1
|
Abstract
Fibromodulin (FMOD) is an archetypal member of the class II small leucine-rich proteoglycan family. By directly binding to extracellular matrix structural components, such as collagen and lysyl oxidase, FMOD regulates collagen cross-linking, packing, assembly, and fibril architecture via a multivalent interaction. Meanwhile, as a pluripotent molecule, FMOD acts as a ligand of various cytokines and growth factors, especially those belonging to the transforming growth factor (TGF) β superfamily, by interacting with the corresponding signaling molecules involved in cell adhesion, spreading, proliferation, migration, invasion, differentiation, and metastasis. Consequently, FMOD exhibits promigratory, proangiogenic, anti-inflammatory, and antifibrogenic properties and plays essential roles in cell fate determination and maturation, progenitor cell recruitment, and tissue regeneration. The multifunctional nature of FMOD thus enables it to be a promising therapeutic agent for a broad repertoire of diseases, including but not limited to arthritis, temporomandibular joint disorders, caries, and fibrotic diseases among different organs, as well as to be a regenerative medicine candidate for skin, muscle, and tendon injuries. Moreover, FMOD is also considered a marker for tumor diagnosis and prognosis prediction and a potential target for cancer treatment. Furthermore, FMOD itself is sufficient to reprogram somatic cells into a multipotent state, creating a safe and efficient cell source for various tissue reconstructions and thus opening a new avenue for regenerative medicine. This review focuses on the recent preclinical efforts bringing FMOD research and therapies to the forefront. In addition, a contemporary understanding of the mechanism underlying FMOD's function, particularly its interaction with TGFβ superfamily members, is also discussed at the molecular level to aid the discovery of novel FMOD-based treatments.
Collapse
Affiliation(s)
- Z. Zheng
- David Geffen School of Medicine,
University of California, Los Angeles, CA, USA
- School of Dentistry, University of
California, Los Angeles, CA, USA
| | - H.S. Granado
- Department of Orthodontics, School of
Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - C. Li
- Department of Orthodontics, School of
Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
2
|
Hosiriluck N, Kashio H, Takada A, Mizuguchi I, Arakawa T. The profiling and analysis of gene expression in human periodontal ligament tissue and fibroblasts. Clin Exp Dent Res 2022; 8:658-672. [PMID: 35106969 PMCID: PMC9209801 DOI: 10.1002/cre2.533] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 09/24/2021] [Accepted: 12/28/2021] [Indexed: 01/03/2023] Open
Abstract
Objectives The periodontal ligament (PDL) is an important component of periodontium to support dental structure in the alveolar socket. Regeneration of PDL tissue is an effective treatment option for periodontal disease and the profiling of genes involved in this process will be informative. Therefore, our study aims to accurately delineate the profiling of gene expression for PDL tissue regeneration. Materials and Methods We isolated PDL tissues and PDL fibroblasts (PDLFs) from premolar teeth, which were extracted from healthy periodontal status patients undergoing orthodontic treatment. Messenger RNA (mRNA) expression in PDL tissue and PDLFs were analyzed using Cap analysis gene expression, which is a second‐generation sequencing technique to create profiling. We also determined the protein expression using Western blot. Results Collagens (type I, III, and VI), noncollagenous proteins (periostin and osteonectin), and proteoglycans (asporin, lumican, decorin, and osteomodulin) were highly expressed in PDL tissue. Integrin, β1 was also expressed in PDL tissue. On comparison of gene expression between PDL tissue and PDLFs, four PDL marker genes, osteopontin, asporin, periostin, and osteonectin, were decreased in PDLFs. The genes for gene regulation were also highly expressed. Conclusions Our study demonstrated the overall profiling of mRNA expression in PDL tissue and analyzed the important genes which may be useful for providing specific information for the reconstruction of PDL. We also identified the difference in gene expression between PDL tissue and PDLFs which might provide insights towards PDL regeneration.
Collapse
Affiliation(s)
- Nattakarn Hosiriluck
- Division of Biochemistry, Department of Oral Biology, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu-cho, Hokkaido, Japan
| | - Haruna Kashio
- Division of Orthodontics and Dentofacial Orthopedics, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu-cho, Hokkaido, Japan
| | - Ayuko Takada
- Division of Biochemistry, Department of Oral Biology, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu-cho, Hokkaido, Japan
| | - Itaru Mizuguchi
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - Toshiya Arakawa
- Division of Biochemistry, Department of Oral Biology, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu-cho, Hokkaido, Japan
| |
Collapse
|
3
|
Moseley R, Waddington RJ. Modification of gingival proteoglycans by reactive oxygen species: potential mechanism of proteoglycan degradation during periodontal diseases. Free Radic Res 2021; 55:970-981. [PMID: 34821180 PMCID: PMC10392033 DOI: 10.1080/10715762.2021.2003351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Reactive oxygen species (ROS) overproduction and oxidative stress are increasingly being implicated in the extracellular matrix (ECM) degradation associated with chronic inflammatory conditions, such as periodontal diseases. The present study investigated the effects of ROS exposure on the proteoglycans of gingival tissues, utilizing an in vitro model system comprised of supra-physiological oxidant concentrations, to ascertain whether gingival proteoglycan modification and degradation by ROS contributed to the underlying mechanisms of ECM destruction during active gingivitis. Proteoglycans were purified from ovine gingival tissues and exposed to increasing H2O2 concentrations or a hydroxyl radical (·OH) flux for 1 h or 24 h, and ROS effects on proteoglycan core proteins and sulfated glycosaminoglycan (GAG) chains were assessed. ROS were capable of degrading gingival proteoglycans, with ·OH species inducing greater degradative effects than H2O2 alone. Degradative effects were particularly manifested as amino acid modification, core protein cleavage, and GAG chain depolymerization. Proteoglycan core proteins were more susceptible to degradation than GAG chains with H2O2 alone, although core proteins and GAG chains were both extensively degraded by ·OH species. Proteoglycan exposure to ·OH species for 24 h induced significant core protein amino acid modification, with decreases in glutamate, proline, isoleucine, and leucine; and concomitant increases in serine, glycine, and alanine residues. As clinical reports have previously highlighted proteoglycan core protein degradation during chronic gingivitis, whereas their sulfated GAG chains remain relatively intact, these findings potentially provide further evidence to implicate ROS in the pathogenesis of active gingivitis, complementing the enzymic mechanisms of periodontal tissue destruction already established.
Collapse
Affiliation(s)
- Ryan Moseley
- Regenerative Biology Group, Oral and Biomedical Sciences, School of Dentistry, Cardiff Institute of Tissue Engineering and Repair (CITER), College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| | - Rachel J Waddington
- Regenerative Biology Group, Oral and Biomedical Sciences, School of Dentistry, Cardiff Institute of Tissue Engineering and Repair (CITER), College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| |
Collapse
|
4
|
Simancas Escorcia V, Guillou C, Abbad L, Derrien L, Rodrigues Rezende Costa C, Cannaya V, Benassarou M, Chatziantoniou C, Berdal A, Acevedo AC, Cases O, Cosette P, Kozyraki R. Pathogenesis of Enamel-Renal Syndrome Associated Gingival Fibromatosis: A Proteomic Approach. Front Endocrinol (Lausanne) 2021; 12:752568. [PMID: 34777248 PMCID: PMC8586505 DOI: 10.3389/fendo.2021.752568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/06/2021] [Indexed: 12/24/2022] Open
Abstract
The enamel renal syndrome (ERS) is a rare disorder featured by amelogenesis imperfecta, gingival fibromatosis and nephrocalcinosis. ERS is caused by bi-allelic mutations in the secretory pathway pseudokinase FAM20A. How mutations in FAM20A may modify the gingival connective tissue homeostasis and cause fibromatosis is currently unknown. We here analyzed conditioned media of gingival fibroblasts (GFs) obtained from four unrelated ERS patients carrying distinct mutations and control subjects. Secretomic analysis identified 109 dysregulated proteins whose abundance had increased (69 proteins) or decreased (40 proteins) at least 1.5-fold compared to control GFs. Proteins over-represented were mainly involved in extracellular matrix organization, collagen fibril assembly, and biomineralization whereas those under-represented were extracellular matrix-associated proteins. More specifically, transforming growth factor-beta 2, a member of the TGFβ family involved in both mineralization and fibrosis was strongly increased in samples from GFs of ERS patients and so were various known targets of the TGFβ signaling pathway including Collagens, Matrix metallopeptidase 2 and Fibronectin. For the over-expressed proteins quantitative RT-PCR analysis showed increased transcript levels, suggesting increased synthesis and this was further confirmed at the tissue level. Additional immunohistochemical and western blot analyses showed activation and nuclear localization of the classical TGFβ effector phospho-Smad3 in both ERS gingival tissue and ERS GFs. Exposure of the mutant cells to TGFB1 further upregulated the expression of TGFβ targets suggesting that this pathway could be a central player in the pathogenesis of the ERS gingival fibromatosis. In conclusion our data strongly suggest that TGFβ -induced modifications of the extracellular matrix contribute to the pathogenesis of ERS. To our knowledge this is the first proteomic-based analysis of FAM20A-associated modifications.
Collapse
Affiliation(s)
- Victor Simancas Escorcia
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Oral Molecular Pathophysiology, Paris, France
| | - Clément Guillou
- Normandie Université, PISSARO Proteomic Facility, Institute for Research and Innovation in Biomedicine (IRIB), Mont-Saint-Aignan, France
- Normandie Université, UMR670 Centre National de la Recherche Scientifique (CNRS), Mont-Saint-Aignan, France
| | - Lilia Abbad
- UMRS1155, INSERM, Sorbonne Université, Paris, France
| | - Louise Derrien
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Oral Molecular Pathophysiology, Paris, France
| | - Claudio Rodrigues Rezende Costa
- Oral Center for Inherited Diseases, University Hospital of Brasília, Oral Histopathology Laboratory, Department of Dentistry, Health Sciences Faculty, University of Brasília (UnB), Brasília, Brazil
| | - Vidjea Cannaya
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Oral Molecular Pathophysiology, Paris, France
| | - Mourad Benassarou
- Service de Chirurgie Maxillo-faciale et Stomatologie, Hôpital De la Pitié Salpétrière, Sorbonne Université, Paris, France
| | | | - Ariane Berdal
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Oral Molecular Pathophysiology, Paris, France
- Centre de Référence Maladies Rares (CRMR) O-RARES, Hôpital Rothshild, Unité de Formation et de Recherche (UFR) d’Odontologie-Garancière, Université de Paris, Paris, France
| | - Ana Carolina Acevedo
- Oral Center for Inherited Diseases, University Hospital of Brasília, Oral Histopathology Laboratory, Department of Dentistry, Health Sciences Faculty, University of Brasília (UnB), Brasília, Brazil
| | - Olivier Cases
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Oral Molecular Pathophysiology, Paris, France
| | - Pascal Cosette
- Normandie Université, PISSARO Proteomic Facility, Institute for Research and Innovation in Biomedicine (IRIB), Mont-Saint-Aignan, France
- Normandie Université, UMR670 Centre National de la Recherche Scientifique (CNRS), Mont-Saint-Aignan, France
| | - Renata Kozyraki
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Oral Molecular Pathophysiology, Paris, France
- Centre de Référence Maladies Rares (CRMR) O-RARES, Hôpital Rothshild, Unité de Formation et de Recherche (UFR) d’Odontologie-Garancière, Université de Paris, Paris, France
| |
Collapse
|
5
|
Zang Y, Dong Q, Lu Y, Dong K, Wang R, Liang Z. Lumican inhibits immune escape and carcinogenic pathways in colorectal adenocarcinoma. Aging (Albany NY) 2021; 13:4388-4408. [PMID: 33493133 PMCID: PMC7906189 DOI: 10.18632/aging.202401] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/23/2020] [Indexed: 12/18/2022]
Abstract
Lumican (LUM), a small leucine-rich proteoglycan, is a component of the extracellular matrix. Abnormal LUM expression is potentially associated with cancer progression. In the present study, we confirmed high LUM mRNA expression in colorectal adenocarcinoma (COAD) through the UALCAN database. The Kaplan-Meier method, univariate, and multivariate COX analysis showed that high LUM expression is an independent determinant of poor prognosis in COAD. A COX regression model was constructed based on clinical information and LUM expression. The receiver operating characteristic (ROC) curve indicated that this model was highly accurate in monitoring COAD prognosis. The co-expression network of LUM was determined by LinkedOmics, which showed that LUM expression was closely related to immune escape and the miR200 family. Furthermore, we studied the co-expression network of LUM and found that LUM could promote tumor metastasis and invasion. The Tumor Immune Estimation Resource website showed that LUM was closely related to immune infiltration and correlated with regulatory T cells, tumour-associated macrophages, and dendritic cells. We found that LUM cultivated cancer progression by targeting the miR200 family to promote epithelial-to-mesenchymal transition. These findings suggest that LUM is a potential target for inhibiting immune escape and carcinogenic pathways.
Collapse
Affiliation(s)
- Yiqing Zang
- Department of Otorhinolaryngology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Qiuping Dong
- Department of Cancer Cell Biology, Tianjin's Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Yi Lu
- Department of Otorhinolaryngology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Kaiti Dong
- Department of Otorhinolaryngology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Rong Wang
- Department of Laboratory Medicine, Tianjin Medical University, Tianjin 300060, China
| | - Zheng Liang
- Department of Otorhinolaryngology, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
6
|
Chen Y, Guan Q, Han X, Bai D, Li D, Tian Y. Proteoglycans in the periodontium: A review with emphasis on specific distributions, functions, and potential applications. J Periodontal Res 2021; 56:617-632. [PMID: 33458817 DOI: 10.1111/jre.12847] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/16/2020] [Accepted: 12/22/2020] [Indexed: 02/05/2023]
Abstract
Proteoglycans (PGs) are largely glycosylated proteins, consisting of a linkage sugar, core proteins, and glycosaminoglycans (GAGs). To date, more than 40 kinds of PGs have been identified, and they can be classified as intracellular, cell surface, pericellular, and extracellular PGs according to cellular locations. To illustrate, extracellular PGs are known for regulating the homeostasis of the extracellular matrix; cell-surface PGs play a role in mediating cell adhesion and binding various growth factors. In the field of periodontology, PGs are implicated in cellular proliferation, migration, adhesion, contractility, and anoikis, thereby exerting a profound influence on periodontal tissue development, wound repair, the immune response, biomechanics, and pathological process. Additionally, the expression patterns of some PGs are dynamic and cell-specific. Therefore, determining the roles and spatial-temporal expression patterns of PGs in the periodontium could shed light on treatments for wound healing, tissue regeneration, periodontitis, and gingival overgrowth. In this review, close attention is paid to the distributions, functions, and potential applications of periodontal PGs. Related genetically modified animal experiments and involved signal transduction cascades are summarized for improved understanding of periodontal PGs. To date, however, there is a large amount of speculation on this topic that requires rigorous experiments for validation.
Collapse
Affiliation(s)
- Yilin Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics and Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qiuyue Guan
- Department of Geriatrics, People's Hospital of Sichuan Province, Chengdu, China
| | - Xianglong Han
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics and Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ding Bai
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Defu Li
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Ye Tian
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics and Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Kram V, Shainer R, Jani P, Meester JAN, Loeys B, Young MF. Biglycan in the Skeleton. J Histochem Cytochem 2020; 68:747-762. [PMID: 32623936 DOI: 10.1369/0022155420937371] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Small leucine rich proteoglycans (SLRPs), including Biglycan, have key roles in many organ and tissue systems. The goal of this article is to review the function of Biglycan and other related SLRPs in mineralizing tissues of the skeleton. The review is divided into sections that include Biglycan's role in structural biology, signaling, craniofacial and long bone homeostasis, remodeled skeletal tissues, and in human genetics. While many cell types in the skeleton are now known to be affected by Biglycan, there are still unanswered questions about its mechanism of action(s).
Collapse
Affiliation(s)
- Vardit Kram
- Molecular Biology of Bones and Teeth Section, National Institutes of Dental and Craniofacial Research, National Institutes of Health, U.S. Department of Health & Human Services, Bethesda, Maryland
| | - Reut Shainer
- Molecular Biology of Bones and Teeth Section, National Institutes of Dental and Craniofacial Research, National Institutes of Health, U.S. Department of Health & Human Services, Bethesda, Maryland
| | - Priyam Jani
- Molecular Biology of Bones and Teeth Section, National Institutes of Dental and Craniofacial Research, National Institutes of Health, U.S. Department of Health & Human Services, Bethesda, Maryland
| | - Josephina A N Meester
- Laboratory of Cardiogenetics, Center of Medical Genetics, University Hospital Antwerp, University of Antwerp, Antwerp, Belgium
| | - Bart Loeys
- Laboratory of Cardiogenetics, Center of Medical Genetics, University Hospital Antwerp, University of Antwerp, Antwerp, Belgium
| | - Marian F Young
- Molecular Biology of Bones and Teeth Section, National Institutes of Dental and Craniofacial Research, National Institutes of Health, U.S. Department of Health & Human Services, Bethesda, Maryland
| |
Collapse
|
8
|
Zielinski MS, Vardar E, Vythilingam G, Engelhardt EM, Hubbell JA, Frey P, Larsson HM. Quantitative intrinsic auto-cathodoluminescence can resolve spectral signatures of tissue-isolated collagen extracellular matrix. Commun Biol 2019; 2:69. [PMID: 30793047 PMCID: PMC6379429 DOI: 10.1038/s42003-019-0313-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 01/18/2019] [Indexed: 11/18/2022] Open
Abstract
By analyzing isolated collagen gel samples, we demonstrated in situ detection of spectrally deconvoluted auto-cathodoluminescence signatures of specific molecular content with precise spatial localization over a maximum field of view of 300 µm. Correlation of the secondary electron and the hyperspectral images proved ~40 nm resolution in the optical channel, obtained due to a short carrier diffusion length, suppressed by fibril dimensions and poor electrical conductivity specific to their organic composition. By correlating spectrally analyzed auto-cathodoluminescence with mass spectroscopy data, we differentiated spectral signatures of two extracellular matrices, namely human fibrin complex and rat tail collagen isolate, and uncovered differences in protein distributions of isolated extracellular matrix networks of heterogeneous populations. Furthermore, we demonstrated that cathodoluminescence can monitor the progress of a human cell-mediated remodeling process, where human collagenous matrix was deposited within a rat collagenous matrix. The revealed change of the heterogeneous biological composition was confirmed by mass spectroscopy. Zielinski et al. show that quantitative label-free cathodoluminescence-scanning electron microscopy differentiates spectral signatures of two extracellular matrices. This method can monitor the progress of a smooth muscle cell-mediated remodeling process without using antibodies to enhance the optical signal.
Collapse
Affiliation(s)
| | - Elif Vardar
- Institute for Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland.,Department of Pediatrics, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, 1011, Switzerland
| | - Ganesh Vythilingam
- Institute for Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland.,Department of Surgery, Faculty of Medicine, University Malaya, Kuala Lumpur, 53100, Malaysia
| | - Eva-Maria Engelhardt
- Institute for Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
| | - Jeffrey A Hubbell
- Institute for Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Peter Frey
- Institute for Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
| | - Hans M Larsson
- Institute for Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland.
| |
Collapse
|
9
|
Wang S, Lü D, Zhang Z, Jia X, Yang L. Effects of mechanical stretching on the morphology of extracellular polymers and the mRNA expression of collagens and small leucine-rich repeat proteoglycans in vaginal fibroblasts from women with pelvic organ prolapse. PLoS One 2018; 13:e0193456. [PMID: 29630675 PMCID: PMC5890965 DOI: 10.1371/journal.pone.0193456] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 02/12/2018] [Indexed: 01/12/2023] Open
Abstract
To determine the effect of mechanical stretching load and the efficacy of postmenopausal estrogen therapy (ET) on pelvic organ prolapse (POP), vaginal fibroblasts isolated from postmenopausal women with or without POP were subjected to 0.1-Hz uniaxial cyclic mechanical stretching (CS) with 10% elongation and 10-8 M 17-β-estradiol (E2) treatment. We investigated the morphological characteristics of extracellular polymers using scanning electron microscopy (SEM) and monitored the mRNA expression of type I collagen (COL I) and type III collagen (COL III) as well as the small leucine-rich proteoglycan (SLRP) family members decorin (DCN), biglycan (BGN), fibromodulin (FMO), and lumican (LUM), using real-time quantitative polymerase chain reaction (RT-PCR). Using SEM, certain viscoelastic polymers were found to be randomly distributed among fibroblasts, which for normal fibroblasts formed clusters of plum flower-like patterns under static-culture conditions and resembled stretched strips when stretched in culture, whereas polymers among POP fibroblasts resembled stretched strips under static-cultured conditions and presented broken networks when stretched in culture. RT-PCR revealed that COL I, DCN, BGN, FMO, and LUM mRNA expression was significantly higher in POP than in normal fibroblasts under static-culture condition. Following CS, COL I and BGN mRNA expression was significantly up-regulated in normal fibroblasts, and DCN and FMO mRNA expression was down-regulated in POP fibroblasts. Following concomitant CS and E2 treatment, significantly elevated COL I and DCN mRNA expression was observed in normal fibroblasts, and significantly elevated COL I and BGN mRNA expression was observed in POP fibroblasts. COL III mRNA expression was not significantly different between the POP and normal group, and CS did not significantly affect expression in either group, though COL III was down-regulated in normal fibroblasts concomitantly treated with E2 and CS. We conclude that the morphological distribution of extracellular polymers in POP fibroblasts exhibited higher sensitivity and lower tolerance to stretching loads than do normal fibroblasts. These mechanical properties were further reflected in the transcription of COL I. Defects in the compensatory function of BGN for DCN and LUM for FMO exist in POP fibroblasts, which further affect the structure and function of COL I in response to stretching load, ultimately resulting in abnormal reconstruction of pelvic supportive connective tissues and the occurrence of POP. ET can maintain stretching-induced elevations in COL I and DCN transcription in healthy women and improve stretching-induced COL I, DCN, BGN, and FMO transcriptional changes in POP women to prevent and improve POP. Only down-regulated COL III transcription was observed upon concomitant CS and E2 treatment in normal fibroblasts, which suggests that the tensile strength, not the elasticity, of the supportive connective tissues is damaged in POP and that the higher tensile strength induced by ET in healthy fibroblasts prevents POP. These findings confirm the role of higher sensitivity and lower tolerance to mechanical stretching in the pathogenesis of POP and further provide evidence supporting the use of ET to prevent and inhibit POP in postmenopausal women.
Collapse
Affiliation(s)
- Sumei Wang
- Department of Obstetrics and Gynecology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- * E-mail: (ZZ); (SW); (XJ)
| | - Dongyuan Lü
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
| | - Zhenyu Zhang
- Department of Obstetrics and Gynecology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- * E-mail: (ZZ); (SW); (XJ)
| | - Xingyuan Jia
- Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- * E-mail: (ZZ); (SW); (XJ)
| | - Lei Yang
- Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Wadsworth C, Procopio N, Anderung C, Carretero JM, Iriarte E, Valdiosera C, Elburg R, Penkman K, Buckley M. Comparing ancient DNA survival and proteome content in 69 archaeological cattle tooth and bone samples from multiple European sites. J Proteomics 2017; 158:1-8. [DOI: 10.1016/j.jprot.2017.01.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/21/2016] [Accepted: 01/06/2017] [Indexed: 12/23/2022]
|
11
|
Martin-Rojas T, Mourino-Alvarez L, Alonso-Orgaz S, Rosello-Lleti E, Calvo E, Lopez-Almodovar LF, Rivera M, Padial LR, Lopez JA, de la Cuesta F, Barderas MG. iTRAQ proteomic analysis of extracellular matrix remodeling in aortic valve disease. Sci Rep 2015; 5:17290. [PMID: 26620461 PMCID: PMC4664895 DOI: 10.1038/srep17290] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 10/28/2015] [Indexed: 02/08/2023] Open
Abstract
Degenerative aortic stenosis (AS) is the most common worldwide cause of valve replacement. The aortic valve is a thin, complex, layered connective tissue with compartmentalized extracellular matrix (ECM) produced by specialized cell types, which directs blood flow in one direction through the heart. There is evidence suggesting remodeling of such ECM during aortic stenosis development. Thus, a better characterization of the role of ECM proteins in this disease would increase our understanding of the underlying molecular mechanisms. Aortic valve samples were collected from 18 patients which underwent aortic valve replacement (50% males, mean age of 74 years) and 18 normal control valves were obtained from necropsies (40% males, mean age of 69 years). The proteome of the samples was analyzed by 2D-LC MS/MS iTRAQ methodology. The results showed an altered expression of 13 ECM proteins of which 3 (biglycan, periostin, prolargin) were validated by Western blotting and/or SRM analyses. These findings are substantiated by our previous results demonstrating differential ECM protein expression. The present study has demonstrated a differential ECM protein pattern in individuals with AS, therefore supporting previous evidence of a dynamic ECM remodeling in human aortic valves during AS development.
Collapse
Affiliation(s)
- Tatiana Martin-Rojas
- Department of Vascular Physiopathology, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| | - Laura Mourino-Alvarez
- Department of Vascular Physiopathology, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| | - Sergio Alonso-Orgaz
- Department of Vascular Physiopathology, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| | - Esther Rosello-Lleti
- Cardiocirculatory Unit, Health Research Institute, Hospital La Fe, Valencia, Spain
| | | | | | - Miguel Rivera
- Cardiocirculatory Unit, Health Research Institute, Hospital La Fe, Valencia, Spain
| | - Luis R Padial
- Department of Cardiology, Hospital Virgen de la Salud, SESCAM, Toledo, Spain
| | | | - Fernando de la Cuesta
- Department of Vascular Physiopathology, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| | - Maria G Barderas
- Department of Vascular Physiopathology, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| |
Collapse
|
12
|
Vieira CP, Guerra FDR, de Oliveira LP, Almeida MS, Marcondes MCC, Pimentell ER. Green tea and glycine aid in the recovery of tendinitis of the Achilles tendon of rats. Connect Tissue Res 2015; 56:50-8. [PMID: 25360832 DOI: 10.3109/03008207.2014.983270] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE Green tea (GT) is widely used due to its anti-inflammatory properties. Previous studies have shown beneficial effects of a glycine diet on the remodeling process in inflamed tendons. Tendinitis is commonly observed in athletes and is of concern to surgeons due to the slowness of the recovery process. Our hypothesis is that GT + a glycine diet may improve tendinitis. AIM OF THE STUDY To analyze the effect of GT and/or glycine in the diet on tendinitis. MATERIALS AND METHODS Wistar rats were divided into seven groups (G): control group (C); G1 and G4, tendinitis; G2 and G5, tendinitis supplied with GT; and G3 and G6, tendinitis supplied with GT and a glycine diet for 7 or 21 days, respectively. We performed zymography for metalloproteinase, biochemical, morphological and biomechanics tests. RESULTS G2, G3 and G5 showed high levels of hydroxyproline in relation to G1, while G4 showed high levels of glycosaminoglycans. High activity of metalloproteinase-2 was detected in G3. The organization of collagen bundles was better in G2 and G3. G5 showed similar birefringence measurements compared with C. G5 withstood a larger load compared with G4. CONCLUSIONS The presence of metalloproteinase-2 indicates that a tissue is undergoing a remodeling process. High birefringence suggests a better organization of collagen bundles. After 21 days, G5 sustained a high load before rupture, unlike G4. The results suggest that GT + a glycine diet has beneficial effects that aid in the recovery process of the tendon after tendinitis.
Collapse
Affiliation(s)
- C P Vieira
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas , Campinas, SP , Brazil and
| | | | | | | | | | | |
Collapse
|
13
|
Expression of small leucine-rich proteoglycans in rat anterior pituitary gland. Cell Tissue Res 2012; 351:207-12. [PMID: 23100035 DOI: 10.1007/s00441-012-1513-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 09/25/2012] [Indexed: 10/27/2022]
Abstract
Proteoglycans are components of the extracellular matrix and comprise a specific core protein substituted with covalently linked glycosaminoglycan chains. Small leucine-rich proteoglycans (SLRPs) are a major family of proteoglycans and have key roles as potent effectors in cellular signaling pathways. Research during the last two decades has shown that SLRPs regulate biological functions in many tissues such as skin, tendon, kidney, liver, and heart. However, little is known of the expression of SLRPs, or the characteristics of the cells that produce them, in the anterior pituitary gland. Therefore, we have determined whether SLRPs are present in rat anterior pituitary gland. We have used real-time reverse transcription with the polymerase chain reaction to analyze the expression of SLRP genes and have identified the cells that produce SLRPs by using in situ hybridization with a digoxigenin-labeled cRNA probe. We have clearly detected the mRNA expression of SLRP genes, and cells expressing decorin, biglycan, fibromodulin, lumican, proline/arginine-rich end leucine-rich repeat protein (PRELP), and osteoglycin are located in the anterior pituitary gland. We have also investigated the possible double-staining of SLRP mRNA and pituitary hormones, S100 protein (a marker of folliculostellate cells), desmin (a marker of capillary pericytes), and isolectin B4 (a marker of endothelial cells). Decorin, biglycan, fibromodulin, lumican, PRELP, and osteoglycin mRNA have been identified in S100-protein-positive and desmin-positive cells. Thus, we conclude that folliculostellate cells and pericytes produce SLRPs in rat anterior pituitary gland.
Collapse
|
14
|
Bulmanski Z, Brady M, Stoute D, Lallier TE. Cigarette smoke extract induces select matrix metalloproteinases and integrin expression in periodontal ligament fibroblasts. J Periodontol 2012; 83:787-96. [PMID: 22122519 DOI: 10.1902/jop.2011.110395] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND The periodontal ligament (PDL) is the connective tissue that anchors the cementum of the teeth to the alveolar bone. PDL fibroblasts are responsible for the production of collagen and remodeling of the PDL. Periodontal disease is increased among smokers in both incidence and severity. This study examines the direct effect of smoking on PDL fibroblasts and their production of various matrix components and remodeling enzymes. METHODS PDL cells were plated for 1 day and then treated with various concentrations of cigarette smoke extract (CSE). Survival of PDL cells was quantified after exposure to CSE, and their ability to contract three-dimensional collagen gels was examined. Changes in transcript expression after CSE treatment was compared using reverse transcription-polymerase chain reaction analysis for matrix metalloproteinases (MMPs), collagens, and integrins. RESULTS Treatment with CSE-induced cell death at concentrations of ≥5%. PDL-cell-induced collagen gel contraction was reduced at concentrations of 1.5% CSE. Treatment with CSE selectively increased the expression of collagen Vα3 and decreased collagen XIα1. CSE increased the expression of MMP1 and MMP3 and, to a lesser extent, MMP2 and MMP8. CSE also increased the expression of integrins α1, α2, and α10 (collagen receptors) and α9 (a tenascin receptor). CONCLUSIONS This study shows that cigarette smoking has local effects on the cells of the PDL. CSE reduced survival of PDL cells and their ability to contract collagen matrices. CSE also altered the expression of molecules known to provide the structural integrity of the ligament by altering collagen synthesis and remodeling as well as cell adhesion.
Collapse
Affiliation(s)
- Zachary Bulmanski
- Department of Oral Biology, Center of Excellence in Oral and Craniofacial Biology, Louisiana State University Health Sciences Center, School of Dentistry, 1100 Florida Ave., New Orleans, LA 70119, USA
| | | | | | | |
Collapse
|
15
|
Effects of biglycan on physico-chemical properties of ligament-mineralized tissue attachment sites. Arch Oral Biol 2012; 57:177-87. [DOI: 10.1016/j.archoralbio.2011.08.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 07/09/2011] [Accepted: 08/18/2011] [Indexed: 11/19/2022]
|
16
|
Reduced Decorin, Fibromodulin, and Transforming Growth Factor-β3 in Deep Dermis Leads to Hypertrophic Scarring. J Burn Care Res 2012; 33:218-27. [DOI: 10.1097/bcr.0b013e3182335980] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
17
|
Honardoust D, Varkey M, Hori K, Ding J, Shankowsky HA, Tredget EE. Small leucine-rich proteoglycans, decorin and fibromodulin, are reduced in postburn hypertrophic scar. Wound Repair Regen 2011; 19:368-78. [PMID: 21518082 DOI: 10.1111/j.1524-475x.2011.00677.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Small leucine-rich proteoglycans (SLRPs) are extracellular matrix molecules that regulate collagen fibrillogenesis and inhibit transforming growth factor-β activity; thus, they may play a critical role in wound healing and scar formation. Hypertrophic scarring is a dermal form of fibroproliferative disorders, which occurs in over 70% of burn patients and leads to disfigurement and limitations in function. By understanding the cellular and molecular mechanisms that lead to scarring after injury, new clinical therapeutic approaches can by developed to minimize abnormal scar formation in hypertrophic scarring and other fibroproliferative disorders. To study the expression and localization of SLRPs with connective tissue cells in tissue immunohistochemistry, immunofluorescence staining, immunoblotting, and reverse-transcription polymerase chain reaction were used in normal skin and hypertrophic scar (HTS). In normal skin, there was more decorin and fibromodulin accumulation in the superficial layers than in the deeper dermal layers. The levels of decorin and fibromodulin were significantly lower in HTS, whereas biglycan was increased when compared with normal skin. There was an increased expression of biglycan, fibromodulin, and lumican in the basement membrane and around basal epithelial cells. In contrast, these proteoglycans were absent or weakly expressed in HTS. The findings suggest that down-regulation of SLRPs after wound healing in deep injuries to the skin plays an important role in the development of fibrosis and HTS.
Collapse
Affiliation(s)
- Dariush Honardoust
- Wound Healing Research Group, Department of Surgery, Division of Plastic and Reconstructive Surgery, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
18
|
Salgado RM, Favaro RR, Martin SS, Zorn TMT. The estrous cycle modulates small leucine-rich proteoglycans expression in mouse uterine tissues. Anat Rec (Hoboken) 2009; 292:138-53. [PMID: 18951514 DOI: 10.1002/ar.20797] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In the pregnant mouse uterus, small leucine-rich proteoglycans (SLRPs) are drastically remodeled within a few hours after fertilization, suggesting that ovarian hormone levels modulate their synthesis and degradation. In this study, we followed by immunoperoxidase approach, the presence of four members of the SLRP family (decorin, lumican, biglycan, and fibromodulin) in the uterine tissues along the estrous cycle of the mouse. All molecules except fibromodulin, which predominates in the myometrium, showed a striking modulation in their distribution in the endometrial stroma, following the rise in the level of estrogen. Moreover, notable differences in the distribution of SLRPs were observed between superficial and deep stroma, as well as between the internal and external layers of the myometrium. Only biglycan and fibromodulin were expressed in the luminal and glandular epithelia. All four SLRPs were found in cytoplasmic granules of mononucleated cells. The pattern of distribution of the immunoreaction for these molecules in the uterine tissues was found to be estrous cycle-stage dependent, suggesting that these molecules undergo ovarian hormonal control and probably participate in the preparation of the uterus for decidualization and embryo implantation. In addition, this and previous results from our laboratory suggest the existence of two subpopulations of endometrial fibroblasts that may be related to the centrifugal development of the decidua. Anat Rec, 2008. (c) 2008 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Renato M Salgado
- Laboratory of Reproductive and Extracellular Matrix Biology, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | | |
Collapse
|
19
|
Chambers KF, Bacon JR, Kemsley EK, Mills RD, Ball RY, Mithen RF, Traka MH. Gene expression profile of primary prostate epithelial and stromal cells in response to sulforaphane or iberin exposure. Prostate 2009; 69:1411-21. [PMID: 19489030 DOI: 10.1002/pros.20986] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Broccoli consumption has been associated with a reduced risk of prostate cancer. Isothiocyanates (ITCs) derived from glucosinolates that accumulate in broccoli are dietary compounds that may mediate these health effects. Sulforaphane (SF, 4-methylsulphinylbutyl ITC) derives from heading broccoli (calabrese) and iberin (IB, 3-methylsulphinypropyl ITC) from sprouting broccoli. While there are many studies regarding the biological activity of SF, mainly undertaken with cancerous cells, there are few studies associated with IB. METHODS Primary epithelial and stromal cells were derived from benign prostatic hyperplasia tissue. Affymetrix U133 Plus 2.0 whole genome arrays were used to compare global gene expression between these cells, and to quantify changes in gene expression following exposure to physiologically appropriate concentrations of SF and IB. Ontology and pathway analyses were used to interpret results. Changes in expression of a subset of genes were confirmed by real-time RT-PCR. RESULTS Global gene expression profiling identified epithelial and stromal-specific gene expression profiles. SF induced more changes in epithelial cells, whereas IB was more effective in stromal cells. Although IB and SF induced different changes in gene expression in both epithelial and stromal cells, these were associated with similar pathways, such as cell cycle and detoxification. Both ITCs increased expression of PLAGL1, a tumor suppressor gene, in stromal cells and suppressed expression of the putative tumor promoting genes IFITM1, CSPG2, and VIM in epithelial cells. CONCLUSION These data suggest that IB and SF both alter genes associated with cancer prevention, and IB should be investigated further as a potential chemopreventative agent. Prostate 69: 1411-1421, 2009. (c) 2009 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Karen F Chambers
- Natural Products and Health Programme, Institute of Food Research, Norwich, UK
| | | | | | | | | | | | | |
Collapse
|
20
|
Biglycan expression in hypertensive subjects with normal or increased carotid intima-media wall thickness. Clin Chim Acta 2009; 406:89-93. [DOI: 10.1016/j.cca.2009.05.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Revised: 05/28/2009] [Accepted: 05/29/2009] [Indexed: 11/16/2022]
|
21
|
Harris LK, Aplin JD. Vascular remodeling and extracellular matrix breakdown in the uterine spiral arteries during pregnancy. Reprod Sci 2008; 14:28-34. [PMID: 18089607 DOI: 10.1177/1933719107309588] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
During pregnancy, trophoblasts invade and transform the maternal spiral arteries that supply blood to the placenta. Recent work has revealed that this process occurs in several stages, and details of the molecular and cellular mechanisms are beginning to emerge, including changes that precede or accompany trophoblastic colonization of the vascular media. Disruption and eventual loss of smooth muscle cells and their associated extracellular matrix are central to physiological transformation. Advances in understanding will lead to the identification of the causative factors involved in failure of remodeling in pathological pregnancies and suggest novel diagnostic and therapeutic avenues.
Collapse
Affiliation(s)
- Lynda K Harris
- Maternal and Fetal Health Research Group, University of Manchester, United Kingdom
| | | |
Collapse
|
22
|
Csiszar A, Wiebe C, Larjava H, Häkkinen L. Distinctive molecular composition of human gingival interdental papilla. J Periodontol 2007; 78:304-14. [PMID: 17274720 DOI: 10.1902/jop.2007.060165] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Gingiva is composed of attached and marginal (free) gingiva and interdental papilla. Increasing esthetic demands in dentistry have created a need to restore all parts of the gingiva. However, the interdental papilla has limited regeneration potential compared to other parts of the gingiva. It also is more susceptible to gingival overgrowth, suggesting that it has distinct cellular and molecular properties from other parts of the gingiva. Very little is known about the possible differences in the molecular composition of different parts of the gingiva. METHODS We compared the expression of a set of key molecules in interdental papilla and marginal gingiva from seven healthy subjects by immunohistochemical staining. RESULTS In the interdental papilla, immunoreactivity for integrin alphavbeta6 and cytokeratin 19 in the oral epithelium was significantly higher than in marginal gingiva. Expression of type I procollagen, extra domain A (EDA) and extra domain B (EDB) fibronectin isoforms, tenascin-C, transforming growth factor-beta (TGF-beta), connective tissue growth factor (CTGF), and the signaling molecule son-of-sevenless (SOS)-1 also were increased in the interdental papilla. The expression of small leucine-rich proteoglycans decorin, biglycan, fibromodulin, and lumican in the interdental papilla was partially different from the marginal gingiva. CONCLUSIONS Molecular composition of the interdental papilla is distinct from marginal gingiva. Increased expression of molecules normally induced in wound healing (alphavbeta6 integrin, fibronectin-EDB and -EDA, tenascin-C, type I procollagen, TGF-beta, CTGF, and SOS-1) suggests that the cells in the interdental papilla are in an activated state and/or inherently display a specific phenotype resembling wound healing.
Collapse
Affiliation(s)
- Andrea Csiszar
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, Laboratory of Periodontal Biology, University of British Columbia, Vancouver, BC
| | | | | | | |
Collapse
|
23
|
Häkkinen L, Csiszar A. Hereditary gingival fibromatosis: characteristics and novel putative pathogenic mechanisms. J Dent Res 2007; 86:25-34. [PMID: 17189459 DOI: 10.1177/154405910708600104] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Hereditary gingival fibromatosis (HGF) is a rare condition that can occur as an isolated disease or as part of a syndrome or chromosomal abnormality. In severe cases, the gingival enlargement may cover the crowns of teeth and cause severe functional and esthetic concerns. Histological and cell culture studies have uncovered some of the molecular and cellular changes associated with HGF. However, the pathogenesis of the disease is still largely unknown. Recent studies about the genetic characteristics of HGF have provided novel clues about the potential pathogenic mechanisms. In particular, mutation in the son-of-sevenless (SOS-1) gene has been associated with one form of the disease. However, HGF displays genetic heterogeneity, and mutations in other genes are also likely involved. This review outlines the current knowledge about the histological, cellular, and genetic characteristics of HGF. In addition, the potential role of the SOS-1 molecule and related novel intracellular signaling pathways in the pathogenesis of HGF will be discussed.
Collapse
Affiliation(s)
- L Häkkinen
- University of British Columbia, Faculty of Dentistry, Department of Oral Biological and Medical Sciences, Laboratory of Periodontal Biology, Vancouver, BC, Canada V6T 1Z3.
| | | |
Collapse
|
24
|
Dannewitz B, Edrich C, Tomakidi P, Kohl A, Gabbert O, Staehle HJ, Steinberg T. Elevated levels of gene expression for collagen and decorin in human gingival overgrowth. J Clin Periodontol 2006; 33:510-6. [PMID: 16820039 DOI: 10.1111/j.1600-051x.2006.00937.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES It has been demonstrated that extracellular matrix molecules are involved in cyclosporine-induced gingival overgrowth (GO). However, for many of these molecules, it remains unclear whether their abundance is modulated on the protein and gene expression level. MATERIAL AND METHODS To contribute to this clarification, we have analysed the protein and mRNA expression of type-I collagen (COL1) and decorin (DC) in native specimens obtained from five patients with GO, and matched normal tissue using indirect immunofluorescence (IIM), in situ hybridization (ISH) and quantitative polymerase chain reaction (PCR). RESULTS IIF revealed a largely co-localized although remarkably increased abundance for COL1 and DC in GO. This increase coincided with an up-regulated gene expression observed for both molecules, as detected by ISH and quantitative PCR. CONCLUSIONS Analysis of our data clearly demonstrates elevated levels for COL1 and DC and shows for the first time in native human tissue that involvement of these genes in GO is not confined to the protein level but also includes the transcriptional level.
Collapse
Affiliation(s)
- Bettina Dannewitz
- Section of Periodontology, Department of Operative Dentistry and Periodontology, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
25
|
Lallam-Laroye C, Escartin Q, Zlowodzki AS, Barritault D, Caruelle JP, Baroukh B, Saffar JL, Colombier ML. Periodontitis destructions are restored by synthetic glycosaminoglycan mimetic. J Biomed Mater Res A 2006; 79:675-83. [PMID: 16832824 DOI: 10.1002/jbm.a.30880] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Periodontitis are bacterium-driven inflammatory diseases that destroy tooth-supporting tissues whose complete restoration is not currently possible. RGTA, a new class of agents, have this capacity in an animal model. Periodontitis was induced in hamsters and, starting 8 weeks later, injected RG1503, a glycosaminoglycan synthesized from a 40 kDa dextran behaving like a heparan sulfate mimetic (1.5 mg kg(-1) w(-1)) or saline for 8 weeks. The three periodontium compartments were evaluated by immunohistochemistry and morphometry. The gingival extracellular matrix disorganized by inflammation was restoring under treatment. The collagen network was repaired and resumed its previous organization. Fibrillin-1 expression was restored so that the elastic network rebuilt at a distance from the pocket and began to reconstruct near the pocket. Apoptotic cell numbers were decreased in the pocket epithelium, and more so in the infiltrated connective tissue. The continuity and the thickness of the basement membrane were restored and testified normalization of epithelium connective tissue interaction. The amount of alveolar bone increased around the first molar, and the interradicular bone was rebuilt. The root cementum was thickened and the number of proliferating cells in the periodontal ligament was increased close to the cementum. RG1503 treatment induces potent anabolic reactions in the extracellular matrices of the different tissues of the periodontium and recruitment of progenitors. In particular, the cell proliferation close to the root surface suggests the reformation of a functional attachment apparatus. These results demonstrate that RG1503 reverses the degenerative changes induced by inflammation and favors the conditions of a regenerative process. Thus, RGTA, a known matrix component mimetic and protector, may be considered as a new therapeutic tool to regenerate the tissues destroyed by periodontitis.
Collapse
Affiliation(s)
- C Lallam-Laroye
- Laboratoire Réparations et Remodelages Oro-Faciaux, EA 2496, Faculté de Chirurgie, Université Paris-Descartes, Dentaire, 1 rue Maurice Arnoux, 92120 Montrouge, France
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Davis GE, Senger DR. Endothelial extracellular matrix: biosynthesis, remodeling, and functions during vascular morphogenesis and neovessel stabilization. Circ Res 2005; 97:1093-107. [PMID: 16306453 DOI: 10.1161/01.res.0000191547.64391.e3] [Citation(s) in RCA: 893] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The extracellular matrix (ECM) is critical for all aspects of vascular biology. In concert with supporting cells, endothelial cells (ECs) assemble a laminin-rich basement membrane matrix that provides structural and organizational stability. During the onset of angiogenesis, this basement membrane matrix is degraded by proteinases, among which membrane-type matrix metalloproteinases (MT-MMPs) are particularly significant. As angiogenesis proceeds, ECM serves essential functions in supporting key signaling events involved in regulating EC migration, invasion, proliferation, and survival. Moreover, the provisional ECM serves as a pliable scaffold wherein mechanical guidance forces are established among distal ECs, thereby providing organizational cues in the absence of cell-cell contact. Finally, through specific integrin-dependent signal transduction pathways, ECM controls the EC cytoskeleton to orchestrate the complex process of vascular morphogenesis by which proliferating ECs organize into multicellular tubes with functional lumens. Thus, the composition of ECM and therefore the regulation of ECM degradation and remodeling serves pivotally in the control of lumen and tube formation and, finally, neovessel stability and maturation.
Collapse
Affiliation(s)
- George E Davis
- Department of Pathology, Texas A&M University System Health Science Center, College Station, USA
| | | |
Collapse
|
27
|
Schaefer L, Babelova A, Kiss E, Hausser HJ, Baliova M, Krzyzankova M, Marsche G, Young MF, Mihalik D, Götte M, Malle E, Schaefer RM, Gröne HJ. The matrix component biglycan is proinflammatory and signals through Toll-like receptors 4 and 2 in macrophages. J Clin Invest 2005; 115:2223-33. [PMID: 16025156 PMCID: PMC1174916 DOI: 10.1172/jci23755] [Citation(s) in RCA: 644] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2004] [Accepted: 05/24/2005] [Indexed: 11/17/2022] Open
Abstract
Biglycan, a small leucine-rich proteoglycan, is a ubiquitous ECM component; however, its biological role has not been elucidated in detail. Here we show that biglycan acts in macrophages as an endogenous ligand of TLR4 and TLR2, which mediate innate immunity, leading to rapid activation of p38, ERK, and NF-kappaB and thereby stimulating the expression of TNF-alpha and macrophage inflammatory protein-2 (MIP-2). In agreement, the stimulatory effects of biglycan are significantly reduced in TLR4-mutant (TLR4-M), TLR2-/-, and myeloid differentiation factor 88-/- (MyD88-/-) macrophages and completely abolished in TLR2-/-/TLR4-M macrophages. Biglycan-null mice have a considerable survival benefit in LPS- or zymosan-induced sepsis due to lower levels of circulating TNF-alpha and reduced infiltration of mononuclear cells in the lung, which cause less end-organ damage. Importantly, when stimulated by LPS-induced proinflammatory factors, macrophages themselves are able to synthesize biglycan. Thus, biglycan, upon release from the ECM or from macrophages, can boost inflammation by signaling through TLR4 and TLR2, thereby enhancing the synthesis of TNF-alpha and MIP-2. Our results provide evidence for what is, to our knowledge, a novel role of the matrix component biglycan as a signaling molecule and a crucial proinflammatory factor. These findings are potentially relevant for the development of new strategies in the treatment of sepsis.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Animals
- Antigens, Differentiation/genetics
- Antigens, Differentiation/metabolism
- Biglycan
- Extracellular Matrix/genetics
- Extracellular Matrix/metabolism
- Extracellular Matrix Proteins
- Inflammation/genetics
- Inflammation/metabolism
- Lipopolysaccharides/toxicity
- Lung/metabolism
- Lung/pathology
- Macrophages, Alveolar/metabolism
- Macrophages, Alveolar/pathology
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Mice
- Mice, Knockout
- Myeloid Differentiation Factor 88
- NF-kappa B/metabolism
- Proteoglycans/genetics
- Proteoglycans/metabolism
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Sepsis/chemically induced
- Sepsis/metabolism
- Sepsis/pathology
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Toll-Like Receptor 2
- Toll-Like Receptor 4
- Toll-Like Receptors
- Tumor Necrosis Factor-alpha/biosynthesis
- Zymosan/toxicity
- p38 Mitogen-Activated Protein Kinases/metabolism
Collapse
Affiliation(s)
- Liliana Schaefer
- Department of Medicine D, Interdisciplinary Center of Clinical Research, Muenster, University of Muenster, Muenster, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|