1
|
Alhasan MA, Tomokiyo A, Hamano S, Sugii H, Ono T, Ipposhi K, Yamashita K, Mardini B, Minowa F, Maeda H. Hyaluronic Acid Induction Promotes the Differentiation of Human Neural Crest-like Cells into Periodontal Ligament Stem-like Cells. Cells 2023; 12:2743. [PMID: 38067170 PMCID: PMC10705959 DOI: 10.3390/cells12232743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Periodontal ligament (PDL) stem-like cells (PDLSCs) are promising for regeneration of the periodontium because they demonstrate multipotency, high proliferative capacity, and the potential to regenerate bone, cementum, and PDL tissue. However, the transplantation of autologous PDLSCs is restricted by limited availability. Since PDLSCs are derived from neural crest cells (NCs) and NCs persist in adult PDL tissue, we devised to promote the regeneration of the periodontium by activating NCs to differentiate into PDLSCs. SK-N-SH cells, a neuroblastoma cell line that reportedly has NC-like features, seeded on the extracellular matrix of PDL cells for 2 weeks, resulted in the significant upregulation of PDL marker expression. SK-N-SH cell-derived PDLSCs (SK-PDLSCs) presented phenotypic characteristics comparable to induced pluripotent stem cell (iPSC)-derived PDLSCs (iPDLSCs). The expression levels of various hyaluronic acid (HA)-related genes were upregulated in iPDLSCs and SK-PDLSCs compared with iPSC-derived NCs and SK-N-SH cells, respectively. The knockdown of CD44 in SK-N-SH cells significantly inhibited their ability to differentiate into SK-PDLSCs, while low-molecular HA (LMWHA) induction enhanced SK-PDLSC differentiation. Our findings suggest that SK-N-SH cells could be applied as a new model to induce the differentiation of NCs into PDLSCs and that the LMWHA-CD44 relationship is important for the differentiation of NCs into PDLSCs.
Collapse
Affiliation(s)
- M. Anas Alhasan
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan; (M.A.A.); (S.H.); (H.S.); (T.O.); (K.I.); (K.Y.); (B.M.); (F.M.); (H.M.)
| | - Atsushi Tomokiyo
- Department of Restorative Dentistry, Faculty of Dental Medicine, Hokkaido University, Kita13 Nishi7, Kita-ku, Sapporo 060-8586, Japan
| | - Sayuri Hamano
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan; (M.A.A.); (S.H.); (H.S.); (T.O.); (K.I.); (K.Y.); (B.M.); (F.M.); (H.M.)
- OBT Research Center, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Hideki Sugii
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan; (M.A.A.); (S.H.); (H.S.); (T.O.); (K.I.); (K.Y.); (B.M.); (F.M.); (H.M.)
| | - Taiga Ono
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan; (M.A.A.); (S.H.); (H.S.); (T.O.); (K.I.); (K.Y.); (B.M.); (F.M.); (H.M.)
| | - Keita Ipposhi
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan; (M.A.A.); (S.H.); (H.S.); (T.O.); (K.I.); (K.Y.); (B.M.); (F.M.); (H.M.)
| | - Kozue Yamashita
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan; (M.A.A.); (S.H.); (H.S.); (T.O.); (K.I.); (K.Y.); (B.M.); (F.M.); (H.M.)
| | - Bara Mardini
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan; (M.A.A.); (S.H.); (H.S.); (T.O.); (K.I.); (K.Y.); (B.M.); (F.M.); (H.M.)
| | - Fumiko Minowa
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan; (M.A.A.); (S.H.); (H.S.); (T.O.); (K.I.); (K.Y.); (B.M.); (F.M.); (H.M.)
| | - Hidefumi Maeda
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan; (M.A.A.); (S.H.); (H.S.); (T.O.); (K.I.); (K.Y.); (B.M.); (F.M.); (H.M.)
- Department of Endodontology, Kyushu University Hospital, Fukuoka 812-8582, Japan
| |
Collapse
|
2
|
Tan N, Sabalic-Schoener M, Nguyen L, D’Aiuto F. β-Tricalcium Phosphate-Loaded Chitosan-Based Thermosensitive Hydrogel for Periodontal Regeneration. Polymers (Basel) 2023; 15:4146. [PMID: 37896389 PMCID: PMC10611029 DOI: 10.3390/polym15204146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
The current treatment for periodontitis is aimed at resolving gingival inflammation, whilst complete periodontal tissue regeneration is not predictable, and it represents a therapeutic challenge. Injectable biomaterials hold tremendous potential in dental tissue regeneration. This study aimed to investigate the ability of an injectable thermosensitive β-tricalcium phosphate (β-TCP) and chitosan-based hydrogel to carry cells and promote periodontal tissue regeneration. In this study, different concentrations of β-TCP-loaded chitosan hydrogels were prepared (0%, 2%, 4%, or 6% β-TCP, 10% β-glycerol phosphate, and 1.5% chitosan). The characteristics of the hydrogels were tested using rheology, a scanning electron microscope (SEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), degradation, and biological analyses. The new biomaterial showed a sol-gel transformation ability at body temperature and exhibited excellent chemical and physical characteristics, whilst the existence of β-TCP enhanced the structure and the properties of the hydrogels. The SEM confirmed the three-dimensional networks of the hydrogels, and the typical rheological properties of strong gel were observed. The EDX and XRD validated the successful incorporation of β-TCP, and similar patterns between different groups were found in terms of the FTIR spectra. The stable structure of the hydrogels under 100 °C was confirmed via DSC. Biological tests such as Alamar Blue assay and Live/Dead staining confirmed the remarkable biocompatibility of the hydrogels with pre-osteoblast MC3T3-E1 and human gingival fibroblast (HGF) cells for 14 days, and the results were validated with confocal imaging. This preliminary study shows great promise for the application of the β-TCP-loaded thermosensitive chitosan hydrogels as a scaffold in periodontal bone and soft tissue repair.
Collapse
Affiliation(s)
- Naiwen Tan
- Periodontology Unit, UCL Eastman Dental Institute, 21 University Street, London WC1E 6DE, UK; (N.T.); (M.S.-S.)
| | - Maja Sabalic-Schoener
- Periodontology Unit, UCL Eastman Dental Institute, 21 University Street, London WC1E 6DE, UK; (N.T.); (M.S.-S.)
| | - Linh Nguyen
- Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, Royal Free Campus, Rowland Hill Street, London NW3 2PF, UK;
| | - Francesco D’Aiuto
- Periodontology Unit, UCL Eastman Dental Institute, 21 University Street, London WC1E 6DE, UK; (N.T.); (M.S.-S.)
| |
Collapse
|
3
|
Abuarqoub D, Theeb LS, Omari MB, Hamadneh YI, Alrawabdeh JA, Aslam N, Jafar H, Awidi A. The Osteogenic Role of Biomaterials Combined with Human-Derived Dental Stem Cells in Bone Tissue Regeneration. Tissue Eng Regen Med 2023; 20:251-270. [PMID: 36808303 PMCID: PMC10070593 DOI: 10.1007/s13770-022-00514-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 02/23/2023] Open
Abstract
The use of stem cells in regenerative medicine had great potential for clinical applications. However, cell delivery strategies have critical importance in stimulating the differentiation of stem cells and enhancing their potential to regenerate damaged tissues. Different strategies have been used to investigate the osteogenic potential of dental stem cells in conjunction with biomaterials through in vitro and in vivo studies. Osteogenesis has a broad implication in regenerative medicine, particularly for maxillofacial defects. This review summarizes some of the most recent developments in the field of tissue engineering using dental stem cells.
Collapse
Affiliation(s)
- Duaa Abuarqoub
- Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan.
- Cell Therapy Center, The University of Jordan, Amman, Jordan.
| | - Laith S Theeb
- School of Medicine, The University of Jordan, Amman, 11942, Jordan
| | - Mohammad B Omari
- School of Medicine, The University of Jordan, Amman, 11942, Jordan
| | - Yazan I Hamadneh
- School of Medicine, The University of Jordan, Amman, 11942, Jordan
| | | | - Nazneen Aslam
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Hanan Jafar
- Cell Therapy Center, The University of Jordan, Amman, Jordan
- School of Medicine, The University of Jordan, Amman, 11942, Jordan
| | - Abdalla Awidi
- Cell Therapy Center, The University of Jordan, Amman, Jordan.
- School of Medicine, The University of Jordan, Amman, 11942, Jordan.
| |
Collapse
|
4
|
Regenerative Potential of Granulation Tissue in Periodontitis: A Systematic Review and Meta-analysis. Stem Cells Int 2023; 2023:8789852. [PMID: 36926181 PMCID: PMC10014158 DOI: 10.1155/2023/8789852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/27/2022] [Accepted: 02/15/2023] [Indexed: 03/12/2023] Open
Abstract
Methods Electronic searches were conducted in five databases including CENTRAL, MEDLINE, EMBASE, Web of Science, and Dentistry & Oral Sciences Source using a combination of MeSH terms and keywords up to 21 June 2022. Human studies including patients aged over 18 years with all forms of periodontitis were included. Following the risk of bias assessment, both qualitative and quantitative analyses were performed. Results A total of twelve studies were included in qualitative analysis and six of them in quantitative analyses. The evidence suggested that cells derived from periodontitis granulation tissue have osteogenic, adipogenic, chondrogenic, neurogenic, and angiogenic differentiation abilities as well as immunoregulatory properties. In particular, CD44+, CD73+, CD90+, CD105+, and CD146+ cells were found widely in granulation tissue whilst the only meta-analysis confirmed that CD90+ cells were present in lower numbers within the granulation tissue when compared with healthy periodontal tissue (WMD = -23.43%, 95% CI -30.43 to -16.44, p < 0.00001). Conclusions This review provided further evidence that granulation tissue from patients with periodontitis can be a potential stem cell source for regenerative therapy.
Collapse
|
5
|
Prospects and Challenges of Electrospun Cell and Drug Delivery Vehicles to Correct Urethral Stricture. Int J Mol Sci 2022; 23:ijms231810519. [PMID: 36142432 PMCID: PMC9502833 DOI: 10.3390/ijms231810519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Current therapeutic modalities to treat urethral strictures are associated with several challenges and shortcomings. Therefore, significant strides have been made to develop strategies with minimal side effects and the highest therapeutic potential. In this framework, electrospun scaffolds incorporated with various cells or bioactive agents have provided promising vistas to repair urethral defects. Due to the biomimetic nature of these constructs, they can efficiently mimic the native cells’ niches and provide essential microenvironmental cues for the safe transplantation of multiple cell types. Furthermore, these scaffolds are versatile platforms for delivering various drug molecules, growth factors, and nucleic acids. This review discusses the recent progress, applications, and challenges of electrospun scaffolds to deliver cells or bioactive agents during the urethral defect repair process. First, the current status of electrospinning in urethral tissue engineering is presented. Then, the principles of electrospinning in drug and cell delivery applications are reviewed. Finally, the recent preclinical studies are summarized and the current challenges are discussed.
Collapse
|
6
|
Materials Properties and Application Strategy for Ligament Tissue Engineering. J Med Biol Eng 2022. [DOI: 10.1007/s40846-022-00706-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Rad MR, Atarbasi-Moghadam F, Khodayari P, Sijanivandi S. Periodontal ligament stem cell isolation protocol: A systematic review. Curr Stem Cell Res Ther 2022; 17:537-563. [PMID: 35088677 DOI: 10.2174/1574888x17666220128114825] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/08/2021] [Accepted: 12/19/2021] [Indexed: 11/22/2022]
Abstract
Despite the plethora of literature regarding isolation and characterization of periodontal ligament stem cells (PDLSCs), due to the existence of controversies in the results, in this comprehensive review, we aimed to summarize and compare the effect of isolation methods on PDLSC properties, including clonogenicity, viability/proliferation, markers expression, cell morphology, differentiation, and regeneration. Moreover, the outcomes of included studies, considering various parameters such as teeth developmental stages, donor age, periodontal ligament health status, and part of the teeth root from which PDLSCs were derived, have been systematically discussed. It has been shown that from included studies PDLSCs can be isolated from teeth from any developmental stages, any health status condition, and any donor age. Also, a non-enzymatic digestion method, named as an explant or outgrowth technique, is a suitable protocol for of PDLSCs isolation.
Collapse
Affiliation(s)
- Maryam Rezai Rad
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fazele Atarbasi-Moghadam
- Department of Periodontics, Dental School of Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pouya Khodayari
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soran Sijanivandi
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Kareem MM, Tanner KE. Methods of producing three dimensional electrospun scaffolds for bone tissue engineering: A review. Proc Inst Mech Eng H 2022; 236:9544119211069463. [PMID: 35048771 DOI: 10.1177/09544119211069463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Bone is a dynamic, living tissue that exists and renews itself continuously in a 3D manner. Nevertheless, complex clinical conditions require a bone substitute to replace the defective bone and/or accelerate bone healing. Bone tissue engineering aims to treat bone defects that fail to heal on their own. Electrospinning provides an opportunity to create nano- to micro-fibrous scaffolds that mimic the architecture of the natural extracellular matrix (ECM) with high porosity and large specific surface area. Despite these advantages, traditional electrospun meshes can only provide a 2D architecture for cell attachment and proliferation rather than the 3D attachment in native tissue. Fabrication of 3D electrospun scaffolds for bone tissue regeneration is a challenging task, which has attracted significant attention over the past couple of decades. This review highlights recent strategies used to produce 3D electrospun/co-electrospun scaffolds for bone tissue applications describing the materials and procedures. It also considers combining conventional and coaxial electrospinning with other scaffold manufacturing techniques to produce 3D structures which have the potential to engineer missing bone in the human body.Graphical abstract[Formula: see text].
Collapse
Affiliation(s)
- Muna M Kareem
- Department of Medical Instrumentation Techniques Engineering, Dijlah University College, Baghdad, Iraq
| | - K E Tanner
- School of Engineering and Materials Science, Queen Mary University of London, London, UK
| |
Collapse
|
9
|
Sohrabi M, Eftekhari Yekta B, Rezaie H, Naimi-Jamal MR, Kumar A, Cochis A, Miola M, Rimondini L. Enhancing Mechanical Properties and Biological Performances of Injectable Bioactive Glass by Gelatin and Chitosan for Bone Small Defect Repair. Biomedicines 2020; 8:biomedicines8120616. [PMID: 33334044 PMCID: PMC7765522 DOI: 10.3390/biomedicines8120616] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/07/2020] [Accepted: 12/13/2020] [Indexed: 12/19/2022] Open
Abstract
Bioactive glass (BG) represents a promising biomaterial for bone healing; here injectable BG pastes biological properties were improved by the addition of gelatin or chitosan, as well as mechanical resistance was enhanced by adding 10 or 20 wt% 3-Glycidyloxypropyl trimethoxysilane (GPTMS) cross-linker. Composite pastes exhibited bioactivity as apatite formation was observed by Scanning Electron Microscopy (SEM) and X-Ray Diffraction (XRD) after 14 days immersion in simulated body fluid (SBF); moreover, polymers did not enhance degradability as weight loss was >10% after 30 days in physiological conditions. BG-gelatin-20 wt% GPTMS composites demonstrated the highest compressive strength (4.8 ± 0.5 MPa) in comparison with the bulk control paste made of 100% BG in water (1.9 ± 0.1 MPa). Cytocompatibility was demonstrated towards human mesenchymal stem cells (hMSC), osteoblasts progenitors, and endothelial cells. The presence of 20 wt% GPTMS conferred antibacterial properties thus inhibiting the joint pathogens Staphylococcus aureus and Staphylococcus epidermidis infection. Finally, hMSC osteogenesis was successfully supported in a 3D model as demonstrated by alkaline phosphatase release and osteogenic genes expression.
Collapse
Affiliation(s)
- Mehri Sohrabi
- School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehran 1684613114, Iran; (M.S.); (H.R.)
| | - Bijan Eftekhari Yekta
- School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehran 1684613114, Iran; (M.S.); (H.R.)
- Correspondence: (B.E.Y.); (L.R.)
| | - Hamidreza Rezaie
- School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehran 1684613114, Iran; (M.S.); (H.R.)
| | - Mohammad Reza Naimi-Jamal
- Department of Chemistry, Research Laboratory of Green Organic Synthesis and Polymers, Iran University of Science and Technology, Tehran 1684613114, Iran;
| | - Ajay Kumar
- Department of Health Sciences, Center for Translational Research on Autoimmune and Allergic Diseases–CAAD, University of Piemonte Orientale UPO, 28100 Novara, Italy; (A.K.); (A.C.)
| | - Andrea Cochis
- Department of Health Sciences, Center for Translational Research on Autoimmune and Allergic Diseases–CAAD, University of Piemonte Orientale UPO, 28100 Novara, Italy; (A.K.); (A.C.)
| | - Marta Miola
- Institute of Materials Engineering and Physics, Department of Applied Science and Technology, Politecnico di Torino, 10129 Turin, Italy;
| | - Lia Rimondini
- Department of Health Sciences, Center for Translational Research on Autoimmune and Allergic Diseases–CAAD, University of Piemonte Orientale UPO, 28100 Novara, Italy; (A.K.); (A.C.)
- Correspondence: (B.E.Y.); (L.R.)
| |
Collapse
|
10
|
Raveau S, Jordana F. Tissue Engineering and Three-Dimensional Printing in Periodontal Regeneration: A Literature Review. J Clin Med 2020; 9:jcm9124008. [PMID: 33322447 PMCID: PMC7763147 DOI: 10.3390/jcm9124008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 02/06/2023] Open
Abstract
The three-dimensional printing of scaffolds is an interesting alternative to the traditional techniques of periodontal regeneration. This technique uses computer assisted design and manufacturing after CT scan. After 3D modelling, individualized scaffolds are printed by extrusion, selective laser sintering, stereolithography, or powder bed inkjet printing. These scaffolds can be made of one or several materials such as natural polymers, synthetic polymers, or bioceramics. They can be monophasic or multiphasic and tend to recreate the architectural structure of the periodontal tissue. In order to enhance the bioactivity and have a higher regeneration, the scaffolds can be embedded with stem cells and/or growth factors. This new technique could enhance a complete periodontal regeneration. This review summarizes the application of 3D printed scaffolds in periodontal regeneration. The process, the materials and designs, the key advantages and prospects of 3D bioprinting are highlighted, providing new ideas for tissue regeneration.
Collapse
Affiliation(s)
- Simon Raveau
- Dental Faculty, University of Nantes, 44000 Nantes, France;
- Dentistry Department, University Health Centre, 44000 Nantes, France
| | - Fabienne Jordana
- Dental Faculty, University of Nantes, 44000 Nantes, France;
- Dentistry Department, University Health Centre, 44000 Nantes, France
- Correspondence: ; Tel.: +33-24041-2928
| |
Collapse
|
11
|
Elango J, Selvaganapathy PR, Lazzari G, Bao B, Wenhui W. Biomimetic collagen-sodium alginate-titanium oxide (TiO2) 3D matrix supports differentiated periodontal ligament fibroblasts growth for periodontal tissue regeneration. Int J Biol Macromol 2020; 163:9-18. [DOI: 10.1016/j.ijbiomac.2020.06.173] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/13/2020] [Accepted: 06/18/2020] [Indexed: 12/14/2022]
|
12
|
Shaikh MS, Ullah R, Lone MA, Matabdin H, Khan F, Zafar MS. Periodontal regeneration: a bibliometric analysis of the most influential studies. Regen Med 2020; 14:1121-1136. [PMID: 31957597 DOI: 10.2217/rme-2019-0019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Aim: The aim of the present study is to identify the most influential research articles and their main characteristics in the specialty of periodontal regeneration. Materials & methods: The Web of Science database advance search was performed in the subject category of 'Dentistry, Oral surgery and medicine' from January 2004 to October 2018 to retrieve citations data. Results: The majority of the articles were published in journals dedicated to the specialty of periodontology. Among the top-cited articles most emphasized study types were randomized control trials (n = 25) and reviews (n = 20). Conclusion: The present bibliometric analysis provides comprehensive information regarding the contributions made in the advancement of regenerative periodontal research. The authors from developed countries and affiliated with interdisciplinary/multicenter institutions have predominantly contributed.
Collapse
Affiliation(s)
- Muhammad S Shaikh
- Department of Oral Biology, Sindh Institute of Oral Health Sciences, Jinnah Sindh Medical University Karachi, Pakistan
| | - Rizwan Ullah
- Department of Oral Biology, Sindh Institute of Oral Health Sciences, Jinnah Sindh Medical University Karachi, Pakistan
| | - Mohid A Lone
- Department of Oral Pathology, Sindh Institute of Oral Health Sciences, Jinnah Sindh Medical University Karachi, Pakistan
| | - Hesham Matabdin
- Department of Periodontics, Eastman Dental Institute, University College London, London, UK
| | - Fahad Khan
- Faculty of Healthcare & Medical Sciences, Anglia Ruskin University Cambridge, UK
| | - Muhammad S Zafar
- Department of Restorative Dentistry, Taibah University, Madina Munawwarra, Saudi Arabia.,Department of Dental Materials, Islamic International Dental College, Riphah International University, Islamabad, Pakistan
| |
Collapse
|
13
|
Bartold M, Gronthos S, Haynes D, Ivanovski S. Mesenchymal stem cells and biologic factors leading to bone formation. J Clin Periodontol 2019; 46 Suppl 21:12-32. [PMID: 30624807 DOI: 10.1111/jcpe.13053] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 09/23/2018] [Accepted: 10/26/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Physiological bone formation and bone regeneration occurring during bone repair can be considered distinct but similar processes. Mesenchymal stem cells (MSC) and associated biologic factors are crucial to both bone formation and bone regeneration. AIM To perform a narrative review of the current literature regarding the role of MSC and biologic factors in bone formation with the aim of discussing the clinical relevance of in vitro and in vivo animal studies. METHODS The literature was searched for studies on MSC and biologic factors associated with the formation of bone in the mandible and maxilla. The search specifically targeted studies on key aspects of how stem cells and biologic factors are important in bone formation and how this might be relevant to bone regeneration. The results are summarized in a narrative review format. RESULTS Different types of MSC and many biologic factors are associated with bone formation in the maxilla and mandible. CONCLUSION Bone formation and regeneration involve very complex and highly regulated cellular and molecular processes. By studying these processes, new clinical opportunities will arise for therapeutic bone regenerative treatments.
Collapse
Affiliation(s)
- Mark Bartold
- School of Dentistry, University of Adelaide, Adelaide, SA, Australia
| | - Stan Gronthos
- Mesenchymal Stem Cell Laboratory, Faculty of Health and Medical Sciences, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - David Haynes
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Saso Ivanovski
- School of Dentistry, University of Queensland, Brisbane, Qld, Australia
| |
Collapse
|
14
|
Mesenchymal stem cell-based bone tissue engineering for veterinary practice. Heliyon 2019; 5:e02808. [PMID: 31844733 PMCID: PMC6895744 DOI: 10.1016/j.heliyon.2019.e02808] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/29/2019] [Accepted: 11/07/2019] [Indexed: 01/17/2023] Open
Abstract
Bone tissue engineering has been widely studied and proposed as a promising platform for correcting the bone defects. The applications of mesenchymal stem cell (MSC)-based bone tissue engineering have been investigated in various in vitro and in vivo models. In this regard, the promising animal bone defect models have been employed for illustrating the bone regenerative capacity of MSC-based bone tissue engineering. However, most studies aimed for clinical applications in human. These evidences suggest a knowledge gap to fulfill the accomplishment for veterinary implementation. In this review, the fundamental concept, knowledge, and technology of MSC-based bone tissue engineering focusing on veterinary applications are summarized. In addition, the potential canine MSCs resources for veterinary bone tissue engineering are reviewed, including canine bone marrow-derived MSCs, canine adipose-derived MSCs, and canine dental tissue-derived MSCs. This review will provide a basic and current information for studies aiming for the utilization of MSC-based bone tissue engineering in veterinary practice.
Collapse
|
15
|
Higuchi J, Fortunato G, Woźniak B, Chodara A, Domaschke S, Męczyńska-Wielgosz S, Kruszewski M, Dommann A, Łojkowski W. Polymer Membranes Sonocoated and Electrosprayed with Nano-Hydroxyapatite for Periodontal Tissues Regeneration. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1625. [PMID: 31731775 PMCID: PMC6915502 DOI: 10.3390/nano9111625] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 01/21/2023]
Abstract
Diseases of periodontal tissues are a considerable clinical problem, connected with inflammatory processes and bone loss. The healing process often requires reconstruction of lost bone in the periodontal area. For that purpose, various membranes are used to prevent ingrowth of epithelium in the tissue defect and enhance bone regeneration. Currently-used membranes are mainly non-resorbable or are derived from animal tissues. Thus, there is an urgent need for non-animal-derived bioresorbable membranes with tuned resorption rates and porosity optimized for the circulation of body nutrients. We demonstrate membranes produced by the electrospinning of biodegradable polymers (PDLLA/PLGA) coated with nanohydroxyapatite (nHA). The nHA coating was made using two methods: sonocoating and electrospraying of nHA suspensions. In a simulated degradation study, for electrosprayed membranes, short-term calcium release was observed, followed by hydrolytic degradation. Sonocoating produced a well-adhering nHA layer with full coverage of the fibers. The layer slowed the polymer degradation and increased the membrane wettability. Due to gradual release of calcium ions the degradation-associated acidity of the polymer was neutralized. The sonocoated membranes exhibited good cellular metabolic activity responses against MG-63 and BJ cells. The collected results suggest their potential use in Guided Tissue Regeneration (GTR) and Guided Bone Regeneration (GBR) periodontal procedures.
Collapse
Affiliation(s)
- Julia Higuchi
- Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Sciences, 01142 Warsaw, Poland; (B.W.); (A.C.); (W.Ł.)
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 02507 Warsaw, Poland
- Laboratory for Biomimetic Membranes and Textiles, Empa Swiss Federal Laboratories for Materials Science and Technology, 9014 St. Gallen, Switzerland
| | - Giuseppino Fortunato
- Laboratory for Biomimetic Membranes and Textiles, Empa Swiss Federal Laboratories for Materials Science and Technology, 9014 St. Gallen, Switzerland
| | - Bartosz Woźniak
- Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Sciences, 01142 Warsaw, Poland; (B.W.); (A.C.); (W.Ł.)
| | - Agnieszka Chodara
- Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Sciences, 01142 Warsaw, Poland; (B.W.); (A.C.); (W.Ł.)
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 02507 Warsaw, Poland
| | - Sebastian Domaschke
- Experimental Continuum Mechanics, Empa Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland;
- Department of Mechanical and Process Engineering, Institute for Mechanical Systems, ETH Zürich, 8092 Zürich, Switzerland
| | - Sylwia Męczyńska-Wielgosz
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, 03195 Warsaw, Poland;
| | - Marcin Kruszewski
- Department of Molecular Biology and Translational Research, Institute of Rural Health, 20090 Lublin, Poland;
| | - Alex Dommann
- Department Materials meet Life, Empa Swiss Federal Laboratories for Materials Science and Technology, 9014 St. Gallen, Switzerland;
| | - Witold Łojkowski
- Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Sciences, 01142 Warsaw, Poland; (B.W.); (A.C.); (W.Ł.)
| |
Collapse
|
16
|
Rubidium-containing mesoporous bioactive glass scaffolds support angiogenesis, osteogenesis and antibacterial activity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110155. [PMID: 31546446 DOI: 10.1016/j.msec.2019.110155] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 08/29/2019] [Accepted: 08/31/2019] [Indexed: 12/23/2022]
Abstract
In this study, rubidium-containing mesoporous bioglass (Rb-MBG) scaffolds were formed with the investigation of the influence of Rb addition on angiogenic and osteogenic differentiation abilities of hBMSC. The phase composition, microstructure, pore size distribution, ion release, biological activity, drug loading rate, and release rate of Rb-MBG were characterized. The proliferation and differentiation of hBMSC, the markers of bone formation (ALP, COL-1) and angiogenesis (VEGF, HIF-1α), and wnt/β-catenin related-signaling pathway gene were studied by cell culture. Rb-MBG loaded with antibacterial agents enoxacin (ENX), coliforms and Staphylococcus aureus were cultured together to study the antibacterial effects. The results indicate that the samples have a 350-550 μm large pore structure and 4.5-5.5 nm mesoporous size. Adding Rb can increase the activity of ALP, the secretion of VEGF and COLI, and the expression of HIF-1α of hBMSCs. Rb containing MBG is likely to enhance the proliferation and differentiation of hBMSCs through the influence of Wnt/ß-catenin signal path. Rb-MBG scaffold can load effectively and release Rb ions and ENX continuously to damage the bacterial cell membrane with the synergistic effect, and therefore achieve antibacterial results. In conclusion, adding Rb to MBG supports angiogenesis and osteogenesis of hBMSCs, as well as antibacterial activity.
Collapse
|
17
|
Novello S, Debouche A, Philippe M, Naudet F, Jeanne S. Clinical application of mesenchymal stem cells in periodontal regeneration: A systematic review and meta-analysis. J Periodontal Res 2019; 55:1-12. [PMID: 31378933 DOI: 10.1111/jre.12684] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/16/2019] [Accepted: 06/29/2019] [Indexed: 12/18/2022]
Abstract
OBJECTIVE To evaluate the potential efficacy of mesenchymal stem cells (MSCs) in periodontal regeneration in humans on the following main outcomes: clinical attachment level (CAL), probing depth (PD), and gingival recession (GR). BACKGROUND The clinical application of stem cells in periodontal regeneration has begun in recent years, but clinical practices are not yet standardized and no recommendations are available at this time. METHODS Electronic database searches and hand searches were conducted. All types of studies, case series, and case reports were qualitatively described. Double-blind randomized controlled trials (RCTs) evaluating MSCs in periodontal regeneration were included in a meta-analysis if they compared administration of MSCs vs application of stem cell-free therapy in the control group, in healthy patients with periodontal defects, with a minimum of three mo of follow-up. RESULTS Fifteen reports were included in qualitative analysis, involving 123 patients and 158 periodontal defects. Only two small RCTs at high risk of bias, with a total of 59 patients and 70 periodontal defects, were included in the meta-analysis. A small but significant difference between test and control groups was found for CAL at three mo (-0.90 mm, 95% CI [-1.51; -0.29]), but not for PD and GR. CONCLUSION Low-quality evidence suggests that MSC-based therapy may have a small impact on periodontal regeneration. However, due to the monocentric character, the small sample size, and potential heterogeneity across the two included RCTs, these results must not be considered as definitive. High-quality RCTs are needed before any clinical use of MSCs in periodontal regeneration.
Collapse
Affiliation(s)
- Solen Novello
- ISCR [(Institut des Sciences Chimiques de Rennes)] - UMR 6226, Univ Rennes, Rennes, France.,Unité de Formation et de Recherche d'Odontologie, Univ Rennes, Rennes, France.,Pôle d'Odontologie, UF Parodontologie, CHU Rennes, Rennes, France
| | - Alexandre Debouche
- Unité de Formation et de Recherche d'Odontologie, Univ Rennes, Rennes, France
| | - Marie Philippe
- Unité de Formation et de Recherche d'Odontologie, Univ Rennes, Rennes, France
| | - Florian Naudet
- CHU Rennes, Inserm, CIC 1414 [(Centre d'Investigation Clinique de Rennes)], Univ Rennes, Rennes, France
| | - Sylvie Jeanne
- ISCR [(Institut des Sciences Chimiques de Rennes)] - UMR 6226, Univ Rennes, Rennes, France.,Unité de Formation et de Recherche d'Odontologie, Univ Rennes, Rennes, France.,Pôle d'Odontologie, UF Parodontologie, CHU Rennes, Rennes, France
| |
Collapse
|
18
|
Yoo SY, Lee JS, Cha JK, Kim SK, Kim CS. Periodontal healing using a collagen matrix with periodontal ligament progenitor cells in a dehiscence defect model in beagle dogs. J Periodontal Implant Sci 2019; 49:215-227. [PMID: 31485372 PMCID: PMC6713806 DOI: 10.5051/jpis.2019.49.4.215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/06/2019] [Accepted: 06/10/2019] [Indexed: 01/02/2023] Open
Abstract
Purpose To histologically characterize periodontal healing at 8 weeks in surgically created dehiscence defects in beagle dogs that received a collagen matrix with periodontal ligament (PDL) progenitor cells. Methods The bilateral maxillary premolars and first molars in 6 animals were used. Standardized experimental dehiscence defects were made on the buccal side of 3 premolars, and primary culturing of PDL progenitor cells was performed on the molars. Collagen matrix was used as a scaffold and a delivery system for PDL progenitor cells. The experimental sites were grafted with collagen matrix (COL), PDL progenitor cells with collagen matrix (COL/CELL), or left without any material (CTL). Histologic and histomorphometric analyses were performed after 8 weeks. Results The defect height from the cementoenamel junction to the most apical point of cementum removal did not significantly differ across the CTL, COL, and COL/CELL groups, at 4.57±0.28, 4.56±0.41, and 4.64±0.27 mm (mean ± standard deviation), respectively; the corresponding values for epithelial adhesion were 1.41±0.51, 0.85±0.29, and 0.30±0.41 mm (P<0.05), the heights of new bone regeneration were 1.32±0.44, 1.65±0.52, and 1.93±0.61 mm (P<0.05), and the cementum regeneration values were 1.15±0.42, 1.81±0.46, and 2.57±0.56 mm (P<0.05). There was significantly more new bone formation in the COL/CELL group than in the CTL group, and new cementum length was also significantly higher in the COL/CELL group. However, there were no significant differences in the width of new cementum among the groups. Conclusions PDL progenitor cells carried by a synthetic collagen matrix may enhance periodontal regeneration, including cementum and new bone formation.
Collapse
Affiliation(s)
- Seung-Yoon Yoo
- Department of Periodontology, Research Institute of Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, Korea
| | - Jung-Seok Lee
- Department of Periodontology, Research Institute of Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, Korea
| | - Jae-Kook Cha
- Department of Periodontology, Research Institute of Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, Korea
| | - Seul-Ki Kim
- Department of Periodontology, Research Institute of Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, Korea.,Department of Applied Life Science, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Chang-Sung Kim
- Department of Periodontology, Research Institute of Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, Korea.,Department of Applied Life Science, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, Korea.,Department of Mechanical Engineering, Yonsei University College of Engineering, Seoul, Korea
| |
Collapse
|
19
|
Amghar-Maach S, Gay-Escoda C, Sánchez-Garcés MÁ. Regeneration of periodontal bone defects with dental pulp stem cells grafting: Systematic Review. J Clin Exp Dent 2019; 11:e373-e381. [PMID: 31110618 PMCID: PMC6522106 DOI: 10.4317/jced.55574] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 02/04/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The main objective is to evaluate the way to graft the dental pulp stem cells (DPSC) in periodontal defects that best regenerate periodontal tissues. Numerous procedures have been done to promote periodontal regeneration. Bone grafts show good gains clinically and radiographically but histologically seem to have minimal osteoinductive capacity. Another option that exceeds conventional surgery in reducing probing depth and increasing insertion is guided tissue regeneration and tissue engineering that could be an alternative approach to help in the regeneration of living functional bone and peri-dental structures. MATERIAL AND METHODS A search was carried out in Cochrane, PubMed-MEDLINE and Scopus databases with keywords: "dental pulp stem cells", "periodontal regeneration", "guided tissue regeneration, periodontal", "tissue regeneration", "periodontal bone defects", "periodontal tissue engineering" and "periodontal defect". Inclusion criteria were articles in English, maximum 10 years old, in which DPSC were used to regenerate a periodontal defect. Exclusion criteria were studies not published in English, case reports, case series, literature reviews, and studies in which periodontal defect was caused by dental extraction. RESULTS Out of the 185 articles identified, 101 after excluding duplicates, of which 94 were discarded when reading the title and abstract. 7 articles were obtained for the full text reading: a case report and a case series were eliminated. The systematic review is performed with 5 animal testing studies in vivo. The DPSC sheets regenerate a greater amount of bone than the injection. If HGF (hepatocyte growth factor) is added, the maximum bone volume regenerated (69.3 ± 3.9 mm3; p<0.01) is achieved. Similar results were obtained in all carriers tested except in the controls. The periodontal ligament stem cells (PDLSC) formed more new bone, compared to DPSC (p<0.001). The presence of new cementum and periodontal ligament induced by CMLPs, was detected histologically but DPSC cannot achieve it alone. CONCLUSIONS Cementum or PDL regeneration does not depend only on DPSC but on other unknown factors. PDLSC has better periodontal regeneration than DPSC. DPSC significantly favours the regeneration of periodontal bone tissue but has few advantages over other grafts. It is necessary to study which growth factors or matrices can enhance their capacity for periodontal regeneration. Key words:Dental pulp, stem cells, periodontal guided tissue regeneration, periodontal bone loss.
Collapse
Affiliation(s)
- Sara Amghar-Maach
- Dentistry Student, Faculty of Medicine and Health Sciences, University of Barcelona, Spain
| | - Cosme Gay-Escoda
- MD, DDS, MS, PhD, EBOS, OMFS, Chairman and Professor of Oral and Maxillofacial Surgery, Faculty of Dentistry, University of Barcelona. Director of Master's Degree Program in Oral Surgery and Implantology (EHFRE International University/FUCSO). Coordinator/Researcher of the IDIBELL Institute. Head of Oral and Maxillofacial Surgery Department of the Teknon Medical Center, Barcelona, Spain
| | - Mª Ángeles Sánchez-Garcés
- MD, DDS, PhD, Aggregate Professor of Oral Surgery. Master's Degree Program in Oral Surgery and Implantology, School of Dentistry, University of Barcelona, Barcelona. Researcher of the IDIBELL Institute, Barcelona, Spain
| |
Collapse
|
20
|
Past, Present, and Future of Regeneration Therapy in Oral and Periodontal Tissue: A Review. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9061046] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chronic periodontitis is the most common disease which induces oral tissue destruction. The goal of periodontal treatment is to reduce inflammation and regenerate the defects. As the structure of periodontium is composed of four types of different tissue (cementum, alveolar bone periodontal ligament, and gingiva), the regeneration should allow different cell proliferation in the separated spaces. Guided tissue regeneration (GTR) and guided bone regeneration (GBR) were introduced to prevent epithelial growth into the alveolar bone space. In the past, non-absorbable membranes with basic functions such as space maintenance were used with bone graft materials. Due to several limitations of the non-absorbable membranes, membranes of the second and third generation equipped with controlled absorbability, and a functional layer releasing growth factors or antimicrobials were introduced. Moreover, tissue engineering using biomaterials enabled faster and more stable tissue regeneration. The scaffold with three-dimensional structures manufactured by computer-aided design and manufacturing (CAD/CAM) showed high biocompatibility, and promoted cell infiltration and revascularization. In the future, using the cell sheath, pre-vascularizing and bioprinting techniques will be applied to the membrane to mimic the original tissue itself. The aim of the review was not only to understand the past and the present trends of GTR and GBR, but also to be used as a guide for a proper future of regeneration therapy in the oral region.
Collapse
|
21
|
Kim H, Kim Y, Park J, Hwang NS, Lee YK, Hwang Y. Recent Advances in Engineered Stem Cell-Derived Cell Sheets for Tissue Regeneration. Polymers (Basel) 2019; 11:E209. [PMID: 30960193 PMCID: PMC6419010 DOI: 10.3390/polym11020209] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 01/21/2019] [Accepted: 01/23/2019] [Indexed: 12/22/2022] Open
Abstract
The substantial progress made in the field of stem cell-based therapy has shown its significant potential applications for the regeneration of defective tissues and organs. Although previous studies have yielded promising results, several limitations remain and should be overcome for translating stem cell-based therapies to clinics. As a possible solution to current bottlenecks, cell sheet engineering (CSE) is an efficient scaffold-free method for harvesting intact cell sheets without the use of proteolytic enzymes, and may be able to accelerate the adoption of stem cell-based treatments for damaged tissues and organs regeneration. CSE uses a temperature-responsive polymer-immobilized surface to form unique, scaffold-free cell sheets composed of one or more cell layers maintained with important intercellular junctions, cell-secreted extracellular matrices, and other important cell surface proteins, which can be achieved by changing the surrounding temperature. These three-dimensional cell sheet-based tissues can be designed for use in clinical applications to target-specific tissue regeneration. This review will highlight the principles, progress, and clinical relevance of current approaches in the cell sheet-based technology, focusing on stem cell-based therapies for bone, periodontal, skin, and vascularized muscles.
Collapse
Affiliation(s)
- Hyunbum Kim
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si, Chungcheongnam-do 31151, Korea.
- School of Chemical and Biological Engineering, the Institute of Chemical Processes, Seoul National University, Seoul 08826, Korea.
- The BioMax Institute of Seoul National University, Seoul 08826, Korea.
| | - Yunhye Kim
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si, Chungcheongnam-do 31151, Korea.
| | - Jihyun Park
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si, Chungcheongnam-do 31151, Korea.
| | - Nathaniel S Hwang
- School of Chemical and Biological Engineering, the Institute of Chemical Processes, Seoul National University, Seoul 08826, Korea.
- The BioMax Institute of Seoul National University, Seoul 08826, Korea.
| | - Yun Kyung Lee
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si, Chungcheongnam-do 31151, Korea.
| | - Yongsung Hwang
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si, Chungcheongnam-do 31151, Korea.
| |
Collapse
|
22
|
Zeeshan R, Mutahir Z, Iqbal H, Ali M, Iqbal F, Ijaz K, Sharif F, Shah AT, Chaudhry AA, Yar M, Luan S, Khan AF, Ihtesham-ur-Rehman. Hydroxypropylmethyl cellulose (HPMC) crosslinked chitosan (CH) based scaffolds containing bioactive glass (BG) and zinc oxide (ZnO) for alveolar bone repair. Carbohydr Polym 2018; 193:9-18. [DOI: 10.1016/j.carbpol.2018.03.046] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/15/2018] [Accepted: 03/16/2018] [Indexed: 12/11/2022]
|
23
|
Abstract
Hyaluronic acid (HA; synonyms- Hyaluronan, Hyaluronate) is a glycosaminoglycan found in the connective tissue of vertebrates. It is the most abundant glycosaminoglycan of higher molecular weight in the extracellular matrix of soft periodontal tissues. The use of HA in the treatment of inflammatory process is established in medical areas such as orthopedics, dermatology and ophthalmology. In the field of dentistry, it has shown anti-inflammatory and anti-bacterial effects in gingivitis and periodontitis therapy. Due to its tissue healing properties, it could be used as an adjunct to mechanical therapy in the treatment of periodontitis.
Collapse
|
24
|
Fujioka-Kobayashi M, Müller HD, Mueller A, Lussi A, Sculean A, Schmidlin PR, Miron RJ. In vitro effects of hyaluronic acid on human periodontal ligament cells. BMC Oral Health 2017; 17:44. [PMID: 28093072 PMCID: PMC5240222 DOI: 10.1186/s12903-017-0341-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 01/11/2017] [Indexed: 12/12/2022] Open
Abstract
Background Hyaluronic acid (HA) has been reported to have a positive effect on periodontal wound healing following nonsurgical and surgical therapy. However, to date, a few basic in vitro studies have been reported to investigating the potential of HA on human periodontal ligament (PDL) cell regeneration. Therefore, the aim of this study was to investigate the effect of HA on PDL cell compatibility, proliferation, and differentiation in vitro. Methods Either non-cross-linked (HA_ncl) or cross-linked (HA_cl) HA was investigated. Human PDL cells were seeded in 7 conditions as follows (1) Control tissue culture plastic (TCP) (2) dilution of HA_ncl (1:100), (3) dilution of HA_ncl (1:10), 4) HA_ncl directly coated onto TCP, (5) dilution of HA_cl (1:100), 6) dilution of HA_cl (1:10) and (7) HA_cl directly coated onto TCP. Samples were then investigated for cell viability using a live/dead assay, an inflammatory reaction using real-time PCR and ELISA for MMP2, IL-1 and cell proliferation via an MTS assay. Furthermore, the osteogenic potential of PDL cells was assessed by alkaline phosphatase(ALP) activity, collagen1(COL1) and osteocalcin(OCN) immunostaining, alizarin red staining, and real-time PCR for genes encoding Runx2, COL1, ALP, and OCN. Results Both HA_ncl and HA_cl showed high PDL cell viability (greater than 90%) irrespective of the culturing conditions. Furthermore, no significant difference in both mRNA and protein levels of proinflammatory cytokines, including MMP2 and IL-1 expression was observed. Both diluted HA_ncl and HA_cl significantly increased cell numbers compared to the controlled TCP samples at 3 and 5 days. HA_ncl and HA_cl in standard cell growth media significantly decreased ALP staining, COL1 immunostaining and down-regulated early osteogenic differentiation, including Runx2, COL1, and OCN mRNA levels when compared to control samples. When osteogenic differentiation medium (ODM) was added, interestingly, the expression of early osteogenic markers increased by demonstrating higher levels of COL1 and ALP expression; especially in HA 1:10 diluted condition. Late stage osteogenic markers remained inhibited. Conclusions Both non-cross-linked and cross-linked HA maintained high PDL cell viability, increased proliferation, and early osteogenic differentiation. However, HA was consistently associated with a significant decrease in late osteogenic differentiation of primary human PDL cells. Future in vitro and animal research is necessary to further characterize the effect of HA on periodontal regeneration.
Collapse
Affiliation(s)
- Masako Fujioka-Kobayashi
- Department of Cranio-Maxillofacial Surgery, Bern University Hospital, Inselspital, Bern, Switzerland.,Department of Oral Surgery, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Heinz-Dieter Müller
- Department of Preventive, Restorative and Pediatric Dentistry, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Andrea Mueller
- Clinic of Preventive Dentistry, Periodontology and Cariology, Center of Dental Medicine, University of Zurich, Zürich, Switzerland
| | - Adrian Lussi
- Department of Preventive, Restorative and Pediatric Dentistry, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Anton Sculean
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Patrick R Schmidlin
- Clinic of Preventive Dentistry, Periodontology and Cariology, Center of Dental Medicine, University of Zurich, Zürich, Switzerland
| | - Richard J Miron
- Department of Preventive, Restorative and Pediatric Dentistry, School of Dental Medicine, University of Bern, Bern, Switzerland. .,Department of Periodontology, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA. .,Cell Therapy Institute, Center for Collaborative Research, Nova Southeastern University, Fort Lauderdale, FL, USA. .,Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA.
| |
Collapse
|
25
|
Hyaluronic Acid Gel-Based Scaffolds as Potential Carrier for Growth Factors: An In Vitro Bioassay on Its Osteogenic Potential. J Clin Med 2016; 5:jcm5120112. [PMID: 27916889 PMCID: PMC5184785 DOI: 10.3390/jcm5120112] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/11/2016] [Accepted: 11/24/2016] [Indexed: 12/13/2022] Open
Abstract
Hyaluronic acid (HA) has been utilized for a variety of regenerative medical procedures due to its widespread presence in connective tissue and perceived biocompatibility. The aim of the present study was to investigate HA in combination with recombinant human bone morphogenetic protein 9 (rhBMP9), one of the most osteogenic growth factors of the BMP family. HA was first combined with rhBMP9 and assessed for the adsorption and release of rhBMP9 over 10 days by ELISA. Thereafter, ST2 pre-osteoblasts were investigated by comparing (1) control tissue culture plastic, (2) HA alone, and (3) HA with rhBMP9 (100 ng/mL). Cellular proliferation was investigated by a MTS assay at one, three and five days and osteoblast differentiation was investigated by alkaline phosphatase (ALP) activity at seven days, alizarin red staining at 14 days and real-time PCR for osteoblast differentiation markers. The results demonstrated that rhBMP9 adsorbed within HA scaffolds and was released over a 10-day period in a controlled manner. While HA and rhBMP9 had little effect on cell proliferation, a marked and pronounced effect was observed for cell differentiation. rhBMP9 significantly induced ALP activity, mRNA levels of collagen1α2, and ALP and osteocalcin (OCN) at three or 14 days. HA also demonstrated some ability to induce osteoblast differentiation by increasing mRNA levels of OCN and increasing alizarin red staining at 14 days. In conclusion, the results from the present study demonstrate that (1) HA may serve as a potential carrier for various growth factors, and (2) rhBMP9 is a potent and promising inducer of osteoblast differentiation. Future animal studies are now necessary to investigate this combination approach in vivo.
Collapse
|
26
|
Bahrami N, Malekolkottab F, Ebrahimi-Barough S, Alizadeh Tabari Z, Hamisi J, Kamyab A, Mohamadnia A, Ai A, Bayat F, Bahrami N, Ai J. The effect of purmorphamine on differentiation of endometrial stem cells into osteoblast-like cells on collagen/hydroxyapatite scaffolds. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2016; 45:1343-1349. [DOI: 10.1080/21691401.2016.1236804] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Naghmeh Bahrami
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
- Craniomaxillo Facial Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Iranian Tissue Bank and Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Malekolkottab
- Department of Periodontics, School of Dentistry, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Somayeh Ebrahimi-Barough
- Department of Tissue Engineering and Applied Cell Sciences, Faculty of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Alizadeh Tabari
- Department of Periodontics, School of Dentistry, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Jalaleddin Hamisi
- Department of Periodontics, School of Dentistry, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Ahmadreza Kamyab
- Department of Genetics, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Abdolreza Mohamadnia
- Virology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Armin Ai
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Farshad Bayat
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Naeim Bahrami
- Department of Biomedical Engineering, Wake Forest university ? Virginia Tech, Winston Salem, NC, USA
| | - Jafar Ai
- Department of Tissue Engineering and Applied Cell Sciences, Faculty of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
Kim JH, Kang MS, Eltohamy M, Kim TH, Kim HW. Dynamic Mechanical and Nanofibrous Topological Combinatory Cues Designed for Periodontal Ligament Engineering. PLoS One 2016; 11:e0149967. [PMID: 26989897 PMCID: PMC4798756 DOI: 10.1371/journal.pone.0149967] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 02/08/2016] [Indexed: 11/18/2022] Open
Abstract
Complete reconstruction of damaged periodontal pockets, particularly regeneration of periodontal ligament (PDL) has been a significant challenge in dentistry. Tissue engineering approach utilizing PDL stem cells and scaffolding matrices offers great opportunity to this, and applying physical and mechanical cues mimicking native tissue conditions are of special importance. Here we approach to regenerate periodontal tissues by engineering PDL cells supported on a nanofibrous scaffold under a mechanical-stressed condition. PDL stem cells isolated from rats were seeded on an electrospun polycaprolactone/gelatin directionally-oriented nanofiber membrane and dynamic mechanical stress was applied to the cell/nanofiber construct, providing nanotopological and mechanical combined cues. Cells recognized the nanofiber orientation, aligning in parallel, and the mechanical stress increased the cell alignment. Importantly, the cells cultured on the oriented nanofiber combined with the mechanical stress produced significantly stimulated PDL specific markers, including periostin and tenascin with simultaneous down-regulation of osteogenesis, demonstrating the roles of topological and mechanical cues in altering phenotypic change in PDL cells. Tissue compatibility of the tissue-engineered constructs was confirmed in rat subcutaneous sites. Furthermore, in vivo regeneration of PDL and alveolar bone tissues was examined under the rat premaxillary periodontal defect models. The cell/nanofiber constructs engineered under mechanical stress showed sound integration into tissue defects and the regenerated bone volume and area were significantly improved. This study provides an effective tissue engineering approach for periodontal regeneration—culturing PDL stem cells with combinatory cues of oriented nanotopology and dynamic mechanical stretch.
Collapse
Affiliation(s)
- Joong-Hyun Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Min Sil Kang
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Mohamed Eltohamy
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Tae-Hyun Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, Republic of Korea
- * E-mail:
| |
Collapse
|
28
|
Alvarez R, Lee HL, Wang CY, Hong C. Characterization of the osteogenic potential of mesenchymal stem cells from human periodontal ligament based on cell surface markers. Int J Oral Sci 2015; 7:213-9. [PMID: 26674423 PMCID: PMC5153597 DOI: 10.1038/ijos.2015.42] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2015] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stem cell (MSC)-mediated therapy has been shown to be clinically effective in regenerating tissue defects. For improved regenerative therapy, it is critical to isolate homogenous populations of MSCs with high capacity to differentiate into appropriate tissues. The utilization of stem cell surface antigens provides a means to identify MSCs from various tissues. However, few surface markers that consistently isolate highly regenerative MSCs have been validated, making it challenging for routine clinical applications and making it all the more imperative to identify reliable surface markers. In this study, we used three surface marker combinations: CD51/CD140α, CD271, and STRO-1/CD146 for the isolation of homogenous populations of dental mesenchymal stem cells (DMSCs) from heterogeneous periodontal ligament cells (PDLCs). Fluorescence-activated cell sorting analysis revealed that 24% of PDLCs were CD51+/CD140α+, 0.8% were CD271+, and 2.4% were STRO-1+/CD146+. Sorted cell populations were further assessed for their multipotent properties by inducing osteogenic and chondrogenic differentiation. All three subsets of isolated DMSCs exhibited differentiation capacity into osteogenic and chondrogenic lineages but with varying degrees. CD271+ DMSCs demonstrated the greatest osteogenic potential with strong induction of osteogenic markers such as DLX5, RUNX2, and BGLAP. Our study provides evidence that surface marker combinations used in this study are sufficient markers for the isolation of DMSCs from PDLCs. These results provide important insight into using specific surface markers for identifying homogenous populations of DMSCs for their improved utilization in regenerative medicine.
Collapse
Affiliation(s)
- Ruth Alvarez
- Division of Oral Biology and Medicine, School of Dentistry, University of California at Los Angeles, Los Angeles, USA
| | - Hye-Lim Lee
- Division of Oral Biology and Medicine, School of Dentistry, University of California at Los Angeles, Los Angeles, USA
| | - Cun-Yu Wang
- Division of Oral Biology and Medicine, School of Dentistry, University of California at Los Angeles, Los Angeles, USA
| | - Christine Hong
- Division of Oral Biology and Medicine, School of Dentistry, University of California at Los Angeles, Los Angeles, USA.,Section of Orthodontics, School of Dentistry, University of California at Los Angeles, Los Angeles, USA
| |
Collapse
|
29
|
Abstract
Periodontitis is a chronic inflammatory disease which leads to destruction of both the soft and hard tissues of the periodontium. Tissue engineering is a therapeutic approach in regenerative medicine that aims to induce new functional tissue regeneration via the synergistic combination of cells, biomaterials, and/or growth factors. Advances in our understanding of the biology of stem cells, including embryonic stem cells and mesenchymal stem cells, have provided opportunities for periodontal tissue engineering. However, there remain a number of limitations affecting their therapeutic efficiency. Due to the considerable proliferation and differentiation capacities, recently described induced pluripotent stem cells (iPSCs) provide a new way for cell-based therapies for periodontal regeneration. This review outlines the latest status of periodontal tissue engineering and highlights the potential use of iPSCs in periodontal tissue regeneration.
Collapse
Affiliation(s)
- Mi Du
- Shandong provincial key laboratory of oral tissue regeneration, Department of Periodontology, School of Stomatology, Shandong University, No.44-1 West Wenhua Rd., Jinan, 250012 People's Republic of China
| | - Xuejing Duan
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong University, No.324 Jingwu Rd., Jinan, 250000 People's Republic of China
| | - Pishan Yang
- Shandong provincial key laboratory of oral tissue regeneration, Department of Periodontology, School of Stomatology, Shandong University, No.44-1 West Wenhua Rd., Jinan, 250012 People's Republic of China
| |
Collapse
|
30
|
Zheng W, Wang S, Wang J, Jin F. Periodontitis promotes the proliferation and suppresses the differentiation potential of human periodontal ligament stem cells. Int J Mol Med 2015; 36:915-22. [PMID: 26310866 PMCID: PMC4564090 DOI: 10.3892/ijmm.2015.2314] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 05/15/2015] [Indexed: 12/21/2022] Open
Abstract
The aim of the present study was to investigate the periodontitis-associated changes in the number, proliferation and differentiation potential of human periodontal ligament stem cells (PDLSCs). Cultures of human periodontal ligament cells (PDLCs) were established from healthy donors and donors with periodontitis. The numbers of stem cell were characterized using flow cytometry. PDLSCs were isolated from the PDLCs by immunomagnetic bead selection. Colony-forming abilities, osteogenic and adipogenic potential, gene expression of cementoblast phenotype, alkaline phosphatase activity and in vivo differentiation capacities were then evaluated. Periodontitis caused an increase in the proliferation of PDLSCs and a decrease in the commitment to the osteoblast lineage. This is reflected by changes in the expression of osteoblast markers. When transplanted into immunocompromised mice, PDLSCs from the healthy donors exhibited the capacity to produce cementum PDL-like structures, whereas, the inflammatory PDLSCs transplants predominantly formed connective tissues. In conclusion, the data from the present study suggest that periodontitis affects the proliferation and differentiation potential of human PDLSCs in vitro and in vivo.
Collapse
Affiliation(s)
- Wei Zheng
- Department of Orthodontics, Tianjin Stomatological Hospital, Tianjin 300041, P.R. China
| | - Shi Wang
- Department of Stomatology, The Third Central Hospital, Tianjin 300041, P.R. China
| | - Jianguo Wang
- Department of Orthodontics, Tianjin Stomatological Hospital, Tianjin 300041, P.R. China
| | - Fang Jin
- Department of Orthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
31
|
Age-related decline in the matrix contents and functional properties of human periodontal ligament stem cell sheets. Acta Biomater 2015; 22:70-82. [PMID: 25922305 DOI: 10.1016/j.actbio.2015.04.024] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 04/16/2015] [Accepted: 04/19/2015] [Indexed: 02/08/2023]
Abstract
In this study, periodontal ligament (PDL) stem cells (PDLSCs) derived from different-aged donors were used to evaluate the effect of aging on cell sheet formation. The activity of PDLSCs was first determined based on their colony-forming ability, surface markers, proliferative/differentiative potentials, senescence-associated β-galactosidase (SA-βG) staining, and expression of pluripotency-associated transcription factors. The ability of these cells to form sheets, based on their extracellular matrix (ECM) contents and their functional properties necessary for osteogenic differentiation, was evaluated to predict the age-related changes in the regenerative capacity of the cell sheets in their further application. It was found that human PDLSCs could be isolated from the PDL tissue of different-aged subjects. However, the ability of the PDLSCs to proliferate and to undergo osteogenic differentiation and their expression of pluripotency-associated transcription factors displayed age-related decreases. In addition, these cells exhibited an age-related increase in SA-βG expression. Aged cells showed an impaired ability to form functional cell sheets, as determined by morphological observations and Ki-67 immunohistochemistry staining. Based on the production of ECM proteins, such as fibronectin, integrin β1, and collagen type I; alkaline phosphatase (ALP) activity; and the expression of osteogenic genes, such as ALP, Runt-related transcription factor 2, and osteocalcin, cell sheets formed by PDLSCs derived from older donors demonstrated a less potent osteogenic capacity compared to those formed by PDLSCs from younger donors. Our data suggest that the age-associated decline in the matrix contents and osteogenic properties of PDLSC sheets should be taken into account in cell sheet engineering research and clinical periodontal regenerative therapy.
Collapse
|
32
|
Bartold PM, Gronthos S, Ivanovski S, Fisher A, Hutmacher DW. Tissue engineered periodontal products. J Periodontal Res 2015; 51:1-15. [PMID: 25900048 DOI: 10.1111/jre.12275] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2015] [Indexed: 01/25/2023]
Abstract
Attainment of periodontal regeneration is a significant clinical goal in the management of advanced periodontal defects arising from periodontitis. Over the past 30 years numerous techniques and materials have been introduced and evaluated clinically and have included guided tissue regeneration, bone grafting materials, growth and other biological factors and gene therapy. With the exception of gene therapy, all have undergone evaluation in humans. All of the products have shown efficacy in promoting periodontal regeneration in animal models but the results in humans remain variable and equivocal concerning attaining complete biological regeneration of damaged periodontal structures. In the early 2000s, the concept of tissue engineering was proposed as a new paradigm for periodontal regeneration based on molecular and cell biology. At this time, tissue engineering was a new and emerging field. Now, 14 years later we revisit the concept of tissue engineering for the periodontium and assess how far we have come, where we are currently situated and what needs to be done in the future to make this concept a reality. In this review, we cover some of the precursor products, which led to our current position in periodontal tissue engineering. The basic concepts of tissue engineering with special emphasis on periodontal tissue engineering products is discussed including the use of mesenchymal stem cells in bioscaffolds and the emerging field of cell sheet technology. Finally, we look into the future to consider what CAD/CAM technology and nanotechnology will have to offer.
Collapse
Affiliation(s)
- P M Bartold
- Colgate Australian Clinical Dental Research Centre, Dental School, University of Adelaide, Adelaide, SA, Australia
| | - S Gronthos
- School of Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - S Ivanovski
- Griffith Health Institute, School of Dentistry and Oral Health, Griffith University, Gold Coast, Qld, Australia
| | - A Fisher
- Griffith Health Institute, School of Dentistry and Oral Health, Griffith University, Gold Coast, Qld, Australia
| | - D W Hutmacher
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Qld, Australia
| |
Collapse
|
33
|
Cementum and Periodontal Ligament Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 881:207-36. [PMID: 26545752 DOI: 10.1007/978-3-319-22345-2_12] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The unique anatomy and composition of the periodontium make periodontal tissue healing and regeneration a complex process. Periodontal regeneration aims to recapitulate the crucial stages of wound healing associated with periodontal development in order to restore lost tissues to their original form and function and for regeneration to occur, healing events must progress in an ordered and programmed sequence both temporally and spatially, replicating key developmental events. A number of procedures have been employed to promote true and predictable regeneration of the periodontium. Principally, the approaches are based on the use of graft materials to compensate for the bone loss incurred as a result of periodontal disease, use of barrier membranes for guided tissue regeneration and use of bioactive molecules. More recently, the concept of tissue engineering has been integrated into research and applications of regenerative dentistry, including periodontics, to aim to manage damaged and lost oral tissues, through reconstruction and regeneration of the periodontium and alleviate the shortcomings of more conventional therapeutic options. The essential components for generating effective cellular based therapeutic strategies include a population of multi-potential progenitor cells, presence of signalling molecules/inductive morphogenic signals and a conductive extracellular matrix scaffold or appropriate delivery system. Mesenchymal stem cells are considered suitable candidates for cell-based tissue engineering strategies owing to their extensive expansion rate and potential to differentiate into cells of multiple organs and systems. Mesenchymal stem cells derived from multiple tissue sources have been investigated in pre-clinical animal studies and clinical settings for the treatment and regeneration of the periodontium.
Collapse
|
34
|
Xiang L, Ma L, He Y, Wei N, Gong P. Transfection with follicular dendritic cell secreted protein to affect phenotype expression of human periodontal ligament cells. J Cell Biochem 2014; 115:940-8. [PMID: 24357406 DOI: 10.1002/jcb.24736] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Accepted: 12/04/2013] [Indexed: 02/05/2023]
Abstract
Follicular dendritic cell secreted protein (FDC-SP), has been found to inhibit osteogenic differentiation of human periodontal ligament cells (hPDLCs) in recent studies. Based on these findings, we further investigate its effect on phenotype expression of hPDLCs in the present study, aiming to contribute to a better understanding of the biological functions governing FDC-SP-induced hPDLC differentiation. hPDLCs were firstly identified with immunocytochemical staining, followed by transfection with FDC-SP lentiviral vector. Western blot analysis was used to confirm the expression of FDC-SP. Then the influence of FDC-SP transfection on hPDLC proliferation, osteogenic and fibrogenic phenotype expression was evaluated at the mRNA and protein level. Procollagen type I c-peptide production was measured and alizarin red staining was then conducted to demonstrate effect of FDC-SP on functional differentiation. We found that hPDLCs could be successfully transfected with FDC-SP. Cell proliferation and cell cycle tests indicated that transfection with FDC-SP did not affect hPDLC proliferation. Moreover, according to real-time PCR and Western blot results, expression levels of type 1 collagen alpha 1, type 1 collagen alpha 2 and type 3 collagen were upregulated while that of osteocalcin, osteopontin, and bone sialoprotein were downregulated in FDC-SP transfected cells. In addition, hPDLCs overexpressing FDC-SP exhibited higher PIP production than the controls. Our findings demonstrate that transfection with FDC-SP has negligible adverse effect on proliferation of hPDLCs and imply the biological function of FDC-SP as a fibroblastic phenotype stabilizer by inhibiting hPDLCs differentiation into mineralized tissue-forming cells, thus regulating regeneration in periodontal tissue engineering.
Collapse
Affiliation(s)
- Lin Xiang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P.R. China; Dental Implant Center, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P.R. China
| | | | | | | | | |
Collapse
|
35
|
Tansriratanawong K, Tamaki Y, Ishikawa H, Sato S. Co-culture with periodontal ligament stem cells enhances osteogenic gene expression in de-differentiated fat cells. Hum Cell 2014; 27:151-61. [PMID: 24573839 PMCID: PMC4186972 DOI: 10.1007/s13577-014-0091-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 02/03/2014] [Indexed: 12/19/2022]
Abstract
In recent decades, de-differentiated fat cells (DFAT cells) have emerged in regenerative medicine because of their trans-differentiation capability and the fact that their characteristics are similar to bone marrow mesenchymal stem cells. Even so, there is no evidence to support the osteogenic induction using DFAT cells in periodontal regeneration and also the co-culture system. Consequently, this study sought to evaluate the DFAT cells co-culture with periodontal ligament stem cells (PDLSCs) in vitro in terms of gene expression by comparing runt-related transcription factor 2 (RUNX2) and Peroxisome proliferator-activated receptor gamma 2 (PPARγ2) genes. We isolated DFAT cells from mature adipocytes and compared proliferation with PDLSCs. After co-culture with PDLSCs, we analyzed transcriptional activity implying by DNA methylation in all adipogenic gene promoters using combined bisulfite restriction analysis. We compared gene expression in RUNX2 gene with the PPARγ2 gene using quantitative RT-PCR. After being sub-cultured, DFAT cells demonstrated morphology similar to fibroblast-like cells. At the same time, PDLSCs established all stem cell characteristics. Interestingly, the co-culture system attenuated proliferation while enhancing osteogenic gene expression in RUNX2 gene. Using the co-culture system, DFAT cells could trans-differentiate into osteogenic lineage enhancing, but conversely, their adipogenic characteristic diminished. Therefore, DFAT cells and the co-culture system might be a novel cell-based therapy for promoting osteogenic differentiation in periodontal regeneration.
Collapse
Affiliation(s)
- Kallapat Tansriratanawong
- Department of NDU Life Sciences, Nippon Dental University School of Life Dentistry at Tokyo, 1-9-20 Fujimi, Chiyoda-ku, Tokyo, 102-8159, Japan,
| | | | | | | |
Collapse
|
36
|
Ivanovski S, Vaquette C, Gronthos S, Hutmacher DW, Bartold PM. Multiphasic scaffolds for periodontal tissue engineering. J Dent Res 2014; 93:1212-21. [PMID: 25139362 DOI: 10.1177/0022034514544301] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
For a successful clinical outcome, periodontal regeneration requires the coordinated response of multiple soft and hard tissues (periodontal ligament, gingiva, cementum, and bone) during the wound-healing process. Tissue-engineered constructs for regeneration of the periodontium must be of a complex 3-dimensional shape and adequate size and demonstrate biomechanical stability over time. A critical requirement is the ability to promote the formation of functional periodontal attachment between regenerated alveolar bone, and newly formed cementum on the root surface. This review outlines the current advances in multiphasic scaffold fabrication and how these scaffolds can be combined with cell- and growth factor-based approaches to form tissue-engineered constructs capable of recapitulating the complex temporal and spatial wound-healing events that will lead to predictable periodontal regeneration. This can be achieved through a variety of approaches, with promising strategies characterized by the use of scaffolds that can deliver and stabilize cells capable of cementogenesis onto the root surface, provide biomechanical cues that encourage perpendicular alignment of periodontal fibers to the root surface, and provide osteogenic cues and appropriate space to facilitate bone regeneration. Progress on the development of multiphasic constructs for periodontal tissue engineering is in the early stages of development, and these constructs need to be tested in large animal models and, ultimately, human clinical trials.
Collapse
Affiliation(s)
- S Ivanovski
- Griffith Health Institute, Regenerative Medicine Center, School of Dentistry and Oral Health, Griffith University, Gold Coast, Australia
| | - C Vaquette
- Institute of Health and Biomedical Innovation, Kelvin Grove, Brisbane, Australia
| | - S Gronthos
- Mesenchymal Stem Cell Laboratory, School of Medical Sciences, University of Adelaide, Adelaide, Australia
| | - D W Hutmacher
- Institute of Health and Biomedical Innovation, Kelvin Grove, Brisbane, Australia
| | - P M Bartold
- Colgate Australian Clinical Dental Research Centre, Department of Dentistry, University of Adelaide, Adelaide, Australia
| |
Collapse
|
37
|
Han P, Xu M, Chang J, Chakravorty N, Wu C, Xiao Y. Lithium release from β-tricalcium phosphate inducing cementogenic and osteogenic differentiation of both hPDLCs and hBMSCs. Biomater Sci 2014; 2:1230-1243. [DOI: 10.1039/c4bm00111g] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
Monsarrat P, Vergnes JN, Nabet C, Sixou M, Snead ML, Planat-Bénard V, Casteilla L, Kémoun P. Concise review: mesenchymal stromal cells used for periodontal regeneration: a systematic review. Stem Cells Transl Med 2014; 3:768-74. [PMID: 24744392 DOI: 10.5966/sctm.2013-0183] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Periodontitis is a chronic infectious disease of the soft and hard tissues supporting the teeth. Recent advances in regenerative medicine and stem cell biology have paved the way for periodontal tissue engineering. Mesenchymal stromal cells (MSCs) delivered in situ to periodontal defects may exert their effects at multiple levels, including neovascularization, immunomodulation, and tissue regeneration. This systematic review had two goals: (a) to objectively quantify key elements for efficacy and safety of MSCs used for periodontal regeneration and (b) to identify patterns in the existing literature to explain differences between studies and suggest recommendations for future research. This systematic review provided good evidence of the capacity of MSCs to regenerate periodontal tissues in animals; however, experimentally generated defects used in animal studies do not sufficiently mimic the pathophysiology of periodontitis in humans. Moreover, the safety of such interventions in humans still needs to be studied. There were marked differences between experimental and control groups that may be influenced by characteristics that are crucial to address before translation to human clinical trials. We suggest that the appropriate combination of cell source, carrier type, and biomolecules, as well as the inclusion of critical path issues for a given clinical case, should be further explored and refined before transitioning to clinical trials. Future studies should investigate periodontal regenerative procedures in animal models, including rodents, in which the defects generated are designed to more accurately reflect the inflammatory status of the host and the shift in their pathogenic microflora.
Collapse
Affiliation(s)
- Paul Monsarrat
- STROMALab, Toulouse, France; Université de Toulouse, Toulouse, France; INSERM, Toulouse, France; Etablissement Français du Sang Pyrénées-Méditerranée, Toulouse, France; Departments of Public Health and Biology, Toulouse Faculty of Dentistry, Paul Sabatier University and Toulouse University Hospital, CHU de Toulouse, Toulouse, France; Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California, USA
| | - Jean-Noël Vergnes
- STROMALab, Toulouse, France; Université de Toulouse, Toulouse, France; INSERM, Toulouse, France; Etablissement Français du Sang Pyrénées-Méditerranée, Toulouse, France; Departments of Public Health and Biology, Toulouse Faculty of Dentistry, Paul Sabatier University and Toulouse University Hospital, CHU de Toulouse, Toulouse, France; Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California, USA
| | - Cathy Nabet
- STROMALab, Toulouse, France; Université de Toulouse, Toulouse, France; INSERM, Toulouse, France; Etablissement Français du Sang Pyrénées-Méditerranée, Toulouse, France; Departments of Public Health and Biology, Toulouse Faculty of Dentistry, Paul Sabatier University and Toulouse University Hospital, CHU de Toulouse, Toulouse, France; Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California, USA
| | - Michel Sixou
- STROMALab, Toulouse, France; Université de Toulouse, Toulouse, France; INSERM, Toulouse, France; Etablissement Français du Sang Pyrénées-Méditerranée, Toulouse, France; Departments of Public Health and Biology, Toulouse Faculty of Dentistry, Paul Sabatier University and Toulouse University Hospital, CHU de Toulouse, Toulouse, France; Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California, USA
| | - Malcolm L Snead
- STROMALab, Toulouse, France; Université de Toulouse, Toulouse, France; INSERM, Toulouse, France; Etablissement Français du Sang Pyrénées-Méditerranée, Toulouse, France; Departments of Public Health and Biology, Toulouse Faculty of Dentistry, Paul Sabatier University and Toulouse University Hospital, CHU de Toulouse, Toulouse, France; Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California, USA
| | - Valérie Planat-Bénard
- STROMALab, Toulouse, France; Université de Toulouse, Toulouse, France; INSERM, Toulouse, France; Etablissement Français du Sang Pyrénées-Méditerranée, Toulouse, France; Departments of Public Health and Biology, Toulouse Faculty of Dentistry, Paul Sabatier University and Toulouse University Hospital, CHU de Toulouse, Toulouse, France; Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California, USA
| | - Louis Casteilla
- STROMALab, Toulouse, France; Université de Toulouse, Toulouse, France; INSERM, Toulouse, France; Etablissement Français du Sang Pyrénées-Méditerranée, Toulouse, France; Departments of Public Health and Biology, Toulouse Faculty of Dentistry, Paul Sabatier University and Toulouse University Hospital, CHU de Toulouse, Toulouse, France; Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California, USA
| | - Philippe Kémoun
- STROMALab, Toulouse, France; Université de Toulouse, Toulouse, France; INSERM, Toulouse, France; Etablissement Français du Sang Pyrénées-Méditerranée, Toulouse, France; Departments of Public Health and Biology, Toulouse Faculty of Dentistry, Paul Sabatier University and Toulouse University Hospital, CHU de Toulouse, Toulouse, France; Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
39
|
Chamila Prageeth Pandula P, Samaranayake L, Jin L, Zhang C. Periodontal ligament stem cells: an update and perspectives. ACTA ACUST UNITED AC 2014; 5:81-90. [DOI: 10.1111/jicd.12089] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 11/23/2013] [Indexed: 12/12/2022]
Affiliation(s)
| | - L.P. Samaranayake
- Department of Oral Biosciences; Faculty of Dentistry; The University of Hong Kong; Hong Kong China
| | - L.J. Jin
- Department of Periodontology; Faculty of Dentistry; The University of Hong Kong; Hong Kong China
| | - Chengfei Zhang
- Department of Comprehensive Dental Care; Faculty of Dentistry; The University of Hong Kong; Hong Kong China
| |
Collapse
|
40
|
Shiu HT, Goss B, Lutton C, Crawford R, Xiao Y. Controlling whole blood activation and resultant clot properties by carboxyl and alkyl functional groups on material surfaces: a possible therapeutic approach for enhancing bone healing. J Mater Chem B 2014; 2:3009-3021. [DOI: 10.1039/c4tb00009a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Most research virtually ignores the important role of a blood clot in supporting bone healing.
Collapse
Affiliation(s)
- Hoi Ting Shiu
- Bone and Tissue Engineering
- Institute of Health and Biomedical Innovation
- Queensland University of Technology
- Brisbane, Australia
| | - Ben Goss
- Bone and Tissue Engineering
- Institute of Health and Biomedical Innovation
- Queensland University of Technology
- Brisbane, Australia
| | - Cameron Lutton
- Bone and Tissue Engineering
- Institute of Health and Biomedical Innovation
- Queensland University of Technology
- Brisbane, Australia
| | - Ross Crawford
- Bone and Tissue Engineering
- Institute of Health and Biomedical Innovation
- Queensland University of Technology
- Brisbane, Australia
| | - Yin Xiao
- Bone and Tissue Engineering
- Institute of Health and Biomedical Innovation
- Queensland University of Technology
- Brisbane, Australia
| |
Collapse
|
41
|
Han J, Menicanin D, Gronthos S, Bartold PM. Stem cells, tissue engineering and periodontal regeneration. Aust Dent J 2013; 59 Suppl 1:117-30. [PMID: 24111843 DOI: 10.1111/adj.12100] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The aim of this review is to discuss the clinical utility of stem cells in periodontal regeneration by reviewing relevant literature that assesses the periodontal-regenerative potential of stem cells. We consider and describe the main stem cell populations that have been utilized with regard to periodontal regeneration, including bone marrow-derived mesenchymal stem cells and the main dental-derived mesenchymal stem cell populations: periodontal ligament stem cells, dental pulp stem cells, stem cells from human exfoliated deciduous teeth, stem cells from apical papilla and dental follicle precursor cells. Research into the use of stem cells for tissue regeneration has the potential to significantly influence periodontal treatment strategies in the future.
Collapse
Affiliation(s)
- J Han
- Colgate Australian Clinical Dental Research Centre, School of Dentistry, The University of Adelaide, South Australia
| | | | | | | |
Collapse
|
42
|
Iwata T, Washio K, Yoshida T, Ishikawa I, Ando T, Yamato M, Okano T. Cell sheet engineering and its application for periodontal regeneration. J Tissue Eng Regen Med 2013; 9:343-56. [DOI: 10.1002/term.1785] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 05/01/2013] [Accepted: 05/06/2013] [Indexed: 01/01/2023]
Affiliation(s)
- Takanori Iwata
- Institute of Advanced Biomedical Engineering and Science; Tokyo Women's Medical University; Shinjuku-ku Tokyo Japan
- Department of Oral and Maxillofacial Surgery; Tokyo Women's Medical University; Shinjuku-ku Tokyo Japan
| | - Kaoru Washio
- Institute of Advanced Biomedical Engineering and Science; Tokyo Women's Medical University; Shinjuku-ku Tokyo Japan
| | - Toshiyuki Yoshida
- Institute of Advanced Biomedical Engineering and Science; Tokyo Women's Medical University; Shinjuku-ku Tokyo Japan
| | - Isao Ishikawa
- Institute of Advanced Biomedical Engineering and Science; Tokyo Women's Medical University; Shinjuku-ku Tokyo Japan
| | - Tomohiro Ando
- Department of Oral and Maxillofacial Surgery; Tokyo Women's Medical University; Shinjuku-ku Tokyo Japan
| | - Masayuki Yamato
- Institute of Advanced Biomedical Engineering and Science; Tokyo Women's Medical University; Shinjuku-ku Tokyo Japan
| | - Teruo Okano
- Institute of Advanced Biomedical Engineering and Science; Tokyo Women's Medical University; Shinjuku-ku Tokyo Japan
| |
Collapse
|
43
|
Dahiya P, Kamal R. Hyaluronic Acid: a boon in periodontal therapy. NORTH AMERICAN JOURNAL OF MEDICAL SCIENCES 2013; 5:309-15. [PMID: 23814761 PMCID: PMC3690787 DOI: 10.4103/1947-2714.112473] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hyaluronic acid is a naturally occurring linear polysaccharide of the extracellular matrix of connective tissue, synovial fluid, and other tissues. Its use in the treatment of the inflammatory process is established in medical areas such as orthopedics, dermatology, and ophthalmology. The Pubmed/Medline database was searched for keywords “Hyaluronic acid and periodontal disease” and “Hyaluronic acid and gingivitis” which resulted in 89 and 22 articles respectively. Only highly relevant articles from electronic and manual search in English literature were selected for the present review article. In the field of dentistry, hyaluronic acid has shown anti-inflammatory and anti-bacterial effects in the treatment of periodontal diseases. Due to its tissue healing properties, it could be used as an adjunct to mechanical therapy in the treatment of periodontitis. Further studies are required to determine the clinical efficacy of hyaluronic acid in healing of periodontal lesion. The aim of the present review, article is to discuss the role of hyaluronic acid in periodontal therapy.
Collapse
Affiliation(s)
- Parveen Dahiya
- Department of Periodontics and Implantology, Himachal Institute of Dental Sciences and Research, Paonta Sahib, Sirmour, India
| | | |
Collapse
|
44
|
Kim YT, Wikesjö UM, Jung UW, Lee JS, Kim TG, Kim CK. Comparison Between a β-Tricalcium Phosphate and an Absorbable Collagen Sponge Carrier Technology for rhGDF-5–Stimulated Periodontal Wound Healing/Regeneration. J Periodontol 2013; 84:812-20. [DOI: 10.1902/jop.2012.120307] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
45
|
Zhang Y, Li S, Wu C. Thein vitroandin vivocementogenesis of CaMgSi2O6bioceramic scaffolds. J Biomed Mater Res A 2013; 102:105-16. [PMID: 23596060 DOI: 10.1002/jbm.a.34679] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Revised: 01/23/2013] [Accepted: 02/21/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Yufeng Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST); School & Hospital of Stomatology; Wuhan University; 237 Luoyu Road Wuhan 430079 People's Republic of China
- Key Laboratory of Oral Biomedicine Ministry of Education; School & Hospital of Stomatology; Wuhan University; 237 Luoyu Road Wuhan 430079 People's Republic of China
| | - Shue Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST); School & Hospital of Stomatology; Wuhan University; 237 Luoyu Road Wuhan 430079 People's Republic of China
- Key Laboratory of Oral Biomedicine Ministry of Education; School & Hospital of Stomatology; Wuhan University; 237 Luoyu Road Wuhan 430079 People's Republic of China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure; Shanghai Institute of Ceramics; Chinese Academy of Sciences; Shanghai 200050 People's Republic of China
| |
Collapse
|
46
|
Petrovic V, Zivkovic P, Petrovic D, Stefanovic V. Craniofacial bone tissue engineering. Oral Surg Oral Med Oral Pathol Oral Radiol 2013; 114:e1-9. [PMID: 22862985 DOI: 10.1016/j.oooo.2012.02.030] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 01/18/2012] [Accepted: 02/29/2012] [Indexed: 12/17/2022]
Abstract
There are numerous conditions, such as trauma, cancer, congenital malformations, and progressive deforming skeletal diseases, that can compromise the function and architectonics of bones of craniofacial region. The need to develop new approaches for treatment of these disorders arises from the fact that conventional therapeutic strategies face many obstacles and limitations. The use of tissue engineering in regeneration of craniofacial bone structures is a very promising possibility and a great challenge for researchers and practitioners. Developments in stem cell biology and engineering have led to the discovery of different stem cell populations and biodegradable materials with suitable properties. This review summarizes the current achievements in tissue engineering of craniofacial bone, temporomandibular joint, and periodontal ligament.
Collapse
Affiliation(s)
- Vladimir Petrovic
- Department of Histology, Stem Cells Laboratory, University School of Medicine, Nis, Serbia
| | | | | | | |
Collapse
|
47
|
Yang JR, Hsu CW, Liao SC, Lin YT, Chen LR, Yuan K. Transplantation of embryonic stem cells improves the regeneration of periodontal furcation defects in a porcine model. J Clin Periodontol 2013; 40:364-71. [DOI: 10.1111/jcpe.12069] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 03/05/2012] [Accepted: 01/09/2013] [Indexed: 12/31/2022]
Affiliation(s)
- Jenn-Rong Yang
- Division of Physiology; Livestock Research Institute; Council of Agriculture Executive Yuan; Tainan Taiwan
| | - Chia-Wen Hsu
- Dental Department; Tainan Municipal Hospital; Tainan Taiwan
| | - Shih-Chung Liao
- Department of Oral Medicine; National Cheng Kung University Hospital; Tainan Taiwan
| | - Yu-Ting Lin
- Division of Physiology; Livestock Research Institute; Council of Agriculture Executive Yuan; Tainan Taiwan
| | - Lih-Ren Chen
- Division of Physiology; Livestock Research Institute; Council of Agriculture Executive Yuan; Tainan Taiwan
| | - Kuo Yuan
- Department of Oral Medicine; National Cheng Kung University Hospital; Tainan Taiwan
- Institute of Oral Medicine; College of Medicine; National Cheng Kung University; Tainan Taiwan
- School of Dentistry; College of Oral Medicine; Taipei Medical University; Taipei Taiwan
| |
Collapse
|
48
|
Hynes K, Menicanin D, Gronthos S, Bartold PM. Clinical utility of stem cells for periodontal regeneration. Periodontol 2000 2012; 59:203-27. [PMID: 22507067 DOI: 10.1111/j.1600-0757.2012.00443.x] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The aim of this review is to discuss the clinical utility of stem cells in periodontal regeneration by reviewing relevant literature that assesses the periodontal-regenerative potential of stem cells. We considered and described the main stem cell populations that have been utilized with regard to periodontal regeneration, including bone marrow-derived mesenchymal stem cells and the main dental-derived mesenchymal stem cell populations: periodontal ligament stem cells, dental pulp stem cells, stem cells from human exfoliated deciduous teeth, stem cells from apical papilla and dental follicle precursor cells. Research into the use of stem cells for tissue regeneration has the potential to significantly influence periodontal treatment strategies in the future.
Collapse
|
49
|
Ruediger T, Berg A, Guellmar A, Rode C, Schnabelrauch M, Urbanek A, Wagner K, Wyrwa R, Kinne RW, Sigusch BW. Cytocompatibility of polymer-based periodontal bone substitutes in gingival fibroblast and MC3T3 osteoblast cell cultures. Dent Mater 2012; 28:e239-49. [DOI: 10.1016/j.dental.2012.05.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 04/27/2012] [Accepted: 05/24/2012] [Indexed: 10/28/2022]
|
50
|
Han P, Wu C, Chang J, Xiao Y. The cementogenic differentiation of periodontal ligament cells via the activation of Wnt/β-catenin signalling pathway by Li+ ions released from bioactive scaffolds. Biomaterials 2012; 33:6370-9. [DOI: 10.1016/j.biomaterials.2012.05.061] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 05/27/2012] [Indexed: 12/15/2022]
|