1
|
Śmiga M, Ślęzak P, Olczak T. Comparative analysis of Porphyromonas gingivalis A7436 and ATCC 33277 strains reveals differences in the expression of heme acquisition systems. Microbiol Spectr 2024; 12:e0286523. [PMID: 38289063 PMCID: PMC10913741 DOI: 10.1128/spectrum.02865-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/15/2023] [Indexed: 03/06/2024] Open
Abstract
Porphyromonas gingivalis strains exhibit different phenotypes in vitro, different virulence potential in animal models, and different associations with human diseases, with strains classified as virulent/more virulent (e.g., A7436 and W83) or as less virulent/avirulent (e.g., ATCC 33277). In this study, we comparatively analyzed the A7436 and ATCC 33277 strains to better understand their variability. Global gene expression analysis in response to heme and iron limitation revealed more pronounced differences in the A7436 than in the ATCC 33277 strain; however, in both strains, the largest changes were observed in genes encoding hypothetical proteins, genes whose products participate in energy metabolism, and in genes encoding proteins engaged in transport and binding proteins. Our results confirmed that variability between P. gingivalis strains is due to differences in the arrangement of their genomes. Analysis of gene expression of heme acquisition systems demonstrated that not only the availability of iron and heme in the external environment but also the ability to store iron intracellularly can influence the P. gingivalis phenotype. Therefore, we assume that differences in virulence potential may also be due to differences in the production of systems involved in iron and heme acquisition, mainly the Hmu system. In addition, our study showed that hemoglobin, in a concentration-dependent manner, differentially influences the virulence potential of P. gingivalis strains. We conclude that iron and heme homeostasis may add to the variability observed between P. gingivalis strains. IMPORTANCE Periodontitis belongs to a group of multifactorial diseases, characterized by inflammation and destruction of tooth-supporting tissues. P. gingivalis is one of the most important microbial factors involved in the initiation and progression of periodontitis. To survive in the host, the bacterium must acquire heme as a source of iron and protoporphyrin IX. P. gingivalis strains respond differently to changing iron and heme concentrations, which may be due to differences in the expression of systems involved in iron and heme acquisition. The ability to accumulate iron intracellularly, being different in more and less virulent P. gingivalis strains, may influence their phenotypes, production of virulence factors (including proteins engaged in heme acquisition), and virulence potential of this bacterium.
Collapse
Affiliation(s)
- Michał Śmiga
- Laboratory of Medical Biology, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Paulina Ślęzak
- Laboratory of Medical Biology, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Teresa Olczak
- Laboratory of Medical Biology, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| |
Collapse
|
2
|
Fujimoto M, Naiki Y, Sakae K, Iwase T, Miwa N, Nagano K, Nawa H, Hasegawa Y. Structural and antigenic characterization of a novel genotype of Mfa1 fimbriae in Porphyromonas gingivalis. J Oral Microbiol 2023; 15:2215551. [PMID: 37223052 PMCID: PMC10201998 DOI: 10.1080/20002297.2023.2215551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/25/2023] Open
Abstract
Background Mfa1 fimbriae of the periodontal pathogen Porphyromonas gingivalis are responsible for biofilm formation and comprise five proteins: Mfa1-5. Two major genotypes, mfa170 and mfa153, encode major fimbrillin. The mfa170 genotype is further divided into the mfa170A and mfa170B subtypes. The properties of the novel mfa170B remain unclear. Methods Fimbriae were purified from P. gingivalis strains JI-1 (mfa170A), 1439 (mfa170B), and Ando (mfa153), and their components and their structures were analyzed. Protein expression and variability in the antigenic specificity of fimbrillins were compared using Coomassie staining and western blotting using polyclonal antibodies against Mfa170A, Mfa170B, and Mfa153 proteins. Cell surface expression levels of fimbriae were analyzed by filtration enzyme-linked immunosorbent assays. Results The composition and structures of the purified Mfa1 fimbriae of 1439 was similar to that of JI-1. However, each Mfa1 protein of differential subtype/genotype was specifically detected by western blotting. Mfa170B fimbriae were expressed in several strains such as 1439, JKG9, B42, 1436, and Kyudai-3. Differential protein expression and antigenic heterogeneities were detected in Mfa2-5 between strains. Conclusion Mfa1 fimbriae from the mfa170A and mfa170B genotypes indicated an antigenic difference suggesting the mfa170B, is to be utilized for the novel classification of P. gingivalis.
Collapse
Affiliation(s)
- Miyuna Fujimoto
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
- Department of Pediatric Dentistry, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Yoshikazu Naiki
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Kotaro Sakae
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Tomohiko Iwase
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Naoyoshi Miwa
- Department of Pediatric Dentistry, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Keiji Nagano
- Division of Microbiology, Department of Oral Biology, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Hiroyuki Nawa
- Department of Pediatric Dentistry, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Yoshiaki Hasegawa
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| |
Collapse
|
3
|
Suzuki Y, Kikuchi T, Goto H, Takayanagi Y, Kawamura S, Sawada N, Naiki Y, Kondo H, Hayashi JI, Hasegawa Y, Mitani A. Porphyromonas gingivalis Fimbriae Induce Osteoclastogenesis via Toll-like Receptors in RAW264 Cells. Int J Mol Sci 2022; 23:ijms232315293. [PMID: 36499621 PMCID: PMC9740495 DOI: 10.3390/ijms232315293] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
The effect of Mfa1 fimbriae of Porphyromonas gingivalis on the progression of bone resorption remains unclear, especially compared with another fimbriae, FimA. We investigated the effect of Mfa1 on osteoclastogenesis together with FimA. We also investigated the role of Toll-like receptors (TLRs) in Mfa1 recognition during osteoclast differentiation. Receptor activator of nuclear factor κβ ligand (RANKL)-prestimulated RAW264 cells were used to examine the effects of purified Mfa1 fimbriae. The number of osteoclasts was examined by tartrate-resistant acid phosphate (TRAP) staining, osteoclast activation was investigated by bone resorption assays, and gene expression of differentiation markers was examined by quantitative real-time PCR. Transfection of Tlr2 and Tlr4 siRNAs into RAW264 cells was also employed and their role in Mfa1 recognition was investigated. Mfa1 effectively induced the formation of TRAP-positive multinucleated cells and activated osteoclasts. Mfa1 also increased gene expression of Acp5, Mmp9, and Ctsk in RANKL-prestimulated RAW264 cells compared with the control. The osteoclastogenesis induced by Mfa1 was significantly decreased in cells transfected with Tlr2 or Tlr4 siRNAs compared with control siRNA. Our results revealed the role of Mfa1 fimbriae in osteoclastogenesis that may contribute to the partial elucidation of the mechanisms of periodontal disease progression and the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Yuki Suzuki
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan
| | - Takeshi Kikuchi
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan
- Correspondence: ; Tel.: +81-52-759-2150
| | - Hisashi Goto
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan
| | - Yuhei Takayanagi
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan
| | - Shotaro Kawamura
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan
| | - Noritaka Sawada
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan
| | - Yoshikazu Naiki
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan
| | - Hisataka Kondo
- Department of Pharmacology, School of Dentistry, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan
| | - Jun-ichiro Hayashi
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan
| | - Yoshiaki Hasegawa
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan
| | - Akio Mitani
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan
| |
Collapse
|
4
|
Claesson R, Johansson A, Belibasakis GN. Clinical laboratory diagnostics in dentistry: Application of microbiological methods. FRONTIERS IN ORAL HEALTH 2022; 3:983991. [PMID: 36160119 PMCID: PMC9493047 DOI: 10.3389/froh.2022.983991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/10/2022] [Indexed: 12/05/2022] Open
Abstract
Diagnosis and treatment in dentistry are based on clinical examination of the patients. Given that the major oral diseases are of microbial biofilm etiology, it can be expected that performing microbiological analysis on samples collected from the patient could deliver supportive evidence to facilitate the decision-making process by the clinician. Applicable microbiological methods range from microscopy, to culture, to molecular techniques, which can be performed easily within dedicated laboratories proximal to the clinics, such as ones in academic dental institutions. Periodontal and endodontic infections, along with odontogenic abscesses, have been identified as conditions in which applied clinical microbiology may be beneficial for the patient. Administration of antimicrobial agents, backed by microbiological analysis, can yield more predictable treatment outcomes in refractory or early-occurring forms of periodontitis. Confirming a sterile root canal using a culture-negative sample during endodontic treatment may ensure the longevity of its outcome and prevent secondary infections. Susceptibility testing of samples obtained from odontogenic abscesses may facilitate the selection of the appropriate antimicrobial treatment to prevent further spread of the infection.
Collapse
Affiliation(s)
- Rolf Claesson
- Division of Oral Microbiology, Department of Odontology, Umeå University, Umeå, Sweden
- *Correspondence: Rolf Claesson
| | - Anders Johansson
- Division of Oral Microbiology, Department of Odontology, Umeå University, Umeå, Sweden
| | - Georgios N. Belibasakis
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
5
|
A quantitative framework reveals traditional laboratory growth is a highly accurate model of human oral infection. Proc Natl Acad Sci U S A 2022; 119:2116637119. [PMID: 34992142 PMCID: PMC8764681 DOI: 10.1073/pnas.2116637119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2021] [Indexed: 01/08/2023] Open
Abstract
Bacterial behavior and virulence during human infection is difficult to study and largely unknown, as our vast knowledge of infection microbiology is primarily derived from studies using in vitro and animal models. Here, we characterize the physiology of Porphyromonas gingivalis, a periodontal pathogen, in its native environment using 93 published metatranscriptomic datasets from periodontally healthy and diseased individuals. P. gingivalis transcripts were more abundant in samples from periodontally diseased patients but only above 0.1% relative abundance in one-third of diseased samples. During human infection, P. gingivalis highly expressed genes encoding virulence factors such as fimbriae and gingipains (proteases) and genes involved in growth and metabolism, indicating that P. gingivalis is actively growing during disease. A quantitative framework for assessing the accuracy of model systems showed that 96% of P. gingivalis genes were expressed similarly in periodontitis and in vitro midlogarithmic growth, while significantly fewer genes were expressed similarly in periodontitis and in vitro stationary phase cultures (72%) or in a murine abscess infection model (85%). This high conservation in gene expression between periodontitis and logarithmic laboratory growth is driven by overall low variance in P. gingivalis gene expression, relative to other pathogens including Pseudomonas aeruginosa and Staphylococcus aureus Together, this study presents strong evidence for the use of simple test tube growth as the gold standard model for studying P. gingivalis biology, providing biological relevance for the thousands of laboratory experiments performed with logarithmic phase P. gingivalis Furthermore, this work highlights the need to quantitatively assess the accuracy of model systems.
Collapse
|
6
|
Sakae K, Nagano K, Furuhashi M, Hasegawa Y. Diversity analysis of genes encoding Mfa1 fimbrial components in Porphyromonas gingivalis strains. PLoS One 2021; 16:e0255111. [PMID: 34310632 PMCID: PMC8313007 DOI: 10.1371/journal.pone.0255111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 07/08/2021] [Indexed: 12/18/2022] Open
Abstract
Porphyromonas gingivalis, a gram-negative anaerobic bacterium, is associated with the development of periodontal disease. The genetic diversity in virulence factors, such as adhesive fimbriae, among its strains affects the bacterial pathogenicity. P. gingivalis generally expresses two distinct types of fimbriae, FimA and Mfa1. Although the genetic diversity of fimA, encoding the major FimA fimbrilin protein, has been characterized, the genes encoding the Mfa1 fimbrial components, including the Mfa1 to Mfa5 proteins, have not been fully studied. We, therefore, analyzed their genotypes in 12 uncharacterized and 62 known strains of P. gingivalis (74 strains in total). The mfa1 genotype was primarily classified into two genotypes, 53 and 70. Additionally, we found that genotype 70 could be further divided into two subtypes (70A and 70B). The diversity of mfa2 to mfa4 was consistent with the mfa1 genotype, although no subtype in genotype 70 was observed. Protein structure modeling showed high homology between the genotypes in Mfa1 to Mfa4. The mfa5 gene was classified into five genotypes (A to E) independent of other genotypes. Moreover, genotype A was further divided into two subtypes (A1 and A2). Surprisingly, some strains had two mfa5 genes, and the 2ndmfa5 exclusively occurred in genotype E. The Mfa5 protein in all genotypes showed a homologous C-terminal half, including the conserved C-terminal domain recognized by the type IX secretion system. Furthermore, the von Willebrand factor domain at the N-terminal was detected only in genotypes A to C. The mfa1 genotypes partially correlated with the ragA and ragB genotypes (located immediately downstream of the mfa gene cluster) but not with the fimA genotypes.
Collapse
Affiliation(s)
- Kotaro Sakae
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
- Department of Endodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Keiji Nagano
- Division of Microbiology, Department of Oral Biology, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
- * E-mail:
| | - Miyuna Furuhashi
- Department of Pediatric Dentistry, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan
| | - Yoshiaki Hasegawa
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| |
Collapse
|
7
|
Ingalagi P, Kotrashetti V, Bhat K, Kugaji M. Comparison of cluster analysis of Porphyromonas gingivalis by arbitrarily primed-polymerase chain reaction between healthy and chronic periodontitis subjects. J Oral Maxillofac Pathol 2020; 24:251-257. [PMID: 33456233 PMCID: PMC7802863 DOI: 10.4103/jomfp.jomfp_3_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 05/06/2020] [Accepted: 05/26/2020] [Indexed: 11/04/2022] Open
Abstract
Introduction Periodontitis is a chronic destructive inflammatory disease of the oral cavity. The main causative agent is presence of biofilm formed due to different micro-organisms. Among different micro- organisms "red complex" bacteria is known to be the main causative agent in progression of periodontitis. Porphyromonas gingivalis out of the red the complex organism plays a major role in progression of periodontitis. P. gingivalisis present in both in healthy and diseased individuals. The difference in the strains will determine the virulence factor of the organism and also progression of disease. Only few studies have been done showing variation in strains present between healthy and diseased. Aims To check the difference in heterogeneity of P. gingivalis in chronic periodontitis and healthy individuals through Arbitrarily Primed-PCR (AP-PCR). Materials and Methods A total of 400 subjects (200 each of chronic periodontitisandhealthy individuals) were included. Sub-gingival plaque was collected in the Reduced transport fluid (RTF) medium and processed at the institutional central research laboratory. Presence of P. gingivalis was, confirmed by culture andphenotypical analysis. Further confirmed cases were processed for PCR after DNA extraction using 16S rRNA. Positive cases of P. gingivalis were subjected for AP-PCR for clonal analysis using the specific 272 primer. Results In 152(76%) and 98(49%) were confirmed for P. gingivalis in chronic periodontitis and healthy individual respectively by PCR. AP-PCR analysis showed 6 clusters with similarity index in CP and 3 clusters with similarity index in Healthy individuals. Conclusion The present study showed difference in clusters between chronic periodontitis and healthy individual'sthussuggestive variantin genetic heterogeneity of P. gingivalis strain between healthy and chronic periodontitis. AP- PCR appears to be a promising tool for clonal analysis of P. gingivalis.
Collapse
Affiliation(s)
- Preeti Ingalagi
- Department of Microbiology, Maratha Mandal's NGH Institute of Dental Sciences and Research Centre, Belgaum, Karnataka, India
| | - Vijayalakshmi Kotrashetti
- Department of Oral Pathology and Microbiology, Maratha Mandal's NGH Institute of Dental Sciences and Research Centre, Belgaum, Karnataka, India
| | - Kishore Bhat
- Department of Microbiology, Maratha Mandal's NGH Institute of Dental Sciences and Research Centre, Belgaum, Karnataka, India
| | - Manohar Kugaji
- Department of Microbiology, Maratha Mandal's NGH Institute of Dental Sciences and Research Centre, Belgaum, Karnataka, India
| |
Collapse
|
8
|
Distribution of Helicobacter pylori and Periodontopathic Bacterial Species in the Oral Cavity. Biomedicines 2020; 8:biomedicines8060161. [PMID: 32549275 PMCID: PMC7344611 DOI: 10.3390/biomedicines8060161] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/05/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023] Open
Abstract
The oral cavity may serve as a reservoir of Helicobacter pylori. However, the factors required for H. pylori colonization are unknown. Here, we analyzed the relationship between the presence of H. pylori in the oral cavity and that of major periodontopathic bacterial species. Nested PCR was performed to detect H. pylori and these bacterial species in specimens of saliva, dental plaque, and dental pulp of 39 subjects. H. pylori was detected in seven dental plaque samples (17.9%), two saliva specimens (5.1%), and one dental pulp (2.6%) specimen. The periodontal pockets around the teeth, from which dental plaque specimens were collected, were significantly deeper in H. pylori-positive than H. pylori-negative subjects (p < 0.05). Furthermore, Porphyromonas gingivalis, a major periodontopathic pathogen, was detected at a significantly higher frequency in H. pylori-positive than in H. pylori-negative dental plaque specimens (p < 0.05). The distribution of genes encoding fimbriae (fimA), involved in the periodontal pathogenicity of P. gingivalis, differed between H. pylori-positive and H. pylori-negative subjects. We conclude that H. pylori can be present in the oral cavity along with specific periodontopathic bacterial species, although its interaction with these bacteria is not clear.
Collapse
|
9
|
Abstract
The etiopathogenesis of severe periodontitis includes herpesvirus-bacteria coinfection. This article evaluates the pathogenicity of herpesviruses (cytomegalovirus and Epstein-Barr virus) and periodontopathic bacteria (Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis) and coinfection of these infectious agents in the initiation and progression of periodontitis. Cytomegalovirus and A. actinomycetemcomitans/P. gingivalis exercise synergistic pathogenicity in the development of localized ("aggressive") juvenile periodontitis. Cytomegalovirus and Epstein-Barr virus are associated with P. gingivalis in adult types of periodontitis. Periodontal herpesviruses that enter the general circulation may also contribute to disease development in various organ systems. A 2-way interaction is likely to occur between periodontal herpesviruses and periodontopathic bacteria, with herpesviruses promoting bacterial upgrowth, and bacterial factors reactivating latent herpesviruses. Bacterial-induced gingivitis may facilitate herpesvirus colonization of the periodontium, and herpesvirus infections may impede the antibacterial host defense and alter periodontal cells to predispose for bacterial adherence and invasion. Herpesvirus-bacteria synergistic interactions, are likely to comprise an important pathogenic determinant of aggressive periodontitis. However, mechanistic investigations into the molecular and cellular interaction between periodontal herpesviruses and bacteria are still scarce. Herpesvirus-bacteria coinfection studies may yield significant new discoveries of pathogenic determinants, and drug and vaccine targets to minimize or prevent periodontitis and periodontitis-related systemic diseases.
Collapse
Affiliation(s)
- Casey Chen
- Division of Periodontology, Diagnostic Sciences & Dental Hygiene, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, USA
| | - Pinghui Feng
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, USA
| | - Jørgen Slots
- Division of Periodontology, Diagnostic Sciences & Dental Hygiene, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
10
|
Ortiz S, Herrman E, Lyashenko C, Purcell A, Raslan K, Khor B, Snow M, Forsyth A, Choi D, Maier T, Machida CA. Sex-specific differences in the salivary microbiome of caries-active children. J Oral Microbiol 2019; 11:1653124. [PMID: 31497256 PMCID: PMC6720314 DOI: 10.1080/20002297.2019.1653124] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/29/2019] [Accepted: 08/02/2019] [Indexed: 11/30/2022] Open
Abstract
Background and Objectives: Dental caries is a chronic disease affecting young children and has multi-factorial risk factors. The purpose of this work was to identify sex-specific differences in the salivary microbiota within caries-active children. Design: Saliva specimens were collected from 85 children (boys: 41; girls: 44) between the ages of 2-12 years. Salivary microbial DNA was subjected to PCR amplification using V3-V4 16S rDNA-specific primers and next-generation sequencing. Results: Significant sex differences in salivary microbiota were found between caries-active boys versus caries-active girls. Neisseria flavescens, Rothia aeria, and Haemophilus pittmaniae were found at significantly higher levels in caries-active boys. In contrast, Lactococcus lactis, Selenomonas species HOT 126, Actinobaculum species HOT 183, Veillonella parvula, and Alloprevotella species HOT 473 were found at significantly higher levels in caries-active girls. Conclusion: We have found the acid-generating, cariogenic Lactococcus lactis to be much more abundant in caries-active girls than caries-active boys, indicating that this microorganism may play a more significant role in shaping the cariogenic microbiome in girls. In addition, in caries-active girls, Alloprevotella species HOT 473 was the only species that exhibited both significant sex differences (4.4-fold difference; p=0.0003) as well as high abundance in numbers (1.85% of the total microbial population).
Collapse
Affiliation(s)
- Stephanie Ortiz
- Academic DMD Program, Oregon Health & Science University School of Dentistry, Portland, OR, US
| | - Elisa Herrman
- Academic DMD Program, Oregon Health & Science University School of Dentistry, Portland, OR, US
| | - Claudia Lyashenko
- Department of Integrative Biomedical and Diagnostic Sciences, Oregon Health & Science University School of Dentistry, Portland, OR, US
| | - Anne Purcell
- Department of Pediatric Dentistry, Oregon Health & Science University School of Dentistry, Portland, OR, US
| | - Kareem Raslan
- Academic DMD Program, Oregon Health & Science University School of Dentistry, Portland, OR, US
| | - Brandon Khor
- Academic DMD Program, Oregon Health & Science University School of Dentistry, Portland, OR, US
| | - Michael Snow
- Academic DMD Program, Oregon Health & Science University School of Dentistry, Portland, OR, US
| | - Anna Forsyth
- Department of Pediatric Dentistry, Oregon Health & Science University School of Dentistry, Portland, OR, US
| | - Dongseok Choi
- OHSU-PSU School of Public Health, Kyunghee University, Portland, OR, US
- Graduate School of Dentistry, Kyunghee University, Seoul, South Korea
| | - Tom Maier
- Department of Integrative Biomedical and Diagnostic Sciences, Oregon Health & Science University School of Dentistry, Portland, OR, US
| | - Curtis A. Machida
- Department of Integrative Biomedical and Diagnostic Sciences, Oregon Health & Science University School of Dentistry, Portland, OR, US
- Department of Pediatric Dentistry, Oregon Health & Science University School of Dentistry, Portland, OR, US
| |
Collapse
|
11
|
Iwashita N, Nomura R, Shirai M, Kato Y, Murakami M, Matayoshi S, Kadota T, Shirahata S, Ohzeki L, Arai N, Yasuda J, Yasuda H, Inaba H, Matsumoto-Nakano M, Nakano K, Asai F. Identification and molecular characterization of Porphyromonas gulae fimA types among cat isolates. Vet Microbiol 2019; 229:100-109. [DOI: 10.1016/j.vetmic.2018.12.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 12/13/2018] [Accepted: 12/16/2018] [Indexed: 01/11/2023]
|
12
|
Ayala-Herrera JL, Abud-Mendoza C, Gonzalez-Amaro RF, Espinosa-Cristobal LF, Martínez-Martínez RE. Distribution of Porphyromonas gingivalis fimA genotypes in patients affected by rheumatoid arthritis and periodontitis. Acta Odontol Scand 2018; 76:520-524. [PMID: 29726309 DOI: 10.1080/00016357.2018.1469788] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To determine and compare the distribution of Porphyromonas gingivalis fimA genotypes in patients affected by Rheumatoid arthritis (RA) and periodontitis (PE). MATERIALS AND METHODS This study involved 394 subjects divided into four groups, RA, PE, RA and PE and healthy subjects. PE was diagnosed by using clinical attachment loss (CAL) and probing depth (PD) indexes. Presence of P. gingivalis and its genotypes was identified by polymerase chain reaction in subgingival biofilm. RESULTS P. gingivalis was more frequent in patients with RA (82.69%), and fimA II genotype was the most frequent in all groups, especially in PE/RA (76.71%). There was statistical difference (p < .05) regarding the frequency of P. gingivalis genotypes such as fimA Ib, II and III. CONCLUSIONS Distribution of P. gingivalis fimA II genotypes was different among groups, it could play a critical role in the presence of PE in RA patients.
Collapse
Affiliation(s)
- José Luis Ayala-Herrera
- Doctorado en Ciencias Biomedicas Basicas, Facultad de Medicina, Universidad Autonoma de San Luis Potosi, San Luis Potosi, Mexico
- Dental Science with Specialization in Advanced General Dentistry Program, San Luis Potosi University, San Luis Potosi, Mexico
| | - Carlos Abud-Mendoza
- Regional Unit of Rheumatology and Osteoporosis at Central Hospital “Dr. Ignacio Morones Prieto”, Faculty of Medicine, San Luis Potosi University, San Luis Potosi, Mexico
| | - Roberto F. Gonzalez-Amaro
- Doctorado en Ciencias Biomedicas Basicas, Facultad de Medicina, Universidad Autonoma de San Luis Potosi, San Luis Potosi, Mexico
| | | | - Rita Elizabeth Martínez-Martínez
- Doctorado en Ciencias Biomedicas Basicas, Facultad de Medicina, Universidad Autonoma de San Luis Potosi, San Luis Potosi, Mexico
- Dental Science with Specialization in Advanced General Dentistry Program, San Luis Potosi University, San Luis Potosi, Mexico
| |
Collapse
|
13
|
Nagano K, Hasegawa Y, Iijima Y, Kikuchi T, Mitani A. Distribution of Porphyromonas gingivalis fimA and mfa1 fimbrial genotypes in subgingival plaques. PeerJ 2018; 6:e5581. [PMID: 30186705 PMCID: PMC6118206 DOI: 10.7717/peerj.5581] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 08/06/2018] [Indexed: 12/27/2022] Open
Abstract
Background Strains of periodontal disease-associated bacterium Porphyromonas gingivalis have different pathogenicity, which can be attributed to clonal genetic diversity. P. gingivalis typically expresses two types of fimbriae, FimA and Mfa1, which comprise six (I, Ib, II, III, IV, and V) and two (mfa53 and mfa70) genotypes, respectively. This study was conducted to investigate the distribution of the two fimbrial genotypes of P. gingivalis in clinical specimens. Methods Subgingival plaques were collected from 100 participants during periodontal maintenance therapy and examined for P. gingivalis fimbrial genotypes by direct polymerase chain reaction and/or DNA sequencing. We also analyzed the relationship between fimbrial genotypes and clinical parameters of periodontitis recorded at the first medical examination. Results Both fimbrial types could be detected in 63 out of 100 samples; among them, fimA genotype II was found in 33 samples (52.4%), in which the mfa70 genotype was 1.75 times more prevalent than mfa53. The total detection rate of fimA genotypes I and Ib was 38.1%; in these samples, the two mfa1 genotypes were observed at a comparable frequency. In two samples positive for fimA III (3.2%), only mfa53 was detected, whereas in four samples positive for fimA IV (6.3%), the two mfa1 genotypes were equally represented, and none of fimA V-positive samples defined the mfa1 genotype. No associations were found between clinical parameters and fimbrial subtype combinations. Discussion Both P. gingivalis fimbrial types were detected at various ratios in subgingival plaques, and a tendency for fimA and mfa1 genotype combinations was observed. However, there was no association between P. gingivalis fimbrial genotypes and periodontitis severity.
Collapse
Affiliation(s)
- Keiji Nagano
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Yoshiaki Hasegawa
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Yura Iijima
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Takeshi Kikuchi
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Akio Mitani
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| |
Collapse
|
14
|
Periodontal pathogens and tetracycline resistance genes in subgingival biofilm of periodontally healthy and diseased Dominican adults. Clin Oral Investig 2015; 20:349-56. [PMID: 26121972 PMCID: PMC4762914 DOI: 10.1007/s00784-015-1516-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 06/16/2015] [Indexed: 01/12/2023]
Abstract
Objective The objective of this study was to compare the periodontopathogen prevalence and tetracycline resistance genes in Dominican patients with different periodontal conditions. Methods Seventy-seven samples were collected from healthy, gingivitis, chronic (CP) and aggressive (AgP) periodontitis patients. Porphyromonas gingivalis, Treponema denticola, Tannerella forsythia, Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum, Prevotella intermedia, Parvimonas micra, Eikenella corrodens and Dialister pneumosintes and 11 resistance genes were studied by PCR. P. gingivalis fimA genotype was determined. Results In healthy patients, P. micra and P. intermedia were the most and least frequently detected, respectively. T. forsythia and E. corrodens appeared in 100 % of gingivitis patients. Red complex, D. pneumosintes and E. corrodens were significantly more prevalent in CP compared to healthy patients. F. nucleatum and T. denticola were detected more frequently in AgP. A. actinomycetemcomitans was the most rarely observed in all groups. The fimA II genotype was the most prevalent in periodontitis patients. Seven tetracycline-resistant genes were detected. tet(Q), tet(32) and tet(W) showed the greatest prevalence. tet(32) was significantly more prevalent in CP than in healthy patients. Conclusions Red complex bacteria and D. pneumosintes were significantly the most prevalent species among periodontitis patients. T. forsythia was the most frequently detected in this population. To our knowledge, this is the first study describing the tet(32) gene in subgingival biofilm from healthy and periodontally diseased subjects. Clinical relevance This study contributes to the knowledge on the subgingival microbiota and its resistance genes of a scarcely studied world region. Knowing the prevalence of resistance genes could impact on their clinical prescription and could raise awareness to the appropriate use of antibiotics. Electronic supplementary material The online version of this article (doi:10.1007/s00784-015-1516-2) contains supplementary material, which is available to authorized users.
Collapse
|
15
|
Contreras A, Moreno SM, Jaramillo A, Pelaez M, Duque A, Botero JE, Slots J. Periodontal microbiology in Latin America. Periodontol 2000 2014; 67:58-86. [DOI: 10.1111/prd.12074] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2014] [Indexed: 12/19/2022]
|
16
|
Teles R, Teles F, Frias-Lopez J, Paster B, Haffajee A. Lessons learned and unlearned in periodontal microbiology. Periodontol 2000 2014; 62:95-162. [PMID: 23574465 PMCID: PMC3912758 DOI: 10.1111/prd.12010] [Citation(s) in RCA: 241] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Periodontal diseases are initiated by bacterial species living in polymicrobial biofilms at or below the gingival margin and progress largely as a result of the inflammation elicited by specific subgingival species. In the past few decades, efforts to understand the periodontal microbiota have led to an exponential increase in information about biofilms associated with periodontal health and disease. In fact, the oral microbiota is one of the best-characterized microbiomes that colonize the human body. Despite this increased knowledge, one has to ask if our fundamental concepts of the etiology and pathogenesis of periodontal diseases have really changed. In this article we will review how our comprehension of the structure and function of the subgingival microbiota has evolved over the years in search of lessons learned and unlearned in periodontal microbiology. More specifically, this review focuses on: (i) how the data obtained through molecular techniques have impacted our knowledge of the etiology of periodontal infections; (ii) the potential role of viruses in the etiopathogenesis of periodontal diseases; (iii) how concepts of microbial ecology have expanded our understanding of host-microbe interactions that might lead to periodontal diseases; (iv) the role of inflammation in the pathogenesis of periodontal diseases; and (v) the impact of these evolving concepts on therapeutic and preventive strategies to periodontal infections. We will conclude by reviewing how novel systems-biology approaches promise to unravel new details of the pathogenesis of periodontal diseases and hopefully lead to a better understanding of their mechanisms.
Collapse
|
17
|
Scapoli L, Girardi A, Palmieri A, Testori T, Zuffetti F, Monguzzi R, Lauritano D, Carinci F. Microflora and periodontal disease. Dent Res J (Isfahan) 2013; 9:S202-6. [PMID: 23814584 PMCID: PMC3692174 DOI: 10.4103/1735-3327.109755] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Background: Periodontitis is a disease that affects and destroys the tissues that support teeth. Tissue damage results from a prolonged inflammatory response to an ecological shift in the composition of subgingival biofilms. Three bacterial species that constitute the red complex group, Porphyromonas gingivalis, Tannerella forsythia, and Treponema denticola, are considered the main pathogens involved in periodontitis. Materials and Methods: In the present study, a real-time polymerase chain reaction bases assay was designed to detect and quantify red complex species, then used to investigate 307 periodontal pocket samples from 127 periodontitis patients and 180 controls. Results: Significant higher prevalence of red complex species and increased amount of P. gingivalis and T. denticola were detected in periodontal pocket of periodontitis patients. Conclusions: Results demonstrated that the test is a valuable tool to improve diagnosis of periodontal disease.
Collapse
Affiliation(s)
- Luca Scapoli
- Department of Histology, Embryology and Applied Biology, Centre of Molecular Genetics, CARISBO Foundation, University of Bologna, Bologna, Italy
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Nagano K, Abiko Y, Yoshida Y, Yoshimura F. Genetic and antigenic analyses of Porphyromonas gingivalis FimA fimbriae. Mol Oral Microbiol 2013; 28:392-403. [PMID: 23809984 DOI: 10.1111/omi.12032] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2013] [Indexed: 12/29/2022]
Abstract
The periodontal pathogen Porphyromonas gingivalis generally expresses two distinct fimbriae, FimA and Mfa1, which play a role in biofilm formation. The fimA gene that encodes FimA fimbrilin is polymorphic, and polymerase chain reaction analysis has identified six genotypes called types I-V and Ib. We found recently that fimbriae exhibit antigenic heterogeneity among the genotypes. In the present study, we analysed the fimA DNA sequences of 84 strains of P. gingivalis and characterized the antigenicity of FimA fimbriae. Strains analysed here comprised 10, 16, 29, 13, 10 and 6 strains of types I, Ib, II, III, IV and V, respectively. DNA sequencing revealed that type Ib does not represent a single cluster and that type II sequences are remarkably diverse. In contrast, the fimA sequences of the other types were relatively homogeneous. Antigenicity was investigated using antisera elicited by pure FimA fimbriae of types I-V. Antigenicity correlated generally with the respective genotype. Type Ib strains were recognized by type I antisera. However, some strains showed cross-reactivity, especially, many type II strains reacted with type III antisera. The levels of fimbrial expression were highly variable, and expression was positively correlated with ability of biofilm formation on a saliva-coated plate. Further, two strains without FimA and Mfa1 fimbriae expressed fimbrial structures, suggesting that the strains produce other types of fimbriae.
Collapse
Affiliation(s)
- K Nagano
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan.
| | | | | | | |
Collapse
|
19
|
Fabrizi S, León R, Blanc V, Herrera D, Sanz M. Variability of the fimA gene in Porphyromonas gingivalis isolated from periodontitis and non-periodontitis patients. Med Oral Patol Oral Cir Bucal 2013; 18:e100-5. [PMID: 23229246 PMCID: PMC3548627 DOI: 10.4317/medoral.18042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Indexed: 12/11/2022] Open
Abstract
Objective: The goal of this study was to determine the genetic variability of the fimA gene in Porphyromonas gingivalis isolates from Spanish patients.
Study Design: Pooled subgingival samples were taken, processed and cultured in non-selective blood agar medium. Pure cultures of one to six isolates per patient were obtained and PCR and PCR-RFLP were used for fimbrillin gene (fimA) type determination of the extracted genomic (DNA).
Results: Two hundred and twenty four Porphyromonas gingivalis isolates from 65 patients were analyzed consisting of 15 non-periodontitis patients (66 isolates) and 50 with periodontitis (158 isolates). Genotype II was the most prevalent (50.9%), while the other types of fimbriae did not exceed fifteen percent of prevalence. Isolates with types II and IV of fimbriae were significantly more prevalent in periodontitis patients than isolates with genotype I. Co-infection was observed in 17.65% of the patients analyzed.
Conclusion: The results suggest that in this population Porphyromonas gingivalis with type II of fimbriae are significantly more predominant in periodontitis patients than genotype I.
Key words:Fimbriae, genotype, porphyromonas gingivalis, periodontitis.
Collapse
Affiliation(s)
- Simone Fabrizi
- ETEP Research Group, Complutense University, Madrid, Spain.
| | | | | | | | | |
Collapse
|
20
|
Moon JH, Herr Y, Lee HW, Shin SI, Kim C, Amano A, Lee JY. Genotype analysis of Porphyromonas gingivalis fimA in Korean adults using new primers. J Med Microbiol 2012; 62:1290-1294. [PMID: 23264452 DOI: 10.1099/jmm.0.054247-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Strains of Porphyromonas gingivalis, a periodontopathic bacterium, are classified into six genotypic variants based on nucleotide sequence differences in the fimA gene encoding FimA. A PCR assay using primer sets specific for each genotype has demonstrated that the most predominant fimA genotype in periodontitis patients is type II, which is now commonly referred to as the periodontitis-associated fimA genotype of P. gingivalis. However, the potential for false type II fimA positives caused by cross-hybridization of type II fimA-specific primers with type Ib fimA has complicated the genotyping. A previous study developed new primers that specifically amplified only the DNA fragment of type II fimA. The aim of the present study was to assess the prevalence of P. gingivalis fimA genotypes in Korean adults and to reconfirm the relationship between type II fimA and periodontitis using the new primers. Among 412 Korean adults, P. gingivalis was detected in 97.5 % of patients and 57.8 % of healthy subjects. Type II fimA was the most widely distributed type among healthy and periodontitis subjects. Organisms with types II, Ib and IV fimA had a significant frequency of occurrence in periodontitis subjects. Statistical analysis, however, revealed that a more significant correlation was found between periodontitis and the occurrence of type Ib fimA.
Collapse
Affiliation(s)
- Ji-Hoi Moon
- Institute of Oral Biology, Kyung Hee University, Seoul, Republic of Korea
- Department of Maxillofacial Biomedical Engineering, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Yeek Herr
- Department of Periodontology, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
- Institute of Oral Biology, Kyung Hee University, Seoul, Republic of Korea
| | - Hyeon-Woo Lee
- Department of Pharmacology, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
- Institute of Oral Biology, Kyung Hee University, Seoul, Republic of Korea
| | - Seung-Il Shin
- Department of Periodontology, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
- Institute of Oral Biology, Kyung Hee University, Seoul, Republic of Korea
| | - Cheul Kim
- Department of Oral Medicine and Diagnosis, College of Dentistry and Research Institute of Oral Science, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | - Atsuo Amano
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Jin-Yong Lee
- Institute of Oral Biology, Kyung Hee University, Seoul, Republic of Korea
- Department of Maxillofacial Biomedical Engineering, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
21
|
Yamasaki Y, Nomura R, Nakano K, Inaba H, Kuboniwa M, Hirai N, Shirai M, Kato Y, Murakami M, Naka S, Iwai S, Matsumoto-Nakano M, Ooshima T, Amano A, Asai F. Distribution and molecular characterization of Porphyromonas gulae carrying a new fimA genotype. Vet Microbiol 2012; 161:196-205. [DOI: 10.1016/j.vetmic.2012.07.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 07/14/2012] [Accepted: 07/16/2012] [Indexed: 12/22/2022]
|
22
|
Porphyromonas gingivalis FimA fimbriae: fimbrial assembly by fimA alone in the fim gene cluster and differential antigenicity among fimA genotypes. PLoS One 2012; 7:e43722. [PMID: 22970139 PMCID: PMC3436787 DOI: 10.1371/journal.pone.0043722] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 07/23/2012] [Indexed: 11/19/2022] Open
Abstract
The periodontal pathogen Porphyromonas gingivalis colonizes largely through FimA fimbriae, composed of polymerized FimA encoded by fimA. fimA exists as a single copy within the fim gene cluster (fim cluster), which consists of seven genes: fimX, pgmA and fimA-E. Using an expression vector, fimA alone was inserted into a mutant from which the whole fim cluster was deleted, and the resultant complement exhibited a fimbrial structure. Thus, the genes of the fim cluster other than fimA were not essential for the assembly of FimA fimbriae, although they were reported to influence FimA protein expression. It is known that there are various genotypes for fimA, and it was indicated that the genotype was related to the morphological features of FimA fimbriae, especially the length, and to the pathogenicity of the bacterium. We next complemented the fim cluster-deletion mutant with fimA genes cloned from P. gingivalis strains including genotypes I to V. All genotypes showed a long fimbrial structure, indicating that FimA itself had nothing to do with regulation of the fimbrial length. In FimA fimbriae purified from the complemented strains, types I, II, and III showed slightly higher thermostability than types IV and V. Antisera of mice immunized with each purified fimbria principally recognized the polymeric, structural conformation of the fimbriae, and showed low cross-reactivity among genotypes, indicating that FimA fimbriae of each genotype were antigenically different. Additionally, the activity of a macrophage cell line stimulated with the purified fimbriae was much lower than that induced by Escherichia coli lipopolysaccharide.
Collapse
|
23
|
Nagano K, Abiko Y, Yoshida Y, Yoshimura F. Porphyromonas gingivalis FimA fimbriae: Roles of the fim gene cluster in the fimbrial assembly and antigenic heterogeneity among fimA genotypes. J Oral Biosci 2012. [DOI: 10.1016/j.job.2012.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
24
|
Moon JH, Shin SI, Chung JH, Lee SW, Amano A, Lee JY. Development and evaluation of new primers for PCR-based identification of type II fimA of Porphyromonas gingivalis. ACTA ACUST UNITED AC 2012; 64:425-8. [PMID: 22067036 DOI: 10.1111/j.1574-695x.2011.00889.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
For more accurate PCR-based identification of Porphyromonas gingivalis harboring genotype II fimA, the most prevalent type in periodontitis patients, a new primer set was developed and evaluated. The previous type II primers hybridized to the DNA of P gingivalis strains harboring type Ib as well as type II fimA, while the new primers specifically amplified only the DNA fragment of type II fimA. In the investigation using mixed bacterial culture and 155 clinical samples from peri-implantitis patients, the new primers increased the accuracy of PCR-based detection of type II fimA by excluding false-negatives as well as false-positives.
Collapse
Affiliation(s)
- Ji-Hoi Moon
- Department of Maxillofacial Biomedical Engineering, School of Dentistry, Kyung Hee University, Seoul, Korea; 2Institute of Oral Biology, Kyung Hee University, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
25
|
Fernandez y Mostajo M, Zaura E, Crielaard W, Beertsen W. Does routine analysis of subgingival microbiota in periodontitis contribute to patient benefit? Eur J Oral Sci 2011; 119:259-64. [PMID: 21726285 DOI: 10.1111/j.1600-0722.2011.00828.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In clinical periodontology it is common practice to sample subgingival plaque from periodontitis patients and to search for the presence of alleged periodontal pathogens using routine laboratory techniques such as culture, DNA-DNA hybridization or real-time PCR. Usually, special attention is given to the recognition of 'red complex' microorganisms and to Aggregatibacter actinomycetemcomitans. Recently, molecular open-ended techniques have been introduced which are distinct from the more 'classical' approaches in that they do not preselect for certain species. In this study, we investigated to what extent the outcome of these techniques has changed our insight into the composition of the subgingival microbiota and whether this has consequences on clinical decision making. The open-ended approaches showed that the composition of subgingival plaque is much more complex than previously thought. Next to the 'classical' putative periodontal pathogens, several non-culturable and fastidious species are now recognized as being associated with periodontitis, thus enlarging the group of suspected periodontal pathogens. We conclude that routine analyses of subgingival plaque in the clinic are not necessarily of benefit to the patient.
Collapse
|
26
|
|
27
|
Amano A. Host-parasite interactions in periodontitis: microbial pathogenicity and innate immunity. Periodontol 2000 2010; 54:9-14. [DOI: 10.1111/j.1600-0757.2010.00376.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|