1
|
Okimura N, Kunimatsu R, Kado I, Nakatani A, Sakata S, Ikeda K, Ito S, Ogasawara T, Ogashira S, Miyauchi M, Takata T, Tanimoto K. Effects of recombinant human sclerostin on proliferation and migration in human cementoblast lineage cells. Arch Oral Biol 2025; 175:106273. [PMID: 40294473 DOI: 10.1016/j.archoralbio.2025.106273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/16/2025] [Accepted: 04/17/2025] [Indexed: 04/30/2025]
Abstract
OBJECTIVE To evaluate the effects of sclerostin on the proliferation and migration of human cementoblasts and periodontal ligament cells. DESIGN Sclerostin expression in human cementoblasts and periodontal ligament cells was assessed using immunochemical staining. Human cementoblasts and periodontal ligament cells were cultured and treated with 100 ng/mL of recombinant human sclerostin. Cell proliferation was evaluated using a 5-bromo-2-deoxyuridine enzyme-linked immunosorbent assay and quantified with a live-cell imaging and analysis platform (IncuCyte® S3 system). Furthermore, sclerostin's impact on apoptosis in human cementoblasts and periodontal ligament cells was evaluated using IncuCyte® Caspase-3/7 green dye. Additionally, cell migration was analyzed through quantitative wound healing assessment using the IncuCyte® S3 system. Polymerase chain reaction, enzyme-linked immunosorbent assay, and Western blotting were then performed to confirm the effect of sclerostin on CEMP-1. The data obtained were statistically analyzed using the Mann-Whitney U test. RESULTS Intracellular sclerostin localization in human cementoblasts and periodontal ligament cells were confirmed form the immunochemical staining. The sclerostin-treated group showed suppressed proliferation and migration of human cementoblasts and periodontal ligament cells compared with the non-treated group. Furthermore, the sclerostin-treated group showed significantly elevated caspase-3/7 activity compared with the non-treated group. However, the addition of sclerostin did not result in any significant changes in CEMP-1. CONCLUSION Sclerostin is crucial in regulating the proliferation and migration of cementoblasts and periodontal ligament cells. This highlights its importance in regenerating the cementum and periodontal ligament.
Collapse
Affiliation(s)
- Naonobu Okimura
- Department of Orthodontics and Craniofacial Development Biology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Ryo Kunimatsu
- Department of Orthodontics and Craniofacial Development Biology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan.
| | - Isamu Kado
- Department of Orthodontics and Craniofacial Development Biology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Ayaka Nakatani
- Department of Orthodontics and Craniofacial Development Biology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Shuzo Sakata
- Department of Orthodontics and Craniofacial Development Biology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Kazutaka Ikeda
- Department of Orthodontics and Craniofacial Development Biology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Shota Ito
- Department of Orthodontics and Craniofacial Development Biology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Tomohiro Ogasawara
- Department of Orthodontics and Craniofacial Development Biology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Shintaro Ogashira
- Department of Orthodontics and Craniofacial Development Biology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Mutsumi Miyauchi
- Department of Oral and Maxillofacial Pathobiology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Takashi Takata
- Department of Oral and Maxillofacial Pathobiology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan; Shunan University, Shunan, Yamaguchi, Japan
| | - Kotaro Tanimoto
- Department of Orthodontics and Craniofacial Development Biology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| |
Collapse
|
2
|
Aka A, Matsuura T, Yoshimura A. An Evaluation of the Cytocompatibility of Endodontic Bioceramics in Human Periodontal-Ligament-Derived Cells. J Funct Biomater 2024; 15:231. [PMID: 39194670 DOI: 10.3390/jfb15080231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/17/2024] [Accepted: 08/17/2024] [Indexed: 08/29/2024] Open
Abstract
The present study evaluated the cytocompatibility of three endodontic bioceramics in human periodontal-ligament-derived cells (hPDLCs): MTA Repair HP (HP), MTA Flow White (F), and Nishika Canal Sealer BG multi (BG). In addition, we also evaluated the effect of the powder-liquid (paste) ratio of F and BG on cytocompatibility. Discs of endodontic bioceramics (diameter = 8 mm, thickness = 1 mm) were prepared with HP, F, and BG. hPDLCs obtained from extracted teeth and cultured for three to five passages were used in the experiment. The prepared discs were placed at the bottom of a 48-well plate, seeded with hPDLCs at 100,000 cells/well, cultured for 7 or 28 days, and subjected to a 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide assay. hPDLCs cultured without any discs were used as a negative control (NC) group. Discs made of F or BG mixed in three different consistencies were also used in this experiment. The absorbance values at days 7 and 28 were high in the order of HP > NC > BG > F. Furthermore, F or BG with higher consistency showed higher absorbance values. MTA Repair HP had the highest cytocompatibility among the three materials. Furthermore, it also showed that higher consistency improved cytocompatibility.
Collapse
Affiliation(s)
- Asuka Aka
- Department of Periodontology and Endodontology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki City 852-8588, Nagasaki, Japan
| | - Takashi Matsuura
- Department of Periodontology and Endodontology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki City 852-8588, Nagasaki, Japan
| | - Atsutoshi Yoshimura
- Department of Periodontology and Endodontology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki City 852-8588, Nagasaki, Japan
| |
Collapse
|
3
|
Knaup I, Kramann R, Sasula MJ, Mack P, Bastos Craveiro R, Niederau C, Coenen F, Neuss S, Jankowski J, Wolf M. TNF reduces osteogenic cell fate in PDL cells at transcriptional and functional levels without alteration of periodontal proliferative capacity. J Orofac Orthop 2024:10.1007/s00056-024-00541-2. [PMID: 39093345 DOI: 10.1007/s00056-024-00541-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/28/2024] [Indexed: 08/04/2024]
Abstract
AIMS To investigate the effect of tumor necrosis factor (TNF) on the growth of human periodontal ligament (PDL) cells, their osteogenic differentiation and modulation of their matrix secretion in vitro. METHODS The influence of 10 ng/ml TNF on proliferation and metabolic activity of PDL cells was analyzed by cell counting (DAPI [4',6-diamidino-2-phenylindole] staining) and the MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay. In addition, cells were cultured under control conditions and osteogenic conditions (media containing 10 mM β-glycerophosphate). Quantitative expression analysis of genes encoding the osteogenic markers alkaline phosphatase (ALP), collagen type I alpha 1 chain (COL1A1), osteoprotegerin (OPG), and osteopontin (OPN) was performed after 7 and 14 days of cultivation. Calcium deposits were stained with alizarin red. RESULTS Our studies showed that 10 ng/ml TNF did not affect the survival and metabolic activity of PDL cells. Quantitative expression analysis revealed that long-term cultures with TNF impaired osteogenic cell fate at early and late developmental stages. Furthermore, TNF significantly reduced matrix secretion in PDL cells. CONCLUSION The present data confirm TNF as a regulatory factor of proinflammatory remodeling that influences the differentiation behavior but not the metabolism and cell proliferation of the periodontium. Therefore, TNF represents an interesting target for the regulation of orthodontic remodeling processes in the periodontium.
Collapse
Affiliation(s)
- Isabel Knaup
- Department of Orthodontics, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany.
| | - Rafael Kramann
- Clinic for Renal and Hypertensive Disorders, Rheumatological and Immunological Diseases (Medical Clinic II), Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Martha-Julia Sasula
- Department of Gastroenterology, Hepatology and Transplant Medicine, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Paula Mack
- Department of Orthodontics, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Rogério Bastos Craveiro
- Department of Orthodontics, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Christian Niederau
- Department of Orthodontics, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Franziska Coenen
- Department of Orthodontics, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Sabine Neuss
- Helmholtz Institute for Biomedical Engineering, BioInterface Group, RWTH Aachen University, Aachen, Germany
- Institute of Pathology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Joachim Jankowski
- Institute for Molecular Cardiovascular Research, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Michael Wolf
- Department of Orthodontics, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| |
Collapse
|
4
|
Nakamura K, Koide M, Kobayashi Y, Yamashita T, Matsushita M, Yasuda H, Ishihara Y, Yoshinari N, Udagawa N. Sclerostin deficiency effectively promotes bone morphogenetic protein-2-induced ectopic bone formation. J Periodontal Res 2023. [PMID: 37154419 DOI: 10.1111/jre.13134] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/15/2023] [Accepted: 04/27/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND AND OBJECTIVE Severe periodontitis causes alveolar bone resorption, resulting in tooth loss. Developments of tissue regeneration therapy that can restore alveolar bone mass are desired for periodontal disease. The application of bone morphogenetic protein-2 (BMP-2) has been attempted for bone fractures and severe alveolar bone loss. BMP-2 reportedly induces sclerostin expression, an inhibitor of Wnt signals, that attenuates bone acquisition. However, the effect of sclerostin-deficiency on BMP-2-induced bone regeneration has not been fully elucidated. We investigated BMP-2-induced ectopic bones in Sost-knockout (KO) mice. METHODS rhBMP-2 were implanted into the thighs of C57BL/6 (WT) and Sost-KO male mice at 8 weeks of age. The BMP-2-induced ectopic bones in these mice were examined on days 14 and 28 after implantation. RESULTS Immunohistochemical and quantitative RT-PCR analyses showed that BMP-2-induced ectopic bones expressed sclerostin in osteocytes on days 14 and 28 after implantation in Sost-Green reporter mice. Micro-computed tomography analysis revealed that BMP-2-induced ectopic bones in Sost-KO mice showed a significant increased relative bone volume and bone mineral density (WT = 468 mg/cm3 , Sost-KO = 602 mg/cm3 ) compared with those in WT mice on day 14 after implantation. BMP-2-induced ectopic bones in Sost-KO mice showed an increased horizontal cross-sectional bone area on day 28 after implantation. Immunohistochemical staining showed that BMP-2-induced ectopic bones in Sost-KO mice had an increased number of osteoblasts with osterix-positive nuclei compared with those in WT mice on days 14 and 28 after implantation. CONCLUSION Sclerostin deficiency increased bone mineral density in BMP-2-induced ectopic bones.
Collapse
Affiliation(s)
- Keigo Nakamura
- Department of Operative Dentistry, Endodontology and Periodontology, Matsumoto Dental University, Shiojiri, Nagano, Japan
| | - Masanori Koide
- Division of Hard Tissue Research, Institute for Oral Science, Matsumoto Dental University, Shiojiri, Nagano, Japan
| | - Yasuhiro Kobayashi
- Division of Hard Tissue Research, Institute for Oral Science, Matsumoto Dental University, Shiojiri, Nagano, Japan
| | - Teruhito Yamashita
- Division of Hard Tissue Research, Institute for Oral Science, Matsumoto Dental University, Shiojiri, Nagano, Japan
| | - Mai Matsushita
- Division of Hard Tissue Research, Institute for Oral Science, Matsumoto Dental University, Shiojiri, Nagano, Japan
| | - Hisataka Yasuda
- Bioindustry Division, Oriental Yeast Co., Ltd., Tokyo, Japan
| | | | - Nobuo Yoshinari
- Department of Operative Dentistry, Endodontology and Periodontology, Matsumoto Dental University, Shiojiri, Nagano, Japan
| | - Nobuyuki Udagawa
- Division of Hard Tissue Research, Institute for Oral Science, Matsumoto Dental University, Shiojiri, Nagano, Japan
- Department of Biochemistry, Matsumoto Dental University, Shiojiri, Nagano, Japan
| |
Collapse
|
5
|
Pigeaud KE, Rietveld ML, Witvliet AF, Hogervorst JMA, Zhang C, Forouzanfar T, Bravenboer N, Schoenmaker T, de Vries TJ. The Effect of Sclerostin and Monoclonal Sclerostin Antibody Romosozumab on Osteogenesis and Osteoclastogenesis Mediated by Periodontal Ligament Fibroblasts. Int J Mol Sci 2023; 24:ijms24087574. [PMID: 37108735 PMCID: PMC10145870 DOI: 10.3390/ijms24087574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/06/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Sclerostin is a bone formation inhibitor produced by osteocytes. Although sclerostin is mainly expressed in osteocytes, it was also reported in periodontal ligament (PDL) fibroblasts, which are cells that play a role in both osteogenesis and osteoclastogenesis. Here, we assess the role of sclerostin and its clinically used inhibitor, romosozumab, in both processes. For osteogenesis assays, human PDL fibroblasts were cultured under control or mineralizing conditions with increasing concentrations of sclerostin or romosozumab. For analyzing osteogenic capacity and alkaline phosphatase (ALP) activity, alizarin red staining for mineral deposition and qPCR of osteogenic markers were performed. Osteoclast formation was investigated in the presence of sclerostin or romosozumab and, in PDLs, in the presence of fibroblasts co-cultured with peripheral blood mononuclear cells (PBMCs). PDL-PBMC co-cultures stimulated with sclerostin did not affect osteoclast formation. In contrast, the addition of romosozumab slightly reduced the osteoclast formation in PDL-PBMC co-cultures at high concentrations. Neither sclerostin nor romosozumab affected the osteogenic capacity of PDL fibroblasts. qPCR analysis showed that the mineralization medium upregulated the relative expression of osteogenic markers, but this expression was barely affected when romosozumab was added to the cultures. In order to account for the limited effects of sclerostin or romosozumab, we finally compared the expression of SOST and its receptors LRP-4, -5, and -6 to the expression in osteocyte rich-bone. The expression of SOST, LRP-4, and LRP-5 was higher in osteocytes compared to in PDL cells. The limited interaction of sclerostin or romosozumab with PDL fibroblasts may relate to the primary biological function of the periodontal ligament: to primarily resist bone formation and bone degradation to the benefit of an intact ligament that is indented by every chew movement.
Collapse
Affiliation(s)
- Karina E Pigeaud
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands
| | - Melanie L Rietveld
- Amsterdam University College, University of Amsterdam and Vrije Universiteit, Science Park 113, 1098 XG Amsterdam, The Netherlands
| | - Aster F Witvliet
- Amsterdam University College, University of Amsterdam and Vrije Universiteit, Science Park 113, 1098 XG Amsterdam, The Netherlands
| | - Jolanda M A Hogervorst
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, 1081 LA Amsterdam, The Netherlands
| | - Chen Zhang
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, 1081 LA Amsterdam, The Netherlands
- Department of Clinical Chemistry, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Tim Forouzanfar
- Oral Pathology and 3D Innovation Lab, Department of Oral and Maxillofacial Surgery, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, 1081 LA Amsterdam, The Netherlands
| | - Nathalie Bravenboer
- Department of Clinical Chemistry, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Ton Schoenmaker
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands
| | - Teun J de Vries
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands
| |
Collapse
|
6
|
Ross R, Carpenter K, Alkhatib D, Dulion B, Guirado E, Patel S, Chen Y, George A. Sclerostin antibody improves alveolar bone quality in the Hyp mouse model of X-Linked Hypophosphatemia (XLH). RESEARCH SQUARE 2023:rs.3.rs-2762671. [PMID: 37090634 PMCID: PMC10120757 DOI: 10.21203/rs.3.rs-2762671/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
X-linked hypophosphatemia (XLH) is a rare disease of elevated fibroblast growth factor 23 (FGF23) production that leads to hypophosphatemia and poor mineralization of bone and teeth. The clinical manifestations of XLH include a high prevalence of dental abscesses, likely driven by poorly formed structures of the dentoalveolar complex, including the alveolar bone, cementum, dentin, and periodontal ligament. Our previous studies have demonstrated that sclerostin antibody (Scl-Ab) treatment improves phosphate homeostasis, and increases bone mass, strength and mineralization in the Hyp mouse model of XLH. In the current study, we investigated whether Scl-Ab impacts the dentoalveolar structures of Hyp mice. Male and female wild-type and Hyp littermates were injected with 25 mg/kg of vehicle or Scl-Ab twice weekly beginning at 12 weeks of age and euthanized at 20 weeks of age. Scl-Ab increased alveolar bone mass in both male and female mice and alveolar tissue mineral density in the male mice. The positive effects of Scl-Ab were consistent with an increase in the fraction of active (non-phosphorylated) β-catenin stained alveolar osteocytes. Scl-Ab had no effect on mineralized tissues of the tooth - dentin, enamel, acellular and cellular cementum. There was a non-significant trend toward increased periodontal ligament (PDL) attachment fraction within the Hyp mice. Additional PDL fibral structural parameters were not affected by Scl-Ab. The current study demonstrates that Scl-Ab can improve alveolar bone in the Hyp mouse model of XLH.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yinghua Chen
- University of Illinois Chicago College of Dentistry
| | | |
Collapse
|
7
|
Potential donor-dependent regulative effects of endogenous sclerostin expression and mineralization potential in primary human PDL cells in vitro. Ann Anat 2022; 244:151980. [PMID: 35787444 DOI: 10.1016/j.aanat.2022.151980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/21/2022] [Accepted: 06/15/2022] [Indexed: 11/21/2022]
Abstract
OBJECTIVES The glycoprotein sclerostin is mostly expressed in osteocytes and plays a central role in human bone metabolism. However, sclerostin and the corresponding SOST gene have been found in periodontal ligament cells under mineralizing conditions as well. The present study aimed to investigate, whether there was a correlation between endogenous SOST expression, the corresponding gene, and mineralization potential in human periodontal ligament cells and to identify different sclerostin expression and secretion patterns in cells derived from individual donors. MATERIAL AND METHODS Primary human periodontal ligament cells of three different donors were cultivated under control or mineralizing conditions for 6, 13, 15 and 18 days, respectively. Calcium deposits were stained with alizarin red and quantified afterwards. Quantitative expression analysis of the SOST gene encoding sclerostin was performed using quantitative reverse transcription polymerase chain reaction (RT-PCR). Additionally, intracellular sclerostin expression was analyzed using Western blotting and extracellular sclerostin secretion was quantified using Enzyme-linked Immunosorbent Assay (ELISA). RESULTS Alizarin red staining identified calcium deposits in periodontal ligament cells under mineralizing conditions beginning from day 13, relative SOST expression occurred on day 6. Whereas staining continued to increase in donor 1 on day 15, it remained stable in donors 2 and 3. Conversely, baseline SOST expression was significantly lower in donor 1 compared to donors 2 and 3. Western blotting and ELISA revealed increased intra- and extracellular sclerostin expression at day 13 under mineralizing conditions. Donor 3 exhibited the highest overall sclerostin levels. CONCLUSIONS Our data emphasize donor-specific characteristics in differentiation potential and sclerostin expression patterns in primary human periodontal ligament cells. Sclerostin might play a central role in modulating osteogenic differentiation in periodontal ligament cells as part of a negative feedback mechanism in avoiding excessive mineralization.
Collapse
|
8
|
Wei T, Shan Z, Wen X, Zhao N, Shen G. Dynamic alternations of RANKL/OPG ratio expressed by cementocytes in response to orthodontic‑induced external apical root resorption in a rat model. Mol Med Rep 2022; 26:228. [PMID: 35593309 PMCID: PMC9178691 DOI: 10.3892/mmr.2022.12744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 05/05/2022] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to investigate the alterations in the formation of cementocytes in response to orthodontic forces and to evaluate the contribution of these cells in the biological changes of tooth movement and associated root resorption. A total of 90 Sprague Dawley rats were randomly assigned to the control, high force, and low force groups. Intrusion forces of 10 and 50 g were applied on the rat molar to induce tooth intrusion. The tooth movement was observed from 0 to 14 days by micro-computed tomography, bone histometric analysis, tartrate-resistant acid phosphatase staining, as well as reverse transcription-quantitative PCR and immunofluorescence staining assays. The results suggested that under low force conditions, osteoclasts were distributed at a higher frequency on the bone side than on the root side. Under high force conditions, both sides suffered osteoclast infiltration. In the low force group, the cementocytes exhibited downregulated sclerostin (SOST) and osteoprotegerin (OPG) mRNA levels and a lower receptor activator of nuclear factor-κB ligand (RANKL)/OPG ratio over a certain period of time. The expression levels of these genes were lower compared with those of the osteocytes at each time-point. In the high force group, both cementocytes and osteocytes upregulated the SOST and RANKL/OPG ratio on days 7 and 14, while the cementocytes expressed higher levels of SOST mRNA than those noted in the osteocytes. These data suggested that cementocytes responded to the orthodontic force via modulation of the RANKL/OPG ratio and SOST expression. The biological response of cementocytes contributed to the mechanotransduction and homoeostasis of the roots under compression. Excessive forces may act as a negative factor of this regulatory role. These results expand our knowledge on the function of cementocytes.
Collapse
Affiliation(s)
- Tingting Wei
- Department of Preventive Dentistry, Shanghai Key Laboratory of Stomatology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Zhiyi Shan
- Department of Orthodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, SAR, P.R. China
| | - Xin Wen
- Department of Orthodontics, Shanghai Key Laboratory of Stomatology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Ning Zhao
- Department of Orthodontics, Shanghai Key Laboratory of Stomatology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Gang Shen
- Department of Orthodontics, Shanghai Key Laboratory of Stomatology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| |
Collapse
|
9
|
Liao C, Liang S, Wang Y, Zhong T, Liu X. Sclerostin is a promising therapeutic target for oral inflammation and regenerative dentistry. J Transl Med 2022; 20:221. [PMID: 35562828 PMCID: PMC9102262 DOI: 10.1186/s12967-022-03417-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/28/2022] [Indexed: 11/10/2022] Open
Abstract
Sclerostin is the protein product of the SOST gene and is known for its inhibitory effects on bone formation. The monoclonal antibody against sclerostin has been approved as a novel treatment method for osteoporosis. Oral health is one of the essential aspects of general human health. Hereditary bone dysplasia syndrome caused by sclerostin deficiency is often accompanied by some dental malformations, inspiring the therapeutic exploration of sclerostin in the oral and dental fields. Recent studies have found that sclerostin is expressed in several functional cell types in oral tissues, and the expression level of sclerostin is altered in pathological conditions. Sclerostin not only exerts similar negative outcomes on the formation of alveolar bone and bone-like tissues, including dentin and cementum, but also participates in the development of oral inflammatory diseases such as periodontitis, pulpitis, and peri-implantitis. This review aims to highlight related research progress of sclerostin in oral cavity, propose necessary further research in this field, and discuss its potential as a therapeutic target for dental indications and regenerative dentistry.
Collapse
Affiliation(s)
- Chufang Liao
- School of Stomatology, Jinan University, Guangzhou, China.,Clinical Research Platform for Interdiscipline of Stomatology, Jinan University, Guangzhou, China.,Department of Stomatology Medical Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shanshan Liang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Prosthodontics, Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yining Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Prosthodontics, Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Ting Zhong
- School of Stomatology, Jinan University, Guangzhou, China.,Clinical Research Platform for Interdiscipline of Stomatology, Jinan University, Guangzhou, China.,Department of Stomatology Medical Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiangning Liu
- School of Stomatology, Jinan University, Guangzhou, China. .,Clinical Research Platform for Interdiscipline of Stomatology, Jinan University, Guangzhou, China. .,Department of Stomatology Medical Center, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| |
Collapse
|
10
|
Yu S, Li D, Zhang N, Ni S, Sun M, Wang L, Xiao H, Liu D, Liu J, Yu Y, Zhang Z, Yeung STY, Zhang S, Lu A, Zhang Z, Zhang B, Zhang G. Drug discovery of sclerostin inhibitors. Acta Pharm Sin B 2022; 12:2150-2170. [PMID: 35646527 PMCID: PMC9136615 DOI: 10.1016/j.apsb.2022.01.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/03/2021] [Accepted: 12/16/2021] [Indexed: 12/18/2022] Open
Abstract
Sclerostin, a protein secreted from osteocytes, negatively regulates the WNT signaling pathway by binding to the LRP5/6 co-receptors and further inhibits bone formation and promotes bone resorption. Sclerostin contributes to musculoskeletal system-related diseases, making it a promising therapeutic target for the treatment of WNT-related bone diseases. Additionally, emerging evidence indicates that sclerostin contributes to the development of cancers, obesity, and diabetes, suggesting that it may be a promising therapeutic target for these diseases. Notably, cardiovascular diseases are related to the protective role of sclerostin. In this review, we summarize three distinct types of inhibitors targeting sclerostin, monoclonal antibodies, aptamers, and small-molecule inhibitors, from which monoclonal antibodies have been developed. As the first-in-class sclerostin inhibitor approved by the U.S. FDA, the monoclonal antibody romosozumab has demonstrated excellent effectiveness in the treatment of postmenopausal osteoporosis; however, it conferred high cardiovascular risk in clinical trials. Furthermore, romosozumab could only be administered by injection, which may cause compliance issues for patients who prefer oral therapy. Considering these above safety and compliance concerns, we therefore present relevant discussion and offer perspectives on the development of next-generation sclerostin inhibitors by following several ways, such as concomitant medication, artificial intelligence-based strategy, druggable modification, and bispecific inhibitors strategy.
Collapse
|
11
|
Costa CA, Deliberador TM, Abuna RPF, Rodrigues TL, Souza SLSD, Palioto DB. Mesenchymal stem cells surpass the capacity of bone marrow aspirate concentrate for periodontal regeneration. J Appl Oral Sci 2022; 30:e20210359. [PMID: 35384987 PMCID: PMC8983037 DOI: 10.1590/1678-7757-2021-0359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 01/28/2022] [Indexed: 12/23/2022] Open
Abstract
Regenerative approaches using mesenchymal stem cells (MSCs) have been evaluated to promote the complete formation of all missing periodontal tissues, e.g., new cementum, bone, and functional periodontal ligaments. MSCs derived from bone marrow have been applied to bone and periodontal defects in several forms, including bone marrow aspirate concentrate (BMAC) and cultured and isolated bone marrow mesenchymal stem cells (BM-MSCs). This study aimed to evaluate the periodontal regeneration capacity of BMAC and cultured BM-MSCs in the wound healing of fenestration defects in rats. Methodology: BM-MSCs were obtained after bone marrow aspiration of the isogenic iliac crests of rats, followed by cultivation and isolation. Autogenous BMAC was collected and centrifuged immediately before surgery. In 36 rats, fenestration defects were created and treated with suspended BM-MSCs, BMAC or left to spontaneously heal (control) (N=6). Their regenerative potential was assessed by microcomputed tomography (µCT) and histomorphometry, as well as their cell phenotype and functionality by the Luminex assay at 15 and 30 postoperative days. Results: BMAC achieved higher bone volume in 30 days than spontaneous healing (p<0.0001) by enhancing osteoblastic lineage commitment maturation, with higher levels of osteopontin (p=0.0013). Defects filled with cultured BM-MSCs achieved higher mature bone formation in early stages than spontaneous healing and BMAC (p=0.0241 and p=0.0143, respectively). Moreover, significantly more cementum-like tissue formation (p<0.0001) was observed with new insertion of fibers in specimens treated with BM-MSCs within 30 days. Conclusion: Both forms of cell transport, BMAC and BM-MSCs, promoted bone formation. However, early bone formation and maturation were achieved when cultured BM-MSCs were used. Likewise, only cultured BM-MSCs were capable of achieving complete periodontal regeneration with inserted fibers in the new cementum-like tissue.
Collapse
|
12
|
Lira Dos Santos EJ, Salmon CR, Chavez MB, de Almeida AB, Tan MH, Chu EY, Sallum EA, Casati MZ, Ruiz KGS, Kantovitz KR, Foster BL, Nociti Júnior FH. Cementocyte alterations associated with experimentally induced cellular cementum apposition in hyp mice. J Periodontol 2021; 92:116-127. [PMID: 34003518 DOI: 10.1002/jper.21-0119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/10/2021] [Accepted: 05/10/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Cellular cementum, a mineralized tissue covering apical tooth roots, grows by apposition to maintain the tooth in its occlusal position. We hypothesized that resident cementocytes would show morphological changes in response to cementum apposition, possibly implicating a role in cementum biology. METHODS Mandibular first molars were induced to super-erupt (EIA) by extraction of maxillary molars, promoting rapid new cementum formation. Tissue and cell responses were analyzed at 6 and/or 21 days post-procedure (dpp). RESULTS High-resolution micro-computed tomography (micro-CT) and confocal laser scanning microscopy showed increased cellular cementum by 21 dpp. Transmission electron microscopy (TEM) revealed that cementocytes under EIA were 50% larger than control cells, supported by larger pore sizes detected by micro-CT. Cementocytes under EIA displayed ultrastructural changes consistent with increased activity, including increased cytoplasm and nuclear size. We applied EIA to Hyp mutant mice, where cementocytes have perilacunar hypomineralization defects, to test cell and tissue responses in an altered mechanoresponsive milieu. Hyp and WT molars displayed similar super-eruption, with Hyp molars exhibiting 28% increased cellular cementum area versus 22% in WT mice at 21 dpp. Compared to control, Hyp cementocytes featured well-defined, disperse euchromatin and a thick layer of peripherally condensed heterochromatin in nuclei, indicating cellular activity. Immunohistochemistry (IHC) for cementum markers revealed intense dentin matrix protein-1 expression and abnormal osteopontin deposition in Hyp mice. Both WT and Hyp cementocytes expressed gap junction protein, connexin 43. CONCLUSION This study provides new insights into the EIA model and cementocyte activity in association with new cementum formation.
Collapse
Affiliation(s)
- Elis J Lira Dos Santos
- Department of Prosthodontics and Periodontics, Division of Periodontics, Piracicaba Dental School, State University of Campinas, São Paulo, Brazil
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH
| | - Cristiane R Salmon
- Department of Prosthodontics and Periodontics, Division of Periodontics, Piracicaba Dental School, State University of Campinas, São Paulo, Brazil
- Faculty of Dentistry, N. Sra. do Patrocínio University Center, Itu, São Paulo, Brazil
| | - Michael B Chavez
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH
| | - Amanda B de Almeida
- Department of Prosthodontics and Periodontics, Division of Periodontics, Piracicaba Dental School, State University of Campinas, São Paulo, Brazil
| | - Michelle H Tan
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH
| | - Emily Y Chu
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD
| | - Enilson A Sallum
- Department of Prosthodontics and Periodontics, Division of Periodontics, Piracicaba Dental School, State University of Campinas, São Paulo, Brazil
| | - Marcio Z Casati
- Department of Prosthodontics and Periodontics, Division of Periodontics, Piracicaba Dental School, State University of Campinas, São Paulo, Brazil
| | - Karina G S Ruiz
- Department of Prosthodontics and Periodontics, Division of Periodontics, Piracicaba Dental School, State University of Campinas, São Paulo, Brazil
| | - Kamila R Kantovitz
- Department of Dental Materials, São Leopoldo Mandic Research Center, Campinas, São Paulo, Brazil
| | - Brian L Foster
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH
| | - Francisco H Nociti Júnior
- Department of Prosthodontics and Periodontics, Division of Periodontics, Piracicaba Dental School, State University of Campinas, São Paulo, Brazil
- São Leopoldo Mandic Research Center, Campinas, São Paulo, Brazil
| |
Collapse
|
13
|
Wei T, Xie Y, Wen X, Zhao N, Shen G. Establishment of in vitro three-dimensional cementocyte differentiation scaffolds to study orthodontic root resorption. Exp Ther Med 2020; 20:3174-3184. [PMID: 32855686 PMCID: PMC7444329 DOI: 10.3892/etm.2020.9074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/28/2020] [Indexed: 12/12/2022] Open
Abstract
Orthodontic-induced root resorption is a severe side effect that can lead to tooth root shortening and loss. Compressive force induces tissue stress in the cementum that covers the tooth root, which is associated with activation of bone metabolism and cementum resorption. To investigate the role of cementocytes in mechanotransduction and osteoclast differentiation, the present study established an in vitro three-dimensional (3D) model replicating cellular cementum and observed the effects of static compression on the cellular behavior of the cementocytes. Cell Counting Kit-8 assay, alkaline phosphatase staining and dentin matrix protein 1 quantification were used to evaluate the cementocyte differentiation in the 3D scaffolds. Cellular viability under static compression was evaluated using live/dead staining, and expression of mineral metabolism-related genes were analyzed via reverse transcription-quantitative PCR. The results suggested that the cementocytes maintained their phenotype and increased the expression of osteoprotegerin (OPG), receptor activator of NF-κB ligand (RANKL) and sclerostin (SOST) in the 3D model compared with cells cultured in two dimensions. Compression force increased cell death and induced osteoclastic differentiation via the upregulation of SOST and RANKL/OPG ratio, and the downregulation of osteocalcin. The effect of compression showed a force magnitude-dependent pattern. The present study established an in vitro model of cellular cementum to study the biology of cementocytes. The results indicated that cementocytes are sensitive to mechanical loading and may serve potential roles in the metabolic regulation of minerals during orthodontic root resorption. These findings provide a novel tool to study biological processes in the field of orthodontics and expand knowledge of the biological function of cementocytes.
Collapse
Affiliation(s)
- Tingting Wei
- Department of Orthodontics, Shanghai Key Laboratory of Stomatology, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Yufei Xie
- Department of Orthodontics, Shanghai Xuhui District Dental Disease Prevention and Control Institute, Shanghai 200001, P.R. China
| | - Xin Wen
- Department of Orthodontics, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Ning Zhao
- Department of Orthodontics, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Gang Shen
- Department of Orthodontics, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| |
Collapse
|
14
|
Schwarze UY, Dobsak T, Gruber R, Bookstein FL. Anatomical similarity between the Sost-knockout mouse and sclerosteosis in humans. Anat Rec (Hoboken) 2019; 303:2295-2308. [PMID: 31729194 PMCID: PMC7496997 DOI: 10.1002/ar.24318] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/08/2019] [Accepted: 10/17/2019] [Indexed: 12/17/2022]
Abstract
Sclerosteosis, a rare autosomal recessive genetic disorder caused by a mutation of the Sost gene, manifests in the facial skeleton by gigantism, facial distortion, mandibular prognathism, cranial nerve palsy, and, in extreme cases, compression of the medulla oblongata. Mice lacking sclerostin reflect some symptoms of sclerosteosis, but this is the first report of the effect on the facial skeleton. We used geometric morphometrics (GMM) to analyze the deformations of the murine facial skeleton from the wild‐type to the Sost gene knockout. Landmark coordinates were obtained by surface reconstructions from micro‐computed tomography. Centroid size, principal component scores in shape space and form space, and asymmetry were computed by the standard GMM formulas, and dental and skeletal jaw lengths were examined as ratios. We show here that, compared to wild type controls, mice lacking Sost have larger centroid size (effect size, p‐value: 4.59, <.001), higher mean asymmetry (1.14, .065), dental and skeletal mandibular prognathism (1.36, .010 and 5.92, <.001), a smaller foramen magnum (−1.71, .015), and calvaria that are more highly curved (form space p = 4.09, .002; shape space p = 12.82, .002). These features of mice lacking sclerostin largely correspond to the changes of the facial skeleton observed in sclerosteosis. This alignment further supports claims that the Sost gene plays a fundamental role in bony facial development in rodents and humans alike.
Collapse
Affiliation(s)
- Uwe Y Schwarze
- Department of Oral Biology, School of Dentistry, Medical University of Vienna, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Toni Dobsak
- Austrian Cluster for Tissue Regeneration, Vienna, Austria.,Department of Oral Surgery, Medical University of Vienna, Vienna, Austria
| | - Reinhard Gruber
- Department of Oral Biology, School of Dentistry, Medical University of Vienna, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria.,Department of Periodontology, University of Bern, Bern, Switzerland
| | - Fred L Bookstein
- Department of Anthropology, University of Vienna, Vienna, Austria.,Department of Statistics, University of Washington, Seattle, Washington
| |
Collapse
|
15
|
Korah L, Amri N, Bugueno IM, Hotton D, Tenenbaum H, Huck O, Berdal A, Davideau JL. Experimental periodontitis in Msx2 mutant mice induces alveolar bone necrosis. J Periodontol 2019; 91:693-704. [PMID: 31566253 DOI: 10.1002/jper.16-0435] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/07/2019] [Accepted: 09/05/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Msx2 homeoprotein is a key transcription factor of dental and periodontal tissue formation and is involved in many molecular pathways controlling mineralized tissue homeostasis such as Wnt/sclerostin pathway. This study evaluated the effect of Msx2-null mutation during experimental periodontitis in mice. METHODS Experimental periodontitis was induced for 30 days in wild-type and Msx2 knock-in Swiss mice using Porphyromonas gingivalis infected ligatures. In knock-in mice, Msx2 gene was replaced by n-LacZ gene encoding β-galactosidase. Periodontal tissue response was assessed by histomorphometry, tartrate-resistant acid phosphatase histoenzymology, β-galactosidase, sclerostin immunochemistry, and terminal deoxynucleotidyl transferase-mediated dUTP nickend labeling assay. Expression of Msx2 gene expression was also evaluated in human gingival biopsies using RT-qPCR. RESULTS During experimental periodontitis, osteonecrosis area and osteoclast number were significantly elevated in knock-in mice compared with wild-type mice. Epithelial downgrowth and bone loss was similar. Sclerostin expression in osteocytes appeared to be reduced during periodontitis in knock-in mice. Msx2 expression was detected in healthy and inflamed human gingival tissues. CONCLUSION These data indicated that Msx2 pathway influenced periodontal tissue response to experimental periodontitis and appeared to be a protective factor against alveolar bone osteonecrosis. As shown in other inflammatory processes such as atherothrombosis, genes initially characterized in early development could also play an important role in human periodontal pathogenesis.
Collapse
Affiliation(s)
- Linda Korah
- INSERM (French National Institute of Health and Medical Research), UMR 1109, Osteoarticular and Dental Regenerative Nanomedicine laboratory, Faculté de Médecine, FMTS (Federation of Translational Medicine Strasbourg), Strasbourg, France
| | - Nawel Amri
- INSERM UMR 1138, Laboratory of Oral Molecular Physiopathology, Institut des Cordeliers, Paris, France
| | - Isaac Maximiliano Bugueno
- INSERM (French National Institute of Health and Medical Research), UMR 1109, Osteoarticular and Dental Regenerative Nanomedicine laboratory, Faculté de Médecine, FMTS (Federation of Translational Medicine Strasbourg), Strasbourg, France
| | - Dominique Hotton
- INSERM UMR 1138, Laboratory of Oral Molecular Physiopathology, Institut des Cordeliers, Paris, France
| | - Henri Tenenbaum
- INSERM (French National Institute of Health and Medical Research), UMR 1109, Osteoarticular and Dental Regenerative Nanomedicine laboratory, Faculté de Médecine, FMTS (Federation of Translational Medicine Strasbourg), Strasbourg, France.,Department of Periodontology, Dental Faculty, University of Strasbourg, Strasbourg, France
| | - Olivier Huck
- INSERM (French National Institute of Health and Medical Research), UMR 1109, Osteoarticular and Dental Regenerative Nanomedicine laboratory, Faculté de Médecine, FMTS (Federation of Translational Medicine Strasbourg), Strasbourg, France.,Department of Periodontology, Dental Faculty, University of Strasbourg, Strasbourg, France
| | - Ariane Berdal
- INSERM UMR 1138, Laboratory of Oral Molecular Physiopathology, Institut des Cordeliers, Paris, France
| | - Jean-Luc Davideau
- Department of Periodontology, Dental Faculty, University of Strasbourg, Strasbourg, France
| |
Collapse
|
16
|
Samiei M, Janjić K, Cvikl B, Moritz A, Agis H. The role of sclerostin and dickkopf-1 in oral tissues - A review from the perspective of the dental disciplines. F1000Res 2019; 8:128. [PMID: 31031968 PMCID: PMC6468704 DOI: 10.12688/f1000research.17801.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/18/2019] [Indexed: 12/17/2022] Open
Abstract
Wnt signaling is of high relevance in the development, homeostasis, and regeneration of oral tissues. Therefore, Wnt signaling is considered to be a potential target for therapeutic strategies. The action of Wnt is tightly controlled by the inhibitors sclerostin (SOST) and Dickkopf (DKK)-1. Given the impact of SOST and DKK-1 in hard tissue formation, related diseases and healing, it is of high relevance to understand their role in oral tissues. The clinical relevance of this knowledge is further underlined by systemic and local approaches which are currently in development for treating a variety of diseases such as osteoporosis and inflammatory hard tissue resorption. In this narrative review, we summarize the current knowledge and understanding on the Wnt signaling inhibitors SOST and DKK-1, and their role in physiology, pathology, and regeneration in oral tissues. We present this role from the perspective of the different specialties in dentistry, including endodontics, orthodontics, periodontics, and oral surgery.
Collapse
Affiliation(s)
- Mohammad Samiei
- Department of Endodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, 1090, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, 1200, Austria
| | - Klara Janjić
- Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, 1090, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, 1200, Austria
| | - Barbara Cvikl
- Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, 1090, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, 1200, Austria
| | - Andreas Moritz
- Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, 1090, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, 1200, Austria
| | - Hermann Agis
- Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, 1090, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, 1200, Austria
| |
Collapse
|
17
|
Yakar N, Guncu GN, Akman AC, Pınar A, Karabulut E, Nohutcu RM. Evaluation of gingival crevicular fluid and peri-implant crevicular fluid levels of sclerostin, TWEAK, RANKL and OPG. Cytokine 2019; 113:433-439. [DOI: 10.1016/j.cyto.2018.10.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 09/19/2018] [Accepted: 10/24/2018] [Indexed: 12/20/2022]
|
18
|
Hassan MG, Zaher AR, Palomo JM, Palomo L. Sclerostin Modulation Holds Promise for Dental Indications. Healthcare (Basel) 2018; 6:healthcare6040134. [PMID: 30477095 PMCID: PMC6316148 DOI: 10.3390/healthcare6040134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/13/2018] [Accepted: 11/20/2018] [Indexed: 12/31/2022] Open
Abstract
Sclerostin modulation is a novel therapeutic bone regulation strategy. The anti-sclerostin drugs, proposed in medicine for skeletal bone loss may be developed for jaw bone indications in dentistry. Alveolar bone responsible for housing dentition share common bone remodeling mechanisms with skeletal bone. Manipulating alveolar bone turnover can be used as a strategy to treat diseases such as periodontitis, where large bone defects from disease are a surgical treatment challenge and to control tooth position in orthodontic treatment, where moving teeth through bone in the treatment goal. Developing such therapeutics for dentistry is a future line for research and therapy. Furthermore, it underscores the interprofessional relationship that is the future of healthcare.
Collapse
Affiliation(s)
- Mohamed G Hassan
- Division of Craniofacial Anomalies, Department of Orofacial Sciences, University of California San Francisco, San Francisco, CA 94143, USA.
- Department of Orthodontics, Faculty of Dentistry, Alexandria University, Alexandria 21526, Egypt.
- Department of Orthodontics, Faculty of Oral and Dental Medicine, South Valley University, Qena 83523, Egypt.
| | - Abbas R Zaher
- Department of Orthodontics, Faculty of Dentistry, Alexandria University, Alexandria 21526, Egypt.
| | - Juan Martin Palomo
- Department of Orthodontics, School of Dental Medicine, Case Western Reserve University, Cleveland, OH 44106-4905, USA.
| | - Leena Palomo
- Department of Periodontics, School of Dental Medicine, Case Western Reserve University, Cleveland, OH 44106-4905, USA.
| |
Collapse
|
19
|
Whitty C, Wardale RJ, Henson FM. The regulation of sclerostin by cathepsin K in periodontal ligament cells. Biochem Biophys Res Commun 2018; 503:550-555. [DOI: 10.1016/j.bbrc.2018.05.160] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 05/23/2018] [Indexed: 12/20/2022]
|
20
|
Liu M, Kurimoto P, Zhang J, Niu QT, Stolina M, Dechow PC, Feng JQ, Hesterman J, Silva MD, Ominsky MS, Richards WG, Ke H, Kostenuik PJ. Sclerostin and DKK1 Inhibition Preserves and Augments Alveolar Bone Volume and Architecture in Rats with Alveolar Bone Loss. J Dent Res 2018; 97:1031-1038. [PMID: 29617179 DOI: 10.1177/0022034518766874] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Alveolar bone is a mechanosensitive tissue that provides structural support for teeth. Alveolar bone loss is common with aging, menopause, tooth loss, and periodontitis and can lead to additional tooth loss, reduced denture fixation, and challenges in placing dental implants. The current studies suggest that sclerostin and DKK1, which are established osteocyte-derived inhibitors of bone formation, contribute to alveolar bone loss associated with estrogen ablation and edentulism in rats. Estrogen-deficient ovariectomized rats showed significant mandibular bone loss that was reversed by systemic administration of sclerostin antibody (SAB) alone and in combination with DKK1 antibody (DAB). Osteocytes in the dentate and edentulous rat maxilla expressed Sost (sclerostin) and Dkk1 (DKK1) mRNA, and molar extraction appeared to acutely increase DKK1 expression. In a chronic rat maxillary molar extraction model, systemic SAB administration augmented the volume and height of atrophic alveolar ridges, effects that were enhanced by coadministering DAB. SAB and SAB+DAB also fully reversed bone loss that developed in the opposing mandible as a result of hypo-occlusion. In both treatment studies, alveolar bone augmentation with SAB or SAB+DAB was accompanied by increased bone mass in the postcranial skeleton. Jaw bone biomechanics showed that intact sclerostin-deficient mice exhibited stronger and denser mandibles as compared with wild-type controls. These studies show that sclerostin inhibition, with and without DKK1 coinhibition, augmented alveolar bone volume and architecture in rats with alveolar bone loss. These noninvasive approaches may have utility for the conservative augmentation of alveolar bone.
Collapse
Affiliation(s)
- M Liu
- 1 Department of Cardiometabolic and Bone Disorders, Amgen Inc., Thousand Oaks, CA, USA
| | - P Kurimoto
- 1 Department of Cardiometabolic and Bone Disorders, Amgen Inc., Thousand Oaks, CA, USA
| | - J Zhang
- 1 Department of Cardiometabolic and Bone Disorders, Amgen Inc., Thousand Oaks, CA, USA.,Merck Research Labs, South San Francisco, CA, USA
| | - Q T Niu
- 1 Department of Cardiometabolic and Bone Disorders, Amgen Inc., Thousand Oaks, CA, USA
| | - M Stolina
- 1 Department of Cardiometabolic and Bone Disorders, Amgen Inc., Thousand Oaks, CA, USA
| | - P C Dechow
- 2 Baylor College of Dentistry, Texas A&M University, Dallas, TX, USA
| | - J Q Feng
- 2 Baylor College of Dentistry, Texas A&M University, Dallas, TX, USA
| | | | | | - M S Ominsky
- 1 Department of Cardiometabolic and Bone Disorders, Amgen Inc., Thousand Oaks, CA, USA.,Radius Health Inc., Waltham, MA, USA
| | - W G Richards
- 1 Department of Cardiometabolic and Bone Disorders, Amgen Inc., Thousand Oaks, CA, USA
| | - H Ke
- 1 Department of Cardiometabolic and Bone Disorders, Amgen Inc., Thousand Oaks, CA, USA.,4 UCB Pharma, Slough, UK
| | - P J Kostenuik
- 1 Department of Cardiometabolic and Bone Disorders, Amgen Inc., Thousand Oaks, CA, USA.,Phylon Pharma Services, Newbury Park, CA, USA, and School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
21
|
Morse A, Schindeler A, McDonald MM, Kneissel M, Kramer I, Little DG. Sclerostin Antibody Augments the Anabolic Bone Formation Response in a Mouse Model of Mechanical Tibial Loading. J Bone Miner Res 2018; 33:486-498. [PMID: 29090474 DOI: 10.1002/jbmr.3330] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/11/2017] [Accepted: 10/29/2017] [Indexed: 12/18/2022]
Abstract
Decreased activity or expression of sclerostin, an endogenous inhibitor of Wnt/β-catenin signaling, results in increased bone formation and mass. Antibodies targeting and neutralizing sclerostin (Scl-Ab) have been shown to increase bone mass and reduce fracture risk. Sclerostin is also important in modulating the response of bone to changes in its biomechanical environment. However, the effects of Scl-Ab on mechanotransduction are unclear, and it was speculated that the loading response may be altered for individuals receiving Scl-Ab therapy. To address this, we carried out a 2-week study of tibial cyclic compressive loading on C57Bl/6 mice treated with vehicle or 100 mg/kg/wk Scl-Ab. Increases in bone volume, density, and dynamic bone formation were found with loading, and the anabolic response was further increased by the combination of load and Scl-Ab. To investigate the underlying mechanism, gene profiling by RNA sequencing (RNAseq) was performed on tibias isolated from mice from all four experimental groups. Major alterations in Wnt/β-catenin gene expression were found with tibial loading, however not with Scl-Ab treatment alone. Notably, the combination of load and Scl-Ab elicited a synergistic response from a number of specific Wnt-related and mechanotransduction factors. An unexpected finding was significant upregulation of factors in the Rho GTPase signaling pathway with combination treatment. In summary, combination therapy had a more profound anabolic response than either Scl-Ab or loading treatment alone. The Wnt/β-catenin and Rho GTPase pathways were implicated within bone mechanotransduction and support the concept that bone mechanotransduction is likely to encompass a number of interconnected signaling pathways. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Alyson Morse
- Orthopaedic Research & Biotechnology Unit, The Children's Hospital at Westmead, Westmead, Australia.,Discipline of Paediatrics and Child Health, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Aaron Schindeler
- Orthopaedic Research & Biotechnology Unit, The Children's Hospital at Westmead, Westmead, Australia.,Discipline of Paediatrics and Child Health, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Michelle M McDonald
- Bone Biology Program, The Garvan Institute of Medical Research, Darlinghurst, Australia
| | | | | | - David G Little
- Orthopaedic Research & Biotechnology Unit, The Children's Hospital at Westmead, Westmead, Australia.,Discipline of Paediatrics and Child Health, Sydney Medical School, University of Sydney, Sydney, Australia
| |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW This review provides a summary of the current knowledge on Sost/sclerostin in cancers targeting the bone, discusses novel observations regarding its potential as a therapeutic approach to treat cancer-induced bone loss, and proposes future research needed to fully understand the potential of therapeutic approaches that modulate sclerostin function. RECENT FINDINGS Accumulating evidence shows that sclerostin expression is dysregulated in a number of cancers that target the bone. Further, new findings demonstrate that pharmacological inhibition of sclerostin in preclinical models of multiple myeloma results in a robust prevention of bone loss and preservation of bone strength, without apparent effects on tumor growth. These data raise the possibility of targeting sclerostin for the treatment of cancer patients with bone metastasis. Sclerostin is emerging as a valuable target to prevent the bone destruction that accompanies the growth of cancer cells in the bone. Further studies will focus on combining anti-sclerostin therapy with tumor-targeted agents to achieve both beneficial skeletal outcomes and inhibition of tumor progression.
Collapse
Affiliation(s)
- Michelle M McDonald
- The Garvan Institute of Medical Research, Sydney, Australia
- St. Vincent's School of Medicine, University of New South Wales, Sydney, Australia
| | - Jesus Delgado-Calle
- Division of Hematology/Oncology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.
- Melvin and Bren Simon Cancer Center, Indianapolis, IN, USA.
- Indiana Center for Musculoskeletal Health, Indianapolis, IN, USA.
| |
Collapse
|
23
|
Collignon AM, Amri N, Lesieur J, Sadoine J, Ribes S, Menashi S, Simon S, Berdal A, Rochefort GY, Chaussain C, Gaucher C. Sclerostin Deficiency Promotes Reparative Dentinogenesis. J Dent Res 2017; 96:815-821. [PMID: 28571484 DOI: 10.1177/0022034517698104] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In humans, the SOST gene encodes sclerostin, an inhibitor of bone growth and remodeling, which also negatively regulates the bone repair process. Sclerostin has also been implicated in tooth formation, but its potential role in pulp healing remains unknown. The aim of this study was to explore the role of sclerostin in reparative dentinogenesis using Sost knockout mice ( Sost-/-). The pulps of the first maxillary molars were mechanically exposed in 3-mo-old Sost-/- and wild-type (WT) mice ( n = 14 mice per group), capped with mineral trioxide aggregate cement, and the cavities were filled with a bonded composite resin. Reparative dentinogenesis was dynamically followed up by micro-computed tomography and characterized by histological analyses. Presurgical analysis revealed a significantly lower pulp volume in Sost-/- mice compared with WT. At 30 and 49 d postsurgery, a large-forming reparative mineralized bridge, associated with osteopontin-positive mineralization foci, was observed in the Sost-/- pulps, whereas a much smaller bridge was detected in WT. At the longer time points, the bridge, which was associated with dentin sialoprotein-positive cells, had expanded in both groups but remained significantly larger in Sost-/- pulps. Sclerostin expression in the healing WT pulps was detected in the cells neighboring the forming dentin bridge. In vitro, mineralization induced by Sost-/- dental pulp cells (DPCs) was also dramatically enhanced when compared with WT DPCs. These observations were associated with an increased Sost expression in WT cells. Taken together, our data show that sclerostin deficiency hastened reparative dentinogenesis after pulp injury, suggesting that the inhibition of sclerostin may constitute a promising therapeutic strategy for improving the healing of damaged pulps.
Collapse
Affiliation(s)
- A-M Collignon
- 1 EA 2496 Laboratory Orofacial Pathologies, Imagery and Biotherapies, Dental School and Life imaging Platform (PIV), University Paris Descartes Sorbonne Paris Cité, Montrouge, France.,2 AP-HP, Departments of Odontology, University Hospitals Louis Mourier and Bretonneau "National rare disease center metabolism phosphorus and calcium" (HUPNVS), Rothschild "National rare diseases center MAFACE" (HUEP), Pitié Salpêtrière (HUPSCF) and Albert Chennevier (HUHM), Paris, France
| | - N Amri
- 1 EA 2496 Laboratory Orofacial Pathologies, Imagery and Biotherapies, Dental School and Life imaging Platform (PIV), University Paris Descartes Sorbonne Paris Cité, Montrouge, France.,3 INSERM UMRS 1138, Molecular Oral Pathophysiology Team, Paris Diderot and Paris Descartes University USPC, Paris, France
| | - J Lesieur
- 1 EA 2496 Laboratory Orofacial Pathologies, Imagery and Biotherapies, Dental School and Life imaging Platform (PIV), University Paris Descartes Sorbonne Paris Cité, Montrouge, France
| | - J Sadoine
- 1 EA 2496 Laboratory Orofacial Pathologies, Imagery and Biotherapies, Dental School and Life imaging Platform (PIV), University Paris Descartes Sorbonne Paris Cité, Montrouge, France
| | - S Ribes
- 1 EA 2496 Laboratory Orofacial Pathologies, Imagery and Biotherapies, Dental School and Life imaging Platform (PIV), University Paris Descartes Sorbonne Paris Cité, Montrouge, France
| | - S Menashi
- 1 EA 2496 Laboratory Orofacial Pathologies, Imagery and Biotherapies, Dental School and Life imaging Platform (PIV), University Paris Descartes Sorbonne Paris Cité, Montrouge, France
| | - S Simon
- 2 AP-HP, Departments of Odontology, University Hospitals Louis Mourier and Bretonneau "National rare disease center metabolism phosphorus and calcium" (HUPNVS), Rothschild "National rare diseases center MAFACE" (HUEP), Pitié Salpêtrière (HUPSCF) and Albert Chennevier (HUHM), Paris, France.,3 INSERM UMRS 1138, Molecular Oral Pathophysiology Team, Paris Diderot and Paris Descartes University USPC, Paris, France
| | - A Berdal
- 2 AP-HP, Departments of Odontology, University Hospitals Louis Mourier and Bretonneau "National rare disease center metabolism phosphorus and calcium" (HUPNVS), Rothschild "National rare diseases center MAFACE" (HUEP), Pitié Salpêtrière (HUPSCF) and Albert Chennevier (HUHM), Paris, France.,3 INSERM UMRS 1138, Molecular Oral Pathophysiology Team, Paris Diderot and Paris Descartes University USPC, Paris, France
| | - G Y Rochefort
- 1 EA 2496 Laboratory Orofacial Pathologies, Imagery and Biotherapies, Dental School and Life imaging Platform (PIV), University Paris Descartes Sorbonne Paris Cité, Montrouge, France
| | - C Chaussain
- 1 EA 2496 Laboratory Orofacial Pathologies, Imagery and Biotherapies, Dental School and Life imaging Platform (PIV), University Paris Descartes Sorbonne Paris Cité, Montrouge, France.,2 AP-HP, Departments of Odontology, University Hospitals Louis Mourier and Bretonneau "National rare disease center metabolism phosphorus and calcium" (HUPNVS), Rothschild "National rare diseases center MAFACE" (HUEP), Pitié Salpêtrière (HUPSCF) and Albert Chennevier (HUHM), Paris, France
| | - C Gaucher
- 1 EA 2496 Laboratory Orofacial Pathologies, Imagery and Biotherapies, Dental School and Life imaging Platform (PIV), University Paris Descartes Sorbonne Paris Cité, Montrouge, France.,2 AP-HP, Departments of Odontology, University Hospitals Louis Mourier and Bretonneau "National rare disease center metabolism phosphorus and calcium" (HUPNVS), Rothschild "National rare diseases center MAFACE" (HUEP), Pitié Salpêtrière (HUPSCF) and Albert Chennevier (HUHM), Paris, France
| |
Collapse
|
24
|
Weivoda MM, Youssef SJ, Oursler MJ. Sclerostin expression and functions beyond the osteocyte. Bone 2017; 96:45-50. [PMID: 27888056 PMCID: PMC5328839 DOI: 10.1016/j.bone.2016.11.024] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 11/17/2016] [Accepted: 11/21/2016] [Indexed: 11/24/2022]
Abstract
Sclerostin, the product of the SOST gene, is a secreted inhibitor of Wnt signaling that is produced by osteocytes to regulate bone formation. While it is often considered an osteocyte-specific protein, SOST expression has been reported in numerous other cell types, including hypertrophic chondrocytes and cementocytes. Of interest, SOST/sclerostin expression is altered in certain pathogenic conditions, including osteoarthritis and rheumatic joint disease, and it is unclear whether sclerostin plays a protective role or whether sclerostin may mediate disease pathogenesis. Therefore, as anti-sclerostin antibodies are being developed for the treatment of osteoporosis, it is important to understand the functions of sclerostin beyond the regulation of bone formation.
Collapse
Affiliation(s)
- Megan M Weivoda
- Division of Endocrinology, Metabolism, Nutrition & Diabetes, Mayo Clinic, USA.
| | - Stephanie J Youssef
- Division of Endocrinology, Metabolism, Nutrition & Diabetes, Mayo Clinic, USA
| | - Merry Jo Oursler
- Division of Endocrinology, Metabolism, Nutrition & Diabetes, Mayo Clinic, USA
| |
Collapse
|
25
|
Manokawinchoke J, Sumrejkanchanakij P, Pavasant P, Osathanon T. Notch Signaling Participates in TGF-β-Induced SOST Expression Under Intermittent Compressive Stress. J Cell Physiol 2017; 232:2221-2230. [PMID: 27966788 DOI: 10.1002/jcp.25740] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 12/13/2016] [Indexed: 12/27/2022]
Abstract
Notch signaling is regulated by mechanical stimuli in various cell types. It has previously been reported that intermittent compressive stimuli enhanced sclerostin (SOST) expression in human periodontal ligament cells (hPDLs) by regulating transforming growth factor-β (TGF-β) expression. The aim of the present study was to determine the involvement of Notch signaling in the TGF-β-induced SOST expression in hPDLs. Cells were treated with intermittent compressive stress in a computer-controlled apparatus for 24 h. The mRNA and protein expression of the cells were determined by real-time polymerase chain reaction and Western blot analysis, respectively. In some experiments, the target signaling pathway was impeded by the addition of a TGF-β receptor kinase inhibitor (SB431542) or a γ-secretase inhibitor (DAPT). The results demonstrated that hPDLs under intermittent compressive stress exhibited significantly higher NOTCH2, NOTCH3, HES1, and HEY1 mRNA expression compared with control, indicating that mechanical stress induced Notch signaling. DAPT pretreatment markedly reduced the intermittent stress-induced SOST expression. The expression of NOTCH2, NOTCH3, HES1, and HEY1 mRNA under compressive stress was significantly reduced after pretreatment with SB431542, coinciding with a reduction in SOST expression. Recombinant human TGF-β1 enhanced SOST, Notch receptor, and target gene expression in hPDLs. Further, DAPT treatment attenuated rhTGF-β1-induced SOST expression. In summary, intermittent compressive stress regulates Notch receptor and target gene expression via the TGF-β signaling pathway. In addition, Notch signaling participates in TGF-β-induced SOST expression in hPDLs. J. Cell. Physiol. 232: 2221-2230, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jeeranan Manokawinchoke
- Mineralized Tissue Research Unit, Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Piyamas Sumrejkanchanakij
- Mineralized Tissue Research Unit, Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Prasit Pavasant
- Mineralized Tissue Research Unit, Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Thanaphum Osathanon
- Mineralized Tissue Research Unit, Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
26
|
Delgado-Calle J, Sato AY, Bellido T. Role and mechanism of action of sclerostin in bone. Bone 2017; 96:29-37. [PMID: 27742498 PMCID: PMC5328835 DOI: 10.1016/j.bone.2016.10.007] [Citation(s) in RCA: 304] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 08/29/2016] [Accepted: 10/10/2016] [Indexed: 12/14/2022]
Abstract
After discovering that lack of Sost/sclerostin expression is the cause of the high bone mass human syndromes Van Buchem disease and sclerosteosis, extensive animal experimentation and clinical studies demonstrated that sclerostin plays a critical role in bone homeostasis and that its deficiency or pharmacological neutralization increases bone formation. Dysregulation of sclerostin expression also underlies the pathophysiology of skeletal disorders characterized by loss of bone mass, as well as the damaging effects of some cancers in bone. Thus, sclerostin has quickly become a promising molecular target for the treatment of osteoporosis and other skeletal diseases, and beneficial skeletal outcomes are observed in animal studies and clinical trials using neutralizing antibodies against sclerostin. However, the anabolic effect of blocking sclerostin decreases with time, bone mass accrual is also accompanied by anti-catabolic effects, and there is bone loss over time after therapy discontinuation. Further, the cellular source of sclerostin in the bone/bone marrow microenvironment under physiological and pathological conditions, the pathways that regulate sclerostin expression and the mechanisms by which sclerostin modulates the activity of osteocytes, osteoblasts, and osteoclasts remain unclear. In this review, we highlight the current knowledge on the regulation of Sost/sclerotin expression and its mechanism(s) of action, discuss novel observations regarding its role in signaling pathways activated by hormones and mechanical stimuli in bone, and propose future research needed to understand the full potential of therapeutic interventions that modulate Sost/sclerostin expression.
Collapse
Affiliation(s)
- Jesus Delgado-Calle
- Department of Anatomy and Cell Biology, Indianapolis, IN, United States; Roudebush Veterans Administration Medical Center, Indianapolis, IN, United States.
| | - Amy Y Sato
- Department of Anatomy and Cell Biology, Indianapolis, IN, United States.
| | - Teresita Bellido
- Department of Anatomy and Cell Biology, Indianapolis, IN, United States; Department of Medicine, Division of Endocrinology, Indiana University School of Medicine, Indianapolis, IN, United States; Roudebush Veterans Administration Medical Center, Indianapolis, IN, United States.
| |
Collapse
|
27
|
Harris SE, Rediske M, Neitzke R, Rakian A. Periodontal Biology: Stem Cells, Bmp2 Gene, Transcriptional Enhancers, and Use of Sclerostin Antibody and Pth for Treatment of Periodontal Disease and Bone Loss. CELL, STEM CELLS AND REGENERATIVE MEDICINE 2017; 3:10.16966/2472-6990.113. [PMID: 29457146 PMCID: PMC5813290 DOI: 10.16966/2472-6990.113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The periodontium is a complex tissue with epithelial components and a complex set of mesodermal derived alveolar bone, cellular and a cellular cementum, and tendon like ligaments (PDL). The current evidence demonstrates that the major pool of periodontal stem cells is derived from a population of micro vascular associated aSMA-positive stem/progenitor (PSC) cells that by lineage tracing form all three major mesodermal derived components of the periodontium. With in vitro aSMA+ stem cells, transcriptome and chip- seq experiments, the gene network and enhancer maps were determined at several differentiation states of the PSC. Current work on the role of the Bmp2 gene in the periodontal stem cell differentiation demonstrated that this Wnt regulated gene, Bmp2, is necessary for differentiation to all three major mesodermal derived component of the periodontium. The mechanism and use of Sclerostin antibody as an activator of Wnt signaling and Bmp2 gene as a potential route to treat craniofacial bone loss is discussed. As well, the mechanism and use of Pth in the treatment of periodontal bone loss or other craniofacial bone loss is presented in this review.
Collapse
Affiliation(s)
- Stephen E Harris
- Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Michael Rediske
- Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Rebecca Neitzke
- Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Audrey Rakian
- Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
28
|
Kanaya S, Komatsu H, Shimauchi H, Nemoto E. Metabotropic glutamate receptor 1 promotes cementoblast proliferation via MAP kinase signaling pathways. Connect Tissue Res 2016; 57:417-26. [PMID: 27261070 DOI: 10.1080/03008207.2016.1195826] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE/AIM Glutamate is one of the signaling molecules responsible for transmission in the central nervous system. Periodontal ligament (PDL) cells were recently reported to express metabotropic glutamate receptors (mGluRs). However, the functions of mGluR signaling in PDL cells or PDL-related cells remain largely unknown. The aim of this study was to investigate the expression and function of mGluRs in PDL-related cells. MATERIALS AND METHODS OCCM-30 cells, immortalized murine cementoblasts, were stimulated with l-glutamate or mGluRs antagonists. The cells' proliferative response was evaluated using a colorimetric assay and gene expression was assessed using real-time polymerase chain reaction. The nuclear translocation of cyclin D1 was evaluated by immunohistochemistry. RESULTS l-Glutamate promoted the proliferation of OCCM-30 cells, which expressed mGluR1, but not mGluR5. Dihydroxyphenylglycine (DHPG), an agonist of group I mGluRs (mGluR1 and mGluR5), also promoted cell proliferation, and this was inhibited by LY456236, an mGluR1 antagonist. DHPG increased the expression of cyclin D1, a key regulator of cell proliferation, and its nuclear translocation. DHPG also increased the expression of Bcl2A1, an antiapoptotic oncogene and simultaneously reduced the expression of Bax, a pro-apoptotic marker. Furthermore, the DHPG-induced proliferation of OCCM-30 cells was reduced by pretreatment with SB203580, SP600125, and PD98059, inhibitors of p38, JNK, and ERK1/2, respectively. CONCLUSIONS These findings indicate that activation of mGluR1 expressed by OCCM-30 cells induces cell proliferation in a manner that is dependent on mitogen-activated protein kinase pathways and that cyclin D1 and Bcl2A1/Bax may be involved. Our results provide useful information for elucidating the mechanisms underlying cementum homeostasis and regeneration.
Collapse
Affiliation(s)
- Sousuke Kanaya
- a Department of Periodontology and Endodontology , Tohoku University Graduate School of Dentistry , Sendai , Japan.,b Liaison Center for Innovative Dentistry , Graduate School of Dentistry, Tohoku University , Sendai , Japan
| | - Hidehiro Komatsu
- a Department of Periodontology and Endodontology , Tohoku University Graduate School of Dentistry , Sendai , Japan
| | - Hidetoshi Shimauchi
- a Department of Periodontology and Endodontology , Tohoku University Graduate School of Dentistry , Sendai , Japan
| | - Eiji Nemoto
- a Department of Periodontology and Endodontology , Tohoku University Graduate School of Dentistry , Sendai , Japan
| |
Collapse
|
29
|
Abstract
BACKGROUND Recently, it has been demonstrated that patients with ankylosing spondylitis (AS) and rheumatoid arthritis (RA) have a higher risk of periodontitis; however, the effect of anti-TNF therapy in periodontal status of patients with AS and particularly in dental attachment is not known. OBJECTIVE To evaluate longitudinally the local periodontal effect of TNF-antagonist in AS and compare to patients with RA. METHODS Fifteen patients with AS and 15 RA control patients were prospectively evaluated at baseline and after 6 months (6 M) of anti-TNF therapy. Periodontal assessment included: probing pocket depth (PPD), clinical attachment level (CAL), gingival bleeding index, and plaque index. Rheumatologic clinical and laboratory evaluations were the following: Bath AS Disease Activity Index, Bath AS Metrology Index, Bath AS Functional Index, C-reactive protein and erythrocyte sedimentation rate for AS and Disease Activity Score 28 joints, and C-reactive protein and erythrocyte sedimentation rate for patients with RA. RESULTS At baseline, periodontal parameters were alike in AS and RA (P > 0.05). After 6 M of anti-TNF therapy, clinical and laboratory parameters of rheumatic diseases decreased significantly in the patients with AS and RA (P < 0.05). A significant improvement in periodontal attachment measurements were observed in the patients with AS (PPD, 2.18 vs 1.94 mm; P = 0.02; CAL, 2.29 vs.2.02 mm; P = 0.03), but not in RA (PPD, 1.92 vs 2.06 mm; P = 0.06; CAL, 2.14 vs 2.28 mm; P = 0.27). Oral hygiene and gingival inflammation remained unchanged from baseline to 6-M evaluation in AS and RA (P > 0.05). CONCLUSION Patients with AS under anti-TNF improved periodontal attachment. The mechanism for this effect needs further studies.
Collapse
|
30
|
Tamura M, Nemoto E. Role of the Wnt signaling molecules in the tooth. JAPANESE DENTAL SCIENCE REVIEW 2016; 52:75-83. [PMID: 28408959 PMCID: PMC5390339 DOI: 10.1016/j.jdsr.2016.04.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/29/2016] [Accepted: 04/01/2016] [Indexed: 02/07/2023] Open
Abstract
Wnt signaling plays a central role in many processes during embryonic development and adult homeostasis. At least 19 types of Wnt ligands, receptors, transducers, transcription factors, and antagonists have been identified in mammals. Two distinct Wnt signaling pathways, the canonical signaling pathway and the noncanonical signaling pathway, have been described. Some Wnt signaling pathway components are expressed in the dental epithelium and mesenchyme during tooth development in humans and mice. Functional studies and experimental analysis of relevant animal models confirm the effects of Wnt signaling pathway on the regulation of developing tooth formation and adult tooth homeostasis. Mutations in some Wnt signaling pathway components have been identified in syndromic and non-syndromic tooth agenesis. This review provides an overview of progress in elucidating the role of Wnt signaling pathway components in the tooth and the resulting possibilities for therapeutic development.
Collapse
Affiliation(s)
- Masato Tamura
- Department of Biochemistry and Molecular Biology, Graduate School of Dental Medicine, Hokkaido University, N13, W7, Sapporo, Japan
| | - Eiji Nemoto
- Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba, Sendai, Japan
| |
Collapse
|
31
|
Ueda M, Kuroishi KN, Gunjigake KK, Ikeda E, Kawamoto T. Expression of SOST/sclerostin in compressed periodontal ligament cells. J Dent Sci 2016; 11:272-278. [PMID: 30894984 PMCID: PMC6395252 DOI: 10.1016/j.jds.2016.02.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 02/08/2016] [Indexed: 01/02/2023] Open
Abstract
Background/purpose Bone resorption and inhibition of bone formation occur on the compressed side during orthodontic tooth movement. Bone formation inhibitory factors such as sclerostin (encoded by SOST) are secreted on the compressed side by periodontal ligament (PDL) cells. PDL cells control bone metabolism, and compressed PDL cells inhibit bone formation during orthodontic tooth movement. The aim of this study was to identify the inhibitory factors of bone formation in PDL cells. Materials and methods Changes in SOST expression and subsequent protein release from human PDL (hPDL) cells were assessed using the real-time polymerase chain reaction (PCR), semiquantitative PCR, and immunofluorescence in hPDL cells subjected to centrifugal force (40g and 90g). To confirm the effects on bone formation, human alveolar bone-derived osteoblasts (hOBs) were grown with the addition of sclerostin peptide. In vivo, a compressive force was applied using the Waldo method in rats, and the distribution of sclerostin in PDL tissues was examined by immunohistochemistry. Results SOST expression was downregulated in vitro by centrifugation at 90g for 24 hours but upregulated by centrifugation at 40g based on real-time PCR, as was confirmed by immunofluorescence staining. The addition of sclerostin peptide significantly decreased the mineralized area in hOBs. However, slightly weakly sclerostin-positive PDL cells were observed on the compressed side in vivo. Conclusion These results indicate that PDL cells subjected to light compressive force exhibit increased expression of SOST/sclerostin, which inhibits bone formation on the compressed side during orthodontic tooth movement.
Collapse
Affiliation(s)
- Masae Ueda
- Division of Orofacial Functions and Orthodontics, Kyushu Dental University, Kitakyushu, Japan
| | - Kayoko N Kuroishi
- Division of Orofacial Functions and Orthodontics, Kyushu Dental University, Kitakyushu, Japan
| | - Kaori K Gunjigake
- Division of Orofacial Functions and Orthodontics, Kyushu Dental University, Kitakyushu, Japan
| | - Erina Ikeda
- Division of Orofacial Functions and Orthodontics, Kyushu Dental University, Kitakyushu, Japan
| | - Tatsuo Kawamoto
- Division of Orofacial Functions and Orthodontics, Kyushu Dental University, Kitakyushu, Japan
| |
Collapse
|
32
|
Inagaki Y, Hookway ES, Kashima TG, Munemoto M, Tanaka Y, Hassan AB, Oppermann U, Athanasou NA. Sclerostin expression in bone tumours and tumour-like lesions. Histopathology 2016; 69:470-8. [PMID: 26896083 DOI: 10.1111/his.12953] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 02/15/2016] [Indexed: 12/31/2022]
Abstract
AIMS To assess the immunophenotypic and mRNA expression of sclerostin in human skeletal tissues and in a wide range of benign and malignant bone tumours and tumour-like lesions. METHODS AND RESULTS Sclerostin expression was evaluated by immunohistochemistry and quantitative polymerase chain reaction (PCR). In lamellar and woven bone, there was strong sclerostin expression by osteocytes. Osteoblasts and other cell types in bone were negative. Hypertrophic chondrocytes in the growth plate and mineralized cartilage cells in zone 4 of hyaline articular cartilage strongly expressed sclerostin, but most chondrocytes in hyaline cartilage were negative. In primary bone-forming tumours, including osteosarcomas, there was patchy expression of sclerostin in mineralized osteoid and bone. Sclerostin staining was seen in woven bone in fibrous dysplasia, in osteofibrous dysplasia, and in reactive bone formed in fracture callus, in myositis ossificans, and in the wall of solitary bone cysts and aneurysmal bone cysts. Sclerostin was expressed by hypertrophic chondrocytes in osteochondroma and chondroblasts in chondroblastoma, but not by tumour cells in other bone tumours, including myeloma and metastatic carcinoma. mRNA expression of sclerostin was identified by quantitative PCR in osteosarcoma specimens and cell lines. CONCLUSIONS Sclerostin is an osteocyte marker that is strongly expressed in human woven and lamellar bone and mineralizing chondrocytes. This makes it a useful marker with which to identify benign and malignant osteogenic tumours and mineralizing cartilage tumours, such as chondroblastomas and other lesions in which there is bone formation.
Collapse
Affiliation(s)
- Yusuke Inagaki
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Nuffield Orthopaedic Centre, Oxford, UK.,Department of Orthopaedic Surgery, Nara Medical University, Nara, Japan
| | - Edward S Hookway
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Nuffield Orthopaedic Centre, Oxford, UK
| | - Takeshi G Kashima
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Nuffield Orthopaedic Centre, Oxford, UK
| | - Mitsuru Munemoto
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Nuffield Orthopaedic Centre, Oxford, UK.,Department of Orthopaedic Surgery, Nara Medical University, Nara, Japan
| | - Yasuhito Tanaka
- Department of Orthopaedic Surgery, Nara Medical University, Nara, Japan
| | - Andrew Bassim Hassan
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Nuffield Orthopaedic Centre, Oxford, UK
| | - Udo Oppermann
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Nuffield Orthopaedic Centre, Oxford, UK
| | - Nick A Athanasou
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Nuffield Orthopaedic Centre, Oxford, UK
| |
Collapse
|
33
|
Abstract
Cementum is a mineralized tissue covering the tooth root that functions in tooth attachment and posteruptive adjustment of tooth position. During formation of the apically located cellular cementum, some cementoblasts become embedded in the cementoid matrix and become cementocytes. As apparently terminally differentiated cells embedded in a mineralized extracellular matrix, cementocytes are part of a select group of specialized cells, also including osteocytes, hypertrophic chondrocytes, and odontoblasts. The differentiation and potential function(s) of cementocytes are virtually unknown, and the question may be posed whether the cementocyte is a dynamic actor in cementum in comparable fashion with the osteocyte in the skeleton, responding to changing tooth functions and endocrine signals and actively directing local cementum metabolism. This review summarizes the literature with regard to cementocytes, comparing them to their closest "cousins," the osteocytes, where insights gained from osteocyte studies serve to inform the critical examination of cementocytes. The review identifies important unanswered questions about these cells regarding their origins, differentiation, morphology and lacuno-canalicular system, selective markers, and potential functions.
Collapse
Affiliation(s)
- N Zhao
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA Department of Orthodontics, Shanghai Key Laboratory of Stomatology, Shanghai No. 9 Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - B L Foster
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - L F Bonewald
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA
| |
Collapse
|
34
|
Diekwisch TGH. Our periodontal tissue: a masterpiece of evolution. J Clin Periodontol 2016; 43:320-2. [PMID: 26878344 DOI: 10.1111/jcpe.12532] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Thomas G H Diekwisch
- Department of Periodontics, Center for Craniofacial Research and Diagnosis, Texas A&M University Baylor College of Dentistry, Dallas, TX, USA
| |
Collapse
|
35
|
Apical External Root Resorption and Repair in Orthodontic Tooth Movement: Biological Events. BIOMED RESEARCH INTERNATIONAL 2016; 2016:4864195. [PMID: 27119080 PMCID: PMC4828521 DOI: 10.1155/2016/4864195] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 03/08/2016] [Indexed: 12/20/2022]
Abstract
Some degree of external root resorption is a frequent, unpredictable, and unavoidable consequence of orthodontic tooth movement mediated by odontoclasts/cementoclasts originating from circulating precursor cells in the periodontal ligament. Its pathogenesis involves mechanical forces initiating complex interactions between signalling pathways activated by various biological agents. Resorption of cementum is regulated by mechanisms similar to those controlling osteoclastogenesis and bone resorption. Following root resorption there is repair by cellular cementum, but factors mediating the transition from resorption to repair are not clear. In this paper we review some of the biological events associated with orthodontically induced external root resorption.
Collapse
|
36
|
Ueda M, Goto T, Kuroishi KN, Gunjigake KK, Ikeda E, Kataoka S, Nakatomi M, Toyono T, Seta Y, Kawamoto T. Asporin in compressed periodontal ligament cells inhibits bone formation. Arch Oral Biol 2016; 62:86-92. [DOI: 10.1016/j.archoralbio.2015.11.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 10/07/2015] [Accepted: 11/17/2015] [Indexed: 01/15/2023]
|
37
|
Zhao N, Nociti FH, Duan P, Prideaux M, Zhao H, Foster BL, Somerman MJ, Bonewald LF. Isolation and Functional Analysis of an Immortalized Murine Cementocyte Cell Line, IDG-CM6. J Bone Miner Res 2016; 31:430-442. [PMID: 26274352 PMCID: PMC4827449 DOI: 10.1002/jbmr.2690] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 08/08/2015] [Accepted: 08/12/2015] [Indexed: 12/30/2022]
Abstract
The dental cementum covering the tooth root is similar to bone in several respects but remains poorly understood in terms of development and differentiation of cementoblasts, as well as the potential function(s) of cementocytes residing in the cellular cementum. It is not known if the cementocyte is a dynamic actor in cementum metabolism, comparable to the osteocyte in the bone. Cementocytes exhibit irregular spacing and lacunar shape, with fewer canalicular connections compared with osteocytes. Immunohistochemistry and quantitative PCR (qPCR) revealed that the in vivo expression profile of cementocytes paralleled that of osteocytes, including expression of dentin matrix protein 1 (Dmp1/DMP1), Sost/sclerostin, E11/gp38/podoplanin, Tnfrsf11b (osteoprotegerin [OPG]), and Tnfsf11 (receptor activator of NF-κB ligand [RANKL]). We used the Immortomouse(+/-); Dmp1-GFP(+/-) mice to isolate cementocytes as Dmp1-expressing cells followed by immortalization using the interferon (IFN)-γ-inducible promoter driving expression of a thermolabile large T antigen to create the first immortalized line of cementocytes, IDG-CM6. This cell line reproduced the expression profile of cementocytes observed in vivo, including alkaline phosphatase activity and mineralization. IDG-CM6 cells expressed higher levels of Tnfrsf11b and lower levels of Tnfsf11 compared with IDG-SW3 osteocytes, and under fluid flow shear stress, IDG-CM6 cells significantly increased OPG while decreasing RANKL, leading to a significantly increased OPG/RANKL ratio, which would inhibit osteoclast activation. These studies indicate similarities yet potentially important differences in the function of cementocytes compared with osteocytes and support cementocytes as mechanically responsive cells.
Collapse
Affiliation(s)
- Ning Zhao
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA.,Department of Orthodontics, Shanghai Key Laboratory of Stomatology, Shanghai No. 9 Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Francisco H Nociti
- Laboratory of Oral Connective Tissue Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA.,Department of Prosthodontics and Periodontics, Division of Periodontics, School of Dentistry at Piracicaba, Piracicaba, Sao Paulo, Brazil
| | - Peipei Duan
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA.,Department of Orthodontics, State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, China
| | - Matthew Prideaux
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA.,Bone Cell Biology Group, Centre for Orthopaedic & Trauma Research, University of Adelaide, Adelaide, Australia
| | - Hong Zhao
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Brian L Foster
- Laboratory of Oral Connective Tissue Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA.,Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Martha J Somerman
- Laboratory of Oral Connective Tissue Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Lynda F Bonewald
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA
| |
Collapse
|
38
|
Genetic polymorphism in extracellular regulators of Wnt signaling pathway. BIOMED RESEARCH INTERNATIONAL 2015; 2015:847529. [PMID: 25945348 PMCID: PMC4402192 DOI: 10.1155/2015/847529] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 03/05/2015] [Indexed: 11/18/2022]
Abstract
The Wnt signaling pathway is mediated by a family of secreted glycoproteins through canonical and noncanonical mechanism. The signaling pathways are regulated by various modulators, which are classified into two classes on the basis of their interaction with either Wnt or its receptors. Secreted frizzled-related proteins (sFRPs) are the member of class that binds to Wnt protein and antagonizes Wnt signaling pathway. The other class consists of Dickkopf (DKK) proteins family that binds to Wnt receptor complex. The present review discusses the disease related association of various polymorphisms in Wnt signaling modulators. Furthermore, this review also highlights that some of the sFRPs and DKKs are unable to act as an antagonist for Wnt signaling pathway and thus their function needs to be explored more extensively.
Collapse
|
39
|
Cao Z, Liu R, Zhang H, Liao H, Zhang Y, Hinton RJ, Feng JQ. Osterix controls cementoblast differentiation through downregulation of Wnt-signaling via enhancing DKK1 expression. Int J Biol Sci 2015; 11:335-44. [PMID: 25678852 PMCID: PMC4323373 DOI: 10.7150/ijbs.10874] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 12/19/2014] [Indexed: 12/30/2022] Open
Abstract
Osterix (Osx), a transcriptional factor essential for osteogenesis, is also critical for in vivo cellular cementum formation. However, the molecular mechanism by which Osx regulates cementoblasts is largely unknown. In this study, we initially demonstrated that overexpression of Osx in a cementoblast cell line upregulated the expression of markers vital to cementogenesis such as osteopontin (OPN), osteocalcin (OCN), and bone sialoprotein (BSP) at both mRNA and protein levels, and enhanced alkaline phosphatase (ALP) activity. Unexpectedly, we demonstrated a sharp increase in the expression of DKK1 (a potent canonical Wnt antagonist), and a great reduction in protein levels of β-catenin and its nuclear translocation by overexpression of Osx. Further, transient transfection of Osx reduced protein levels of TCF1 (a target transcription factor of β-catenin), which were partially reversed by an addition of DKK1. We also demonstrated that activation of canonical Wnt signaling by LiCl or Wnt3a significantly enhanced levels of TCF1 and suppressed the expression of OPN, OCN, and BSP, as well as ALP activity and formation of extracellular mineralized nodules. Importantly, we confirmed that there were a sharp reduction in DKK1 and a concurrent increase in β-catenin in Osx cKO mice (crossing between the Osx loxP and 2.3 Col 1-Cre lines), in agreement with the in vitro data. Thus, we conclude that the key role of Osx in control of cementoblast proliferation and differentiation is to maintain a low level of Wnt-β-catenin via direct up-regulation of DKK1.
Collapse
Affiliation(s)
- Zhengguo Cao
- 1. The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) & Key Laboratory for Oral Biomedical Engineering of Ministry of Education(KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China ; 2. Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Rubing Liu
- 1. The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) & Key Laboratory for Oral Biomedical Engineering of Ministry of Education(KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hua Zhang
- 3. Texas A&M University, Baylor College of Dentistry, 3302 Gaston Avenue, Dallas, TX, USA
| | - Haiqing Liao
- 1. The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) & Key Laboratory for Oral Biomedical Engineering of Ministry of Education(KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yufeng Zhang
- 1. The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) & Key Laboratory for Oral Biomedical Engineering of Ministry of Education(KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Robert J Hinton
- 3. Texas A&M University, Baylor College of Dentistry, 3302 Gaston Avenue, Dallas, TX, USA
| | - Jian Q Feng
- 3. Texas A&M University, Baylor College of Dentistry, 3302 Gaston Avenue, Dallas, TX, USA
| |
Collapse
|
40
|
Morse A, Yu NYC, Peacock L, Mikulec K, Kramer I, Kneissel M, McDonald MM, Little DG. Endochondral fracture healing with external fixation in the Sost knockout mouse results in earlier fibrocartilage callus removal and increased bone volume fraction and strength. Bone 2015; 71:155-63. [PMID: 25445453 DOI: 10.1016/j.bone.2014.10.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 09/24/2014] [Accepted: 10/24/2014] [Indexed: 12/11/2022]
Abstract
Sclerostin deficiency, via genetic knockout or anti-Sclerostin antibody treatment, has been shown to cause increased bone volume, density and strength of calluses following endochondral bone healing. However, there is limited data on the effect of Sclerostin deficiency on the formative early stage of fibrocartilage (non-bony tissue) formation and removal. In this study we extensively investigate the early fibrocartilage callus. Closed tibial fractures were performed on Sost(-/-) mice and age-matched wild type (C57Bl/6J) controls and assessed at multiple early time points (7, 10 and 14days), as well as at 28days post-fracture after bony union. External fixation was utilized, avoiding internal pinning and minimizing differences in stability stiffness, a variable that has confounded previous research in this area. Normal endochondral ossification progressed in wild type and Sost(-/-) mice with equivalent volumes of fibrocartilage formed at early day 7 and day 10 time points, and bony union in both genotypes by day 28. There were no significant differences in rate of bony union; however there were significant increases in fibrocartilage removal from the Sost(-/-) fracture calluses at day 14 suggesting earlier progression of endochondral healing. Earlier bone formation was seen in Sost(-/-) calluses over wild type with greater bone volume at day 10 (221%, p<0.01). The resultant Sost(-/-) united bony calluses at day 28 had increased bone volume fraction compared to wild type calluses (24%, p<0.05), and the strength of the fractured Sost(-/-) tibiae was greater than that that of wild type fractured tibiae. In summary, bony union was not altered by Sclerostin deficiency in externally-fixed closed tibial fractures, but fibrocartilage removal was enhanced and the resultant united bony calluses had increased bone fraction and increased strength.
Collapse
Affiliation(s)
- A Morse
- Orthopaedic Research & Biotechnology Unit, The Children's Hospital at Westmead, Sydney, Australia; Discipline of Paediatrics and Child Health, Sydney Medical School, University of Sydney, Sydney, Australia.
| | - N Y C Yu
- Orthopaedic Research & Biotechnology Unit, The Children's Hospital at Westmead, Sydney, Australia; Discipline of Paediatrics and Child Health, Sydney Medical School, University of Sydney, Sydney, Australia.
| | - L Peacock
- Orthopaedic Research & Biotechnology Unit, The Children's Hospital at Westmead, Sydney, Australia.
| | - K Mikulec
- Orthopaedic Research & Biotechnology Unit, The Children's Hospital at Westmead, Sydney, Australia.
| | - I Kramer
- Novartis Pharma, Basel, Switzerland.
| | | | - M M McDonald
- Orthopaedic Research & Biotechnology Unit, The Children's Hospital at Westmead, Sydney, Australia.
| | - D G Little
- Orthopaedic Research & Biotechnology Unit, The Children's Hospital at Westmead, Sydney, Australia; Discipline of Paediatrics and Child Health, Sydney Medical School, University of Sydney, Sydney, Australia.
| |
Collapse
|
41
|
Morse A, McDonald MM, Kelly NH, Melville KM, Schindeler A, Kramer I, Kneissel M, van der Meulen MCH, Little DG. Mechanical load increases in bone formation via a sclerostin-independent pathway. J Bone Miner Res 2014; 29:2456-67. [PMID: 24821585 PMCID: PMC4501925 DOI: 10.1002/jbmr.2278] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 04/22/2014] [Accepted: 05/06/2014] [Indexed: 01/24/2023]
Abstract
Sclerostin, encoded by the Sost gene, is an important negative regulator of bone formation that has been proposed to have a key role in regulating the response to mechanical loading. To investigate the effect of long-term Sclerostin deficiency on mechanotransduction in bone, we performed experiments on unloaded or loaded tibiae of 10 week old female Sost-/- and wild type mice. Unloading was induced via 0.5U botulinum toxin (BTX) injections into the right quadriceps and calf muscles, causing muscle paralysis and limb disuse. On a separate group of mice, increased loading was performed on the left tibiae through unilateral cyclic axial compression of equivalent strains (+1200 µe) at 1200 cycles/day, 5 days/week. Another cohort of mice receiving equivalent loads (-9.0 N) also were assessed. Contralateral tibiae served as normal load controls. Loaded/unloaded and normal load tibiae were assessed at day 14 for bone volume (BV) and formation changes. Loss of BV was seen in the unloaded tibiae of wild type mice, but BV was not different between normal load and unloaded Sost-/- tibiae. An increase in BV was seen in the loaded tibiae of wild type and Sost-/- mice over their normal load controls. The increased BV was associated with significantly increased mid-shaft periosteal mineralizing surface/bone surface (MS/BS), mineral apposition rate (MAR), and bone formation rate/bone surface (BFR/BS), and endosteal MAR and BFR/BS. Notably, loading induced a greater increase in periosteal MAR and BFR/BS in Sost-/- mice than in wild type controls. Thus, long-term Sclerostin deficiency inhibits the bone loss normally induced with decreased mechanical load, but it can augment the increase in bone formation with increased load.
Collapse
Affiliation(s)
- A Morse
- Orthopaedic Research and Biotechnology Unit, The Children's Hospital at Westmead, Sydney, Australia; Discipline of Paediatrics and Child Health, Sydney Medical School, University of Sydney, Sydney, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Pérez-Campo FM, Sañudo C, Delgado-Calle J, Arozamena J, Zarrabeitia MT, Riancho JA. A Sclerostin super-producer cell line derived from the human cell line SaOS-2: a new tool for the study of the molecular mechanisms driving Sclerostin expression. Calcif Tissue Int 2014; 95:194-199. [PMID: 24913258 DOI: 10.1007/s00223-014-9880-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 05/21/2014] [Indexed: 10/25/2022]
Abstract
Sclerostin, the product of the SOST gene, is a key regulator of bone homeostasis. Sclerostin interferes with the Wnt signalling pathway and, therefore, has a negative effect on bone formation. Although the importance of sclerostin in bone homeostasis is well established, many aspects of its biology are still unknown. Due to its restricted pattern of expression, in vitro studies of SOST gene regulation are technically challenging. Furthermore, a more profound investigation of the molecular mechanism controlling sclerostin expression has been hampered by the lack of a good human in vitro model. Here, we describe two cell lines derived from the human osteosarcoma cell line SaOS-2 that produce elevated levels of sclerostin. Analysis of the super-producer cell lines showed that sclerostin levels were still reduced in response to parathyroid hormone treatment or in response to mechanical loading, indicating that these regulatory mechanisms were not affected in the presented cell lines. In addition, we did not find differences between the promoter or ECR5 sequences of our clones and the SaOS-2 parental line. However, the methylation of the proximal CpG island located at the SOST promoter was lower in the super-producer clones, in agreement with a higher level of SOST transcription. Although the underlying biological causes of the elevated levels of sclerostin production in this cell line are not yet clear, we believe that it could be an extremely useful tool to study the molecular mechanisms driving sclerostin expression in humans.
Collapse
Affiliation(s)
- Flor M Pérez-Campo
- Department of Internal Medicine, Hospital U. Marqués de Valdecilla-IDIVAL University of Cantabria, Avda. Valdecilla S/N, 39008, Santander, Cantabria, Spain
| | | | | | | | | | | |
Collapse
|
43
|
Strontium promotes cementoblasts differentiation through inhibiting sclerostin expression in vitro. BIOMED RESEARCH INTERNATIONAL 2014; 2014:487535. [PMID: 25003114 PMCID: PMC4070504 DOI: 10.1155/2014/487535] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 03/13/2014] [Accepted: 04/12/2014] [Indexed: 11/18/2022]
Abstract
Cementogenesis, performed by cementoblasts, is important for the repair of root resorption caused by orthodontic treatment. Based on recent studies, strontium has been applied for osteoporosis treatment due to its positive effect on osteoblasts. Although promising, the effect of strontium on cementoblasts is still unclear. So the aim of this research was to clarify and investigate the effect of strontium on cementogenesis via employing cementoblasts as model. A series of experiments including MTT, alkaline phosphatase activity, gene analysis, alizarin red staining, and western blot were carried out to evaluate the proliferation and differentiation of cementoblasts. In addition, expression of sclerostin was checked to analyze the possible mechanism. Our results show that strontium inhibits the proliferation of cementoblasts with a dose dependent manner; however, it can promote the differentiation of cementoblasts via downregulating sclerostin expression. Taking together, strontium may facilitate cementogenesis and benefit the treatment of root resorption at a low dose.
Collapse
|
44
|
Brolese E, Buser D, Kuchler U, Schaller B, Gruber R. Human bone chips release of sclerostin and FGF-23 into the culture medium: an in vitro pilot study. Clin Oral Implants Res 2014; 26:1211-4. [PMID: 24888411 DOI: 10.1111/clr.12432] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2014] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Signaling molecules derived from osteocytes have been proposed as a mechanism by which autografts contribute to bone regeneration. However, there have been no studies that determined the role of osteocytes in bone grafts. MATERIAL AND METHOD Herein, it was examined whether bone chips and demineralized bone matrix release sclerostin and FGF-23, both of which are highly expressed by osteocytes. RESULTS Bone grafts from seven donors were placed in culture medium. Immunoassay showed that bone chips released sclerostin (median 1.0 ng/ml) and FGF-23 (median 9.8 relative units/ml) within the first day, with declining levels overtime. Demineralized bone matrix also released detectable amounts of sclerostin into culture medium, while FGF-23 remained close to the detection limit. In vitro expanded isolated bone cells failed to release detectable amounts of sclerostin and FGF-23. CONCLUSION These results suggest that autografts but also demineralized bone matrix can release signaling molecules that are characteristically produced by osteocytes.
Collapse
Affiliation(s)
- Eliane Brolese
- Department of Cranio-Maxillofacial Surgery, Inselspital, University of Bern, Bern, Switzerland.,Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Daniel Buser
- Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Ulrike Kuchler
- Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Benoit Schaller
- Department of Cranio-Maxillofacial Surgery, Inselspital, University of Bern, Bern, Switzerland
| | - Reinhard Gruber
- Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Bern, Switzerland.,Laboratory of Oral Cell Biology, School of Dental Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
45
|
Kuchler U, Schwarze UY, Dobsak T, Heimel P, Bosshardt DD, Kneissel M, Gruber R. Dental and periodontal phenotype in sclerostin knockout mice. Int J Oral Sci 2014; 6:70-6. [PMID: 24699186 PMCID: PMC5130054 DOI: 10.1038/ijos.2014.12] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2013] [Indexed: 12/17/2022] Open
Abstract
Sclerostin is a Wnt signalling antagonist that controls bone metabolism. Sclerostin is expressed by osteocytes and cementocytes; however, its role in the formation of dental structures remains unclear. Here, we analysed the mandibles of sclerostin knockout mice to determine the influence of sclerostin on dental structures and dimensions using histomorphometry and micro-computed tomography (μCT) imaging. μCT and histomorphometric analyses were performed on the first lower molar and its surrounding structures in mice lacking a functional sclerostin gene and in wild-type controls. μCT on six animals in each group revealed that the dimension of the basal bone as well as the coronal and apical part of alveolar part increased in the sclerostin knockout mice. No significant differences were observed for the tooth and pulp chamber volume. Descriptive histomorphometric analyses of four wild-type and three sclerostin knockout mice demonstrated an increased width of the cementum and a concomitant moderate decrease in the periodontal space width. Taken together, these results suggest that the lack of sclerostin mainly alters the bone and cementum phenotypes rather than producing abnormalities in tooth structures such as dentin.
Collapse
Affiliation(s)
- Ulrike Kuchler
- 1] Department of Oral Surgery, Medical University of Vienna, Vienna, Austria [2] Austrian Cluster for Tissue Regeneration, Vienna, Austria [3] Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Berne, Berne, Switzerland
| | - Uwe Y Schwarze
- 1] Department of Oral Surgery, Medical University of Vienna, Vienna, Austria [2] Austrian Cluster for Tissue Regeneration, Vienna, Austria [3] Karl Donath Laboratory for Hard Tissue and Biomaterial Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Toni Dobsak
- 1] Department of Oral Surgery, Medical University of Vienna, Vienna, Austria [2] Austrian Cluster for Tissue Regeneration, Vienna, Austria [3] Karl Donath Laboratory for Hard Tissue and Biomaterial Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Patrick Heimel
- 1] Department of Oral Surgery, Medical University of Vienna, Vienna, Austria [2] Austrian Cluster for Tissue Regeneration, Vienna, Austria [3] Karl Donath Laboratory for Hard Tissue and Biomaterial Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria [4] Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research Center, Vienna, Austria
| | - Dieter D Bosshardt
- 1] Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Berne, Berne, Switzerland [2] Robert K. Schenk Laboratory of Oral Histology, School of Dental Medicine, University of Berne, Berne, Switzerland
| | - Michaela Kneissel
- Musculoskeletal Disease Area, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Reinhard Gruber
- 1] Department of Oral Surgery, Medical University of Vienna, Vienna, Austria [2] Austrian Cluster for Tissue Regeneration, Vienna, Austria [3] Laboratory of Oral Cell Biology, School of Dental Medicine, University of Berne, Berne, Switzerland
| |
Collapse
|
46
|
Bao X, Liu Y, Han G, Zuo Z, Hu M. The effect on proliferation and differentiation of cementoblast by using sclerostin as inhibitor. Int J Mol Sci 2013; 14:21140-52. [PMID: 24152444 PMCID: PMC3821662 DOI: 10.3390/ijms141021140] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 10/15/2013] [Accepted: 10/15/2013] [Indexed: 12/31/2022] Open
Abstract
Cementogenesis is of great importance for normal teeth root development and is involved in the repair process of root resorption caused by orthodontic treatment. As highly differentiated mesenchymal cells, cementoblasts are responsible for this process under the regulation of many endogenous agents. Among these molecules, sclerostin has been much investigated recently for its distinct antagonism effect on bone metabolism. Encoded by the sost gene, sclerostin is expressed in osteocytes and cementocytes of cellular cementum. it is still unclear. In the current study, we investigated the effects of sclerostin on the processes of proliferation and differentiation; a series of experiments including MTT, apoptosis examination, alkaline phosphatase (ALP) activity, gene analysis, and alizarin red staining were carried out to evaluate the proliferation and differentiation of cementoblasts. Protein expression including osteoprotegerin (OPG) and receptor activator of nuclear factor kappa B ligand (RANKL) were also checked to analyze changes in osteoclastogenesis. Results show that sclerostin inhibits cementoblasts proliferation and differentiation, and promotes osteoclastogenesis. Interestingly, the monoclonal antibody for sclerostin has shown positive effects on osteoporosis, indicating that it may facilitate cementogenesis and benefit the treatment of cementum related diseases.
Collapse
Affiliation(s)
- Xingfu Bao
- Department of Orthodontics, School of Stomatology, Jilin University, Changchun 130021, China; E-Mail:
| | - Yuyan Liu
- Department of Endodontics, School of Stomatology, Jilin University, Changchun 130021, China; E-Mails: (Y.L.); (G.H.)
| | - Guanghong Han
- Department of Endodontics, School of Stomatology, Jilin University, Changchun 130021, China; E-Mails: (Y.L.); (G.H.)
| | - Zhigang Zuo
- Department of Orthodontics, School of Stomatology, Tianjin Medical University, Tianjin 300014, China; E-Mail:
| | - Min Hu
- Department of Orthodontics, School of Stomatology, Jilin University, Changchun 130021, China; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +86-431-88796023; Fax: +86-431-88955228
| |
Collapse
|
47
|
Immunohistochemical evidence for sclerostin during cementogenesis in mice. Ann Anat 2012; 194:415-21. [PMID: 22560000 DOI: 10.1016/j.aanat.2012.02.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 01/30/2012] [Accepted: 02/01/2012] [Indexed: 12/19/2022]
Abstract
The purpose of this study was to investigate systematically the expression of the glycoprotein sclerostin, the product of the SOST gene, in periodontal tissues, especially in the cementum of mice. Immunolocalization of sclerostin was performed in decalcified histological sections of the maxillary and mandibular jaws of 20 CB56BL/6 mice. For analysis, newborn mice as well as mice at the age of, 1, 2, 4 and 8 weeks were used to detect sclerostin in the cementum, periodontal ligament (PDL) and alveolar bone. For further characterization of the cells within the periodontium, antibodies for Runx2 and S100A4 were also applied. S100A4 as a marker for fibroblasts was used to characterize the fibroblasts, especially in the periodontal ligament. Runx2 as a marker for osteoblast-maturation was used to detect the osteoblasts in the alveolar bone. In addition to the detection in osteocytes, expression of sclerostin was observed in cementocytes of the cellular cementum. With regard to cementogenesis, positive identification of sclerostin could be verified in mice at the age of 4 and 8 weeks but not during the initial stages of cementogenesis. Positive immune reactions for Runx2 were observed in PDL cells, cementoblasts, cementocytes, osteoblasts and osteocytes. PDL cells generally showed positive immunoreactions for the S100A4 antibody. The main findings of this study were: (1) due to the fact that sclerostin was not identified in the initial stages of cementum development, its biological significance seems to be restricted to cementum homeostasis and possibly to regenerative processes; (2) verification of sclerostin only in cementocytes of cellular cementum points to biological similarity of cellular cementum and bone.
Collapse
|
48
|
Wijenayaka AR, Kogawa M, Lim HP, Bonewald LF, Findlay DM, Atkins GJ. Sclerostin stimulates osteocyte support of osteoclast activity by a RANKL-dependent pathway. PLoS One 2011; 6:e25900. [PMID: 21991382 PMCID: PMC3186800 DOI: 10.1371/journal.pone.0025900] [Citation(s) in RCA: 362] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 09/13/2011] [Indexed: 02/06/2023] Open
Abstract
Sclerostin is a product of mature osteocytes embedded in mineralised bone and is a negative regulator of bone mass and osteoblast differentiation. While evidence suggests that sclerostin has an anti-anabolic role, the possibility also exists that sclerostin has catabolic activity. To test this we treated human primary pre-osteocyte cultures, cells we have found are exquisitely sensitive to sclerostin, or mouse osteocyte-like MLO-Y4 cells, with recombinant human sclerostin (rhSCL) and measured effects on pro-catabolic gene expression. Sclerostin dose-dependently up-regulated the expression of receptor activator of nuclear factor kappa B (RANKL) mRNA and down-regulated that of osteoprotegerin (OPG) mRNA, causing an increase in the RANKL∶OPG mRNA ratio. To examine the effects of rhSCL on resulting osteoclastic activity, MLO-Y4 cells plated onto a bone-like substrate were primed with rhSCL for 3 days and then either mouse splenocytes or human peripheral blood mononuclear cells (PBMC) were added. This resulted in cultures with elevated osteoclastic resorption (approximately 7-fold) compared to untreated co-cultures. The increased resorption was abolished by co-addition of recombinant OPG. In co-cultures of MLO-Y4 cells with PBMC, SCL also increased the number and size of the TRAP-positive multinucleated cells formed. Importantly, rhSCL had no effect on TRAP-positive cell formation from monocultures of either splenocytes or PBMC. Further, rhSCL did not induce apoptosis of MLO-Y4 cells, as determined by caspase activity assays, demonstrating that the osteoclastic response was not driven by dying osteocytes. Together, these results suggest that sclerostin may have a catabolic action through promotion of osteoclast formation and activity by osteocytes, in a RANKL-dependent manner.
Collapse
Affiliation(s)
- Asiri R. Wijenayaka
- Bone Cell Biology Group, Discipline of Orthopaedics and Trauma, University of Adelaide, and the Hanson Institute, Adelaide, Australia
| | - Masakazu Kogawa
- Bone Cell Biology Group, Discipline of Orthopaedics and Trauma, University of Adelaide, and the Hanson Institute, Adelaide, Australia
| | - Hui Peng Lim
- Bone Cell Biology Group, Discipline of Orthopaedics and Trauma, University of Adelaide, and the Hanson Institute, Adelaide, Australia
| | - Lynda F. Bonewald
- University of Missouri - Kansas City School of Dentistry, Department of Oral Biology, Kansas City, Missouri, United States of America
| | - David M. Findlay
- Bone Cell Biology Group, Discipline of Orthopaedics and Trauma, University of Adelaide, and the Hanson Institute, Adelaide, Australia
| | - Gerald J. Atkins
- Bone Cell Biology Group, Discipline of Orthopaedics and Trauma, University of Adelaide, and the Hanson Institute, Adelaide, Australia
- * E-mail:
| |
Collapse
|
49
|
Atkins GJ, Rowe PS, Lim HP, Welldon KJ, Ormsby R, Wijenayaka AR, Zelenchuk L, Evdokiou A, Findlay DM. Sclerostin is a locally acting regulator of late-osteoblast/preosteocyte differentiation and regulates mineralization through a MEPE-ASARM-dependent mechanism. J Bone Miner Res 2011; 26:1425-36. [PMID: 21312267 PMCID: PMC3358926 DOI: 10.1002/jbmr.345] [Citation(s) in RCA: 178] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The identity of the cell type responsive to sclerostin, a negative regulator of bone mass, is unknown. Since sclerostin is expressed in vivo by mineral-embedded osteocytes, we tested the hypothesis that sclerostin would regulate the behavior of cells actively involved in mineralization in adult bone, the preosteocyte. Differentiating cultures of human primary osteoblasts exposed to recombinant human sclerostin (rhSCL) for 35 days displayed dose- and time-dependent inhibition of in vitro mineralization, with late cultures being most responsive in terms of mineralization and gene expression. Treatment of advanced (day 35) cultures with rhSCL markedly increased the expression of the preosteocyte marker E11 and decreased the expression of mature markers DMP1 and SOST. Concomitantly, matrix extracellular phosphoglycoprotein (MEPE) expression was increased by rhSCL at both the mRNA and protein levels, whereas PHEX was decreased, implying regulation through the MEPE-ASARM axis. We confirmed that mineralization by human osteoblasts is exquisitely sensitive to the triphosphorylated ASARM-PO4 peptide. Immunostaining revealed that rhSCL increased the endogenous levels of MEPE-ASARM. Importantly, antibody-mediated neutralization of endogenous MEPE-ASARM antagonized the effect of rhSCL on mineralization, as did the PHEX synthetic peptide SPR4. Finally, we found elevated Sost mRNA expression in the long bones of HYP mice, suggesting that sclerostin may drive the increased MEPE-ASARM levels and mineralization defect in this genotype. Our results suggest that sclerostin acts through regulation of the PHEX/MEPE axis at the preosteocyte stage and serves as a master regulator of physiologic bone mineralization, consistent with its localization in vivo and its established role in the inhibition of bone formation.
Collapse
Affiliation(s)
- Gerald J Atkins
- Bone Cell Biology Group, Discipline of Orthopaedics and Trauma, University of Adelaide, and the Hanson Institute, Adelaide, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Implications of cultured periodontal ligament cells for the clinical and experimental setting: a review. Arch Oral Biol 2011; 56:933-43. [PMID: 21470594 DOI: 10.1016/j.archoralbio.2011.03.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2010] [Revised: 02/08/2011] [Accepted: 03/06/2011] [Indexed: 01/17/2023]
Abstract
The periodontal ligament (PDL) is a key contributor to the process of regeneration of the periodontium. The heterogeneous nature of the PDL tissue, its development during early adulthood, and the different conditions to which the PDL tissue is exposed to in vivo impart on the PDL unique characteristics that may be of consequence during its cultivation in vitro. Several factors affecting the in vivo setting influence the behaviour of PDL fibroblasts in culture. The purpose of this review is to address distinct factors that influence the behaviour of PDL fibroblasts in culture -in vivo-in vitro transitions, cell identification/isolation markers, primary PDL cultures and cell lines, tooth-specific factors, and donor-specific factors. Based on the reviewed studies, the authors recommendations include the use of several identification markers to confirm cell identity, use of primary cultures at early passage to maintain unique PDL heterogeneic characteristics, and noting donor conditions such as age, systemic health status, and tooth health status. Continued efforts will expand our understanding of the in vitro and in vivo behaviour of cells, with the goal of orchestrating optimal periodontal regeneration. This understanding will lead to improved evidence-based rationales for more individualized and predictable periodontal regenerative therapies.
Collapse
|