 12/12/2022] Open
Abstract
Epithelial Ovarian cancer (EOC) is the most lethal gynecological malignancy and has limited curative therapeutic options. Immunotherapy for EOC is promising, but clinical efficacy remains restricted to a small percentage of patients. Several lines of evidence suggest that the low response rate might be improved by combining immunotherapy with carboplatin and paclitaxel, the standard-of-care chemotherapy for EOC. Here, we assessed the immune contexture of EOC tumors, draining lymph nodes, and peripheral blood mononuclear cells during carboplatin/paclitaxel chemotherapy. We observed that the immune contexture of EOC patients is defined by the tissue of origin, independent of exposure to chemotherapy. Summarized, draining lymph nodes were characterized by a quiescent microenvironment composed of mostly non-proliferating naïve CD4 + T cells. Circulating T cells shared phenotypic features of both lymph nodes and tumor-infiltrating immune cells. Immunologically 'hot' ovarian tumors were characterized by ICOS, GITR, and PD-1 expression on CD4 + and CD8 + cells, independent of chemotherapy. The presence of PD-1 + cells in tumors prior to, but not after, chemotherapy was associated with disease-specific survival (DSS). Accordingly, we observed high MHC-I expression in tumors prior to chemotherapy, but minimal MHC-I expression in tumors after neoadjuvant chemotherapy, even though there were no differences in the number of tumor-infiltrating lymphocytes (TIL) in both groups. We therefore speculate that the TIL influx into the chemotherapy tumor microenvironment may be a consequence of the general inflammatory nature of chemotherapy-experienced tumors. Strategies to upregulate MHC-I during or after neoadjuvant chemotherapy may thus improve treatment outcome in these patients.
Collapse
Affiliation(s)
- Kim L. Brunekreeft
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Sterre T. Paijens
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, The Netherlands
| | | | - Fenne L. Komdeur
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Florine A. Eggink
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Joyce M. Lubbers
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Hagma H. Workel
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Elisabeth C. Van Der Slikke
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Noor E.J. Pröpper
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Ninke Leffers
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Julien Adam
- Department of Clinical Biology, Institut De Cancérologie Gustave Roussy, Paris, France
| | - Harry Pijper
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Annechien Plat
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Arjan Kol
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Hans W. Nijman
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Marco De Bruyn
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, The Netherlands
| |
Collapse
|
23
|
Oriol A. A critical evaluation of pembrolizumab in addition to lenalidomide and dexamethasone for the treatment of multiple myeloma. Expert Rev Hematol 2020; 13:435-445. [PMID: 32182438 DOI: 10.1080/17474086.2020.1744432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Several modalities of immunotherapy have proved successful in multiple myeloma, including immunomodulatory agents, monoclonal antibodies directed to plasma cell surface antigens and chimeric antigen receptor T cells. The PD-1 pathway is implicated in the progression of multiple myeloma. Several properties of lenalidomide are potentially synergistic with PD-1/PD-L1 blockade.Areas covered: Preclinical data related to anti-PD-1/PD-L1 antibodies and the results of early clinical trials of pembrolizumab single-agent and in combination with lenalidomide and dexamethasone are discussed. Despite promising preliminary data, the pivotal phase III trial evaluating lenalidomide and dexamethasone in combination with pembrolizumab in patients with newly diagnosed multiple myeloma presented unexpected safety findings and was discontinued. Differences with previous results and the findings of other trials involving pomalidomide as an immunomodulatory agent or nivolumab as anti-PD-1 antibody are discussed.Expert opinion: Disappointing efficacy outcomes of the combination of checkpoint blockade antibodies and immunomodulating agents in multiple myeloma along with toxicity issues make the combination unattractive in comparison with available alternatives. It is essential to critically review preclinical and clinical datha to understand the pitfalls of lenalidomide with pembrolizumab and similar combinations in multiple myeloma to gain insight on the future role of anti-PD-1 agents in emerging therapeutic scenarios.
Collapse
Affiliation(s)
- Albert Oriol
- Josep Carreras Leukemia Research Institute, Hematology Service and Hemato-Oncology Clinical Trial Unit, Institut Català d'Oncologia, Barcelona, Spain
| |
Collapse
|
24
|
Migliozzi D, Pelz B, Dupouy DG, Leblond AL, Soltermann A, Gijs MAM. Microfluidics-assisted multiplexed biomarker detection for in situ mapping of immune cells in tumor sections. MICROSYSTEMS & NANOENGINEERING 2019; 5:59. [PMID: 31700674 PMCID: PMC6831597 DOI: 10.1038/s41378-019-0104-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 08/19/2019] [Accepted: 08/24/2019] [Indexed: 06/10/2023]
Abstract
Because of the close interaction between tumors and the immune system, immunotherapies are nowadays considered as the most promising treatment against cancer. In order to define the diagnosis and the subsequent therapy, crucial information about the immune cells at the tumor site is needed. Indeed, different types or activation status of cells may be indicative for specific and personalized treatments. Here, we present a quantitative method to identify ten different immuno-markers in the same tumor cut section, thereby saving precious samples and enabling correlative analysis on several cell families and their activation status in a tumor microenvironment context. We designed and fabricated a microfluidic chip with optimal thermomechanical and optical properties for fast delivery of reagents on tissue slides and for fully automatic imaging by integration with an optical microscope. The multiplexing capability of the system is enabled by an optimized cyclic immunofluorescence protocol, with which we demonstrated quantitative sequential immunostaining of up to ten biomarkers on the same tissue section. Furthermore, we developed high-quality image-processing algorithms to map each cell in the entire tissue. As proof-of-concept analyses, we identified coexpression and colocalization patterns of biomarkers to classify the immune cells and their activation status. Thanks to the quantitativeness and the automation of both the experimental and analytical methods, we believe that this multiplexing approach will meet the increasing clinical need of personalized diagnostics and therapy in cancer pathology.
Collapse
Affiliation(s)
- Daniel Migliozzi
- Laboratory of Microsystems, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, CH Switzerland
| | - Benjamin Pelz
- Laboratory of Microsystems, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, CH Switzerland
- Lunaphore Technologies SA, EPFL Innovation Park, Building C, 1015 Lausanne, CH Switzerland
| | - Diego G. Dupouy
- Lunaphore Technologies SA, EPFL Innovation Park, Building C, 1015 Lausanne, CH Switzerland
| | - Anne-Laure Leblond
- Universitätsspital Zürich, Schmelzbergstrasse 12, 8091 Zürich, CH Switzerland
| | - Alex Soltermann
- Universitätsspital Zürich, Schmelzbergstrasse 12, 8091 Zürich, CH Switzerland
| | - Martin A. M. Gijs
- Laboratory of Microsystems, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, CH Switzerland
| |
Collapse
|
25
|
Lee JM, Botesteanu DA, Tomita Y, Yuno A, Lee MJ, Kohn EC, Annunziata CM, Matulonis U, MacDonald LA, Nair JR, Macneill KM, Trepel JB. Patients with BRCA mutated ovarian cancer may have fewer circulating MDSC and more peripheral CD8 + T cells compared with women with BRCA wild-type disease during the early disease course. Oncol Lett 2019; 18:3914-3924. [PMID: 31516602 DOI: 10.3892/ol.2019.10731] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 06/04/2019] [Indexed: 12/31/2022] Open
Abstract
Immunosuppressive myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs) are associated with immunologic tolerance and poor prognosis in ovarian cancer (OvCa). We hypothesized that women with germline BRCA1 and BRCA2 mutation-associated (gBRCAm) OvCa would have fewer circulating immunosuppressive immune cells compared to those with BRCA wild-type (BRCAwt) disease during their early disease course (<5 years post-diagnosis) where gBRCAm is a favorable prognostic factor. We collected and viably froze peripheral blood mononuclear cells (PBMCs) from patients with recurrent OvCa olaparib clinical trials (NCT01445418/NCT01237067). Immune subset analyses were performed using flow cytometry for Tregs, exhausted CD8+ T cells, monocytes and MDSCs. Functional marker expression, including cytotoxic T lymphocyte-associated protein 4 (CTLA-4), T cell immunoglobulin and mucin domain 3 (TIM-3) and programmed cell death protein 1 (PD-1) was evaluated. Data were analyzed using FlowJo. Pretreatment PBMCs were collected from 41 patients (16 gBRCAm/25 BRCAwt). The percentage of MDSCs among viable CD45+ PBMC was lower in gBRCAm OvCa compared with BRCAwt OvCa (median 0.565 vs. 0.93%, P=0.0086) but this difference was not seen in those women >5 years post-diagnosis. CD8+ T cells among viable CD45+ PBMCs and CTLA-4+/CD8+ T cells were higher in gBRCAm carriers than patients with BRCAwt, in particular for those <5 years post-diagnosis (median 20.4 vs. 9.78%, P=0.031 and median MFI 0.19 vs. 0.22, P=0.0074, respectively). TIM-3 expression on Tregs was associated with poor progression-free survival, independent of gBRCAm status (P<0.001). Our pilot data suggested that patients with gBRCAm OvCa may have fewer circulating MDSCs but higher CD8+ T cells in PBMCs during their early disease course. This may contribute to the observed survival benefit for these women in their first post-diagnosis decade.
Collapse
Affiliation(s)
- Jung-Min Lee
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Dana-Adriana Botesteanu
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Yusuke Tomita
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Akira Yuno
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Min-Jung Lee
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Elise C Kohn
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Christina M Annunziata
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Ursula Matulonis
- Division of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02215, USA
| | - Lauren A MacDonald
- Division of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02215, USA
| | - Jayakumar R Nair
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Kimberley M Macneill
- Division of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02215, USA
| | - Jane B Trepel
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| |
Collapse
|
26
|
Moradkhani F, Moloudizargari M, Fallah M, Asghari N, Heidari Khoei H, Asghari MH. Immunoregulatory role of melatonin in cancer. J Cell Physiol 2019; 235:745-757. [PMID: 31270813 DOI: 10.1002/jcp.29036] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 06/11/2019] [Indexed: 01/01/2023]
Abstract
Melatonin is a ubiquitous indole amine that plays a fundamental role in the regulation of the biological rhythm. Disrupted circadian rhythm alters the expression of clock genes and deregulates oncogenes, which finally promote tumor development and progression. An evidence supporting this notion is the higher risk of developing malignancies among night shift workers. Circadian secretion of the pineal hormone also synchronizes the immune system via a reciprocal association that exists between the immune system and melatonin. Immune cells are capable of melatonin biosynthesis in addition to the expression of its receptors. Melatonin induces big changes in different immune cell proportions, enhances their viability and improves immune cell metabolism in the tumor microenvironment. These effects might be directly mediated by melatonin receptors or indirectly through alterations in hormonal and cytokine release. Moreover, melatonin induces apoptosis in tumor cells via the intrinsic and extrinsic pathways of apoptosis, while it protectsthe immune cells. In general, melatonin has a profound impact on immune cell trafficking, cytokine production and apoptosis induction in malignant cells. On such a basis, using melatonin and resynchronization of sleep cycle may have potential implications in immune function enhancement against malignancies, which will be the focus of the present paper.
Collapse
Affiliation(s)
- Fatemeh Moradkhani
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Milad Moloudizargari
- Department of Immunology, School of Medicine, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marjan Fallah
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Narjes Asghari
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Heidar Heidari Khoei
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Asghari
- Department of Pharmacology and Toxicology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
27
|
Piché A. Malignant peritoneal effusion acting as a tumor environment in ovarian cancer progression: Impact and significance. World J Clin Oncol 2018; 9:167-171. [PMID: 30622924 PMCID: PMC6314862 DOI: 10.5306/wjco.v9.i8.167] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/11/2018] [Accepted: 11/04/2018] [Indexed: 02/06/2023] Open
Abstract
Until recently, ovarian cancer research has mainly focused on the tumor cells themselves ignoring for the most part the surrounding tumor environment which includes malignant peritoneal effusions. However, one of the major conceptual advances in oncology over the last few years has been the appreciation that cancer progression cannot be explained by aberrations in cancer cells themselves and is strongly influenced by the surrounding tumor environment. The mechanisms of ovarian cancer progression differ from that of other solid tumors because ovarian cancer cells primarily disseminate within the peritoneal cavity. Malignant peritoneal effusion accumulates in the peritoneal cavity during ovarian cancer progression. These exudative fluids act as a unique tumor environment providing a framework that orchestrates cellular and molecular changes contributing to aggressiveness and disease progression. The composition of ascites, which includes cellular and acellular components, constantly adapts during the course of the disease in response to various cellular cues originating from both tumor and stromal cells. The tumor environment that represents peritoneal effusions closely constitute an ecosystem, with specific cell types and signaling molecules increasing and decreasing during the course of the disease progression creating a single complex network. Although recent advances aiming to understand the ovarian tumor environment have focused one at a time on components, the net impact of the whole environment cannot be understood simply from its parts or outside is environmental context.
Collapse
Affiliation(s)
- Alain Piché
- Département de Microbiologie et Infectiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke QC J1H 5N4, Canada
| |
Collapse
|
28
|
The Tumor Microenvironment of Epithelial Ovarian Cancer and Its Influence on Response to Immunotherapy. Cancers (Basel) 2018. [PMID: 30042343 DOI: 10.3390/cancers10080242] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Immunotherapy as a treatment for cancer is a growing field of endeavor but reports of success have been limited for epithelial ovarian cancer. Overcoming the challenges to developing more effective therapeutic approaches lies in a better understanding of the factors in cancer cells and the surrounding tumor microenvironment that limit response to immunotherapies. This article provides an overview of some ovarian cancer cell features such as tumor-associated antigens, ovarian cancer-derived exosomes, tumor mutational burden and overexpression of immunoinhibitory molecules. Moreover, we describe relevant cell types found in epithelial ovarian tumors including immune cells (T and B lymphocytes, Tregs, NK cells, TAMs, MDSCs) and other components found in the tumor microenvironment including fibroblasts and the adipocytes in the omentum. We focus on how those components may influence responses to standard treatments or immunotherapies.
Collapse
|
29
|
The Tumor Microenvironment of Epithelial Ovarian Cancer and Its Influence on Response to Immunotherapy. Cancers (Basel) 2018. [PMID: 30042343 DOI: 10.3390/cancers10080242]+[] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Immunotherapy as a treatment for cancer is a growing field of endeavor but reports of success have been limited for epithelial ovarian cancer. Overcoming the challenges to developing more effective therapeutic approaches lies in a better understanding of the factors in cancer cells and the surrounding tumor microenvironment that limit response to immunotherapies. This article provides an overview of some ovarian cancer cell features such as tumor-associated antigens, ovarian cancer-derived exosomes, tumor mutational burden and overexpression of immunoinhibitory molecules. Moreover, we describe relevant cell types found in epithelial ovarian tumors including immune cells (T and B lymphocytes, Tregs, NK cells, TAMs, MDSCs) and other components found in the tumor microenvironment including fibroblasts and the adipocytes in the omentum. We focus on how those components may influence responses to standard treatments or immunotherapies.
Collapse
|
30
|
Rodriguez GM, Galpin KJC, McCloskey CW, Vanderhyden BC. The Tumor Microenvironment of Epithelial Ovarian Cancer and Its Influence on Response to Immunotherapy. Cancers (Basel) 2018; 10:E242. [PMID: 30042343 PMCID: PMC6116043 DOI: 10.3390/cancers10080242] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 07/16/2018] [Accepted: 07/20/2018] [Indexed: 02/06/2023] Open
Abstract
Immunotherapy as a treatment for cancer is a growing field of endeavor but reports of success have been limited for epithelial ovarian cancer. Overcoming the challenges to developing more effective therapeutic approaches lies in a better understanding of the factors in cancer cells and the surrounding tumor microenvironment that limit response to immunotherapies. This article provides an overview of some ovarian cancer cell features such as tumor-associated antigens, ovarian cancer-derived exosomes, tumor mutational burden and overexpression of immunoinhibitory molecules. Moreover, we describe relevant cell types found in epithelial ovarian tumors including immune cells (T and B lymphocytes, Tregs, NK cells, TAMs, MDSCs) and other components found in the tumor microenvironment including fibroblasts and the adipocytes in the omentum. We focus on how those components may influence responses to standard treatments or immunotherapies.
Collapse
Affiliation(s)
- Galaxia M Rodriguez
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada.
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada.
| | - Kristianne J C Galpin
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada.
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada.
| | - Curtis W McCloskey
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada.
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada.
| | - Barbara C Vanderhyden
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada.
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
31
|
Owens GL, Price MJ, Cheadle EJ, Hawkins RE, Gilham DE, Edmondson RJ. Ex vivo expanded tumour-infiltrating lymphocytes from ovarian cancer patients release anti-tumour cytokines in response to autologous primary ovarian cancer cells. Cancer Immunol Immunother 2018; 67:1519-1531. [PMID: 30039427 PMCID: PMC6182400 DOI: 10.1007/s00262-018-2211-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 07/17/2018] [Indexed: 11/24/2022]
Abstract
Epithelial ovarian cancer (EOC) is the leading cause of gynaecological cancer-related death in Europe. Although most patients achieve an initial complete response with first-line treatment, recurrence occurs in more than 80% of cases. Thus, there is a clear unmet need for novel second-line treatments. EOC is frequently infiltrated with T lymphocytes, the presence of which has been shown to be associated with improved clinical outcomes. Adoptive T-cell therapy (ACT) using ex vivo-expanded tumour-infiltrating lymphocytes (TILs) has shown remarkable efficacy in other immunogenic tumours, and may represent a promising therapeutic strategy for EOC. In this preclinical study, we investigated the efficacy of using anti-CD3/anti-CD28 magnetic beads and IL-2 to expand TILs from freshly resected ovarian tumours. TILs were expanded for up to 3 weeks, and then subjected to a rapid-expansion protocol (REP) using irradiated feeder cells. Tumours were collected from 45 patients with EOC and TILs were successfully expanded from 89.7% of biopsies. Expanded CD4+ and CD8+ subsets demonstrated features associated with memory phenotypes, and had significantly higher expression of key activation and functional markers than unexpanded TILs. Expanded TILs produced anti-tumour cytokines when co-cultured with autologous tumour cells, inferring tumour cytotoxicity. Our findings demonstrate that it is possible to re-activate and expand tumour-reactive T cells from ovarian tumours. This presents a promising immunotherapy that could be used sequentially or in combination with current therapeutic strategies.
Collapse
Affiliation(s)
- Gemma L Owens
- Gynaecological Oncology, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK.,St Mary's Hospital, Central Manchester NHS Foundation Trust, Manchester Academic Health Science Centre, Level 5, Research Floor, Oxford Road, Manchester, M13 9WL, UK.,Clinical and Experimental Immunotherapy, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, Manchester Cancer Research Centre, University of Manchester, Wilmslow Road, Manchester, UK
| | - Marcus J Price
- Gynaecological Oncology, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK.,St Mary's Hospital, Central Manchester NHS Foundation Trust, Manchester Academic Health Science Centre, Level 5, Research Floor, Oxford Road, Manchester, M13 9WL, UK
| | - Eleanor J Cheadle
- Targeted Therapy Group, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, Manchester Cancer Research Centre, University of Manchester, Wilmslow Road, Manchester, UK
| | - Robert E Hawkins
- Clinical and Experimental Immunotherapy, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, Manchester Cancer Research Centre, University of Manchester, Wilmslow Road, Manchester, UK
| | - David E Gilham
- Clinical and Experimental Immunotherapy, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, Manchester Cancer Research Centre, University of Manchester, Wilmslow Road, Manchester, UK
| | - Richard J Edmondson
- Gynaecological Oncology, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK. .,St Mary's Hospital, Central Manchester NHS Foundation Trust, Manchester Academic Health Science Centre, Level 5, Research Floor, Oxford Road, Manchester, M13 9WL, UK.
| |
Collapse
|
32
|
Karapetsas A, Tokamani M, Evangelou C, Sandaltzopoulos R. The homeodomain transcription factor MEIS1 triggers chemokine expression and is involved in CD8+ T-lymphocyte infiltration in early stage ovarian cancer. Mol Carcinog 2018; 57:1251-1263. [DOI: 10.1002/mc.22840] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 04/20/2018] [Accepted: 05/23/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Athanasios Karapetsas
- Department of Molecular Biology and Genetics; Democritus University of Thrace; Alexandroupolis Greece
| | - Maria Tokamani
- Department of Molecular Biology and Genetics; Democritus University of Thrace; Alexandroupolis Greece
| | - Christos Evangelou
- Department of Molecular Biology and Genetics; Democritus University of Thrace; Alexandroupolis Greece
| | - Raphael Sandaltzopoulos
- Department of Molecular Biology and Genetics; Democritus University of Thrace; Alexandroupolis Greece
| |
Collapse
|
33
|
|
34
|
Molecular Mechanisms Linking Exercise to Cancer Prevention and Treatment. Cell Metab 2018; 27:10-21. [PMID: 29056514 DOI: 10.1016/j.cmet.2017.09.015] [Citation(s) in RCA: 356] [Impact Index Per Article: 50.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/09/2017] [Accepted: 09/19/2017] [Indexed: 12/14/2022]
Abstract
The benefits of exercise training for cancer patients are becoming increasingly evident. Physical exercise has been shown to reduce cancer incidence and inhibit tumor growth. Here we provide the status of the current molecular understanding of the effect of exercise on cancer. We propose that exercise has a role in controlling cancer progression through a direct effect on tumor-intrinsic factors, interplay with whole-body exercise effects, alleviation of cancer-related adverse events, and improvement of anti-cancer treatment efficacy. These findings have wide-ranging societal implications, as this understanding may lead to changes in cancer treatment strategies.
Collapse
|
35
|
Tuccilli C, Baldini E, Sorrenti S, Catania A, Antonelli A, Fallahi P, Tartaglia F, Barollo S, Mian C, Palmieri A, Carbotta G, Arcieri S, Pironi D, Vergine M, Monti M, Ulisse S. CTLA-4 and PD-1 Ligand Gene Expression in Epithelial Thyroid Cancers. Int J Endocrinol 2018; 2018:1742951. [PMID: 30123257 PMCID: PMC6079443 DOI: 10.1155/2018/1742951] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 05/31/2018] [Indexed: 12/21/2022] Open
Abstract
The dysregulation of PD-1 ligands (PD-L1 and PD-L2) and CTLA-4 ligands (CD80 and CD86) represents a tumor strategy to escape the immune surveillance. Here, the expression of PD-L1, PD-L2, CD80, and CD86 was evaluated at the mRNA level in 94 patients affected by papillary thyroid carcinoma (PTC) and 11 patients affected by anaplastic thyroid carcinoma (ATC). Variations in the mRNAs in PTC patients were then correlated with clinicopathological features. The expression of all genes was deregulated in PTC and ATC tissues compared to normal tissues. In particular, the downregulation of CD80 was observed above all in ATC. In addition, the increased expression of CD80 associated with longer disease-free survival in PTC. Higher expression of PD-L1 associated with the classical histological variant and with the presence of BRAFV600E mutation in PTC. The increased PD-L2 expression correlated with BRAFV600E mutation and lymph node metastasis, while its lower expression correlated with the follicular PTC variant. The latter was also associated with the CD80 downregulation, which was also related to the absence of lymph node metastasis. In conclusion, we documented the overall dysregulation of PD-1 and CTLA-4 ligands in PTC and ATC tissues and a possible prognostic value for CD80 gene expression in PTC.
Collapse
Affiliation(s)
- Chiara Tuccilli
- Department of Surgical Sciences, “Sapienza” University of Rome, Rome, Italy
| | - Enke Baldini
- Department of Surgical Sciences, “Sapienza” University of Rome, Rome, Italy
| | - Salvatore Sorrenti
- Department of Surgical Sciences, “Sapienza” University of Rome, Rome, Italy
| | - Antonio Catania
- Department of Surgical Sciences, “Sapienza” University of Rome, Rome, Italy
| | - Alessandro Antonelli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Poupak Fallahi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Susi Barollo
- Department of Medicine, University of Padua, Padua, Italy
| | - Caterina Mian
- Department of Medicine, University of Padua, Padua, Italy
| | - Andrea Palmieri
- Department of Surgical Sciences, “Sapienza” University of Rome, Rome, Italy
| | - Giovanni Carbotta
- Department of Surgical Sciences, “Sapienza” University of Rome, Rome, Italy
| | - Stefano Arcieri
- Department of Surgical Sciences, “Sapienza” University of Rome, Rome, Italy
| | - Daniele Pironi
- Department of Surgical Sciences, “Sapienza” University of Rome, Rome, Italy
| | - Massimo Vergine
- Department of Surgical Sciences, “Sapienza” University of Rome, Rome, Italy
| | - Massimo Monti
- Department of Surgical Sciences, “Sapienza” University of Rome, Rome, Italy
| | - Salvatore Ulisse
- Department of Surgical Sciences, “Sapienza” University of Rome, Rome, Italy
| |
Collapse
|
36
|
Ojalvo LS, Thompson ED, Wang TL, Meeker AK, Shih IM, Fader AN, Cimino-Mathews A, Emens LA. Tumor-associated macrophages and the tumor immune microenvironment of primary and recurrent epithelial ovarian cancer. Hum Pathol 2017; 74:135-147. [PMID: 29288043 DOI: 10.1016/j.humpath.2017.12.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/13/2017] [Accepted: 12/13/2017] [Indexed: 01/25/2023]
Abstract
Tumor-infiltrating lymphocytes (TILs) are associated with better prognosis in newly diagnosed epithelial ovarian cancer (EOC), but clinical trials of immunotherapies in patients with heavily treated disease reveal limited activity. Understanding the tumor microenvironment (TME) of primary and recurrent EOC should guide future trials. Here, we evaluated the TME of paired primary and recurrent tumors (n = 17), and non-paired primary (n = 20) and recurrent (n = 15) tumors, for CD8+ T cells, FOXP3+ regulatory T cells (Tregs), CD68+ tumor-associated macrophages (TAMs), programmed cell death protein 1 (PD-1) and programmed cell death ligand 1 (PD-L1). CD8+ T cells were similar in primary and recurrent tumors, but Tregs were higher in recurrent tumors (P = .0210). Higher TAM density (≥5%) associated with higher Tregs (P = .001) and CD8+ T cells (P < .001) in recurrent tumors, but only with higher Tregs in primary tumors (P = .02). TAM-dense recurrent tumors expressed PD-L1 on tumor and immune cells, whereas TAM-dense primary tumors expressed PD-L1 predominantly on immune cells. In survival analyses, higher Tregs in primary tumors correlated with decreased time to first recurrence (17.0 versus 28.5 months, P = .022). Conversely, higher Tregs in recurrent tumors correlated with longer overall survival (OS) from recurrence (median not met versus 20.0 months, P = .022). TAM density did not affect patient survival. However, patients with increased TAMs at recurrence (n = 5) had longer OS from recurrence compared to patients without increased TAMs (n = 12) (56.0 versus 20.0 months); with the small sample size, this did not reach statistical significance (P = .074). Further characterization of the evolution of the TME is warranted.
Collapse
Affiliation(s)
- Laureen S Ojalvo
- Kelly Gynecologic Oncology Service, Department of Gynecology and Obstetrics, Johns Hopkins Hospital, Baltimore, MD 21287
| | - Elizabeth D Thompson
- Department of Pathology, Johns Hopkins Hospital, Baltimore, MD 21287; Department of Oncology, Johns Hopkins Hospital, Baltimore, MD 21287
| | - Tian-Li Wang
- Kelly Gynecologic Oncology Service, Department of Gynecology and Obstetrics, Johns Hopkins Hospital, Baltimore, MD 21287; Department of Pathology, Johns Hopkins Hospital, Baltimore, MD 21287
| | - Alan K Meeker
- Department of Pathology, Johns Hopkins Hospital, Baltimore, MD 21287
| | - Ie-Ming Shih
- Kelly Gynecologic Oncology Service, Department of Gynecology and Obstetrics, Johns Hopkins Hospital, Baltimore, MD 21287; Department of Pathology, Johns Hopkins Hospital, Baltimore, MD 21287
| | - Amanda N Fader
- Kelly Gynecologic Oncology Service, Department of Gynecology and Obstetrics, Johns Hopkins Hospital, Baltimore, MD 21287
| | - Ashley Cimino-Mathews
- Department of Pathology, Johns Hopkins Hospital, Baltimore, MD 21287; Bloomberg-Kimmel Institute at Johns Hopkins, Baltimore, MD 21287
| | - Leisha A Emens
- Bloomberg-Kimmel Institute at Johns Hopkins, Baltimore, MD 21287; Department of Oncology, Johns Hopkins Hospital, Baltimore, MD 21287.
| |
Collapse
|
37
|
Tellechea M, Buxadé M, Tejedor S, Aramburu J, López-Rodríguez C. NFAT5-Regulated Macrophage Polarization Supports the Proinflammatory Function of Macrophages and T Lymphocytes. THE JOURNAL OF IMMUNOLOGY 2017; 200:305-315. [PMID: 29150563 DOI: 10.4049/jimmunol.1601942] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 10/17/2017] [Indexed: 02/07/2023]
Abstract
Macrophages are exquisite sensors of tissue homeostasis that can rapidly switch between pro- and anti-inflammatory or regulatory modes to respond to perturbations in their microenvironment. This functional plasticity involves a precise orchestration of gene expression patterns whose transcriptional regulators have not been fully characterized. We had previously identified the transcription factor NFAT5 as an activator of TLR-induced responses, and in this study we explore its contribution to macrophage functions in different polarization settings. We found that both in classically and alternatively polarized macrophages, NFAT5 enhanced functions associated with a proinflammatory profile such as bactericidal capacity and the ability to promote Th1 polarization over Th2 responses. In this regard, NFAT5 upregulated the Th1-stimulatory cytokine IL-12 in classically activated macrophages, whereas in alternatively polarized ones it enhanced the expression of the pro-Th1 mediators Fizz-1 and arginase 1, indicating that it could promote proinflammatory readiness by regulating independent genes in differently polarized macrophages. Finally, adoptive transfer assays in vivo revealed a reduced antitumor capacity in NFAT5-deficient macrophages against syngeneic Lewis lung carcinoma and ID8 ovarian carcinoma cells, a defect that in the ID8 model was associated with a reduced accumulation of effector CD8 T cells at the tumor site. Altogether, detailed analysis of the effect of NFAT5 in pro- and anti-inflammatory macrophages uncovered its ability to regulate distinct genes under both polarization modes and revealed its predominant role in promoting proinflammatory macrophage functions.
Collapse
Affiliation(s)
- Mónica Tellechea
- Immunology Unit, Department of Experimental and Health Sciences, Pompeu Fabra University, 08003 Barcelona, Spain
| | - Maria Buxadé
- Immunology Unit, Department of Experimental and Health Sciences, Pompeu Fabra University, 08003 Barcelona, Spain
| | - Sonia Tejedor
- Immunology Unit, Department of Experimental and Health Sciences, Pompeu Fabra University, 08003 Barcelona, Spain
| | - Jose Aramburu
- Immunology Unit, Department of Experimental and Health Sciences, Pompeu Fabra University, 08003 Barcelona, Spain
| | - Cristina López-Rodríguez
- Immunology Unit, Department of Experimental and Health Sciences, Pompeu Fabra University, 08003 Barcelona, Spain
| |
Collapse
|
38
|
McLean K, Mehta G. Tumor Microenvironment and Models of Ovarian Cancer: The 11th Biennial Rivkin Center Ovarian Cancer Research Symposium. Int J Gynecol Cancer 2017; 27:S2-S9. [PMID: 29049091 DOI: 10.1097/igc.0000000000001119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE The aim of this study was to review the latest research advances on the topics of the ovarian cancer tumor microenvironment and models of ovarian cancer. METHODS In September 2016, a symposium of the leaders in the field of ovarian cancer research was convened to present and discuss current advances and future directions in ovarian cancer research. RESULTS One session was dedicated to Tumor Microenvironment and Models of Ovarian Cancer, and included a keynote presentation from Anil Sood, MD, and an invited oral presentation from David Huntsman, MD. Eight additional oral presentations were selected from abstract submissions. Twenty-nine abstracts were presented in poster format and can be grouped into the categories of stromal cells in the microenvironment, immune cells in the microenvironment, epithelial-mesenchymal transition and metastasis, metabolomics, and model systems including spheroids, murine models, and other animal models. CONCLUSIONS Rapid advances continue in our understanding of the influence of the tumor microenvironment on ovarian cancer progression and metastasis. Vascular endothelial cells, stromal cells, and immune cells all modulate epithelial tumor cell biology and therefore serve as potential targets for improved treatment responses either in conjunction with or instead of current treatment modalities. Characterization of the underlying genetic alterations in both the tumor cells and surrounding microenvironment cells enhances our understanding of tumor biology. Model systems including both in vitro and in vivo approaches allow novel advances. Technological advances including sequencing strategies, use of mass spectrometry for metabolomics and other studies, and bioengineering approaches all complement conventional methodologies to push forward our understanding and ultimately the treatment of ovarian cancer.
Collapse
|
39
|
Exercise protects from cancer through regulation of immune function and inflammation. Biochem Soc Trans 2017; 45:905-11. [PMID: 28673937 DOI: 10.1042/bst20160466] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/29/2017] [Accepted: 06/01/2017] [Indexed: 02/07/2023]
Abstract
Exercise training has been extensively studied in cancer settings as part of prevention or rehabilitation strategies, yet emerging evidence suggests that exercise training can also directly affect tumor-specific outcomes. The underlying mechanisms for this exercise-dependent cancer protection are just starting to be elucidated. To this end, evasion of immune surveillance and tumor-associated inflammation are established as hallmarks of cancer, and exercise may target cancer incidence and progression through regulation of these mechanisms. Here, I review the role of exercise in protection from cancer through mobilization and activation of cytotoxic immune cells, restriction of inflammatory signaling pathways in myeloid immune cells, and regulation of acute and chronic systemic inflammatory responses. In conclusion, I propose that exercise has the potential to target tumor growth through regulation of immune and inflammatory functions, and exercise may be pursued as anticancer treatment through incorporation into standard oncological therapy to the benefit of the cancer patients.
Collapse
|
40
|
Basha R, Mohiuddin Z, Rahim A, Ahmad S. Ovarian Cancer and Resistance to Therapies: Clinical and Laboratory Perspectives. DRUG RESISTANCE IN BACTERIA, FUNGI, MALARIA, AND CANCER 2017:511-537. [DOI: 10.1007/978-3-319-48683-3_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
41
|
Alexander ET, Minton AR, Peters MC, van Ryn J, Gilmour SK. Thrombin inhibition and cisplatin block tumor progression in ovarian cancer by alleviating the immunosuppressive microenvironment. Oncotarget 2016; 7:85291-85305. [PMID: 27852034 PMCID: PMC5356737 DOI: 10.18632/oncotarget.13300] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 10/26/2016] [Indexed: 12/11/2022] Open
Abstract
Cancer is often associated with an increased risk of thrombotic complications which can be aggravated by treatment with chemotherapeutics such as cisplatin. Multiple lines of evidence suggest that thrombin activity promotes tumor growth and metastasis. We examined the effect of co-treatment with dabigatran etexilate, a direct thrombin inhibitor, and cisplatin using the murine ID8 ovarian cancer model. Mice receiving co-treatment with both dabigatran etexilate and low dose cisplatin had significantly smaller tumors, developed less ascites and had lower levels of circulating activated platelets and tissue factor (TF) positive microparticles than those treated with dabigatran etexilate or cisplatin alone. Co-treatment with dabigatran etexilate and cisplatin significantly decreased the number of Gr1+/CD11b+ myeloid derived suppresser cells and CD11b+/CD11c+ dendritic cells in the ascites of ID8 tumor-bearing mice. Co-treatment also significantly reduced levels of pro-tumorigenic cytokines including TGF-β, VEGF, IL-6, IL-10, and MCP-1 in the ascites while increasing IFN-γ production by CD8+ effector T cells in the tumor ascites. These results demonstrate that co-treatment with dabigatran etexilate significantly augments the anti-tumor activity of cisplatin in ovarian tumor progression by alleviating the immunosuppressive microenvironment, suggesting that thrombin may be a potential therapeutic target for treatment of ovarian cancer.
Collapse
Affiliation(s)
| | | | - Molly C. Peters
- Lankenau Institute for Medical Research, Wynnewood, PA 19096, USA
| | - Joanne van Ryn
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riss, Germany
| | - Susan K. Gilmour
- Lankenau Institute for Medical Research, Wynnewood, PA 19096, USA
| |
Collapse
|
42
|
Liu D, Shaukat Z, Saint RB, Gregory SL. Chromosomal instability triggers cell death via local signalling through the innate immune receptor Toll. Oncotarget 2016; 6:38552-65. [PMID: 26462024 PMCID: PMC4770720 DOI: 10.18632/oncotarget.6035] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/08/2015] [Indexed: 01/29/2023] Open
Abstract
Chromosomal instability (CIN) is a hallmark of cancer and has been implicated in cancer initiation, progression and the development of resistance to traditional cancer therapy. Here we identify a new property of CIN cells, showing that inducing CIN in proliferating Drosophila larval tissue leads to the activation of innate immune signalling in CIN cells. Manipulation of this immune pathway strongly affects the survival of CIN cells, primarily via JNK, which responds to both Toll and TNFα/Eiger. This pathway also activates Mmp1, which recruits hemocytes to the CIN tissue to provide local amplification of the immune response that is needed for effective elimination of CIN cells.
Collapse
Affiliation(s)
- Dawei Liu
- School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Zeeshan Shaukat
- School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Robert B Saint
- School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Stephen L Gregory
- School of Biological Sciences, University of Adelaide, Adelaide, Australia
| |
Collapse
|
43
|
Carbotti G, Barisione G, Airoldi I, Mezzanzanica D, Bagnoli M, Ferrero S, Petretto A, Fabbi M, Ferrini S. IL-27 induces the expression of IDO and PD-L1 in human cancer cells. Oncotarget 2016; 6:43267-80. [PMID: 26657115 PMCID: PMC4791231 DOI: 10.18632/oncotarget.6530] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 11/30/2015] [Indexed: 01/21/2023] Open
Abstract
IL-27 is a member of the IL-12 family that is produced by macrophages and dendritic cells. IL-27 inhibits the growth and invasiveness of different cancers and therefore represents a potential anti-tumor agent. By contrast, it may exert immune-regulatory properties in different biological systems. We reported that IL-27 induces the expression of the IL-18 inhibitor IL-18BP, in human Epithelial Ovarian Cancer (EOC) cells, thus potentially limiting the immune response. Here, we tested whether IL-27 may modulate other immune-regulatory molecules involved in EOC progression, including Indoleamine 2,3-dioxygenase (IDO) and Programmed Death-Ligand (PD-L)1. IDO and PD-L1 were not constitutively expressed by EOC cells in vitro, but IL-27 increased their expression through STAT1 and STAT3 tyrosine phosphorylation. Differently, cells isolated from EOC ascites showed constitutive activation of STAT1 and STAT3 and IDO expression. These findings, together with the expression of IL-27 in scattered leukocytes in EOC ascites and tissues, suggest a potential role of IL-27 in immune-regulatory networks of EOC. In addition, IL-27 induced IDO or PD-L1 expression in monocytes and in human PC3 prostate and A549 lung cancer cells. A current paradigm in tumor immunology is that tumor cells may escape from immune control due to “adaptive resistance” mediated by T cell-secreted IFN-γ, which induces PD-L1 and IDO expression in tumor cells. Our present data indicate that also IL-27 has similar activities and suggest that the therapeutic use of IL-27 as anti-cancer agent may have dual effects, in some tumors.
Collapse
Affiliation(s)
- Grazia Carbotti
- Department of Integrated Oncological Therapies, IRCCS AOU San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Gaia Barisione
- Department of Integrated Oncological Therapies, IRCCS AOU San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Irma Airoldi
- Laboratory of Oncology, Istituto Giannina Gaslini, Genoa, Italy
| | - Delia Mezzanzanica
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Marina Bagnoli
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Simone Ferrero
- Department of Surgery, Unit of Obstetrics and Gynaecology, IRCCS AOU San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, and DINOGMI, University of Genoa Genoa, Italy
| | | | - Marina Fabbi
- Department of Integrated Oncological Therapies, IRCCS AOU San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Silvano Ferrini
- Department of Integrated Oncological Therapies, IRCCS AOU San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| |
Collapse
|
44
|
Xin Y, Huang Q, Tang JQ, Hou XY, Zhang P, Zhang LZ, Jiang G. Nanoscale drug delivery for targeted chemotherapy. Cancer Lett 2016; 379:24-31. [DOI: 10.1016/j.canlet.2016.05.023] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 05/19/2016] [Accepted: 05/20/2016] [Indexed: 12/16/2022]
|
45
|
Szajnik M, Czystowska-Kuźmicz M, Elishaev E, Whiteside TL. Biological markers of prognosis, response to therapy and outcome in ovarian carcinoma. Expert Rev Mol Diagn 2016; 16:811-26. [PMID: 27268121 DOI: 10.1080/14737159.2016.1194758] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Ovarian cancer (OvCa) is among the most common types of cancer and is the leading cause of death from gynecological malignancies in western countries. Cancer biomarkers have a potential for improving the management of OvCa patients at every point from screening and detection, diagnosis, prognosis, follow up, response to therapy and outcome. AREAS COVERED The literature search has indicated a number of candidate biomarkers have recently emerged that could facilitate the molecular definition of OvCa, providing information about prognosis and predicting response to therapy. These potentially promising biomarkers include immune cells and their products, tumor-derived exosomes, nucleic acids and epigenetic biomarkers. Expert commentary: Although most of the biomarkers available today require prospective validation, the development of noninvasive liquid biopsy-based monitoring promises to improve their utility for evaluations of prognosis, response to therapy and outcome in OvCa.
Collapse
Affiliation(s)
- Marta Szajnik
- a Department of Gynecology and Gynecologic Oncology , Military Institute of Medicine , Warsaw , Poland.,b Department of Immunology, Centre of Biostructure Research , Medical University of Warsaw , Warsaw , Poland
| | | | - Esther Elishaev
- c Department of Pathology , University of Pittsburgh, School of Medicine , Pittsburgh , PA , USA
| | - Theresa L Whiteside
- c Department of Pathology , University of Pittsburgh, School of Medicine , Pittsburgh , PA , USA.,d University of Pittsburgh Cancer Institute , Pittsburgh , PA , USA
| |
Collapse
|
46
|
Green DS, Nunes AT, Annunziata CM, Zoon KC. Monocyte and interferon based therapy for the treatment of ovarian cancer. Cytokine Growth Factor Rev 2016; 29:109-15. [PMID: 27026228 PMCID: PMC4899185 DOI: 10.1016/j.cytogfr.2016.02.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 02/27/2016] [Indexed: 12/11/2022]
Abstract
Cytokines and cells of the innate immune system have been shown to be critical regulators in the elimination, equilibrium and escape of malignant cells. Despite in vitro and in vivo evidence, components of the innate immune system have shown limited efficacy in the treatment of ovarian cancer. Intraperitoneal immunotherapies are a promising field that has not yet been fully explored in ovarian cancer. Cytokine immunotherapy using interferon alpha (IFN-α) and interferon gamma (IFN-γ) has predominantly been used intraperitoneally in ovarian cancer, with promising results. Early studies also showed that autologous monocytes infused into the peritoneum have anti-tumor properties. Combination therapies have been shown to be more effective in treating cancer than mono-therapies. Based on these observations the combination of cell therapy with cytokine therapy may provide a unique strategy for the treatment of chemotherapy resistant solid cancers.
Collapse
Affiliation(s)
- Daniel S Green
- Cytokine Biology Section, National Institute of Allergy and Infectious Diseases, National Institute of Health, USA.
| | - Ana T Nunes
- Medical Oncology Branch, NCI, 10 Center DR, RM 12N226, Bethesda, MD 20814, USA.
| | - Christina M Annunziata
- Women's Malignancy Branch, NCI, NIH, Translational Genomics Section, 10 Center DR RM 3B43A, Bethesda, MD 20892, USA.
| | - Kathryn C Zoon
- Cytokine Biology Section, National Institute of Allergy and Infectious Diseases, National Institute of Health, USA.
| |
Collapse
|
47
|
Flies DB, Higuchi T, Harris JC, Jha V, Gimotty PA, Adams SF. Immune checkpoint blockade reveals the stimulatory capacity of tumor-associated CD103(+) dendritic cells in late-stage ovarian cancer. Oncoimmunology 2016; 5:e1185583. [PMID: 27622059 DOI: 10.1080/2162402x.2016.1185583] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 04/25/2016] [Accepted: 04/27/2016] [Indexed: 12/24/2022] Open
Abstract
Although immune infiltrates in ovarian cancer are associated with improved survival, the ovarian tumor environment has been characterized as immunosuppressive, due in part to functional shifts among dendritic cells with disease progression. We hypothesized that flux in dendritic cell subpopulations with cancer progression were responsible for observed differences in antitumor immune responses in early and late-stage disease. Here we identify three dendritic cell subsets with disparate functions in the ovarian tumor environment. CD11c+CD11b(-)CD103(+) dendritic cells are absent in the peritoneal cavity of healthy mice but comprise up to 40% of dendritic cells in tumor-bearing mice and retain T cell stimulatory capacity in advanced disease. Among CD11c+CD11b+ cells, Lair-1 expression distinguishes stimulatory and immunoregulatory DC subsets, which are also enriched in the tumor environment. Notably, PD-L1 is expressed by Lair-1(hi) immunoregulatory dendritic cells, and may contribute to local tumor antigen-specific T cell dysfunction. Using an adoptive transfer model, we find that PD-1 blockade enables tumor-associated CD103(+) dendritic cells to promote disease clearance. These data demonstrate that antitumor immune capacity is maintained among local dendritic cell subpopulations in the tumor environment with cancer progression. Similar dendritic cell subsets are present in malignant ascites from women with ovarian cancer, supporting the translational relevance of these results.
Collapse
Affiliation(s)
- Dallas B Flies
- Division of Gynecologic Oncology, University of New Mexico Comprehensive Cancer Center , Albuquerque, NM, USA
| | - Tomoe Higuchi
- Division of Gynecologic Oncology, University of New Mexico Comprehensive Cancer Center , Albuquerque, NM, USA
| | - Jaryse C Harris
- Division of Gynecologic Oncology, University of New Mexico Comprehensive Cancer Center , Albuquerque, NM, USA
| | - Vibha Jha
- Ovarian Cancer Research Center, The University of Pennsylvania , Philadelphia, PA, USA
| | - Phyllis A Gimotty
- Department of Biostatistics, The University of Pennsylvania , Philadelphia, PA, USA
| | - Sarah F Adams
- Division of Gynecologic Oncology, University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA; Ovarian Cancer Research Center, The University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
48
|
Lundgren S, Berntsson J, Nodin B, Micke P, Jirström K. Prognostic impact of tumour-associated B cells and plasma cells in epithelial ovarian cancer. J Ovarian Res 2016; 9:21. [PMID: 27048364 PMCID: PMC4822228 DOI: 10.1186/s13048-016-0232-0] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 03/29/2016] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The critical role of the immune system in controlling cancer progression has become evident and immune modulatory therapy is now approved for clinical use. However, while the majority of studies on the inflammatory tumour microenvironment have focused on the cellular immune response, in particular the prognostic and predictive role of various T cell infiltrates, the role of the humoral immune response in this context has long been overlooked. This study aimed to investigate the clinicopathological correlates and prognostic impact of B cell and plasma cell infiltration in epithelial ovarian cancer (EOC). METHODS Immunohistochemical expression of immunoglobulin kappa C (IGKC), CD20 and CD138 was analysed in tissue microarrays with tumours from 154 incident cases of EOC from two pooled prospective population-based cohorts. Subsets of corresponding benign-appearing fallopian tubes (n = 38) and omental metastases (n = 33) were also analysed. Kaplan-Meier analysis and Cox regression analysis were used to determine the impact of immune-cell specific IGKC, CD20 and CD138 expression on overall survival and ovarian cancer-specific survival. RESULTS High IGKC expression correlated significantly with expression of CD20 (p = 0.001) and CD138 (p = 0.035). Expression of IGKC as well as CD138 was significantly higher in primary tumours than in fallopian tubes (p = 0.004 and p = 0.001, respectively). High CD20 and CD138 expression correlated significantly with high tumour grade (p = 0.032 and p = 0.030, respectively). CD20 and IGKC expression was not prognostic but univariable Cox regression analysis revealed high CD138 expression to correlate with a significantly reduced overall survival (HR = 2.20; 95 % CI 1.34-3.55; p-0.001) as well as ovarian cancer-specific survival (HR = 1.95; 95 % CI 1.28-2.98; p = 0.002). The prognostic impact was independent of established clinical parameters (age, grade, clinical stage) as shown in multivariable analysis (HR = 2.28; 95 % CI 1.39-3.75; p = 0.001). CONCLUSIONS In conclusion, our results demonstrate that plasma cell infiltration in epithelial ovarian cancer has a significant impact on tumour progression and prognosis. The important role of the humoral immune system merits further study and may be harnessed as immune modulatory strategies in cancer therapy.
Collapse
Affiliation(s)
- Sebastian Lundgren
- Department of Clinical Sciences, Division of Oncology and Pathology, Lund University, SE-221 85, Lund, Sweden.
| | - Jonna Berntsson
- Department of Clinical Sciences, Division of Oncology and Pathology, Lund University, SE-221 85, Lund, Sweden
| | - Björn Nodin
- Department of Clinical Sciences, Division of Oncology and Pathology, Lund University, SE-221 85, Lund, Sweden
| | - Patrick Micke
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Karin Jirström
- Department of Clinical Sciences, Division of Oncology and Pathology, Lund University, SE-221 85, Lund, Sweden
| |
Collapse
|
49
|
Combinatorial prospects of nano-targeted chemoimmunotherapy. Biomaterials 2016; 83:308-20. [PMID: 26796043 DOI: 10.1016/j.biomaterials.2016.01.006] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 12/29/2015] [Accepted: 01/01/2016] [Indexed: 11/23/2022]
Abstract
Despite the significant increase in our knowledge on cancer initiation and progression, and the development of novel cancer treatments, overall patient survival rates have thus far only marginally improved. However, it can be expected that lasting tumor control will be attainable for an increasing number of cancer patients in the foreseeable future, which is likely to be achieved by combining cancer chemotherapy with anticancer immunotherapy. A plethora of new cancer chemotherapy reagents are expected to become accessible to the clinic in the coming years which can then be used for efficient tumor debulking and aid in antigen exposure to the immune system. Durable remission and the eradication of micrometastases are likely to be achieved with specialized monoclonal antibodies and therapeutic cancer vaccines that modulate the immune system to overcome immunosuppression and kill distant cancer cells. Moreover, the method of drug delivery to tumors, stromal and immune cells is expected to shift largely from conventional 'free' drug molecules to encapsulated in targeted nano-vehicles, therapeutics often referred to or considered part of "nanomedicine". Several biocompatible nano-vehicles, such as metal-nanoparticles, biodegradable-nanoparticles, liposomes or dendrimers are potential candidates for targeted drug delivery but may also serve additional purposes. A dexterous combination of nanomedicine, cancer immunotherapy and chemotherapeutic engineering are likely to become the basis for new hope in the form of targeted cancer therapies that could attack tumors early in their development. One can envision nano-vehicles that would selectively deliver effective doses of chemotherapeutic agents to cancer cells while leaving healthy cells untouched. Furthermore, given that after chemotherapeutic treatment there often remains a limited number of chemo-resistant tumor cells, which go on to drive tumor progression, nano-vehicles could also be engineered to provoke an appropriate immune response to destroy these cells. Here, we discuss the potential of the combinatorial role of cancer chemotherapy, cancer immunotherapy and the prospective of nanotechnology for the targeted delivery of chemoimmunotherapeutic agents.
Collapse
|
50
|
Bidari-Zerehpoosh F, Sharifi G, Novin K, Mortazavi N. Invasive Growth Hormone Producing Pituitary Adenoma With Lymphocytic Infiltration: A Case Report and Literature Review. IRANIAN JOURNAL OF CANCER PREVENTION 2015; 8:e3504. [PMID: 26855718 PMCID: PMC4736068 DOI: 10.17795/ijcp-3504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/15/2015] [Accepted: 11/05/2015] [Indexed: 11/25/2022]
Abstract
INTRODUCTION We have presented a rare case of growth hormone (GH) producing pituitary adenoma with lymphocytic infiltration and brain parenchyma invasion. CASE PRESENTATION A 37-year-old woman has presented with complaints of headache, amenorrhea and acromegalic features. Her laboratory studies showed markedly elevated levels of Insulin-like Growth Factor 1 (IGF-1), and low levels of follicle stimulating hormone and luteinizing hormone. Computerized tomography has revealed a pituitary mass without extra-sellar extension. The tumor has completely excised via trans-nasal endoscopic approach. Histologically, the tumor has diagnosed as a pituitary adenoma with GH positive cells. The serum IGF1 levels have gradually decreased to the normal range and the patient was symptom free for three and a half years when she has returned with complaint of visual impairment. The brain MRI that time has shown a supra-sellar mass growing independently into the remaining sellar part. Subsequently, surgical operation has performed via trans-nasal endoscopic approach. Histopathological and immunohistochemistry examination have revealed a rare case of growth hormone producing pituitary adenoma with brain invasion and lymphocytic infiltration. CONCLUSIONS The aim of this publication was to present a rare case of growth hormone producing pituitary adenoma with brain invasion and lymphocytic infiltration.
Collapse
Affiliation(s)
| | - Gieve Sharifi
- Department of Neurosurgery, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| | - Kambiz Novin
- Department of Radiation Oncology, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| | - Nafiseh Mortazavi
- Department of Pathology, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| |
Collapse
|