1
|
Aydin S, Yaşlı M, Yildiz Ş, Urman B. Advancements in three-dimensional bioprinting for reproductive medicine: a systematic review. Reprod Biomed Online 2024; 49:104273. [PMID: 39033691 DOI: 10.1016/j.rbmo.2024.104273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 07/23/2024]
Abstract
Reproductive failure due to age, genetics and disease necessitates innovative solutions. While reproductive tissue transplantation has advanced, ongoing research seeks superior approaches. Biomaterials, bioengineering and additive manufacturing, such as three-dimensional (3D) bioprinting, are harnessed to restore reproductive function. 3D bioprinting uses materials, cells and growth factors to mimic natural tissues, proving popular for tissue engineering, notably in complex scaffold creation with cell distribution. The versatility which is brought to reproductive medicine by 3D bioprinting allows more accurate and on-site applicability to various problems that are encountered in the field. However, in the literature, there is a lack of studies encompassing the valuable applications of 3D bioprinting in reproductive medicine. This systematic review aims to improve understanding, and focuses on applications in several branches of reproductive medicine. Advancements span the restoration of ovarian function, endometrial regeneration, vaginal reconstruction, and male germ cell bioengineering. 3D bioprinting holds untapped potential in reproductive medicine.
Collapse
Affiliation(s)
- Serdar Aydin
- Department of Obstetrics and Gynaecology, Koc University Hospital, Zeytinburnu, Istanbul, Turkey; Koc University School of Medicine, Koc University, Sariyer, Istanbul, Turkey.
| | - Mert Yaşlı
- Koc University School of Medicine, Koc University, Sariyer, Istanbul, Turkey
| | - Şule Yildiz
- Department of Obstetrics and Gynaecology, Koc University Hospital, Zeytinburnu, Istanbul, Turkey; Koc University School of Medicine, Koc University, Sariyer, Istanbul, Turkey
| | - Bulent Urman
- Department of Obstetrics and Gynaecology, Koc University Hospital, Zeytinburnu, Istanbul, Turkey; Koc University School of Medicine, Koc University, Sariyer, Istanbul, Turkey; Department of Obstetrics and Gynaecology, American Hospital, Tesvikiye, Sisli, Istanbul, Turkey
| |
Collapse
|
2
|
Guo C, Wang Q, Shuai P, Wang T, Wu W, Li Y, Huang S, Yu J, Yi L. Radiation and male reproductive system: Damage and protection. CHEMOSPHERE 2024; 357:142030. [PMID: 38626814 DOI: 10.1016/j.chemosphere.2024.142030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/10/2024] [Accepted: 04/10/2024] [Indexed: 04/26/2024]
Abstract
Male fertility has been declining in recent decades, and a growing body of research points to environmental and lifestyle factors as the cause. The widespread use of radiation technology may result in more people affected by male infertility, as it is well established that radiation can cause reproductive impairment in men. This article provides a review of radiation-induced damage to male reproduction, and the effects of damage mechanisms and pharmacotherapy. It is hoped that this review will contribute to the understanding of the effects of radiation on male reproduction, and provide information for research into drugs that can protect the reproductive health of males.
Collapse
Affiliation(s)
- Caimao Guo
- Institute of Pharmacy and Pharmacology, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Qingyu Wang
- Institute of Pharmacy and Pharmacology, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Peimeng Shuai
- Institute of Pharmacy and Pharmacology, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Tiantian Wang
- Institute of Pharmacy and Pharmacology, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Wenyu Wu
- Institute of Pharmacy and Pharmacology, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yuanyuan Li
- Institute of Pharmacy and Pharmacology, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Shuqi Huang
- Institute of Pharmacy and Pharmacology, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Jia Yu
- Institute of Pharmacy and Pharmacology, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Lan Yi
- Institute of Pharmacy and Pharmacology, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
3
|
Kang JW, He JP, Liu YN, Zhang Y, Song SS, Xu QX, Wei SW, Lu L, Meng XQ, Xu L, Guo B, Su RW. Aberrant activated Notch1 promotes prostate enlargement driven by androgen signaling via disrupting mitochondrial function in mouse. Cell Mol Life Sci 2024; 81:155. [PMID: 38538986 PMCID: PMC10973062 DOI: 10.1007/s00018-024-05143-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/20/2023] [Accepted: 01/03/2024] [Indexed: 04/02/2024]
Abstract
The prostate is a vital accessory gonad in the mammalian male reproductive system. With the ever-increasing proportion of the population over 60 years of age worldwide, the incidence of prostate diseases, such as benign prostatic hyperplasia (BPH) and prostate cancer (PCa), is on the rise and is gradually becoming a significant medical problem globally. The notch signaling pathway is essential in regulating prostate early development. However, the potential regulatory mechanism of Notch signaling in prostatic enlargement and hyperplasia remains unclear. In this study, we proved that overactivation of Notch1 signaling in mouse prostatic epithelial cells (OEx) led to prostatic enlargement via enhancing proliferation and inhibiting apoptosis of prostatic epithelial cells. Further study showed that N1ICD/RBPJ directly up-regulated the androgen receptor (AR) and enhanced prostatic sensitivity to androgens. Hyper-proliferation was not found in orchidectomized OEx mice without androgen supply but was observed after Dihydrotestosterone (DHT) supplementation. Our data showed that the number of mitochondrion in prostatic epithelial cells of OEx mice was increased, but the mitochondrial function was impaired, and the essential activity of the mitochondrial respiratory electron transport chain was significantly weakened. Disordered mitochondrial number and metabolic function further resulted in excessive accumulation of reactive oxygen species (ROS). Importantly, anti-oxidant N-Acetyl-L-Cysteine (NAC) therapy could alleviate prostatic hyperplasia caused by the over-activation of Notch1 signaling. Furthermore, we observed the incremental Notch signaling activity in progenitor-like club cells in the scRNA-seq data set of human BPH patients. Moreover, the increased number of TROP2+ progenitors and Club cells was also confirmed in our OEx mice. In conclusion, our study revealed that over-activated Notch1 signaling induces prostatic enlargement by increasing androgen receptor sensitivity, disrupting cellular mitochondrial metabolism, increasing ROS, and a higher number of progenitor cells, all of which can be effectively rescued by NAC treatment.
Collapse
Affiliation(s)
- Jin-Wen Kang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Jia-Peng He
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Ying-Nan Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Yu Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Shan-Shan Song
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Qi-Xin Xu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Shu-Wen Wei
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Lei Lu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Xiang-Qi Meng
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Lin Xu
- College of Sports and Human Science, Harbin Sport University, Harbin, PR China.
| | - Bin Guo
- College of Veterinary Medicine, Jilin University, Changchun, PR China.
| | - Ren-Wei Su
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China.
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, PR China.
| |
Collapse
|
4
|
Xiao Z, Liang J, Huang R, Chen D, Mei J, Deng J, Wang Z, Li L, Li Z, Xia H, Yang Y, Huang Y. Inhibition of miR-143-3p Restores Blood-Testis Barrier Function and Ameliorates Sertoli Cell Senescence. Cells 2024; 13:313. [PMID: 38391926 PMCID: PMC10887369 DOI: 10.3390/cells13040313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
Due to the increasing trend of delayed childbirth, the age-related decline in male reproductive function has become a widely recognized issue. Sertoli cells (SCs) play a vital role in creating the necessary microenvironment for spermatogenesis in the testis. However, the mechanism underlying Sertoli cell aging is still unclear. In this study, senescent Sertoli cells showed a substantial upregulation of miR-143-3p expression. miR-143-3p was found to limit Sertoli cell proliferation, promote cellular senescence, and cause blood-testis barrier (BTB) dysfunction by targeting ubiquitin-conjugating enzyme E2 E3 (UBE2E3). Additionally, the TGF-β receptor inhibitor SB431542 showed potential in alleviating age-related BTB dysfunction, rescuing testicular atrophy, and reversing the reduction in germ cell numbers by negatively regulating miR-143-3p. These findings clarified the regulatory pathways underlying Sertoli cell senescence and suggested a promising therapeutic approach to restore BTB function, alleviate Sertoli cell senescence, and improve reproductive outcomes for individuals facing fertility challenges.
Collapse
Affiliation(s)
- Ziyan Xiao
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (Z.X.); (J.L.); (R.H.); (D.C.); (J.M.); (Z.W.); (L.L.); (Z.L.); (H.X.)
| | - Jinlian Liang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (Z.X.); (J.L.); (R.H.); (D.C.); (J.M.); (Z.W.); (L.L.); (Z.L.); (H.X.)
| | - Rufei Huang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (Z.X.); (J.L.); (R.H.); (D.C.); (J.M.); (Z.W.); (L.L.); (Z.L.); (H.X.)
| | - Derong Chen
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (Z.X.); (J.L.); (R.H.); (D.C.); (J.M.); (Z.W.); (L.L.); (Z.L.); (H.X.)
| | - Jiaxin Mei
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (Z.X.); (J.L.); (R.H.); (D.C.); (J.M.); (Z.W.); (L.L.); (Z.L.); (H.X.)
| | - Jingxian Deng
- Department of Pharmacology, Jinan University, Guangzhou 510632, China;
| | - Zhaoyang Wang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (Z.X.); (J.L.); (R.H.); (D.C.); (J.M.); (Z.W.); (L.L.); (Z.L.); (H.X.)
| | - Lu Li
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (Z.X.); (J.L.); (R.H.); (D.C.); (J.M.); (Z.W.); (L.L.); (Z.L.); (H.X.)
| | - Ziyi Li
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (Z.X.); (J.L.); (R.H.); (D.C.); (J.M.); (Z.W.); (L.L.); (Z.L.); (H.X.)
| | - Huan Xia
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (Z.X.); (J.L.); (R.H.); (D.C.); (J.M.); (Z.W.); (L.L.); (Z.L.); (H.X.)
| | - Yan Yang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (Z.X.); (J.L.); (R.H.); (D.C.); (J.M.); (Z.W.); (L.L.); (Z.L.); (H.X.)
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
| | - Yadong Huang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (Z.X.); (J.L.); (R.H.); (D.C.); (J.M.); (Z.W.); (L.L.); (Z.L.); (H.X.)
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
| |
Collapse
|
5
|
Shaikh R, More A, Dutta S, Choudhary N, Khemani S. The Influence of Abstinence Interval on Semen Quality and Its Effect on an Assisted Reproductive Technology (ART) Pregnancy: A Case Report. Cureus 2024; 16:e54226. [PMID: 38496096 PMCID: PMC10943567 DOI: 10.7759/cureus.54226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/15/2024] [Indexed: 03/19/2024] Open
Abstract
This case report focuses on a couple facing primary infertility, where the male partner exhibited asthenoteratozoospermia and high DNA fragmentation. The treatment approach involved three cycles of intracytoplasmic sperm injection (ICSI), an assisted reproductive technology (ART), to indicate and address the specific challenges posed by male factor infertility. The initial two attempts failed as DNA fragmentation was high, which was observed on days 4 and 3 of abstinence, respectively. In the third cycle, DNA fragmentation was low on day 2 of the abstinence period, resulting in the successful formation and cryopreservation of embryos. Subsequently, three months later, frozen embryo transfer (ET) was done. This was followed by a positive β-human chorionic gonadotropin (hCG) test after 14 days that confirmed biochemical pregnancy, and successful conception was determined by ultrasound detection of the visible sac with fetal pole. This report underscores the critical importance of treatment plans for individual patients, especially considering the impact of abstinence periods on sperm DNA fragmentation. The findings promote a personalized approach to assisted reproductive techniques, enhancing the success rate. It is recommended that further comprehensive studies be conducted to validate and anticipate these observations.
Collapse
Affiliation(s)
- Rokaiya Shaikh
- Clinical Embryology, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Akash More
- Clinical Embryology, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Shilpa Dutta
- Clinical Embryology, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Namrata Choudhary
- Clinical Embryology, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Shivani Khemani
- Clinical Embryology, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
6
|
Mohsen Y, Al-Kutoubi A. Imaging of seminal vesicles: a pictorial review. Abdom Radiol (NY) 2023; 48:3469-3487. [PMID: 37624375 DOI: 10.1007/s00261-023-04019-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/26/2023]
Abstract
The seminal vesicles are frequently overlooked when reviewing abdominal and pelvic imaging studies, and normal variants and pathologic conditions are often missed or misinterpreted. This is largely due to lack of familiarity with the organ, its anatomic variants, congenital abnormalities and disease conditions. This pictorial review aims to familiarize the reader with the range of normal appearances, congenital anomalies and disease entities that involve the seminal vesicles to avoid overtreatment and misdiagnoses.
Collapse
Affiliation(s)
- Youssef Mohsen
- Department of Radiology, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Iowa City, IA, 52242-1077, USA.
| | - Aghiad Al-Kutoubi
- Department of Radiology, American University of Beirut Medical Center, Riad El Solh, PO Box 11-0236, Beirut, 1107 2020, Lebanon
| |
Collapse
|
7
|
Zhang M, Deng YL, Liu C, Lu WQ, Zeng Q. Impacts of disinfection byproduct exposures on male reproductive health: Current evidence, possible mechanisms and future needs. CHEMOSPHERE 2023; 331:138808. [PMID: 37121289 DOI: 10.1016/j.chemosphere.2023.138808] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/05/2023]
Abstract
Disinfection byproducts (DBPs) are a class of ubiquitous chemicals in drinking water and inevitably result in widespread human exposures. Potentially adverse health effects of DBP exposures, including reproductive and developmental outcomes, have been increasing public concerns. Several reviews have focused on the adverse pregnancy outcomes of DBPs. This review summarized current evidence on male reproduction health upon exposure to DBPs from toxicological and epidemiological literature. Based on existing experimental studies, there are sufficient evidence showing that haloacetic acids (HAAs) are male reproductive toxicants, including reduced epididymal weight, decreased semen parameters and sperm protein 22, and declined testosterone levels. However, epidemiological evidence remains insufficient to support a link of DBP exposures with adverse male reproductive outcomes, despite that blood and urinary DBP biomarkers are associated with decreased semen quality. Eight potential mechanisms, including germ/somatic cell dysfunction, oxidative stress, genotoxicity, inflammation, endocrine hormones, folate metabolism, epigenetic alterations, and gut microbiota, are likely involved in male reproductive toxicity of DBPs. We also identified knowledge gaps in toxicological and epidemiological studies to enhance future needs.
Collapse
Affiliation(s)
- Min Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yan-Ling Deng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Chong Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Wen-Qing Lu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| |
Collapse
|
8
|
Cancian M, Triggianese P, Modica S, Arcoleo F, Bignardi D, Brussino L, Colangelo C, Di Agosta E, Firinu D, Guarino MD, Giardino F, Giliberti M, Montinaro V, Senter R. The impact of puberty on the onset, frequency, location, and severity of attacks in hereditary angioedema due to C1-inhibitor deficiency: A survey from the Italian Network for Hereditary and Acquired Angioedema (ITACA). Front Pediatr 2023; 11:1141073. [PMID: 37144145 PMCID: PMC10152551 DOI: 10.3389/fped.2023.1141073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/08/2023] [Indexed: 05/06/2023] Open
Abstract
INTRODUCTION Hereditary angioedema due to C1-inhibitor deficiency is influenced by hormonal factors, with a more severe course of disease in women. Our study aims to deepen the impact of puberty on onset, frequency, location and severity of attacks. METHODS Retrospective data were collected through a semi-structured questionnaire and shared by 10 Italian reference centers of the Italian Network for Hereditary and Acquired Angioedema (ITACA). RESULTS The proportion of symptomatic patients increased significantly after puberty (98.2% vs 83.9%, p=0.002 in males; 96.3% vs 68,4%, p<0.001 in females); the monthly mean of acute attacks was significantly higher after puberty, and this occurred both in females (median (IQR) = 0.41(2) in the three years before puberty vs 2(2.17) in the three years after, p<0.001) and in males (1(1.92) vs 1.25(1.56) respectively, p<0.001). The increase was greater in females. No significant differences were detected in attack location before and after puberty. DISCUSSION Overall, our study confirms previous reports on a more severe phenotype in the female gender. Puberty predisposes to increased numbers of angioedema attacks, in particular in female patients.
Collapse
Affiliation(s)
- Mauro Cancian
- UOSD Allergologia, University Hospital of Padua, Padua, Italy
| | | | | | - Francesco Arcoleo
- UOC di Patologia Clinica e Immunologia, AOR Villa Sofia-Cervello, Palermo, Italy
| | | | - Luisa Brussino
- University Hospital Ordine Mauriziano di Torino, Turin, Italy
| | | | - Ester Di Agosta
- Immunoallergology unit, Careggi University Hospital, Florence, Italy
| | - Davide Firinu
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | | | - Francesco Giardino
- Azienda Ospedaliero-Universitaria Policlinico “G.Rodolico-San Marco”, Catania, Italy
| | - Marica Giliberti
- Azienda Ospedaliero-Universitaria Policlinico di Bari, Bari, Italy
| | | | - Riccardo Senter
- UOSD Allergologia, University Hospital of Padua, Padua, Italy
| |
Collapse
|
9
|
Oyedokun PA, Akhigbe RE, Ajayi LO, Ajayi AF. Impact of hypoxia on male reproductive functions. Mol Cell Biochem 2023; 478:875-885. [PMID: 36107286 DOI: 10.1007/s11010-022-04559-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 09/02/2022] [Indexed: 11/30/2022]
Abstract
Male reproductive functions, which include testicular steroidogenesis, spermatogenesis, and sexual/erectile functions are key in male fertility, but may be adversely altered by several factors, including hypoxia. This review demonstrates the impact of hypoxia on male reproductive functions. Acute exposure to hypoxia promotes testosterone production via stimulation of autophagy and upregulation of steroidogenic enzymes and voltage-gated L-type calcium channel, nonetheless, chronic exposure to hypoxia impairs steroidogenesis via suppression of the hypothalamic-pituitary-testicular axis. Also, hypoxia distorts spermatogenesis and reduces sperm count, motility, and normal forms via upregulation of VEGF and oxidative stress-sensitive signaling. Furthermore, hypoxia induces sexual and erectile dysfunction via a testosterone-dependent downregulation of NO/cGMP signaling and upregulation of PGE1/TGFβ1-driven penile endothelial dysfunction. Notably, hypoxia programs male sexual function and spermatogenesis/sperm quality via feminization and demasculinization of males and oxidative stress-mediated alteration in sperm DNA methylation. Since oxidative stress plays a central role in hypoxia-induced male reproductive dysfunction, studies exploring the effects of antioxidants and upregulation of transcription of antioxidants on hypoxia-induced male reproductive dysfunction are recommended.
Collapse
Affiliation(s)
- P A Oyedokun
- Anchor Reproductive Physiology and Bioinformatics Research Unit, Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria
| | - R E Akhigbe
- Anchor Reproductive Physiology and Bioinformatics Research Unit, Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria.
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun, Nigeria.
| | - L O Ajayi
- Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria
| | - A F Ajayi
- Anchor Reproductive Physiology and Bioinformatics Research Unit, Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria
| |
Collapse
|
10
|
The number of the intraepithelial T cells correlate with the proliferation index in human bulbourethral gland epithelium. Heliyon 2022; 8:e11658. [DOI: 10.1016/j.heliyon.2022.e11658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 04/25/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022] Open
|
11
|
Zhai YJ, Feng Y, Ma X, Ma F. Defensins: defenders of human reproductive health. Hum Reprod Update 2022; 29:126-154. [PMID: 36130055 PMCID: PMC9825273 DOI: 10.1093/humupd/dmac032] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/31/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Reproductive tract infection is an important factor leading to male and female infertility. Among female infertility factors, microbial and viral infections are the main factors affecting female reproductive health and causing tubal infertility, ectopic tubal pregnancy and premature delivery. Among male infertility factors, 13-15% of male infertility is related to infection. Defensins are cationic antibacterial and antiviral peptides, classified into α-defensins, β-defensins and θ-defensins. Humans only have α-defensins and β-defensins. Apart from their direct antimicrobial functions, defensins have an immunomodulatory function and are involved in many physiological processes. Studies have shown that defensins are widely distributed in the female reproductive tract (FRT) and male reproductive tract (MRT), playing a dual role of host defence and fertility protection. However, to our knowledge, the distribution, regulation and function of defensins in the reproductive tract and their relation to reproduction have not been reviewed. OBJECTIVE AND RATIONALE This review summarizes the expression, distribution and regulation of defensins in the reproductive tracts to reveal the updated research on the dual role of defensins in host defence and the protection of fertility. SEARCH METHODS A systematic search was conducted in PubMed using the related keywords through April 2022. Related data from original researches and reviews were integrated to comprehensively review the current findings and understanding of defensins in the human reproductive system. Meanwhile, female and male transcriptome data in the GEO database were screened to analyze defensins in the human reproductive tracts. OUTCOMES Two transcriptome databases from the GEO database (GSE7307 and GSE150852) combined with existing researches reveal the expression levels and role of the defensins in the reproductive tracts. In the FRT, a high expression level of α-defensin is found, and the expression levels of defensins in the vulva and vagina are higher than those in other organs. The expression of defensins in the endometrium varies with menstrual cycle stages and with microbial invasion. Defensins also participate in the local immune response to regulate the risk of spontaneous preterm birth. In the MRT, a high expression level of β-defensins is also found. It is mainly highly expressed in the epididymal caput and corpus, indicating that defensins play an important role in sperm maturation. The expression of defensins in the MRT varies with androgen levels, age and the status of microbial invasion. They protect the male reproductive system from bacterial infections by neutralizing lipopolysaccharide and downregulating pro-inflammatory cytokines. In addition, animal and clinical studies have shown that defensins play an important role in sperm maturation, motility and fertilization. WIDER IMPLICATIONS As a broad-spectrum antimicrobial peptide without drug resistance, defensin has great potential for developing new natural antimicrobial treatments for reproductive tract infections. However, increasing evidence has shown that defensins can not only inhibit microbial invasion but can also promote the invasion and adhesion of some microorganisms in certain biological environments, such as human immunodeficiency virus. Therefore, the safety of defensins as reproductive tract anti-infective drugs needs more in-depth research. In addition, the modulatory role of defensins in fertility requires more in-depth research since the current conclusions are based on small-size samples. At present, scientists have made many attempts at the clinical transformation of defensins. However, defensins have problems such as poor stability, low bioavailability and difficulties in their synthesis. Therefore, the production of safe, effective and low-cost drugs remains a challenge.
Collapse
Affiliation(s)
| | | | - Xue Ma
- Correspondence address. Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China. E-mail: https://orcid.org/0000-0002-7781-821X (F.M.); Department of Pediatric Urology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China. E-mail: https://orcid.org/0000-0002-7650-6214 (X.M.)
| | - Fang Ma
- Correspondence address. Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China. E-mail: https://orcid.org/0000-0002-7781-821X (F.M.); Department of Pediatric Urology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China. E-mail: https://orcid.org/0000-0002-7650-6214 (X.M.)
| |
Collapse
|
12
|
Insights into the perspective correlation between vitamin D and regulation of hormones: sex hormones and prolactin. CURRENT ISSUES IN PHARMACY AND MEDICAL SCIENCES 2021. [DOI: 10.2478/cipms-2021-0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract
Aim. Vitamin D is currently an exciting research target, besides its obvious role in calcium homeostasis and bone health, enormous work is being directed at examining the effects of this vitamin on various biological functions and pathological conditions.
Material and methods. The review of the literature and the analysis took about six months and was carried out through PubMed. This is a search engine opening mainly the MEDLINE database of trusted references. We called up all studies written in English that were published between the years 2004 to 2021 and that came through using the applied search terms, and analysed all those that met the criteria.
Results. The endocrine system with its many glands and hormones and their essential roles in the maintenance of normal body functioning cannot be far from interactions with vitamin D. Male and female sex hormones are no exceptions and many studies have investigated the correlations between these hormones and vitamin D. As such, direct and indirect relationships have been found between vitamin D, its receptors or one of its metabolising enzymes with sex hormones and the development of reproductive organs in males and females.
Conclusion. This review summarises the research investigating the associations of vitamin D with sex hormones and reproductive organs in males and females, and thus may pave the road for future studies that will investigate the clinical significance of vitamin D in the management of reproductive system disorders. Despite some conflicting results about the relationship between VD and the effectiveness of the reproductive system, many studies confirm the presence of receptors for this vitamin in the reproductive system, and this supports the direct or indirect relationship between VD and prolactin or VD and testosterone through PO4 and Ca2+ homeostasis, or production of osteocalcin. Therefore, VD is positively associated with semen quality and androgen status. Furthermore, a direct relationship between VD and the production of progesterone, estrogen and estrone in human ovarian cells has been supported by many studies.
Collapse
|
13
|
Yang Y, Zuo Z, Yang Z, Yin H, Wei L, Fang J, Guo H, Cui H, Ouyang P, Chen X, Chen J, Geng Y, Chen Z, Huang C, Zhu Y, Liu W. Nickel chloride induces spermatogenesis disorder by testicular damage and hypothalamic-pituitary-testis axis disruption in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112718. [PMID: 34478984 DOI: 10.1016/j.ecoenv.2021.112718] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
As a common environmental pollutant, nickel chloride (NiCl2) poses serious threat to human and animals health. NiCl2 has adverse effects on reproductive function in male, however, the underlying mechanisms are not fully illuminated. In this study, 64 male ICR mice were divided into four groups (8 mice per each period/ group), in which mice orally administrated with 0, 7.5, 15 or 30 mg/kg body weight for 14 or 28 consecutive days, respectively. The results showed that the sperm concentration (12.95%, 29.78% and 37.63% -) and sperm motility (19.79%, 34.88% and 43.10%) were dose-dependent significantly reduced, and the total sperm malformation rates (110.15%, 206.84% and 292.27%) were dose-dependent significantly elevated in the 7.5, 15 and 30 mg/kg NiCl2 treatment groups (vs control at 28 days), respectively (P < 0.05). Meanwhile, NiCl2 also decreased the relative weights of testis and epididymis and caused histopathological lesions of testis and epididymis. Furthermore, serum testosterone levels were significantly decreased after NiCl2 treatment. And the findings showed that NiCl2 down-regulated the expression of LH-R, StAR, P450scc, 3β-HSD, 17β-HSD, ABP and INHβB in the testis, however, the relative genes in the hypothalamus (Kiss-1, GPR54 and GnRH) and pituitary (GnRH-R, LHβ and FSHβ) did not exhibit noticeable change. In summary, NiCl2 induced spermatogenesis disorder by testicular damage and hypothalamic-pituitary-testis axis disruption in mice, and only impaired the genes on the testis of HPT axis.
Collapse
Affiliation(s)
- Yue Yang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Zhuangzhi Yang
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, Sichuan 611130, PR China
| | - Heng Yin
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Ling Wei
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Jing Fang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, PR China.
| | - Hongrui Guo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, PR China.
| | - Hengmin Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, PR China
| | - Ping Ouyang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Xia Chen
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, Sichuan 611130, PR China
| | - Jian Chen
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, Sichuan 611130, PR China
| | - Yi Geng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Zhengli Chen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Chao Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Yanqiu Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Wentao Liu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| |
Collapse
|
14
|
A Multi-Omics Study of Human Testis and Epididymis. Molecules 2021; 26:molecules26113345. [PMID: 34199411 PMCID: PMC8199593 DOI: 10.3390/molecules26113345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
The human testis and epididymis play critical roles in male fertility, including the spermatogenesis process, sperm storage, and maturation. However, the unique functions of the two organs had not been systematically studied. Herein, we provide a systematic and comprehensive multi-omics study between testis and epididymis. RNA-Seq profiling detected and quantified 19,653 in the testis and 18,407 in the epididymis. Proteomic profiling resulted in the identification of a total of 11,024 and 10,386 proteins in the testis and epididymis, respectively, including 110 proteins that previously have been classified as MPs (missing proteins). Furthermore, Five MPs expressed in testis were validated by the MRM method. Subsequently, multi-omcis between testis and epididymis were performed, including biological functions and pathways of DEGs (Differentially Expressed Genes) in each group, revealing that those differences were related to spermatogenesis, male gamete generation, as well as reproduction. In conclusion, this study can help us find the expression regularity of missing protein and help related scientists understand the physiological functions of testis and epididymis more deeply.
Collapse
|
15
|
Joung JY, Lee JS, Oh NS, Kim SH. Fermented Maillard reaction products attenuate stress-induced testicular dysfunction in mice. J Dairy Sci 2020; 104:1384-1393. [PMID: 33272581 DOI: 10.3168/jds.2020-18996] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/30/2020] [Indexed: 12/13/2022]
Abstract
Chronic stress can cause psychological diseases and affect male fertility and the reproductive system. Maillard reaction of milk proteins improves their functional and nutritional properties through modification of proteins. Previously, we determined that Maillard reaction product (MRP) from milk casein and MRP fermented (FMRP) with Lactobacillus rhamnosus 4B15 (4B15) had anti-anxiolytic effects in mice under chronic stress. Therefore, we aimed to investigate the effects of MRP and FMRP on chronic stress-induced testicular dysfunction in mice through quantitative real-time PCR (qRT-PCR) and in situ hybridization analysis. Mice were pretreated with MRP and FMRP for 10 wk; simultaneously, from the third week of the experimental period, they were exposed to unpredictable chronic mild stress (UCMS) for 7 wk. The expression levels of the luteinizing hormone subunit β (Lhb) and follicle-stimulating hormone subunit β (Fshb) were remarkably reduced after exposure to UCMS. However, treatment with MRP and FMRP inhibited the UCMS-induced reduction, with FMRP showing especially significant inhibition. Moreover, the expression of steroidogenesis-related genes [luteinizing hormone receptor (Lhr), follicle-stimulating hormone (Fshr), 3-β hydroxysteroid dehydrogenase 2 (Hsd3b2), and steroidogenic acute regulatory protein (StAR)] were significantly reduced in response to UCMS. In contrast, the transcript levels of these genes were highest in the MRP-treated mice. Mice pretreated with FMRP also exhibited higher levels of gene expression compared with the nonstressed mice. Moreover, UCMS significantly downregulated the expression of genes associated with testicular function [i.e., a disintegrin and metallopeptidase domain 5 (Adam5), Adam29, bone morphogenetic protein 2 (Bmp2), tektin 3 (Tekt3), and sperm adhesion molecule 1 (Spam1)]. However, the administration of MRP and FMRP prevented the UCMS-induced reduction in the expressions of above genes. The localization of Lhr, Srd5a2, Adam29, and Spam1 was confirmed by in situ hybridization analysis and the results were consistent with those of qRT-PCR. Consequently, these results indicated that MRP and FMRP, manufactured by the heat treatment of milk casein and fermentation with probiotic 4B15, have the potential to prevent chronic stress-induced testicular dysfunction.
Collapse
Affiliation(s)
- Jae Yeon Joung
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Korea
| | - Ji Sun Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Korea
| | - Nam Su Oh
- Department of Food and Biotechnology, Korea University, Sejong 30019, Korea.
| | - Sae Hun Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Korea.
| |
Collapse
|
16
|
A High Phosphorus Diet Impairs Testicular Function and Spermatogenesis in Male Mice with Chronic Kidney Disease. Nutrients 2020; 12:nu12092624. [PMID: 32872125 PMCID: PMC7551469 DOI: 10.3390/nu12092624] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/23/2020] [Accepted: 08/26/2020] [Indexed: 12/21/2022] Open
Abstract
Hyperphosphatemia is a serious complication in chronic kidney disease (CKD) that occurs due to insufficient excretion of phosphorus during failure of renal function. Both CKD and an excessive phosphorus intake have been reported to increase oxidative stress and result in poor male fertility, but little is known about the reproductive function of the CKD under a poorly controlled phosphate intake. Eight-week-old C57BL/6 mice (n = 66) were randomly divided into four groups: a sham operation group received a chow diet as control (SC group, n = 14), CKD-induced mice received a chow diet (CKDC group, n = 16), control mice received a high phosphorus (HP) diet (SP group, n = 16), and CKD-induced mice received a HP diet (CKDP group, n = 20). CKD was induced by performing a 5/6 nephrectomy. The chow diet contained 0.6% phosphorus, while the HP diet contained 2% phosphorus. Impaired testicular function and semen quality found in the CKD model may result from increased oxidative stress, causing apoptosis and inflammation. The HP diet aggravated the negative effects of testicular damage in the CKD-induced mice.
Collapse
|
17
|
Liu X, Liu S, Xu C. Effects of leptin on HPG axis and reproductive function in male rat in simulated altitude of 5500 m hypoxia environment. Biochem Biophys Res Commun 2020; 529:104-111. [PMID: 32560810 DOI: 10.1016/j.bbrc.2020.05.194] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 05/25/2020] [Indexed: 11/27/2022]
Abstract
High altitude hypobaric hypoxia environment impairs male's reproductive function. Leptin is an adipose tissue-derived hormone which regulates body weight homeostasis. Its receptor (LepR) has been found in all levels of male reproductive axis, indicating that it can affect male reproductive system in a direct or (and) indirect way. However, the role of leptin signaling in hypobaric hypoxia induced male reproductive dysfunction remains to be elucidated. In this study, we investigated the changes of leptin levels in male SD rats in stimulated altitude of 5500 m hypobaric hypoxia environment and their effects on the hypothalamus-pituitary-gonad axis (HPG axis). A hypoxia animal model was established using a hypobaric hypoxia chamber. Rats were divided randomly into 1, 7, 14, 28-day hypoxia group, recovery group (14 days hypoxia+14 days normoxia) and their control groups. Hypoxia groups displayed obvious changes of testicular and epididymis index compared to control groups. The total number of sperm and sperm motility rate decreased dramatically, while sperm deformity rate increased in hypoxia groups. The flow cytometry analysis showed that the percentage of haploid in 1-day, 7-day and 28-day hypoxia groups increased while the proportion of diploid decreased in 14-day and 28-day hypoxia group. TUNEL staining showed that the testis cells apoptosis index (AI) of hypoxia groups increased significantly, and the apoptosis of cells mainly focus on spermatogonia and spermatocytes. The expression of GnRH in hypothalamus decreased dramatically under hypoxia condition, accompanied with the reduction of serum testosterone (T) level in 1-day and 28-day hypoxia groups and free-testosterone level (FT) in 1-day and 14-day hypoxia groups. Importantly, ELISA analysis showed that serum leptin level decreased in 7-day hypoxia groups and acylated-ghrelin, gastrin also changed, accompanying with reduction of LepR in hypothalamus in hypoxia groups. Immunohistochemical staining exhibited increased leptin and LepR in testis under hypobaric hypoxia conditions. Our results suggested that simulated high altitude hypobaric hypoxia environment decreased male reproductive function, depressed HPG axis activity and altered the serum concentration of hormones related to food intake in adult male rats. Additionally, hypobaric hypoxia induced the leptin-LepR expression in adult male rats' testis, suggesting leptin-LepR signaling may mediate hypoxia-induced impairment in male rats' reproductive system.
Collapse
Affiliation(s)
- Xinyuan Liu
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.
| | - Shiying Liu
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.
| | - Chengli Xu
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
18
|
Abbas TO, Ali TA, Uddin S. Urine as a Main Effector in Urological Tissue Engineering-A Double-Edged Sword. Cells 2020; 9:538. [PMID: 32110928 PMCID: PMC7140397 DOI: 10.3390/cells9030538] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 12/15/2022] Open
Abstract
In order to reconstruct injured urinary tract tissues, biodegradable scaffolds with autologous seeded cells are explored in this work. However, when cells are obtained via biopsy from individuals who have damaged organs due to infection, congenital disorders, or cancer, this can result in unhealthy engineered cells and donor site morbidity. Thus, neo-organ construction through an alternative cell source might be useful. Significant advancements in the isolation and utilization of urine-derived stem cells have provided opportunities for this less invasive, limitless, and versatile source of cells to be employed in urologic tissue-engineered replacement. These cells have a high potential to differentiate into urothelial and smooth muscle cells. However, urinary tract reconstruction via tissue engineering is peculiar as it takes place in a milieu of urine that imposes certain risks on the implanted cells and scaffolds as a result of the highly cytotoxic nature of urine and its detrimental effect on both growth and differentiation of these cells. Both of these projections should be tackled thoughtfully when designing a suitable approach for repairing urinary tract defects and applying the needful precautions is vital.
Collapse
Affiliation(s)
- Tariq O. Abbas
- Laboratory for Stem Cell Research, Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark
- Pediatric Urology Section, Sidra Medicine, Doha 26999, Qatar
- College of Medicine, Qatar University, Doha 2713, Qatar
- Surgery Department, Weill Cornell Medicine—Qatar, Doha 24144, Qatar
| | - Tayyiba A. Ali
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (T.A.A.); (S.U.)
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (T.A.A.); (S.U.)
| |
Collapse
|
19
|
An SY, Zhang GM, Liu ZF, Zhou C, Yang PC, Wang F. MiR-1197-3p regulates testosterone secretion in goat Leydig cells via targeting PPARGC1A. Gene 2019; 710:131-139. [PMID: 31158446 DOI: 10.1016/j.gene.2019.05.057] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 05/21/2019] [Accepted: 05/29/2019] [Indexed: 12/21/2022]
Abstract
As a fundamental regulator of mitochondrial function, peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PPARGC1A) acts as a powerful coactivator of many transcriptional factors that relate to steroidogenesis, while the regulatory mechanism remains unclear. In the present study, testosterone secretion of goat Leydig cells (LCs) mediated by miR-1197-3p via PPARGC1A was investigated. We found PPARGC1A protein was diversely localized in testis, and the expression of PPARGC1A in testis of 9-month-old goat was significantly higher than that in 3-month-old goat. In addition, suppression of PPARGC1A significantly decreased the testosterone secretion in goat LCs, as well as reduced the expressions of key steroidogenesis related genes [steroidogenic acute regulatory protein (StAR), cytochrome P450 family 11 subfamily A member 1 (CYP11A1), and 3 beta-hydroxysteroid dehydrogenase (3BHSD)], and overexpression of PPARGC1A showed the opposite effects. Moreover, we observed suppression of miR-1197-3p increased the synthesis of testosterone and promoted the expressions of PPARGC1A, StAR, CYP11A1, and 3BHSD by directly targeting PPARGC1A in the LCs. Furthermore, overexpression of PPARGC1A could alleviate miR-1197-3p induced aberrant steroidogenesis related gene expressions and testosterone synthesis. Taken together, miR-1197-3p could act as an essential regulator of LC testosterone secretion in goat testis by targeting PPARGC1A. These results provide a novel view of the regulatory mechanisms involved in male sexual maturation and help us to understand the molecular role of PPARGC1A in testosterone synthesis.
Collapse
Affiliation(s)
- Shi-Yu An
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Guo-Min Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China; Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Zi-Fei Liu
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Chuang Zhou
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Peng-Cheng Yang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Wang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
20
|
Chaves JDP, Figueredo TFM, Warnavin SVSC, Pannuti CM, Steffens JP. Sex hormone replacement therapy in periodontology-A systematic review. Oral Dis 2019; 26:270-284. [PMID: 30739380 DOI: 10.1111/odi.13059] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/26/2018] [Accepted: 02/02/2019] [Indexed: 01/16/2023]
Abstract
OBJECTIVE To analyse whether sex hormone replacement therapy (HRT) improves periodontal parameters and dental implants osseointegration in humans. MATERIALS AND METHODS Electronic databases and hand searches were performed from June to August 2018 in SciELO, LILACS and PubMed/MEDLINE. Human observational and interventional studies that evaluated the following parameters were included: clinical attachment loss (CAL), probing pocket depth (PPD), bleeding on probing (BOP), radiographic bone loss (RBL) or osseointegration. RESULTS Initial search retrieved 1,282 non-duplicated articles. Fifteen studies were selected after inclusion criteria were applied. All studies were performed in postmenopausal women. Mean differences for PPD reduction ranged from 0.02 to 0.2 mm in HRT-positive patients; mean CAL gain -0.18 to 0.54 mm; mean RBL reduction -0.87 to 0.15 mm; and mean BOP reduction 9%-30.3%. Failure rate of dental implants increased -5.5% to 11.21% when HRT was used. CONCLUSIONS Very low but consistent evidence suggests a reduction in BOP and no impact on RBL in postmenopausal women receiving HRT. There are inconsistent reports that suggest that HRT in postmenopausal women: (a) improves or does not impact PPD reduction and CAL gain; and (b) does not impact or increase implant loss. In summary, there is no evidence to support HRT prescription for either men or women for periodontal/implant placement purposes.
Collapse
Affiliation(s)
| | | | | | | | - João Paulo Steffens
- Department of Stomatology, Federal University of Paraná (UFPR), Curitiba, Brazil
| |
Collapse
|
21
|
Zhang GM, Zhang TT, An SY, El-Samahy M, Yang H, Wan YJ, Meng FX, Xiao SH, Wang F, Lei ZH. Expression of Hippo signaling pathway components in Hu sheep male reproductive tract and spermatozoa. Theriogenology 2019; 126:239-248. [DOI: 10.1016/j.theriogenology.2018.12.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 11/16/2018] [Accepted: 12/14/2018] [Indexed: 01/06/2023]
|
22
|
Miller SR, Cherrington NJ. Transepithelial transport across the blood-testis barrier. Reproduction 2018; 156:R187-R194. [PMID: 30328342 PMCID: PMC6437009 DOI: 10.1530/rep-18-0338] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/27/2018] [Indexed: 12/29/2022]
Abstract
The blood-testis barrier protects developing germ cells by limiting the entry of xenobiotics into the adluminal compartment. There is strong evidence that the male genital tract can serve as a sanctuary site, an area of the body where tumors or viruses are able to survive treatments because most drugs are unable to reach therapeutic concentrations. Recent work has classified the expression and localization of endogenous transporters in the male genital tract as well as the discovery of a transepithelial transport pathway as the molecular mechanism by which nucleoside analogs may be able to circumvent the blood-testis barrier. Designing drug therapies that utilize transepithelial transport pathways may improve drug disposition to this sanctuary site. Strategies that improve disposition into the male genital tract could reduce the rate of testicular relapse, decrease viral load in semen, and improve therapeutic strategies for male fertility.
Collapse
Affiliation(s)
- Siennah R Miller
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, USA
| | - Nathan J Cherrington
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
23
|
Christodoulidou M, Parnham A, Nigam R. Diagnosis and management of symptomatic seminal vesicle calculi. Scand J Urol 2017; 51:237-244. [PMID: 28332431 DOI: 10.1080/21681805.2017.1295398] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
OBJECTIVE The aim of this study was to review the management of patients with symptomatic seminal vesicle calculi, from presentation and diagnosis to postoperative outcomes. MATERIALS AND METHODS A systematic review of the English literature in MEDLINE and Embase was performed, based on the following model: patients with a diagnosis of seminal vesicle calculi; all interventions considered with or without control groups with single and comparator interventions; outcomes considered were incidence, presentation, diagnostic methods and treatment. A narrative synthesis of the data was performed according to PRISMA 2009 guidelines. The study protocol was registered on PROSPERO (CRD42016032971). RESULTS In total, 213 cases of seminal vesicle calculi from 37 studies were identified between 1928 and 2016. Published articles included cohort studies (16), case-control studies (two) and case reports (19). The most likely aetiology was stasis of ejaculate secondary to impaired drainage of secretions from the seminal vesicles. Transrectal ultrasound remains the primary investigation for haematospermia and painful ejaculation; however, magnetic resonance imaging seems to play an increasingly important role, especially when considering surgery. Transurethral seminal vesiculoscopy and lithotripsy is the ideal procedure for small calculi but requires surgical expertise. For larger calculi a transperitoneal laparoscopic approach is safe in the hands of experienced laparoscopic surgeons. CONCLUSIONS Modern imaging techniques and cross-sectional imaging are leading to an increased number of diagnosed cases of seminal vesicle calculi. Optimal treatment depends on the stone size and burden, and centralization of services will assist in the development of specialized centres.
Collapse
Affiliation(s)
| | - Arie Parnham
- b Department of Urology , University College London Hospital , London , UK
| | - Raj Nigam
- a Division of Surgery and Interventional Sciences , University College London , London , UK
| |
Collapse
|
24
|
Bisphenol A Exposure during Pregnancy Alters the Mortality and Levels of Reproductive Hormones and Genes in Offspring Mice. BIOMED RESEARCH INTERNATIONAL 2017; 2017:3585809. [PMID: 28393075 PMCID: PMC5368376 DOI: 10.1155/2017/3585809] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 02/25/2017] [Accepted: 02/28/2017] [Indexed: 01/01/2023]
Abstract
The present study investigated the reproductive toxicity of bisphenol A (BPA) exposure to the mother on the offspring mice. BPA was given to pregnant mice at 50 mg/kg, 500 mg/kg, and 2500 mg/kg BW BPA daily by gavage during the whole gestation period. The offspring mice were sacrificed at 8 weeks of age. Results showed that exposure of BPA to the mother increased the mortality (P < 0.05). Maternal exposure of BPA reduced the levels of T (♂) and FSH (♀) (P < 0.01) and elevated E2 (♀) level in the adult offspring (P < 0.01). BPA exposure caused testicular damage as shown by less Leydig cells and ovarian injury as shown by more vacuoles and less corpus granules in the adult offspring mice. Immunohistochemistry revealed that maternal exposure of BPA increased Bax and decreased Bcl-2 at the protein levels in testicular and ovary tissues in the offspring mice. BPA significantly reduced the expression of StAR in male offspring (P < 0.05). Interestingly, the mRNA levels of Cyp11a were significantly decreased in 50 mg/kg groups and were increased in 500 mg/kg group in the males. Reduced Kitlg and elevated Amh at the mRNA levels were detected in the female offspring.
Collapse
|
25
|
El-Kamshoushi AAM, Hassan EM, Hassaan PS. Evaluation of serum level of Osteocalcin hormone in male infertility. Andrologia 2016; 49. [DOI: 10.1111/and.12755] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2016] [Indexed: 01/20/2023] Open
Affiliation(s)
- A. A. M. El-Kamshoushi
- Department of Dermatology; Venereology and Andrology; Faculty of Medicine; Alexandria University; Alexandria Egypt
| | - E. M. Hassan
- Department of Dermatology; Venereology and Andrology; Faculty of Medicine; Alexandria University; Alexandria Egypt
| | - P. S. Hassaan
- Department of Medical Physiology; Faculty of Medicine; Alexandria University; Alexandria Egypt
| |
Collapse
|
26
|
Progressive effects of silver nanoparticles on hormonal regulation of reproduction in male rats. Toxicol Appl Pharmacol 2016; 313:35-46. [DOI: 10.1016/j.taap.2016.10.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 10/06/2016] [Accepted: 10/11/2016] [Indexed: 02/05/2023]
|
27
|
Lim W, Bae H, Song G. Differential expression of apolipoprotein D in male reproductive system of rats by high-fat diet. Andrology 2016; 4:1115-1122. [DOI: 10.1111/andr.12250] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 06/08/2016] [Accepted: 06/13/2016] [Indexed: 01/02/2023]
Affiliation(s)
- W. Lim
- Institute of Animal Molecular Biotechnology and Department of Biotechnology; College of Life Sciences and Biotechnology; Korea University; Seoul Korea
| | - H. Bae
- Institute of Animal Molecular Biotechnology and Department of Biotechnology; College of Life Sciences and Biotechnology; Korea University; Seoul Korea
| | - G. Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology; College of Life Sciences and Biotechnology; Korea University; Seoul Korea
| |
Collapse
|
28
|
Steffens JP, Coimbra LS, Rossa C, Kantarci A, Van Dyke TE, Spolidorio LC. Androgen receptors and experimental bone loss - an in vivo and in vitro study. Bone 2015; 81:683-690. [PMID: 26450018 PMCID: PMC4641040 DOI: 10.1016/j.bone.2015.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 09/18/2015] [Accepted: 10/02/2015] [Indexed: 02/02/2023]
Abstract
Testosterone is a sex hormone that exhibits many functions beyond reproduction; one such function is the regulation of bone metabolism. The role played by androgen receptors during testosterone-mediated biological processes associated with bone metabolism is largely unknown. This study aims to use a periodontal disease model in vivo in order to assess the involvement of androgen receptors on microbial-induced inflammation and alveolar bone resorption in experimental bone loss. The impact of hormone deprivation was tested through both orchiectomy and chemical blockage of androgen receptor using flutamide (FLU). Additionally, the direct effect of exogenous testosterone, and the role of the androgen receptor, on osteoclastogenesis were investigated. Thirty male adult rats (n=10/group) were subjected to: 1-orchiectomy (OCX); 2-OCX sham surgery; or 3-OCX sham surgery plus FLU, four weeks before the induction of experimental bone loss. Ten OCX sham-operated rats were not subjected to experimental bone loss and served as healthy controls. The rats were euthanized two weeks later, so as to assess bone resorption and the production of inflammatory cytokines in the gingival tissue and serum. In order to study the in vitro impact of testosterone, osteoclasts were differentiated from RAW264.7 cells and testosterone was added at increasing concentrations. Both OCX and FLU increased bone resorption, but OCX alone was observed to increase osteoclast count. IL-1β production was increased only in the gingival tissue of OCX animals, whereas FLU-treated animals presented a decreased expression of IL-6. Testosterone reduced the osteoclast formation in a dose-dependent manner, and significantly impacted the production of TNF-α; FLU partially reversed these actions. When taken together, our results indicate that testosterone modulates experimental bone loss, and that this action is mediated, at least in part, via the androgen receptor.
Collapse
Affiliation(s)
- Joao Paulo Steffens
- Department of Physiology and Pathology, Univ Estad Paulista - UNESP, School of Dentistry at Araraquara, 1680 Humaitá Street, 14801-903 Araraquara, SP, Brazil; Department of Applied Oral Sciences, The Forsyth Institute, 245 First Street, 02142 Cambridge, MA, USA; Department of Specific Formation, Universidade Federal Fluminse - UFF, School of Dentistry at Nova Friburgo, 22 Doutor Sílvio Henrique Braune Street, 28625-650 Nova Friburgo, RJ, Brazil.
| | - Leila Santana Coimbra
- Department of Physiology and Pathology, Univ Estad Paulista - UNESP, School of Dentistry at Araraquara, 1680 Humaitá Street, 14801-903 Araraquara, SP, Brazil
| | - Carlos Rossa
- Department of Diagnosis and Surgery, Univ Estad Paulista - UNESP, School of Dentistry at Araraquara, 1680 Humaitá Street, 14801-903 Araraquara, SP, Brazil
| | - Alpdogan Kantarci
- Department of Applied Oral Sciences, The Forsyth Institute, 245 First Street, 02142 Cambridge, MA, USA
| | - Thomas E Van Dyke
- Department of Applied Oral Sciences, The Forsyth Institute, 245 First Street, 02142 Cambridge, MA, USA
| | - Luis Carlos Spolidorio
- Department of Physiology and Pathology, Univ Estad Paulista - UNESP, School of Dentistry at Araraquara, 1680 Humaitá Street, 14801-903 Araraquara, SP, Brazil
| |
Collapse
|
29
|
Chung YG, Tu D, Franck D, Gil ES, Algarrahi K, Adam RM, Kaplan DL, Estrada Jr. CR, Mauney JR. Acellular bi-layer silk fibroin scaffolds support tissue regeneration in a rabbit model of onlay urethroplasty. PLoS One 2014; 9:e91592. [PMID: 24632740 PMCID: PMC3954771 DOI: 10.1371/journal.pone.0091592] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 02/12/2014] [Indexed: 11/23/2022] Open
Abstract
Acellular scaffolds derived from Bombyx mori silk fibroin were investigated for their ability to support functional tissue regeneration in a rabbit model of urethra repair. A bi-layer silk fibroin matrix was fabricated by a solvent-casting/salt leaching process in combination with silk fibroin film casting to generate porous foams buttressed by homogeneous silk fibroin films. Ventral onlay urethroplasty was performed with silk fibroin grafts (Group 1, N = 4) (Width×Length, 1×2 cm2) in adult male rabbits for 3 m of implantation. Parallel control groups consisted of animals receiving small intestinal submucosa (SIS) implants (Group 2, N = 4) or urethrotomy alone (Group 3, N = 3). Animals in all groups exhibited 100% survival prior to scheduled euthanasia and achieved voluntary voiding following 7 d of initial catheterization. Retrograde urethrography of each implant group at 3 m post-op revealed wide urethral calibers and preservation of organ continuity similar to pre-operative and urethrotomy controls with no evidence of contrast extravasation, strictures, fistulas, or stone formation. Histological (hematoxylin and eosin and Masson's trichrome), immunohistochemical, and histomorphometric analyses demonstrated that both silk fibroin and SIS scaffolds promoted similar extents of smooth muscle and epithelial tissue regeneration throughout the original defect sites with prominent contractile protein (α-smooth muscle actin and SM22α) and cytokeratin expression, respectively. De novo innervation and vascularization were also evident in all regenerated tissues indicated by synaptophysin-positive neuronal cells and vessels lined with CD31 expressing endothelial cells. Following 3 m post-op, minimal acute inflammatory reactions were elicited by silk fibroin scaffolds characterized by the presence of eosinophil granulocytes while SIS matrices promoted chronic inflammatory responses indicated by mobilization of mononuclear cell infiltrates. The results of this study demonstrate that bi-layer silk fibroin scaffolds represent promising biomaterials for onlay urethroplasty, capable of promoting similar degrees of tissue regeneration in comparison to conventional SIS scaffolds, but with reduced immunogenicity.
Collapse
Affiliation(s)
- Yeun Goo Chung
- Department of Urology, Urological Diseases Research Center, Boston Children's Hospital, Boston, Massachusetts, United States of America
| | - Duong Tu
- Department of Urology, Urological Diseases Research Center, Boston Children's Hospital, Boston, Massachusetts, United States of America
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Debra Franck
- Department of Urology, Urological Diseases Research Center, Boston Children's Hospital, Boston, Massachusetts, United States of America
| | - Eun Seok Gil
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, United States of America
| | - Khalid Algarrahi
- Department of Urology, Urological Diseases Research Center, Boston Children's Hospital, Boston, Massachusetts, United States of America
| | - Rosalyn M. Adam
- Department of Urology, Urological Diseases Research Center, Boston Children's Hospital, Boston, Massachusetts, United States of America
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, United States of America
| | - Carlos R. Estrada Jr.
- Department of Urology, Urological Diseases Research Center, Boston Children's Hospital, Boston, Massachusetts, United States of America
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (JM); (CE)
| | - Joshua R. Mauney
- Department of Urology, Urological Diseases Research Center, Boston Children's Hospital, Boston, Massachusetts, United States of America
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (JM); (CE)
| |
Collapse
|
30
|
Abstract
A preface on the historical background, scope and clinical importance of the effects of reproductive endocrinology on the periodontium is presented. Furthermore, deductive explanations of intuitive observations evaluating the influence of reproductive endocrinology on the periodontium are discussed.
Collapse
|
31
|
|