1
|
Kim YJ. Xerostomia: Advances and Challenges in Drug Development. Curr Drug Targets 2024; 25:301-305. [PMID: 38424432 DOI: 10.2174/0113894501293941240228050343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/29/2024] [Accepted: 02/22/2024] [Indexed: 03/02/2024]
Affiliation(s)
- Yoon-Jung Kim
- Department of Physiology and Neuroscience, Dental Research Institute, Seoul National University School of Dentistry, Seoul 03080, Korea
| |
Collapse
|
2
|
Wu X, Yu Y, Zhao J, Zhang C, He M, Li M. Study on water-based epoxy resin cementing fluid system. J DISPER SCI TECHNOL 2023. [DOI: 10.1080/01932691.2023.2180386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- Xiaoying Wu
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, China
| | - Yongjin Yu
- CNPC Engineering Technology R&D Company Limited, Beijing, China
| | - Jun Zhao
- Engineering Technology Research Institute, PetroChina Southwest Oil & Gas Field Company, Guanghan, China
| | - Chi Zhang
- CNPC Engineering Technology R&D Company Limited, Beijing, China
| | - Mingdan He
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, China
| | - Ming Li
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, China
| |
Collapse
|
3
|
Pillai S, Munguia-Lopez JG, Tran SD. Hydrogels for Salivary Gland Tissue Engineering. Gels 2022; 8:730. [PMID: 36354638 PMCID: PMC9690182 DOI: 10.3390/gels8110730] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/28/2022] [Accepted: 11/07/2022] [Indexed: 09/19/2023] Open
Abstract
Mimicking the complex architecture of salivary glands (SGs) outside their native niche is challenging due their multicellular and highly branched organization. However, significant progress has been made to recapitulate the gland structure and function using several in vitro and ex vivo models. Hydrogels are polymers with the potential to retain a large volume of water inside their three-dimensional structure, thus simulating extracellular matrix properties that are essential for the cell and tissue integrity. Hydrogel-based culture of SG cells has seen a tremendous success in terms of developing platforms for cell expansion, building an artificial gland, and for use in transplantation to rescue loss of SG function. Both natural and synthetic hydrogels have been used widely in SG tissue engineering applications owing to their properties that support the proliferation, reorganization, and polarization of SG epithelial cells. While recent improvements in hydrogel properties are essential to establish more sophisticated models, the emphasis should still be made towards supporting factors such as mechanotransduction and associated signaling cues. In this concise review, we discuss considerations of an ideal hydrogel-based biomaterial for SG engineering and their associated signaling pathways. We also discuss the current advances made in natural and synthetic hydrogels for SG tissue engineering applications.
Collapse
Affiliation(s)
| | | | - Simon D. Tran
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dental Medicine and Oral Health Sciences, McGill University, 3640 Rue University, Montreal, QC H3A 0C7, Canada
| |
Collapse
|
4
|
Hajiabbas M, D'Agostino C, Simińska-Stanny J, Tran SD, Shavandi A, Delporte C. Bioengineering in salivary gland regeneration. J Biomed Sci 2022; 29:35. [PMID: 35668440 PMCID: PMC9172163 DOI: 10.1186/s12929-022-00819-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/26/2022] [Indexed: 11/16/2022] Open
Abstract
Salivary gland (SG) dysfunction impairs the life quality of many patients, such as patients with radiation therapy for head and neck cancer and patients with Sjögren’s syndrome. Multiple SG engineering strategies have been considered for SG regeneration, repair, or whole organ replacement. An in-depth understanding of the development and differentiation of epithelial stem and progenitor cells niche during SG branching morphogenesis and signaling pathways involved in cell–cell communication constitute a prerequisite to the development of suitable bioengineering solutions. This review summarizes the essential bioengineering features to be considered to fabricate an engineered functional SG model using various cell types, biomaterials, active agents, and matrix fabrication methods. Furthermore, recent innovative and promising approaches to engineering SG models are described. Finally, this review discusses the different challenges and future perspectives in SG bioengineering.
Collapse
Affiliation(s)
- Maryam Hajiabbas
- Laboratory of Pathophysiological and Nutritional Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, 808 Route de Lennik, Blg G/E CP 611, B-1070, Brussels, Belgium
| | - Claudia D'Agostino
- Laboratory of Pathophysiological and Nutritional Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, 808 Route de Lennik, Blg G/E CP 611, B-1070, Brussels, Belgium
| | - Julia Simińska-Stanny
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Norwida 4/6, 50-373, Wroclaw, Poland.,3BIO-BioMatter, École Polytechnique de Bruxelles, Université Libre de Bruxelles, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, Belgium
| | - Simon D Tran
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, H3A 0C7, Canada
| | - Amin Shavandi
- 3BIO-BioMatter, École Polytechnique de Bruxelles, Université Libre de Bruxelles, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, Belgium
| | - Christine Delporte
- Laboratory of Pathophysiological and Nutritional Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, 808 Route de Lennik, Blg G/E CP 611, B-1070, Brussels, Belgium.
| |
Collapse
|
5
|
Mohamed NH, Shawkat S, Moussa MS, Ahmed N. Regeneration potential of bone marrow derived mesenchymal stem cells and platelet rich plasma (PRP) on irradiation-induced damage of submandibular salivary gland in albino rats. Tissue Cell 2022; 76:101780. [PMID: 35395489 DOI: 10.1016/j.tice.2022.101780] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/19/2022] [Accepted: 03/05/2022] [Indexed: 02/04/2023]
Abstract
Radiation-induced damage to salivary glands (SG) is a consequence of radiotherapy for head and neck cancers. Recovery of the irradiated SG has been studied using various regenerative approaches. This study aims to compare the regenerative potentials of platelet-rich plasma (PRP) and bone marrow mononuclear cells (BMMCs) on irradiated rat submandibular salivary glands (SMD). 32 healthy male albino rats were irradiated with a single dose of 6 Gy then classified into four groups. Group A received no treatment while the other 3 groups were injected 24 h post-radiation with a single dose of either; BMMCs (Group B), PRP (Group C), or BMMCs suspended in PRP (Group D). SMD regeneration was assessed in terms of histological changes and TGF- β1 gene expression. The results showed that compared to the untreated group all groups showed successful regeneration with group D showing the best results. A statistically significant increase in the surface area of acini and TGF- β1 gene expression was observed in group D, followed by group C, then B. Our results prove that using PRP and BMMCs could be promising in decreasing irradiation side effects on SG. Moreover, combining PRP and BMMCs gives better effects compared to each therapy alone.
Collapse
Affiliation(s)
- N H Mohamed
- Oral Biology Department, Faculty of Dentistry, Cairo University, Mathaf-El-Manial Street, 11553, Cairo, Egypt; Oral Histopathology Department, Faculty of Oral and Dental Medicine, Misr International University, Km 28 Misr-Ismailia Road, Cairo, Egypt
| | - S Shawkat
- Oral Biology Department, Faculty of Dentistry, Cairo University, Mathaf-El-Manial Street, 11553, Cairo, Egypt
| | - M S Moussa
- Oral Biology Department, Faculty of Dentistry, Cairo University, Mathaf-El-Manial Street, 11553, Cairo, Egypt.
| | - Neb Ahmed
- Department of Oro-dental Genetics, Medical Research Centre of Excellence, National Research Centre, 33 El Buhouth St., Dokki, Cairo, Egypt; Stem Cell Laboratory, Centre of Excellence for Advanced Sciences, National Research Centre, 33 El Buhouth St., Dokki, Cairo, Egypt
| |
Collapse
|
6
|
Hariharan A, Iyer J, Wang A, Tran SD. Tracking of Oral and Craniofacial Stem Cells in Tissue Development, Regeneration, and Diseases. Curr Osteoporos Rep 2021; 19:656-668. [PMID: 34741728 DOI: 10.1007/s11914-021-00705-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/15/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE OF REVIEW The craniofacial region hosts a variety of stem cells, all isolated from different sources of bone and cartilage. However, despite scientific advancements, their role in tissue development and regeneration is not entirely understood. The goal of this review is to discuss recent advances in stem cell tracking methods and how these can be advantageously used to understand oro-facial tissue development and regeneration. RECENT FINDINGS Stem cell tracking methods have gained importance in recent times, mainly with the introduction of several molecular imaging techniques, like optical imaging, computed tomography, magnetic resonance imaging, and ultrasound. Labelling of stem cells, assisted by these imaging techniques, has proven to be useful in establishing stem cell lineage for regenerative therapy of the oro-facial tissue complex. Novel labelling methods complementing imaging techniques have been pivotal in understanding craniofacial tissue development and regeneration. These stem cell tracking methods have the potential to facilitate the development of innovative cell-based therapies.
Collapse
Affiliation(s)
- Arvind Hariharan
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, 3640 University Street, Montreal, QC, H3A 0C7, Canada
| | - Janaki Iyer
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, 3640 University Street, Montreal, QC, H3A 0C7, Canada
| | - Athena Wang
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, 3640 University Street, Montreal, QC, H3A 0C7, Canada
| | - Simon D Tran
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, 3640 University Street, Montreal, QC, H3A 0C7, Canada.
| |
Collapse
|
7
|
Tissue Engineering of Oral Mucosa and Salivary Gland: Disease Modeling and Clinical Applications. MICROMACHINES 2020; 11:mi11121066. [PMID: 33266093 PMCID: PMC7761376 DOI: 10.3390/mi11121066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/25/2020] [Accepted: 11/29/2020] [Indexed: 12/23/2022]
Abstract
Oral mucosa and salivary gland are composed of complex and dynamic networks of extracellular matrix, multiple cell types, vasculature, and various biochemical agents. Two-dimensional (2D) cell culture is commonly used in testing new drugs and experimental therapies. However, 2D cell culture cannot fully replicate the architecture, physiological, and pathological microenvironment of living human oral mucosa and salivary glands. Recent microengineering techniques offer state of the science cell culture models that can recapitulate human organ structures and functions. This narrative review describes emerging in vitro models of oral and salivary gland tissue such as 3D cell culture models, spheroid and organoid models, tissue-on-a-chip, and functional decellularized scaffolds. Clinical applications of these models are also discussed in this review.
Collapse
|
8
|
Charbonneau AM, Tran SD. 3D Cell Culture of Human Salivary Glands Using Nature-Inspired Functional Biomaterials: The Egg Yolk Plasma and Egg White. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4807. [PMID: 33126509 PMCID: PMC7672643 DOI: 10.3390/ma13214807] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 12/16/2022]
Abstract
The egg yolk plasma (EYP)-a translucent fraction of the egg yolk (EY) obtained by centrifugation-was tested as a developmentally encouraging, cost-effective, biomaterial for salivary gland (SG) tissue engineering. To find optimal incubating conditions for both the human NS-SV-AC SG acinar cell line and SG fibroblasts, cells were stained with Live/Dead®. The cellular contents of 96-well plates were analyzed by high content screening image analysis. Characteristically, the EYP biomaterial had lipid and protein content resembling the EY. On its own, the EYP was non-conducive to cell survival. EYP's pH of 6 mainly contributed to cell death. This was demonstrated by titrating EYP's pH with different concentrations of either commercial cell culture media, NaOH, or egg white (EW). These additives improved SG mesenchymal and epithelial cell survival. The best combinations were EYP diluted with (1) 70% commercial medium, (2) 0.02 M NaOH, or (3) 50% EW. Importantly, commercial medium-free growth was obtained with EYP + NaOH or EYP + EW. Furthermore, 3D cultures were obtained as a result of EW's gelatinous properties. Here, the isolation, characterization, and optimization of three EYP-based biomaterial combinations are shown; two were free of commercial medium or supplements and supported both SG cells' survival.
Collapse
Affiliation(s)
| | - Simon D. Tran
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montréal, QC H3A 2B2, Canada;
| |
Collapse
|
9
|
D’Agostino C, Elkashty OA, Chivasso C, Perret J, Tran SD, Delporte C. Insight into Salivary Gland Aquaporins. Cells 2020; 9:cells9061547. [PMID: 32630469 PMCID: PMC7349754 DOI: 10.3390/cells9061547] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 12/18/2022] Open
Abstract
The main role of salivary glands (SG) is the production and secretion of saliva, in which aquaporins (AQPs) play a key role by ensuring water flow. The AQPs are transmembrane channel proteins permeable to water to allow water transport across cell membranes according to osmotic gradient. This review gives an insight into SG AQPs. Indeed, it gives a summary of the expression and localization of AQPs in adult human, rat and mouse SG, as well as of their physiological role in SG function. Furthermore, the review provides a comprehensive view of the involvement of AQPs in pathological conditions affecting SG, including Sjögren's syndrome, diabetes, agedness, head and neck cancer radiotherapy and SG cancer. These conditions are characterized by salivary hypofunction resulting in xerostomia. A specific focus is given on current and future therapeutic strategies aiming at AQPs to treat xerostomia. A deeper understanding of the AQPs involvement in molecular mechanisms of saliva secretion and diseases offered new avenues for therapeutic approaches, including drugs, gene therapy and tissue engineering. As such, AQP5 represents a potential therapeutic target in different strategies for the treatment of xerostomia.
Collapse
Affiliation(s)
- Claudia D’Agostino
- Laboratory of Pathophysiological and Nutritional Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, 808 Route de Lennik, Blg G/E CP 611, B-1070 Brussels, Belgium; (C.D.); (C.C.); (J.P.)
| | - Osama A. Elkashty
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, QC H3A 0C7, Canada; (O.A.E.); (S.D.T.)
- Oral Pathology Department, Faculty of Dentistry, Mansoura University, 35516 Mansoura, Egypt
| | - Clara Chivasso
- Laboratory of Pathophysiological and Nutritional Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, 808 Route de Lennik, Blg G/E CP 611, B-1070 Brussels, Belgium; (C.D.); (C.C.); (J.P.)
| | - Jason Perret
- Laboratory of Pathophysiological and Nutritional Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, 808 Route de Lennik, Blg G/E CP 611, B-1070 Brussels, Belgium; (C.D.); (C.C.); (J.P.)
| | - Simon D. Tran
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, QC H3A 0C7, Canada; (O.A.E.); (S.D.T.)
| | - Christine Delporte
- Laboratory of Pathophysiological and Nutritional Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, 808 Route de Lennik, Blg G/E CP 611, B-1070 Brussels, Belgium; (C.D.); (C.C.); (J.P.)
- Correspondence: ; Tel.: +32-2-5556210
| |
Collapse
|
10
|
Abstract
This chapter focuses on the culture of primary human cells from the salivary glands, typically parotid but also submandibular, where specialized acinar cells produce most of the components found in saliva and the intercalated ducts followed by striated ducts transport saliva to the oral cavity. Compared to many other epithelial cells, the zymogen-filled salivary acinar cells are very fragile, hence specialized techniques are needed to isolate and culture them. To reestablish the function of implantable 3D reassembled glands using tissue engineering approaches, it is critical to culture these cells in human-based matrices that permit them to move, reassemble, interconnect, and establish proper polarity by producing a basement membrane. Our team is working to develop a biologically based, implantable salivary gland replacement tissue for head and neck cancer patients suffering from post-radiation xerostomia using a "bottom up" reassembly paradigm. We use specialized extracellular matrix and growth factor supplemented hyaluronate hydrogels to promote reassembly of human salivary stem/progenitor cells (hS/PCs) isolated after surgical resection, a method we describe in this chapter. Cell-specific biomarkers are used to track the formation of the three major epithelial cell types comprising the salivary gland: acinar, ductal, and myoepithelial.
Collapse
|
11
|
Su X, Fang D, Liu Y, Ramamoorthi M, Zeitouni A, Chen W, Tran SD. Three-dimensional organotypic culture of human salivary glands: the slice culture model. Oral Dis 2016; 22:639-48. [PMID: 27214128 DOI: 10.1111/odi.12508] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/05/2016] [Accepted: 05/16/2016] [Indexed: 12/21/2022]
Abstract
OBJECTIVE A challenge in studying human salivary glands is to maintain the cells ex vivo in their three-dimensional (3D) morphology with an intact native extracellular matrix (ECM) environment. This paper established a human salivary 3D organotypic slice culture model that could maintain its physiological functions as well as allowing a direct visualization of the cells. METHODS Human salivary biopsies from six patients were embedded in agarose and submerged in cold buffer for thin (50 μm) sectioning using a vibratome. 'Salivary slices' were mechanically supported by a porous membrane insert that allowed an air-liquid interface and cultured in serum-free culture media. Cell viability, proliferation, apoptosis, physiological functions, and gene expression were assessed during 14 days of culture. RESULTS Human salivary slices maintained cell survival (70-40%) and proliferation (6-17%) for 14 days ex vivo. The protein secretory (amylase) function decreased, but fluid (intracellular calcium mobilization) function was maintained. Acinar, ductal, and myoepithelial cell populations survived and maintained their 3D organization within the slice culture model. CONCLUSION The human salivary slice culture model kept cells alive ex vivo for 14 days as well as maintaining their 3D morphology and physiological functions.
Collapse
Affiliation(s)
- X Su
- Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, QC, Canada.,College of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
| | - D Fang
- Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - Y Liu
- Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - M Ramamoorthi
- Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - A Zeitouni
- Department of Otolaryngology, McGill University Health Center, McGill University, Montreal, QC, Canada
| | - W Chen
- College of Stomatology, Guangxi Medical University, Nanning, Guangxi, China.
| | - S D Tran
- Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, QC, Canada.
| |
Collapse
|
12
|
Ozdemir T, Fowler EW, Hao Y, Ravikrishnan A, Harrington DA, Witt RL, Farach-Carson MC, Pradhan-Bhatt S, Jia X. Biomaterials-based strategies for salivary gland tissue regeneration. Biomater Sci 2016; 4:592-604. [PMID: 26878077 DOI: 10.1039/c5bm00358j] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The salivary gland is a complex, secretory tissue that produces saliva and maintains oral homeostasis. Radiation induced salivary gland atrophy, manifested as "dry mouth" or xerostomia, poses a significant clinical challenge. Tissue engineering recently has emerged as an alternative, long-term treatment strategy for xerostomia. In this review, we summarize recent efforts towards the development of functional and implantable salivary glands utilizing designed polymeric substrates or synthetic matrices/scaffolds. Although the in vitro engineering of a complex implantable salivary gland is technically challenging, opportunities exist for multidisciplinary teams to assemble implantable and secretory tissue modules by combining stem/progenitor cells found in the adult glands with biomimetic and cell-instructive materials.
Collapse
Affiliation(s)
- Tugba Ozdemir
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Hegyesi O, Földes A, Bori E, Németh Z, Barabás J, Steward MC, Varga G. Evidence for Active Electrolyte Transport by Two-Dimensional Monolayers of Human Salivary Epithelial Cells. Tissue Eng Part C Methods 2015. [PMID: 26200762 DOI: 10.1089/ten.tec.2014.0614] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Functional reconstruction of lost tissue by regenerative therapy of salivary glands would be of immense benefit following radiotherapy or in the treatment of Sjogren's syndrome. The purpose of this study was to develop primary cultures of human salivary gland cells as potential regenerative resources and to characterize their acinar/ductal phenotype using electrophysiological measurements of ion transport. Human salivary gland cultures were prepared either from adherent submandibular gland cells (huSMG) or from mixed adherent and nonadherent cells (PTHSG) and were cultivated in Hepato-STIM or minimum essential medium (MEM). Expression of key epithelial marker proteins was determined by quantitative reverse transcription polymerase chain reaction (RT-PCR). Transepithelial electrical resistance (TER) was monitored following seeding the cells on Transwell membranes. Transepithelial ion transport was estimated by short-circuit current (Isc) measurements in an Ussing chamber. Both huSMG and PTHSG cells showed epithelial characteristics when cultivated in Hepato-STIM, while fibroblast-like elements dominated in MEM. Compared to intact tissue, cultivation of the cells resulted in substantial decreases in AQP5 and NKCC1 expression and moderate increases in claudin-1 and ENaC expression. Both cultures achieved high TER and transepithelial electrolyte movement in Hepato-STIM, but not in MEM. The Isc was substantially reduced by basolateral Cl(-) and bicarbonate withdrawal, indicating the involvement of basolateral-to-apical anion transport, and by the blockade of apical ENaC by amiloride, indicating the involvement of apical-to-basolateral Na(+) transport. An almost complete inhibition was observed following simultaneous ENaC block and withdrawal of the two anions. Isc was enhanced by either apical adenosine triphosphate (ATP) or basolateral carbachol application, but not by forskolin, confirming the expected role of Ca(2+)-activated regulatory pathways in electrolyte secretion. Inhibition of basolateral NKCC1 by bumetanide reduced the response to ATP, indicating the active involvement of this transporter in Cl(-) secretion. In conclusion, we have demonstrated that both PTHSG and huSMG primary cultures cultivated in Hepato-STIM form two-dimensional monolayers in vitro on permeable supports and achieve active vectorial transepithelial electrolyte transport. The presence of both basolateral-to-apical anion fluxes and an apical-to-basolateral Na(+) flux indicates both acinar and ductal characteristics. With further refinement, this model should provide a firm basis for new interventions to correct salivary gland dysfunction.
Collapse
Affiliation(s)
- Orsolya Hegyesi
- 1 Department of Oral Biology, Semmelweis University , Budapest, Hungary
| | - Anna Földes
- 1 Department of Oral Biology, Semmelweis University , Budapest, Hungary
| | - Erzsébet Bori
- 1 Department of Oral Biology, Semmelweis University , Budapest, Hungary
| | - Zsolt Németh
- 2 Department of Oro-Maxillofacial Surgery and Stomatology, Semmelweis University , Budapest, Hungary
| | - József Barabás
- 2 Department of Oro-Maxillofacial Surgery and Stomatology, Semmelweis University , Budapest, Hungary
| | - Martin C Steward
- 3 Faculty of Life Sciences, University of Manchester , Manchester, United Kingdom
| | - Gábor Varga
- 1 Department of Oral Biology, Semmelweis University , Budapest, Hungary
| |
Collapse
|
14
|
XIONG XUEYAN, SHI XIUJUAN, CHEN FENGSHAN. Human adipose tissue‑derived stem cells alleviate radiation‑induced xerostomia. Int J Mol Med 2014; 34:749-55. [PMID: 25017690 PMCID: PMC4121343 DOI: 10.3892/ijmm.2014.1837] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 06/17/2014] [Indexed: 12/13/2022] Open
Abstract
Hyposalivation is an intractable side‑effect of radiotherapy for head and neck cancer. It is caused by the irreversible loss of acinar cells and decreased saliva secretion. However, this situation severely compromises the quality of life of affected patients. Currently, there is no effective treatment for this condition. In the present study, we developed a novel approach to regenerate the function of the irradiation‑damaged salivary glands using human adipose tissue‑derived stem cell (hADSC) intraglandular transplantation. ZsGreen‑labeled hADSCs were adoptively transferred into Sprague‑Dawley (SD) rat submandibular glands immediately following exposure to 18 Gy irradiation. A higher salivary flow rate (SFR) was observed in the hADSC‑treated group. Tissue improvement, including angiogenesis, anti‑apoptosis and anti‑fibrosis, was detected in the hADSC‑treated glands as compared to the untreated glands. Quantitative reverse transcription PCR (RT-qPCR) revealed a significantly higher expression of vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF), cyclooxygenase‑2 (COX‑2) and matrix metalloproteinase‑2 (MMP‑2) in the hADSC‑treated rats. Furthermore, immunohistochemical analysis indicated that the hADSCs had differentiated into acinar and ductal cells in the rat submandibular glands. Thus, our results suggest that hADSCs are able to regenerate irradiation‑damaged salivary glands through glandular transplantation.
Collapse
Affiliation(s)
- XUEYAN XIONG
- Laboratory of Oral Biomedical Science and Translational Medicine, Department of Orthodontics, School of Stomatology, Tongji University, Shanghai 200072, P.R. China
| | - XIUJUAN SHI
- School of Medicine, Tongji University, Shanghai 200092, P.R. China
| | - FENGSHAN CHEN
- Laboratory of Oral Biomedical Science and Translational Medicine, Department of Orthodontics, School of Stomatology, Tongji University, Shanghai 200072, P.R. China
| |
Collapse
|
15
|
Tran SD, Liu Y, Xia D, Maria OM, Khalili S, Wang RWJ, Quan VH, Hu S, Seuntjens J. Paracrine effects of bone marrow soup restore organ function, regeneration, and repair in salivary glands damaged by irradiation. PLoS One 2013; 8:e61632. [PMID: 23637870 PMCID: PMC3634855 DOI: 10.1371/journal.pone.0061632] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 03/11/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND There are reports that bone marrow cell (BM) transplants repaired irradiated salivary glands (SGs) and re-established saliva secretion. However, the mechanisms of action behind these reports have not been elucidated. METHODS To test if a paracrine mechanism was the main effect behind this reported improvement in salivary organ function, whole BM cells were lysed and its soluble intracellular contents (termed as "BM Soup") injected into mice with irradiation-injured SGs. The hypothesis was that BM Soup would protect salivary cells, increase tissue neovascularization, function, and regeneration. Two minor aims were also tested a) comparing two routes of delivering BM Soup, intravenous (I.V.) versus intra-glandular injections, and b) comparing the age of the BM Soup's donors. The treatment-comparison group consisted of irradiated mice receiving injections of living whole BM cells. Control mice received irradiation and injections of saline or sham-irradiation. All mice were followed for 8 weeks post-irradiation. RESULTS BM Soup restored salivary flow rates to normal levels, protected salivary acinar, ductal, myoepithelial, and progenitor cells, increased cell proliferation and blood vessels, and up-regulated expression of tissue remodeling/repair/regenerative genes (MMP2, CyclinD1, BMP7, EGF, NGF). BM Soup was as an efficient therapeutic agent as injections of live BM cells. Both intra-glandular or I.V. injections of BM Soup, and from both young and older mouse donors were as effective in repairing irradiated SGs. The intra-glandular route reduced injection frequency/dosage by four-fold. CONCLUSION BM Soup, which contains only the cell by-products, can be advantageously used to repair irradiation-damaged SGs rather than transplanting whole live BM cells which carry the risk of differentiating into unwanted/tumorigenic cell types in SGs.
Collapse
Affiliation(s)
- Simon D. Tran
- Faculty of Dentistry, McGill University, Montreal, Quebec City, Canada
- * E-mail:
| | - Younan Liu
- Faculty of Dentistry, McGill University, Montreal, Quebec City, Canada
| | - Dengsheng Xia
- Faculty of Dentistry, McGill University, Montreal, Quebec City, Canada
| | - Ola M. Maria
- Faculty of Dentistry, McGill University, Montreal, Quebec City, Canada
| | - Saeed Khalili
- Faculty of Dentistry, McGill University, Montreal, Quebec City, Canada
| | | | - Vu-Hung Quan
- Centre Hospitalier de l’Université de Montréal, Montreal, Quebec City, Canada
| | - Shen Hu
- School of Dentistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Jan Seuntjens
- Department of Oncology, Medical Physics Unit, McGill University, Montreal, Quebec City, Canada
| |
Collapse
|
16
|
Hsu J, Di Pasquale G, Harunaga J, Onodera T, Hoffman M, Chiorini J, Yamada K. Viral gene transfer to developing mouse salivary glands. J Dent Res 2012; 91:197-202. [PMID: 22095070 PMCID: PMC3261122 DOI: 10.1177/0022034511429346] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 09/30/2011] [Accepted: 10/03/2011] [Indexed: 11/16/2022] Open
Abstract
Branching morphogenesis is essential for the formation of salivary glands, kidneys, lungs, and many other organs during development, but the mechanisms underlying this process are not adequately understood. Microarray and other gene expression methods have been powerful approaches for identifying candidate genes that potentially regulate branching morphogenesis. However, functional validation of the proposed roles for these genes has been severely hampered by the absence of efficient techniques to genetically manipulate cells within embryonic organs. Using ex vivo cultured embryonic mouse submandibular glands (SMGs) as models to study branching morphogenesis, we have identified new vectors for viral gene transfer with high efficiency and cell-type specificity to developing SMGs. We screened adenovirus, lentivirus, and 11 types of adeno-associated viruses (AAV) for their ability to transduce embryonic day 12 or 13 SMGs. We identified two AAV types, AAV2 and bovine AAV (BAAV), that are selective in targeting expression differentially to SMG epithelial and mesenchymal cell populations, respectively. Transduction of SMG epithelia with self-complementary (sc) AAV2 expressing fibroblast growth factor 7 (Fgf7) supported gland survival and enhanced SMG branching morphogenesis. Our findings represent, to our knowledge, the first successful selective gene targeting to epithelial vs. mesenchymal cells in an organ undergoing branching morphogenesis.
Collapse
Affiliation(s)
- J.C. Hsu
- Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Building 30, Room 426, 30 Convent Drive, MSC 4370, Bethesda, MD 20892-4370, USA
| | - G. Di Pasquale
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Building 30, Room 426, 30 Convent Drive, MSC 4370, Bethesda, MD 20892-4370, USA
| | - J.S. Harunaga
- Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Building 30, Room 426, 30 Convent Drive, MSC 4370, Bethesda, MD 20892-4370, USA
| | - T. Onodera
- Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Building 30, Room 426, 30 Convent Drive, MSC 4370, Bethesda, MD 20892-4370, USA
| | - M.P. Hoffman
- Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Building 30, Room 426, 30 Convent Drive, MSC 4370, Bethesda, MD 20892-4370, USA
| | - J.A. Chiorini
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Building 30, Room 426, 30 Convent Drive, MSC 4370, Bethesda, MD 20892-4370, USA
| | - K.M. Yamada
- Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Building 30, Room 426, 30 Convent Drive, MSC 4370, Bethesda, MD 20892-4370, USA
| |
Collapse
|
17
|
Maria OM, Maria AM, Cai Y, Tran SD. Cell surface markers CD44 and CD166 localized specific populations of salivary acinar cells. Oral Dis 2011; 18:162-8. [PMID: 21973167 DOI: 10.1111/j.1601-0825.2011.01858.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVE Experimental approaches tested to date for functional restoration of salivary glands (SGs) are tissue engineering, gene transfer, and cell therapy. To further develop these therapies, identifying specific cell surface markers for the isolation of salivary acinar cells is needed. To test a panel of cell surface markers [used in the isolation of mesenchymal stem cells, (MSCs)] for the localization of salivary acinar cells. MATERIALS Human submandibular and parotid glands were immunostained with a panel of MSC markers and co-localized with salivary acinar cell differentiation markers [α-amylase, Na-K-2Cl cotransporter-1, aquaporin-5 (AQP5)]. Additional cell markers were also used, such as α-smooth muscle actin (to identify myoepithelial cells), cytokeratin-5 (basal ductal cells), and c-Kit (progenitor cells). RESULTS CD44 identified serous acini, while CD166 identified mucous acini. Cytokeratin-5 identified basal duct cells and 50% of myoepithelial cells. None of the remaining cell surface markers (Stro-1, CD90, CD106, CD105, CD146, CD19, CD45, and c-Kit) were expressed in any human salivary cell. CONCLUSIONS CD44 and CD166 localized human salivary serous and mucous acinar cells, respectively. These two cell surface markers will be useful in the isolation of specific populations of salivary acinar cells.
Collapse
Affiliation(s)
- O M Maria
- Faculty of Dentistry, McGill University, Montreal, Canada
| | | | | | | |
Collapse
|
18
|
Maria OM, Tran SD. Human mesenchymal stem cells cultured with salivary gland biopsies adopt an epithelial phenotype. Stem Cells Dev 2011; 20:959-67. [PMID: 21187001 DOI: 10.1089/scd.2010.0214] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Sjogren's syndrome and radiotherapy for head and neck cancer result in severe xerostomia and irreversible salivary gland damage for which no effective treatment is currently available. Cell culture methods of primary human salivary gland epithelial cells (huSGs) are slow and cannot provide a sufficient number of cells. In addition, the majority of cultured huSGs are of a ductal phenotype and thus not fluid/saliva secretory cells. Some reports indicated that mesenchymal stem cells (MSCs) possessed the potential to differentiate into epithelial cells. To test this hypothesis with huSGs, a coculture system containing 2 chambers separated by a polyester membrane was used to study the capacity of human MSCs to adopt an epithelial phenotype when cocultured with human salivary gland biopsies. Results were that 20%-40% of cocultured MSCs expressed tight junction proteins [claudin-1 (CLDN-1), -2, -3, and -4; occludin; junctional adhesion molecule-A; and zonula occludens-1] as well as other epithelial markers [aquaporin-5, α-amylase (α-AMY), and E-cadherin], and generated a higher transepithelial electrical resistance. Electron microscopy demonstrated that these MSCs had comparable cellular structures to huSGs, such as tight junction structures and numerous secretory granules. Quantitative real time (RT)-polymerase chain reaction revealed an upregulation of several salivary genes (aquaporin-5, AMY, and CLDN-2). Moreover, the amounts of α-AMY detected in cocultured MSCs were comparable to those detected in huSGs control cultures. These data suggest that cocultured MSCs can demonstrate a temporary change into a salivary gland acinar phenotype.
Collapse
Affiliation(s)
- Ola M Maria
- Faculty of Dentistry, McGill University, Montreal, Canada
| | | |
Collapse
|
19
|
Sumita Y, Liu Y, Khalili S, Maria OM, Xia D, Key S, Cotrim AP, Mezey E, Tran SD. Bone marrow-derived cells rescue salivary gland function in mice with head and neck irradiation. Int J Biochem Cell Biol 2011; 43:80-7. [PMID: 20933096 PMCID: PMC3403826 DOI: 10.1016/j.biocel.2010.09.023] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2010] [Revised: 09/03/2010] [Accepted: 09/28/2010] [Indexed: 02/07/2023]
Abstract
Treatment for most patients with head and neck cancers includes ionizing radiation. A consequence of this treatment is irreversible damage to salivary glands (SGs), which is accompanied by a loss of fluid-secreting acinar-cells and a considerable decrease of saliva output. While there are currently no adequate conventional treatments for this condition, cell-based therapies are receiving increasing attention to regenerate SGs. In this study, we investigated whether bone marrow-derived cells (BMDCs) can differentiate into salivary epithelial cells and restore SG function in head and neck irradiated mice. BMDCs from male mice were transplanted into the tail-vein of 18Gy-irradiated female mice. Salivary output was increased in mice that received BMDCs transplantation at week 8 and 24 post-irradiation. At 24 weeks after irradiation (IR), harvested SGs (submandibular and parotid glands) of BMDC-treated mice had greater weights than those of non-treated mice. Histological analysis shows that SGs of treated mice demonstrated an increased level of tissue regenerative activity such as blood vessel formation and cell proliferation, while apoptotic activity was increased in non-transplanted mice. The expression of stem cell markers (Sca-1 or c-kit) was detected in BMDC-treated SGs. Finally, we detected an increased ratio of acinar-cell area and approximately 9% of Y-chromosome-positive (donor-derived) salivary epithelial cells in BMDC-treated mice. We propose here that cell therapy using BMDCs can rescue the functional damage of irradiated SGs by direct differentiation of donor BMDCs into salivary epithelial cells.
Collapse
Affiliation(s)
- Yoshinori Sumita
- Faculty of Dentistry, McGill University, Montreal, Quebec, Canada
- Department of Regenerative Oral Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Younan Liu
- Faculty of Dentistry, McGill University, Montreal, Quebec, Canada
| | - Saeed Khalili
- Faculty of Dentistry, McGill University, Montreal, Quebec, Canada
| | - Ola M. Maria
- Faculty of Dentistry, McGill University, Montreal, Quebec, Canada
| | - Dengsheng Xia
- Faculty of Dentistry, McGill University, Montreal, Quebec, Canada
| | - Sharon Key
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Ana P. Cotrim
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Eva Mezey
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Simon D. Tran
- Faculty of Dentistry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
20
|
Tran SD, Sumita Y, Khalili S. Bone marrow-derived cells: A potential approach for the treatment of xerostomia. Int J Biochem Cell Biol 2010; 43:5-9. [PMID: 21035563 DOI: 10.1016/j.biocel.2010.10.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 08/21/2010] [Accepted: 10/19/2010] [Indexed: 11/29/2022]
Abstract
Transplantations of bone marrow-derived cells (BMDCs) are traditionally used for hematologic diseases, but there are increasing numbers of clinical trials using BMDC treatments for non-hematologic disorders, including autoimmune diseases. BMDCs are recently reported to improve organ functions. This paper will review available reports supporting the role of BMDCs in reducing xerostomia (i.e. re-establishing salivary gland functions) due to head and neck irradiation for cancer therapies and in Sjögren's syndrome. There are reports that BMDCs provide a beneficial effect on the saliva production. BMDCs positively affect blood vessels stability and regeneration in irradiated salivary glands. Also, BMDCs provide an immunomodulatory activity in mice with Sjögren's-like disease. While the exact mechanisms by which BMDCs improve organ functions remain controversial, there is preliminary evidence that a combination of them (such as cell transdifferentiation, vasculogenesis, and paracrine effect) occur in salivary glands.
Collapse
Affiliation(s)
- Simon D Tran
- McGill University, Faculty of Dentistry, Montreal, Canada.
| | | | | |
Collapse
|
21
|
Redman RS. On approaches to the functional restoration of salivary glands damaged by radiation therapy for head and neck cancer, with a review of related aspects of salivary gland morphology and development. Biotech Histochem 2009; 83:103-30. [PMID: 18828044 DOI: 10.1080/10520290802374683] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Radiation therapy for cancer of the head and neck can devastate the salivary glands and partially devitalize the mandible and maxilla. As a result, saliva production is drastically reduced and its quality adversely altered. Without diligent home and professional care, the teeth are subject to rapid destruction by caries, necessitating extractions with attendant high risk of necrosis of the supporting bone. Innovative techniques in delivery of radiation therapy and administration of drugs that selectively protect normal tissues can reduce significantly the radiation effects on salivary glands. Nonetheless, many patients still suffer severe oral dryness. I review here the functional morphology and development of salivary glands as these relate to approaches to preventing and restoring radiation-induced loss of salivary function. The acinar cells are responsible for most of the fluid and organic material in saliva, while the larger ducts influence the inorganic content. A central theme of this review is the extent to which the several types of epithelial cells in salivary glands may be pluripotential and the circumstances that may influence their ability to replace cells that have been lost or functionally inactivated due to the effects of radiation. The evidence suggests that the highly differentiated cells of the acini and large ducts of mature glands can replace themselves except when the respective pools of available cells are greatly diminished via apoptosis or necrosis owing to severely stressful events. Under the latter circumstances, relatively undifferentiated cells in the intercalated ducts proliferate and redifferentiate as may be required to replenish the depleted pools. It is likely that some, if not many, acinar cells may de-differentiate into intercalated duct-like cells and thus add to the pool of progenitor cells in such situations. If the stress is heavy doses of radiation, however, the result is not only the death of acinar cells, but also a marked decline in functional differentiation and proliferative capacity of all of the surviving cells, including those with progenitor capability. Restoration of gland function, therefore, seems to require increasing the secretory capacity of the surviving cells, or replacing the acinar cells and their progenitors either in the existing gland remnants or with artificial glands.
Collapse
Affiliation(s)
- R S Redman
- Oral Pathology Research Laboratory, Department of Veterans Affairs Medical Center, Washington, DC, USA.
| |
Collapse
|
22
|
Slavkin HC. What the future holds for ectodermal dysplasias: Future research and treatment directions. Am J Med Genet A 2009; 149A:2071-4. [DOI: 10.1002/ajmg.a.32862] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
23
|
Lombaert IMA, Brunsting JF, Wierenga PK, Faber H, Stokman MA, Kok T, Visser WH, Kampinga HH, de Haan G, Coppes RP. Rescue of salivary gland function after stem cell transplantation in irradiated glands. PLoS One 2008; 3:e2063. [PMID: 18446241 PMCID: PMC2329592 DOI: 10.1371/journal.pone.0002063] [Citation(s) in RCA: 329] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Accepted: 03/12/2008] [Indexed: 12/24/2022] Open
Abstract
Head and neck cancer is the fifth most common malignancy and accounts for 3% of all new cancer cases each year. Despite relatively high survival rates, the quality of life of these patients is severely compromised because of radiation-induced impairment of salivary gland function and consequential xerostomia (dry mouth syndrome). In this study, a clinically applicable method for the restoration of radiation-impaired salivary gland function using salivary gland stem cell transplantation was developed. Salivary gland cells were isolated from murine submandibular glands and cultured in vitro as salispheres, which contained cells expressing the stem cell markers Sca-1, c-Kit and Musashi-1. In vitro, the cells differentiated into salivary gland duct cells and mucin and amylase producing acinar cells. Stem cell enrichment was performed by flow cytrometric selection using c-Kit as a marker. In vitro, the cells differentiated into amylase producing acinar cells. In vivo, intra-glandular transplantation of a small number of c-Kit+ cells resulted in long-term restoration of salivary gland morphology and function. Moreover, donor-derived stem cells could be isolated from primary recipients, cultured as secondary spheres and after re-transplantation ameliorate radiation damage. Our approach is the first proof for the potential use of stem cell transplantation to functionally rescue salivary gland deficiency.
Collapse
Affiliation(s)
- Isabelle M. A. Lombaert
- Section Radiation and Stress Cell Biology, Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Section Stem Cell Biology, Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jeanette F. Brunsting
- Section Radiation and Stress Cell Biology, Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Pieter K. Wierenga
- Section Stem Cell Biology, Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Hette Faber
- Section Radiation and Stress Cell Biology, Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Monique A. Stokman
- Department of Oral and Maxillofacial Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Tineke Kok
- Section Radiation and Stress Cell Biology, Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Willy H. Visser
- Section Radiation and Stress Cell Biology, Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Section Stem Cell Biology, Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Harm H. Kampinga
- Section Radiation and Stress Cell Biology, Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Gerald de Haan
- Section Stem Cell Biology, Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Robert P. Coppes
- Section Radiation and Stress Cell Biology, Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- * E-mail:
| |
Collapse
|
24
|
Affiliation(s)
- Harold C Slavkin
- School of Dentistry, University of Southern California, Los Angeles, California, USA
| | | |
Collapse
|