1
|
Fernandes L, Kleene R, Congiu L, Freitag S, Kneussel M, Loers G, Schachner M. CHL1 depletion affects dopamine receptor D2-dependent modulation of mouse behavior. Front Behav Neurosci 2023; 17:1288509. [PMID: 38025382 PMCID: PMC10665519 DOI: 10.3389/fnbeh.2023.1288509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction The dopaminergic system plays a key role in the appropriate functioning of the central nervous system, where it is essential for emotional balance, arousal, reward, and motor control. The cell adhesion molecule close homolog of L1 (CHL1) contributes to dopaminergic system development, and CHL1 and the dopamine receptor D2 (D2R) are associated with mental disorders like schizophrenia, addiction, autism spectrum disorder and depression. Methods Here, we investigated how the interplay between CHL1 and D2R affects the behavior of young adult male and female wild-type (CHL+/+) and CHL1-deficient (CHL1-/-) mice, when D2R agonist quinpirole and antagonist sulpiride are applied. Results Low doses of quinpirole (0.02 mg/kg body weight) induced hypolocomotion of CHL1+/+ and CHL1-/- males and females, but led to a delayed response in CHL1-/- mice. Sulpiride (1 mg/kg body weight) affected locomotion of CHL1-/- females and social interaction of CHL1+/+ females as well as social interactions of CHL1-/- and CHL1+/+ males. Quinpirole increased novelty-seeking behavior of CHL1-/- males compared to CHL1+/+ males. Vehicle-treated CHL1-/- males and females showed enhanced working memory and reduced stress-related behavior. Discussion We propose that CHL1 regulates D2R-dependent functions in vivo. Deficiency of CHL1 leads to abnormal locomotor activity and emotionality, and to sex-dependent behavioral differences.
Collapse
Affiliation(s)
- Luciana Fernandes
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Ralf Kleene
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Ludovica Congiu
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Sandra Freitag
- Institut für Molekulare Neurogenetik, Zentrum für Molekulare Neurobiologie Hamburg, ZMNH, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Matthias Kneussel
- Institut für Molekulare Neurogenetik, Zentrum für Molekulare Neurobiologie Hamburg, ZMNH, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Gabriele Loers
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Melitta Schachner
- Department of Cell Biology and Neuroscience, Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, NJ, United States
| |
Collapse
|
2
|
Japarin RA, Harun N, Hassan Z, Müller CP. The dopamine D1 receptor antagonist SCH-23390 blocks the acquisition, but not expression of mitragynine-induced conditioned place preference in rats. Behav Brain Res 2023; 453:114638. [PMID: 37619769 DOI: 10.1016/j.bbr.2023.114638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
Mitragynine (MG) is the primary active constituent of Mitragyna speciosa Korth (kratom), a psychoactive Southeast Asian plant with potential therapeutic use. Numerous studies support roles of dopaminergic system in drug reward. However, the involvement of the dopaminergic system in mediating MG reward and drug-seeking is poorly understood. Using conditioned place preference (CPP) paradigm, the present study aims to evaluate the roles of the dopamine (DA) D1 receptor in the acquisition and expression of MG-induced CPP in rats. The effects of SCH-23390, a selective DA D1 receptor antagonist, on the acquisition of MG-induced CPP were first investigated. Rats were pre-treated systemically with SCH-23390 (0, 0.1 and 0.3 mg/kg, i.p.) prior to MG (10 mg/kg) conditioning sessions. Next, we tested the effects of the DA D1 receptor antagonist on the expression of MG-induced CPP. Furthermore, the effects of a MG-priming dose (5 mg/kg) on the reinstatement of extinguished CPP were tested. The results showed that SCH-23390 dose-dependently suppressed the acquisition of a MG-induced CPP. In contrast, SCH-23390 had no effect on the expression of a MG-induced CPP. The findings of this study suggested a crucial role of the DA D1 receptor in the acquisition, but not the expression of the rewarding effects of MG in a CPP test. Furthermore, blockade of the D1-like receptor during conditioning did not prevent MG priming effects on CPP reinstatement test, suggesting no role for the DA D1 receptor in reinstatement sensitivity.
Collapse
Affiliation(s)
- Rima Atria Japarin
- Centre for Drug Research, Universiti Sains Malaysia, 11800 Gelugor, Penang, Malaysia
| | - Norsyifa Harun
- Centre for Drug Research, Universiti Sains Malaysia, 11800 Gelugor, Penang, Malaysia.
| | - Zurina Hassan
- Centre for Drug Research, Universiti Sains Malaysia, 11800 Gelugor, Penang, Malaysia
| | - Christian P Müller
- Centre for Drug Research, Universiti Sains Malaysia, 11800 Gelugor, Penang, Malaysia; Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University Erlangen-Nuremberg, Schwabachanlage 6, 91054 Erlangen, Germany
| |
Collapse
|
3
|
Kibret BG, Canseco-Alba A, Onaivi ES, Engidawork E. Crosstalk between the endocannabinoid and mid-brain dopaminergic systems: Implication in dopamine dysregulation. Front Behav Neurosci 2023; 17:1137957. [PMID: 37009000 PMCID: PMC10061032 DOI: 10.3389/fnbeh.2023.1137957] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/22/2023] [Indexed: 03/18/2023] Open
Abstract
Endocannabinoids (eCBs) and the expanded endocannabinoid system (ECS)-"endocannabinoidome", consists of the endogenous ligands, eCBs, their canonical and non-canonical receptor subtypes, and their synthesizing and metabolizing enzymes. This system modulates a wide range of body functions and acts as a retrograde signaling system within the central nervous system (CNS) by inhibition of classical transmitters, and plays a vital modulatory function on dopamine, a major neurotransmitter in the CNS. Dopamine is involved in different behavioral processes and contributes to different brain disorders-including Parkinson's disease, schizophrenia, and drug addiction. After synthesis in the neuronal cytosol, dopamine is packaged into synaptic vesicles until released by extracellular signals. Calcium dependent neuronal activation results in the vesicular release of dopamine and interacts with different neurotransmitter systems. The ECS, among others, is involved in the regulation of dopamine release and the interaction occurs either through direct or indirect mechanisms. The cross-talk between the ECS and the dopaminergic system has important influence in various dopamine-related neurobiological and pathologic conditions and investigating this interaction might help identify therapeutic targets and options in disorders of the CNS associated with dopamine dysregulation.
Collapse
Affiliation(s)
- Berhanu Geresu Kibret
- Department of Biology, College of Science and Health, William Paterson University, Wayne, NJ, United States
| | - Ana Canseco-Alba
- Direction de Investigacion, Instituto Nacional de Neurologia y Neurocircirugia “Manuel Velasco Suarez”, Mexico City, Mexico
| | - Emmanuel S. Onaivi
- Department of Biology, College of Science and Health, William Paterson University, Wayne, NJ, United States
| | - Ephrem Engidawork
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
4
|
Kanno H, Kurata S, Hiradate Y, Hara K, Yoshida H, Tanemura K. High concentration of dopamine treatment may induce acceleration of human sperm motility. Reprod Med Biol 2022; 21:e12482. [PMID: 36310655 PMCID: PMC9601866 DOI: 10.1002/rmb2.12482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 07/21/2022] [Accepted: 08/02/2022] [Indexed: 11/10/2022] Open
Abstract
Purpose In humans, catecholamines (including dopamine) have been identified in semen and fallopian tubes, while dopamine D2 receptors (D2DR) are found in the sperm midpiece region. How dopamine dose affects human sperm function and whether dopamine treatment is useful in assisted reproductive technology is unclear. Methods Sperm samples were obtained from patients with normal semen parameters undergoing fertility treatment. We investigated the effects of dopamine treatment on tyrosine phosphorylation and sperm motility. Sperm motility was analyzed using the computer-assisted sperm analysis (CASA) system. Results This study revealed that various dopamine concentrations (0.1-100 μM) did not increase sperm tyrosine phosphorylation. Progressive motility increased substantially when treated with high concentrations of dopamine (10 and 100 μM) and was blocked by raclopride (a D2DR antagonist). After 24-h sperm culture, the addition of 10 μM dopamine significantly increased curvilinear velocity and amplitude of lateral head displacement, which are indicators of hyperactivation. Conclusion Dopamine did not affect tyrosine phosphorylation, but increased sperm motility. High concentrations of dopamine were more effective to accelerate sperm motility in cases where sperm motile capacity was low.
Collapse
Affiliation(s)
- Hiroki Kanno
- Laboratory of Animal Reproduction and Development, Graduate School of Agricultural ScienceTohoku UniversitySendaiJapan
- Sendai ART ClinicSendaiJapan
| | - Shouhei Kurata
- Laboratory of Animal Reproduction and Development, Graduate School of Agricultural ScienceTohoku UniversitySendaiJapan
| | - Yuuki Hiradate
- Research Institute for Microbial DiseasesOsaka UniversitySuitaJapan
| | - Kenshiro Hara
- Laboratory of Animal Reproduction and Development, Graduate School of Agricultural ScienceTohoku UniversitySendaiJapan
| | | | - Kentaro Tanemura
- Laboratory of Animal Reproduction and Development, Graduate School of Agricultural ScienceTohoku UniversitySendaiJapan
| |
Collapse
|
5
|
Covey DP, Yocky AG. Endocannabinoid Modulation of Nucleus Accumbens Microcircuitry and Terminal Dopamine Release. Front Synaptic Neurosci 2021; 13:734975. [PMID: 34497503 PMCID: PMC8419321 DOI: 10.3389/fnsyn.2021.734975] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/05/2021] [Indexed: 12/20/2022] Open
Abstract
The nucleus accumbens (NAc) is located in the ventromedial portion of the striatum and is vital to valence-based predictions and motivated action. The neural architecture of the NAc allows for complex interactions between various cell types that filter incoming and outgoing information. Dopamine (DA) input serves a crucial role in modulating NAc function, but the mechanisms that control terminal DA release and its effect on NAc neurons continues to be elucidated. The endocannabinoid (eCB) system has emerged as an important filter of neural circuitry within the NAc that locally shapes terminal DA release through various cell type- and site-specific actions. Here, we will discuss how eCB signaling modulates terminal DA release by shaping the activity patterns of NAc neurons and their afferent inputs. We then discuss recent technological advancements that are capable of dissecting how distinct cell types, their afferent projections, and local neuromodulators influence valence-based actions.
Collapse
Affiliation(s)
- Dan P Covey
- Department of Neuroscience, Lovelace Biomedical Research Institute, Albuquerque, NM, United States
| | - Alyssa G Yocky
- Department of Neuroscience, Lovelace Biomedical Research Institute, Albuquerque, NM, United States
| |
Collapse
|
6
|
Kim H, Lee D, Kim K. Combined Exposure to Metals in Drinking Water Alters the Dopamine System in Mouse Striatum. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18126558. [PMID: 34207128 PMCID: PMC8296366 DOI: 10.3390/ijerph18126558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 11/25/2022]
Abstract
Environmental exposure to arsenic (As), lead (Pb), and cadmium (Cd) frequently occurs; however, data on the specific effects of combined exposure on neurotransmission, specifically dopaminergic neurotransmission, are lacking. In this study, motor coordination and dopamine content, along with the expression of tyrosine hydroxylase (TH), dopamine transporter (DAT), vesicular monoamine transporter 2 (VMAT2), and dopamine receptors (DRs), were examined in the striatum of adult male mice following exposure to drinking water containing As, Pb, and/or Cd. We found that exposure to a metal mixture impaired motor coordination. After 4 weeks of treatment, a significant decrease in dopamine content and expression of TH, DAT, and VMAT2 was observed in the striatum of metal-mixture-treated mice, compared to the controls or single-metal-exposed groups. However, DRD1 and DRD2 expression did not significantly change with metal treatment. These results suggest that altered dopaminergic neurotransmission by the collective action of metals may contribute to metal-mixture-induced neurobehavioral disorders.
Collapse
Affiliation(s)
| | | | - Kisok Kim
- Correspondence: ; Tel.: +82-53-580-5932
| |
Collapse
|
7
|
Laksmidewi AAAP, Soejitno A. Endocannabinoid and dopaminergic system: the pas de deux underlying human motivation and behaviors. J Neural Transm (Vienna) 2021; 128:615-630. [PMID: 33712975 PMCID: PMC8105194 DOI: 10.1007/s00702-021-02326-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 03/04/2021] [Indexed: 01/11/2023]
Abstract
Endocannabinoid system (ECS) has been identified ever since cannabinoid, an active substance of Cannabis, was known to interact with endogenous cannabinoid (endocannabinoid/eCB) receptors. It later turned out that eCB was more intricate than previously thought. It has a pervasive role and exerts a multitude of cellular signaling mechanisms, regulating various physiological neurotransmission pathways in the human brain, including the dopaminergic (DA) system. eCB roles toward DA system were robust, clearly delineated, and reproducible with respect to physiological as well as pathological neurochemical and neurobehavioral manifestations of DA system, particularly those involving the nigrostriatal and mesocorticolimbic pathways. The eCB–DA system regulates the basics in the Maslow’s pyramid of hierarchy of needs required for individual survival such as food and sexual activity for reproductive purpose to those of higher needs in the pyramid, including self-actualization behaviors leading to achievement and reward (e.g., academic- and/or work-related performance and achievements). It is, thus, interesting to specifically discuss the eCB–DA system, not only on the molecular level, but also its tremendous potential to be developed as a future therapeutic strategy for various neuropsychiatric problems, including obesity, drug addiction and withdrawal, pathological hypersexuality, or low motivation behaviors.
Collapse
Affiliation(s)
- A A A Putri Laksmidewi
- Neurobehavioral and Cognitive Division, Neurology Department, Faculty of Medicine, Udayana University/Sanglah Hospital, Denpasar, Bali, Indonesia.
| | - Andreas Soejitno
- Neurobehavioral and Cognitive Division, Neurology Department, Faculty of Medicine, Udayana University/Sanglah Hospital, Denpasar, Bali, Indonesia
| |
Collapse
|
8
|
The Distinct Functions of Dopaminergic Receptors on Pain Modulation: A Narrative Review. Neural Plast 2021; 2021:6682275. [PMID: 33688340 PMCID: PMC7920737 DOI: 10.1155/2021/6682275] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/06/2021] [Accepted: 02/09/2021] [Indexed: 12/18/2022] Open
Abstract
Chronic pain is considered an economic burden on society as it often results in disability, job loss, and early retirement. Opioids are the most common analgesics prescribed for the management of moderate to severe pain. However, chronic exposure to these drugs can result in opioid tolerance and opioid-induced hyperalgesia. On pain modulation strategies, exploiting the multitarget drugs with the ability of the superadditive or synergistic interactions attracts more attention. In the present report, we have reviewed the analgesic effects of different dopamine receptors, particularly D1 and D2 receptors, in different regions of the central nervous system, including the spinal cord, striatum, nucleus accumbens (NAc), and periaqueductal gray (PAG). According to the evidence, these regions are not only involved in pain modulation but also express a high density of DA receptors. The findings can be categorized as follows: (1) D2-like receptors may exert a higher analgesic potency, but D1-like receptors act in different manners across several mechanisms in the mentioned regions; (2) in the spinal cord and striatum, antinociception of DA is mainly mediated by D2-like receptors, while in the NAc and PAG, both D1- and D2-like receptors are involved as analgesic targets; and (3) D2-like receptor agonists can act as adjuvants of μ-opioid receptor agonists to potentiate analgesic effects and provide a better approach to pain relief.
Collapse
|
9
|
Chen R, Ferris MJ, Wang S. Dopamine D2 autoreceptor interactome: Targeting the receptor complex as a strategy for treatment of substance use disorder. Pharmacol Ther 2020; 213:107583. [PMID: 32473160 PMCID: PMC7434700 DOI: 10.1016/j.pharmthera.2020.107583] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 05/11/2020] [Indexed: 02/06/2023]
Abstract
Dopamine D2 autoreceptors (D2ARs), located in somatodendritic and axon terminal compartments of dopamine (DA) neurons, function to provide a negative feedback regulatory control on DA neuron firing, DA synthesis, reuptake and release. Dysregulation of D2AR-mediated DA signaling is implicated in vulnerability to substance use disorder (SUD). Due to the extreme low abundance of D2ARs compared to postsynaptic D2 receptors (D2PRs) and the lack of experimental tools to differentiate the signaling of D2ARs from D2PRs, the regulation of D2ARs by drugs of abuse is poorly understood. The recent availability of conditional D2AR knockout mice and newly developed virus-mediated gene delivery approaches have provided means to specifically study the function of D2ARs at the molecular, cellular and behavioral levels. There is a growing revelation of novel mechanisms and new proteins that mediate D2AR activity, suggesting that D2ARs act cooperatively with an array of membrane and intracellular proteins to tightly control DA transmission. This review highlights D2AR-interacting partners including transporters, G-protein-coupled receptors, ion channels, intracellular signaling modulators, and protein kinases. The complexity of the D2AR interaction network illustrates the functional divergence of D2ARs. Pharmacological targeting of multiple D2AR-interacting partners may be more effective to restore disrupted DA homeostasis by drugs of abuse.
Collapse
Affiliation(s)
- Rong Chen
- Dept. of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157, United States of America; Center for the Neurobiology of Addiction Treatment, Wake Forest School of Medicine, Winston Salem, NC 27157, United States of America.
| | - Mark J Ferris
- Dept. of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157, United States of America; Center for the Neurobiology of Addiction Treatment, Wake Forest School of Medicine, Winston Salem, NC 27157, United States of America
| | - Shiyu Wang
- Dept. of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157, United States of America
| |
Collapse
|
10
|
Kanashiro A, Hiroki CH, da Fonseca DM, Birbrair A, Ferreira RG, Bassi GS, Fonseca MD, Kusuda R, Cebinelli GCM, da Silva KP, Wanderley CW, Menezes GB, Alves-Fiho JC, Oliveira AG, Cunha TM, Pupo AS, Ulloa L, Cunha FQ. The role of neutrophils in neuro-immune modulation. Pharmacol Res 2019; 151:104580. [PMID: 31786317 DOI: 10.1016/j.phrs.2019.104580] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/07/2019] [Accepted: 11/27/2019] [Indexed: 01/10/2023]
Abstract
Neutrophils are peripheral immune cells that represent the first recruited innate immune defense against infections and tissue injury. However, these cells can also induce overzealous responses and cause tissue damage. Although the role of neutrophils activating the immune system is well established, only recently their critical implications in neuro-immune interactions are becoming more relevant. Here, we review several aspects of neutrophils in the bidirectional regulation between the nervous and immune systems. First, the role of neutrophils as a diffuse source of acetylcholine and catecholamines is controversial as well as the effects of these neurotransmitters in neutrophil's functions. Second, neutrophils contribute for the activation and sensitization of sensory neurons, and thereby, in events of nociception and pain. In addition, nociceptor activation promotes an axon reflex triggering a local release of neural mediators and provoking neutrophil activation. Third, the recruitment of neutrophils in inflammatory responses in the nervous system suggests these immune cells as innovative targets in the treatment of central infectious, neurological and neurodegenerative disorders. Multidisciplinary studies involving immunologists and neuroscientists are required to define the role of the neurons-neutrophils communication in the pathophysiology of infectious, inflammatory, and neurological disorders.
Collapse
Affiliation(s)
- Alexandre Kanashiro
- Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil; Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | - Carlos Hiroji Hiroki
- Department of Immunology and Biochemistry, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Denise Morais da Fonseca
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Alexander Birbrair
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Raphael Gomes Ferreira
- Araguaína Medical School, Federal University of Tocantins, Avenida Paraguai s/n, 77824-838, Araguaína, TO, Brazil
| | - Gabriel Shimizu Bassi
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University, Durham, NC, 27710, USA
| | - Mirian D Fonseca
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Ricardo Kusuda
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Katiussia Pinho da Silva
- Department of Pharmacology, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, SP, Brazil
| | - Carlos Wagner Wanderley
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - José Carlos Alves-Fiho
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - André Gustavo Oliveira
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Thiago M Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - André Sampaio Pupo
- Department of Pharmacology, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, SP, Brazil
| | - Luis Ulloa
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University, Durham, NC, 27710, USA.
| | - Fernando Queiroz Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
11
|
Zwi SF, Choron C, Zheng D, Nguyen D, Zhang Y, Roshal C, Kikuchi K, Hesselson D. Pharmacological Enhancement of Regeneration-Dependent Regulatory T Cell Recruitment in Zebrafish. Int J Mol Sci 2019; 20:ijms20205189. [PMID: 31635133 PMCID: PMC6834363 DOI: 10.3390/ijms20205189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 02/02/2023] Open
Abstract
Regenerative capacity varies greatly between species. Mammals are limited in their ability to regenerate damaged cells, tissues and organs compared to organisms with robust regenerative responses, such as zebrafish. The regeneration of zebrafish tissues including the heart, spinal cord and retina requires foxp3a+ zebrafish regulatory T cells (zTregs). However, it remains unclear whether the muted regenerative responses in mammals are due to impaired recruitment and/or function of homologous mammalian regulatory T cell (Treg) populations. Here, we explore the possibility of enhancing zTreg recruitment with pharmacological interventions using the well-characterized zebrafish tail amputation model to establish a high-throughput screening platform. Injury-infiltrating zTregs were transgenically labelled to enable rapid quantification in live animals. We screened the NIH Clinical Collection (727 small molecules) for modulators of zTreg recruitment to the regenerating tissue at three days post-injury. We discovered that the dopamine agonist pramipexole, a drug currently approved for treating Parkinson’s Disease, specifically enhanced zTreg recruitment after injury. The dopamine antagonist SCH-23390 blocked pramipexole activity, suggesting that peripheral dopaminergic signaling may regulate zTreg recruitment. Similar pharmacological approaches for enhancing mammalian Treg recruitment may be an important step in developing novel strategies for tissue regeneration in humans.
Collapse
Affiliation(s)
- Stephanie F. Zwi
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; (S.F.Z.); (C.C.); (D.N.); (Y.Z.); (C.R.)
| | - Clarisse Choron
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; (S.F.Z.); (C.C.); (D.N.); (Y.Z.); (C.R.)
| | - Dawei Zheng
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia;
| | - David Nguyen
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; (S.F.Z.); (C.C.); (D.N.); (Y.Z.); (C.R.)
| | - Yuxi Zhang
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; (S.F.Z.); (C.C.); (D.N.); (Y.Z.); (C.R.)
| | - Camilla Roshal
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; (S.F.Z.); (C.C.); (D.N.); (Y.Z.); (C.R.)
| | - Kazu Kikuchi
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia;
- St Vincent’s Clinical School, University of New South Wales, Kensington, NSW 2052, Australia
- Correspondence: (K.K.); (D.H.)
| | - Daniel Hesselson
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; (S.F.Z.); (C.C.); (D.N.); (Y.Z.); (C.R.)
- St Vincent’s Clinical School, University of New South Wales, Kensington, NSW 2052, Australia
- Correspondence: (K.K.); (D.H.)
| |
Collapse
|
12
|
Chakravarthy S, Balasubramani PP, Mandali A, Jahanshahi M, Moustafa AA. The many facets of dopamine: Toward an integrative theory of the role of dopamine in managing the body's energy resources. Physiol Behav 2018; 195:128-141. [DOI: 10.1016/j.physbeh.2018.06.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/07/2018] [Accepted: 06/20/2018] [Indexed: 02/07/2023]
|
13
|
Prefronto-cortical dopamine D1 receptor sensitivity can critically influence working memory maintenance during delayed response tasks. PLoS One 2018; 13:e0198136. [PMID: 29813109 PMCID: PMC5973564 DOI: 10.1371/journal.pone.0198136] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 05/14/2018] [Indexed: 01/15/2023] Open
Abstract
The dopamine (DA) hypothesis of cognitive deficits suggests that too low or too high extracellular DA concentration in the prefrontal cortex (PFC) can severely impair the working memory (WM) maintenance during delay period. Thus, there exists only an optimal range of DA where the sustained-firing activity, the neural correlate of WM maintenance, in the cortex possesses optimal firing frequency as well as robustness against noisy distractions. Empirical evidences demonstrate changes even in the D1 receptor (D1R)-sensitivity to extracellular DA, collectively manifested through D1R density and DA-binding affinity, in the PFC under neuropsychiatric conditions such as ageing and schizophrenia. However, the impact of alterations in the cortical D1R-sensitivity on WM maintenance has yet remained poorly addressed. Using a quantitative neural mass model of the prefronto-mesoprefrontal system, the present study reveals that higher D1R-sensitivity may not only effectuate shrunk optimal DA range but also shift of the range to lower concentrations. Moreover, higher sensitivity may significantly reduce the WM-robustness even within the optimal DA range and exacerbates the decline at abnormal DA levels. These findings project important clinical implications, such as dosage precision and variability of DA-correcting drugs across patients, and failure in acquiring healthy WM maintenance even under drug-controlled normal cortical DA levels.
Collapse
|
14
|
Mellone M, Gardoni F. Glutamatergic mechanisms in l-DOPA-induced dyskinesia and therapeutic implications. J Neural Transm (Vienna) 2018; 125:1225-1236. [DOI: 10.1007/s00702-018-1846-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 01/23/2018] [Indexed: 02/01/2023]
|
15
|
Monti JM, Jantos H. The effects of local microinjection of selective dopamine D1 and D2 receptor agonists and antagonists into the dorsal raphe nucleus on sleep and wakefulness in the rat. Behav Brain Res 2017; 339:11-18. [PMID: 29137945 DOI: 10.1016/j.bbr.2017.11.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/03/2017] [Accepted: 11/06/2017] [Indexed: 12/21/2022]
Abstract
The effects of the dopamine (DA) D1 and D2 receptor agonists SKF38393, bromocriptine and quinpirole, respectively, on spontaneous sleep were analyzed in adult rats prepared for chronic sleep recordings. Local administration of the DAergic agonists into the dorsal raphe nucleus (DRN) during the light phase of the light-dark cycle induced a significant reduction of rapid-eye movement sleep (REMS) and the number of REM periods. Additionally, bromocriptine and quinpirole significantly increased wakefulness (W). Opposite, the microinjection into the DRN of the DA D1 and D2 receptor antagonists SCH23390 and sulpiride, respectively, significantly augmented REMS and the number of REM periods. Pretreatment with SCH23390 and sulpiride prevented the effects of SKF38393 and bromocriptine, respectively, on sleep variables. Our results tend to indicate that DAergic neurons located in the ventral tegmental area (VTA) and substantia nigra pars compacta (SNc) contribute to the regulation of predominantly W and REMS by DRN serotonergic neurons.
Collapse
Affiliation(s)
- Jaime M Monti
- Department of Pharmacology and Therapeutics, School of Medicine Clinics Hospital, University of the Republic, Montevideo 11600, Uruguay.
| | - Héctor Jantos
- Department of Pharmacology and Therapeutics, School of Medicine Clinics Hospital, University of the Republic, Montevideo 11600, Uruguay
| |
Collapse
|
16
|
Endocannabinoid modulation of dopamine neurotransmission. Neuropharmacology 2017; 124:52-61. [PMID: 28450060 DOI: 10.1016/j.neuropharm.2017.04.033] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/20/2017] [Accepted: 04/23/2017] [Indexed: 12/15/2022]
Abstract
Dopamine (DA) is a major catecholamine neurotransmitter in the mammalian brain that controls neural circuits involved in the cognitive, emotional, and motor aspects of goal-directed behavior. Accordingly, perturbations in DA neurotransmission play a central role in several neuropsychiatric disorders. Somewhat surprisingly given its prominent role in numerous behaviors, DA is released by a relatively small number of densely packed neurons originating in the midbrain. The dopaminergic midbrain innervates numerous brain regions where extracellular DA release and receptor binding promote short- and long-term changes in postsynaptic neuron function. Striatal forebrain nuclei receive the greatest proportion of DA projections and are a predominant hub at which DA influences behavior. A number of excitatory, inhibitory, and modulatory inputs orchestrate DA neurotransmission by controlling DA cell body firing patterns, terminal release, and effects on postsynaptic sites in the striatum. The endocannabinoid (eCB) system serves as an important filter of afferent input that acts locally at midbrain and terminal regions to shape how incoming information is conveyed onto DA neurons and to output targets. In this review, we aim to highlight existing knowledge regarding how eCB signaling controls DA neuron function through modifications in synaptic strength at midbrain and striatal sites, and to raise outstanding questions on this topic. This article is part of the Special Issue entitled "A New Dawn in Cannabinoid Neurobiology".
Collapse
|
17
|
Kim S, Nam J, Kim K. Aluminum exposure decreases dopamine D1 and D2 receptor expression in mouse brain. Hum Exp Toxicol 2016; 26:741-6. [DOI: 10.1177/0960327107083973] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Aluminum (Al) has been identified as a potential contributing factor in the etiology of several neurodegenerative disorders, but data regarding specific effects on neurotransduction, especially on dopaminergic neurotransduction, are lacking. The objective of this study was to determine the extent of expressional alterations in dopamine receptors (DRs) in two dopaminergic subtypes, D1 and D2, in low and high dose Al-treated mice. After administration of Al (four intraperitoneal injections of 30 or 60 mg/kg AlCl3·6H2O at 2 h intervals), expression of the dopamine D1-like and D2-like receptors (DRD1, DRD2) was examined in the cortex and striatum of mouse brain at bregma levels of 1.10, -0.10 and -1.34 mm. In the cortex, Al treatment decreased densities of DRD1 and DRD2 in a dose-dependent manner at all three bregma levels, especially in the high-dose Al group. Similarly, DRD1 and DRD2 expression in the striatum also exhibited dose dependency and statistically significant decreases were seen in the high-dose group, except in the striatum at bregma level - 1.34. These findings suggest that DR in the caudal striatum is more resistant to the effects of Al exposure than DR in the cortex or rostral striatum. In addition, our results suggest that disturbance of dopaminergic neurotransmission mediated by DRD1 and/or DRD2 may be involved in the pathogenesis of Al neurotoxicity. Human & Experimental Toxicology (2007) 26, 741 — 746
Collapse
Affiliation(s)
- Sunyoun Kim
- Department of Safety Evaluation, Biotoxtech Company, Chungbuk 363-883, Korea,
| | - Jungmin Nam
- Department of Public Health, Keimyung University, Taegu 704-701, Korea
| | - Kisok Kim
- Department of Public Health, Keimyung University, Taegu 704-701, Korea
| |
Collapse
|
18
|
NMDA Receptors on Dopaminoceptive Neurons Are Essential for Drug-Induced Conditioned Place Preference. eNeuro 2016; 3:eN-NWR-0084-15. [PMID: 27294197 PMCID: PMC4899680 DOI: 10.1523/eneuro.0084-15.2016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 05/09/2016] [Accepted: 05/10/2016] [Indexed: 01/04/2023] Open
Abstract
Plasticity of the brain's dopamine system plays a crucial role in adaptive behavior by regulating appetitive motivation and the control of reinforcement learning. In this study, we investigated drug- and natural-reward conditioned behaviors in a mouse model in which the NMDA receptor-dependent plasticity of dopaminoceptive neurons was disrupted. We generated a transgenic mouse line with inducible selective inactivation of the NR1 subunit in neurons expressing dopamine D1 receptors (the NR1(D1CreERT2) mice). Whole-cell recordings of spontaneous EPSCs on neurons in the nucleus accumbens confirmed that a population of neurons lacked the NMDA receptor-dependent component of the current. This effect was accompanied by impaired long-term potentiation in the nucleus accumbens and in the CA1 area of the ventral, but not the dorsal, hippocampus. Mutant mice did not differ from control animals when tested for pavlovian or instrumental conditioning. However, NR1(D1CreERT2) mice acquired no preference for a context associated with administration of drugs of abuse. In the conditioned place preference paradigm, mutant mice did not spend more time in the context paired with cocaine, morphine, or ethanol, although these mice acquired a preference for sucrose jelly and an aversion to naloxone injections, as normal. Thus, we observed that the selective inducible ablation of the NMDA receptors specifically blocks drug-associated context memory with no effect on positive reinforcement in general.
Collapse
|
19
|
Song L, Zhang Z, Hu R, Cheng J, Li L, Fan Q, Wu N, Gan J, Zhou M, Liu Z. Targeting the D1-N-methyl-D-aspartate receptor complex reduces L-dopa-induced dyskinesia in 6-hydroxydopamine-lesioned Parkinson's rats. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:547-55. [PMID: 26893543 PMCID: PMC4745842 DOI: 10.2147/dddt.s93487] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
L-3,4-dihydroxyphenylalanine (l-dopa) remains the most effective therapy for Parkinson’s disease (PD), but its long-term administration is associated with the development of debilitating motor complications known as l-dopa-induced dyskinesia (LID). Enhanced function of dopamine D1 receptor (D1R) and N-methyl-d-aspartate receptor (NMDAR) is believed to participate in the pathogenesis of LID. Given the existence of physical and functional interactions between D1R and NMDAR, we explored the effects of uncoupling D1R and NMDA GluN1 (GluN1) interaction on LID by using the Tat-conjugated interfering peptide (Tat-D1-t2). In this study, we demonstrated in 6-hydroxydopamine (6-OHDA)-lesioned PD rat model that intrastriatal injection of Tat-D1-t2 alleviated dyskinetic behaviors and downregulated the phosphorylation of DARPP-32 at Thr34 induced by levodopa. Moreover, we also showed intrastriatal administration of Tat-D1-t2 elicited alterations in membranous GluN1 and D1R expression. These findings indicate that D1R/GluN1 complexes may be a molecular target with therapeutic potential for the treatment of dyskinesia in Parkinson’s patients.
Collapse
Affiliation(s)
- Lu Song
- Department of Neurology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Zhanzhao Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Rongguo Hu
- Department of Neurology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jie Cheng
- Department of Neurology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Lin Li
- Department of Neurology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Qinyi Fan
- Department of Neurology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Na Wu
- Department of Neurology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jing Gan
- Department of Neurology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Mingzhu Zhou
- Department of Neurology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Zhenguo Liu
- Department of Neurology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
20
|
Reneaux M, Gupta R. Stochastic Mesocortical Dynamics and Robustness of Working Memory during Delay-Period. PLoS One 2015; 10:e0144378. [PMID: 26636712 PMCID: PMC4670113 DOI: 10.1371/journal.pone.0144378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 11/17/2015] [Indexed: 11/19/2022] Open
Abstract
The role of prefronto-mesoprefrontal system in the dopaminergic modulation of working memory during delayed response tasks is well-known. Recently, a dynamical model of the closed-loop mesocortical circuit has been proposed which employs a deterministic framework to elucidate the system's behavior in a qualitative manner. Under natural conditions, noise emanating from various sources affects the circuit's functioning to a great extent. Accordingly in the present study, we reformulate the model into a stochastic framework and investigate its steady state properties in the presence of constant background noise during delay-period. From the steady state distribution, global potential landscape and signal-to-noise ratio are obtained which help in defining robustness of the circuit dynamics. This provides insight into the robustness of working memory during delay-period against its disruption due to background noise. The findings reveal that the global profile of circuit's robustness is predominantly governed by the level of D1 receptor activity and high D1 receptor stimulation favors the working memory-associated sustained-firing state over the spontaneous-activity state of the system. Moreover, the circuit's robustness is further fine-tuned by the levels of excitatory and inhibitory activities in a way such that the robustness of sustained-firing state exhibits an inverted-U shaped profile with respect to D1 receptor stimulation. It is predicted that the most robust working memory is formed possibly at a subtle ratio of the excitatory and inhibitory activities achieved at a critical level of D1 receptor stimulation. The study also paves a way to understand various cognitive deficits observed in old-age, acute stress and schizophrenia and suggests possible mechanistic routes to the working memory impairments based on the circuit's robustness profile.
Collapse
Affiliation(s)
- Melissa Reneaux
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rahul Gupta
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
21
|
Ranganath A, Jacob SN. Doping the Mind: Dopaminergic Modulation of Prefrontal Cortical Cognition. Neuroscientist 2015; 22:593-603. [PMID: 26338491 DOI: 10.1177/1073858415602850] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The prefrontal cortex is the center of cognitive control. Processing in prefrontal cortical circuits enables us to direct attention to behaviorally relevant events; to memorize, structure, and categorize information; and to learn new concepts. The prefrontal cortex receives strong projections from midbrain neurons that use dopamine as a transmitter. In this article, we review the crucial role dopamine plays as a modulator of prefrontal cognitive functions, in the primate brain in particular. Following a summary of the anatomy and physiology of the midbrain dopamine system, we focus on recent studies that investigated dopaminergic effects in prefrontal cortex at the cellular level. We then discuss how unregulated prefrontal dopamine signaling could contribute to major disorders of cognition. The studies highlighted in this review demonstrate the powerful influence dopamine exerts on the mind.
Collapse
Affiliation(s)
- Ajit Ranganath
- Institute of Neuroscience, Technische Universität München, Germany
| | - Simon N Jacob
- Institute of Neuroscience, Technische Universität München, Germany
| |
Collapse
|
22
|
Ortinski PI, Briand LA, Pierce RC, Schmidt HD. Cocaine-seeking is associated with PKC-dependent reduction of excitatory signaling in accumbens shell D2 dopamine receptor-expressing neurons. Neuropharmacology 2015; 92:80-9. [PMID: 25596492 PMCID: PMC4346508 DOI: 10.1016/j.neuropharm.2015.01.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 11/25/2014] [Accepted: 01/07/2015] [Indexed: 01/11/2023]
Abstract
Stimulation of D1-like dopamine receptors (D1DRs) or D2-like dopamine receptors (D2DRs) in the nucleus accumbens (NAc) shell reinstates cocaine seeking in rats, an animal model of relapse. D2DRs and D1DRs activate protein kinase C (PKC) and recent studies indicate that activation of PKC in the NAc plays an important role in the reinstatement of drug seeking induced by a systemic cocaine priming injection. In the present study, pharmacological inhibition of PKC in the NAc shell attenuated cocaine seeking induced by intra-accumbens shell microinjection of a D2DR agonist, but not a D1DR agonist. D1DRs and D2DRs are primarily expressed on different accumbens medium spiny (MSN) neurons. Neuronal signaling and activity were assessed in these two populations of NAc neurons with transgenic mice expressing fluorescent labels under the control of D1DR and D2DR promoters. Following the extinction of cocaine self-administration, bath application of a PKC inhibitor produced similar effects on single evoked excitatory and inhibitory post-synaptic currents in D1DR- and D2DR-positive MSNs in the NAc shell. However, inhibition of PKC preferentially improved the ability of excitatory, but not inhibitory, synapses to sustain responding to brief train of stimuli specifically in D2DR-positive MSNs. This effect did not appear to involve modulation of presynaptic release mechanisms. Taken together, these findings indicate that the reinstatement of cocaine seeking is at least partially due to D2DR-dependent increases in PKC signaling in the NAc shell, which reduce excitatory synaptic efficacy in D2DR-expressing MSNs.
Collapse
Affiliation(s)
- Pavel I Ortinski
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - Lisa A Briand
- Department of Psychology, Temple University, Philadelphia, PA 19122, USA
| | - R Christopher Pierce
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Heath D Schmidt
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
23
|
Michino M, Beuming T, Donthamsetti P, Newman AH, Javitch JA, Shi L. What can crystal structures of aminergic receptors tell us about designing subtype-selective ligands? Pharmacol Rev 2015; 67:198-213. [PMID: 25527701 PMCID: PMC4279073 DOI: 10.1124/pr.114.009944] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are integral membrane proteins that represent an important class of drug targets. In particular, aminergic GPCRs interact with a significant portion of drugs currently on the market. However, most drugs that target these receptors are associated with undesirable side effects, which are due in part to promiscuous interactions with close homologs of the intended target receptors. Here, based on a systematic analysis of all 37 of the currently available high-resolution crystal structures of aminergic GPCRs, we review structural elements that contribute to and can be exploited for designing subtype-selective compounds. We describe the roles of secondary binding pockets (SBPs), as well as differences in ligand entry pathways to the orthosteric binding site, in determining selectivity. In addition, using the available crystal structures, we have identified conformational changes in the SBPs that are associated with receptor activation and explore the implications of these changes for the rational development of selective ligands with tailored efficacy.
Collapse
Affiliation(s)
- Mayako Michino
- Department of Physiology and Biophysics and Institute for Computational Biomedicine, Weill Medical College of Cornell University, New York, New York (M.M., L.S.); Schrödinger Inc., New York, New York (T.B.); Departments of Psychiatry and Pharmacology, Columbia University College of Physicians and Surgeons, and Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York (P.D., J.A.J.); and Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, Baltimore, Maryland (A.H.N.)
| | - Thijs Beuming
- Department of Physiology and Biophysics and Institute for Computational Biomedicine, Weill Medical College of Cornell University, New York, New York (M.M., L.S.); Schrödinger Inc., New York, New York (T.B.); Departments of Psychiatry and Pharmacology, Columbia University College of Physicians and Surgeons, and Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York (P.D., J.A.J.); and Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, Baltimore, Maryland (A.H.N.)
| | - Prashant Donthamsetti
- Department of Physiology and Biophysics and Institute for Computational Biomedicine, Weill Medical College of Cornell University, New York, New York (M.M., L.S.); Schrödinger Inc., New York, New York (T.B.); Departments of Psychiatry and Pharmacology, Columbia University College of Physicians and Surgeons, and Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York (P.D., J.A.J.); and Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, Baltimore, Maryland (A.H.N.)
| | - Amy Hauck Newman
- Department of Physiology and Biophysics and Institute for Computational Biomedicine, Weill Medical College of Cornell University, New York, New York (M.M., L.S.); Schrödinger Inc., New York, New York (T.B.); Departments of Psychiatry and Pharmacology, Columbia University College of Physicians and Surgeons, and Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York (P.D., J.A.J.); and Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, Baltimore, Maryland (A.H.N.)
| | - Jonathan A Javitch
- Department of Physiology and Biophysics and Institute for Computational Biomedicine, Weill Medical College of Cornell University, New York, New York (M.M., L.S.); Schrödinger Inc., New York, New York (T.B.); Departments of Psychiatry and Pharmacology, Columbia University College of Physicians and Surgeons, and Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York (P.D., J.A.J.); and Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, Baltimore, Maryland (A.H.N.)
| | - Lei Shi
- Department of Physiology and Biophysics and Institute for Computational Biomedicine, Weill Medical College of Cornell University, New York, New York (M.M., L.S.); Schrödinger Inc., New York, New York (T.B.); Departments of Psychiatry and Pharmacology, Columbia University College of Physicians and Surgeons, and Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York (P.D., J.A.J.); and Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, Baltimore, Maryland (A.H.N.)
| |
Collapse
|
24
|
Kim M, Seo S, Sung K, Kim K. Arsenic exposure in drinking water alters the dopamine system in the brains of C57BL/6 mice. Biol Trace Elem Res 2014; 162:175-80. [PMID: 25319007 DOI: 10.1007/s12011-014-0145-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 10/02/2014] [Indexed: 10/24/2022]
Abstract
Although exposure to arsenic (As) induces neurotoxic changes, there is a lack of data regarding its specific effects on neurotransmission, particularly dopaminergic neurotransmission. In this study, the dopamine content and expression of tyrosine hydroxylase (TH) and dopamine receptors (DRs) were examined in the striatum and cerebral cortex of the mouse brain following the administration of As (1-100 mg/L NaAsO2 in drinking water). After 3 weeks, significantly decreased TH expression and dopamine content, both in the striatum and the cerebral cortex of mice treated with 100 mg/L As, were observed when compared with controls. Although DR expression was similar in the cerebral cortex of As-treated mice, DRD1 to DRD4 expression significantly increased in the striatum of 100 mg/L As-exposed mice. These data indicate that altered dopaminergic neurotransmission may contribute to As-induced neurotoxic effects.
Collapse
Affiliation(s)
- Minjeong Kim
- College of Pharmacy, Keimyung University, Daegu, 704-701, Republic of Korea
| | | | | | | |
Collapse
|
25
|
Adolescent nicotine-induced dendrite remodeling in the nucleus accumbens is rapid, persistent, and D1-dopamine receptor dependent. Brain Struct Funct 2014; 221:133-45. [PMID: 25257604 DOI: 10.1007/s00429-014-0897-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 09/19/2014] [Indexed: 10/24/2022]
Abstract
Chronic nicotine exposure during adolescence induces dendritic remodeling of medium spiny neurons (MSNs) in the nucleus accumbens (NAcc) shell. While nicotine-induced dendritic remodeling has frequently been described as persistent, the trajectory of dendrite remodeling is unknown. Specifically, no study to date has characterized the structural plasticity of dendrites in the NAcc immediately following chronic nicotine, leaving open the possibility that dendrite remodeling emerges gradually over time. Further, the neuropharmacological mechanisms through which nicotine induces dendrite remodeling are not well understood. To address these questions, rats were co-administered chronic nicotine (0.5 mg/kg) and the D1-dopamine receptor (D1DR) antagonist SCH-23390 (0.05 mg/kg) subcutaneously every other day during adolescence. Brains were then processed for Golgi-Cox staining either 1 day or 21 days following drug exposure and dendrites from MSNs in the NAcc shell digitally reconstructed in 3D. Spine density was also measured at both time points. Our morphometric results show (1) the formation of new dendritic branches and spines 1 day following nicotine exposure, (2) new dendritic branches, but not spine density, remains relatively stable for at least 21 days, (3) the co-administration of SCH-23390 completely blocked nicotine-induced dendritic remodeling of MSNs at both early and late time points, suggesting the formation of new dendritic branches in response to nicotine is D1DR-dependent, and (4) SCH-23390 failed to block nicotine-induced increases in spine density. Overall this study provides new insight into how nicotine influences the normal trajectory of adolescent brain development and demonstrates a persistent form of nicotine-induced neuroplasticity in the NAcc shell that develops rapidly and is D1DR dependent.
Collapse
|
26
|
Mikulak J, Bozzo L, Roberto A, Pontarini E, Tentorio P, Hudspeth K, Lugli E, Mavilio D. Dopamine inhibits the effector functions of activated NK cells via the upregulation of the D5 receptor. THE JOURNAL OF IMMUNOLOGY 2014; 193:2792-800. [PMID: 25127864 DOI: 10.4049/jimmunol.1401114] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Several lines of evidence indicate that dopamine (DA) plays a key role in the cross-talk between the nervous and immune systems. In this study, we disclose a novel immune-regulatory role for DA: inhibition of effector functions of activated NK lymphocytes via the selective upregulation of the D5 dopaminergic receptor in response to prolonged cell stimulation with rIL-2. Indeed, engagement of this D1-like inhibitory receptor following binding with DA suppresses NK cell proliferation and synthesis of IFN-γ. The inhibition of IFN-γ production occurs through blocking the repressor activity of the p50/c-REL dimer of the NF-κB complex. Indeed, the stimulation of the D5 receptor on rIL-2-activated NK cells inhibits the binding of p50 to the microRNA 29a promoter, thus inducing a de novo synthesis of this miRNA. In turn, the increased levels of microRNA 29a were inversely correlated with the ability of NK cells to produce IFN-γ. Taken together, our findings demonstrated that DA switches off activated NK cells, thus representing a checkpoint exerted by the nervous system to control the reactivity of these innate immune effectors in response to activation stimuli and to avoid the establishment of chronic and pathologic inflammatory processes.
Collapse
Affiliation(s)
- Joanna Mikulak
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, 20089 Rozzano, Milan, Italy; and
| | - Luisa Bozzo
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, 20089 Rozzano, Milan, Italy; and
| | - Alessandra Roberto
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, 20089 Rozzano, Milan, Italy; and
| | - Elena Pontarini
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, 20089 Rozzano, Milan, Italy; and
| | - Paolo Tentorio
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, 20089 Rozzano, Milan, Italy; and
| | - Kelly Hudspeth
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, 20089 Rozzano, Milan, Italy; and
| | - Enrico Lugli
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, 20089 Rozzano, Milan, Italy; and
| | - Domenico Mavilio
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, 20089 Rozzano, Milan, Italy; and Department of Medical Biotechnologies and Translational Medicine, University of Milan, 20089 Milan, Italy
| |
Collapse
|
27
|
Xu JJ, Wang SY, Chen Y, Chen GP, Li ZQ, Shao XY, Li L, Lu W, Zhou TY. Dopamine D1 receptor activation induces dehydroepiandrosterone sulfotransferase (SULT2A1) in HepG2 cells. Acta Pharmacol Sin 2014; 35:889-98. [PMID: 24909515 DOI: 10.1038/aps.2014.19] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Accepted: 02/20/2014] [Indexed: 11/09/2022]
Abstract
AIM Dopamine receptors are present in the nervous system and also widely distributed in the periphery. The aim of this study was to investigate the role of D1 subtype dopamine receptors (DRD1) in the regulation of dehydroepiandrosterone sulfotransferase (SULT2A1) in HepG2 cells. METHODS HepG2 cells were treated with DRD1 agonists with or without DRD1 antagonist for 9 d. DRD1 and SULT2A1 mRNA expression, protein expression, and SULT2A1 activity were detected using RT-PCR, Western blotting and HPLC, respectively. The level of cAMP was measured using a commercial kit. RESULTS All the 5 DR subtypes (DRD1-DRD5) were found to be expressed in HepG2 cells. Treatment of HepG2 cells with the specific DRD1 agonists SKF82958 (2.5 μmol/L) or SKF38393 (5 and 50 μmol/L) significantly increased the mRNA and protein expression of both DRD1 and SULT2A1, and increased SULT2A1 activity and cAMP levels. These effects were partially blocked by co-treatment with the specific DRD1 antagonist SCH23390 (2.5 μmol/L). In addition, transfection of HepG2 cells with DRD1-specific siRNAs decreased DRD1 mRNA expression by 40%, which resulted in the reduction of SULT2A1 mRNA expression by 60%, protein expression by 40%, and enzyme activity by 20%. CONCLUSION DRD1 activation upregulates DRD1 and SULT2A1 expression and SULT2A1 activity in HepG2 cells, suggesting that the DRD1 subtype may be involved in the metabolism of drugs and xenobiotics through regulating SULT2A1.
Collapse
|
28
|
Xiao J, Free RB, Barnaeva E, Conroy JL, Doyle T, Miller B, Bryant-Genevier M, Taylor MK, Hu X, Dulcey AE, Southall N, Ferrer M, Titus S, Zheng W, Sibley DR, Marugan JJ. Discovery, optimization, and characterization of novel D2 dopamine receptor selective antagonists. J Med Chem 2014; 57:3450-63. [PMID: 24666157 PMCID: PMC4315423 DOI: 10.1021/jm500126s] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
![]()
The
D2 dopamine receptor (D2 DAR) is one of the most validated drug targets
for neuropsychiatric and endocrine disorders. However, clinically
approved drugs targeting D2 DAR display poor selectivity between the
D2 and other receptors, especially the D3 DAR. This lack of selectivity
may lead to undesirable side effects. Here we describe the chemical
and pharmacological characterization of a novel D2 DAR antagonist
series with excellent D2 versus D1, D3, D4, and D5 receptor selectivity.
The final probe 65 was obtained through a quantitative
high-throughput screening campaign, followed by medicinal chemistry
optimization, to yield a selective molecule with good in vitro physical
properties, metabolic stability, and in vivo pharmacokinetics. The
optimized molecule may be a useful in vivo probe for studying D2 DAR
signal modulation and could also serve as a lead compound for the
development of D2 DAR-selective druglike molecules for the treatment
of multiple neuropsychiatric and endocrine disorders.
Collapse
Affiliation(s)
- Jingbo Xiao
- Discovery Innovation, NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health , 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Clark KL, Noudoost B. The role of prefrontal catecholamines in attention and working memory. Front Neural Circuits 2014; 8:33. [PMID: 24782714 PMCID: PMC3986539 DOI: 10.3389/fncir.2014.00033] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 03/19/2014] [Indexed: 12/19/2022] Open
Abstract
While much progress has been made in identifying the brain regions and neurochemical systems involved in the cognitive processes disrupted in mental illnesses, to date, the level of detail at which neurobiologists can describe the chain of events giving rise to cognitive functions is very rudimentary. Much of the intense interest in understanding cognitive functions is motivated by the hope that it might be possible to understand these complex functions at the level of neurons and neural circuits. Here, we review the current state of the literature regarding how modulations in catecholamine levels within the prefrontal cortex (PFC) alter the neuronal and behavioral correlates of cognitive functions, particularly attention and working memory.
Collapse
Affiliation(s)
- Kelsey L Clark
- Department of Cell Biology and Neuroscience, Montana State University Bozeman, MT, USA
| | - Behrad Noudoost
- Department of Cell Biology and Neuroscience, Montana State University Bozeman, MT, USA
| |
Collapse
|
30
|
Hobson BD, Merritt KE, Bachtell RK. Stimulation of adenosine receptors in the nucleus accumbens reverses the expression of cocaine sensitization and cross-sensitization to dopamine D2 receptors in rats. Neuropharmacology 2012; 63:1172-81. [PMID: 22749927 DOI: 10.1016/j.neuropharm.2012.06.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 06/11/2012] [Accepted: 06/18/2012] [Indexed: 12/16/2022]
Abstract
Adenosine receptors co-localize with dopamine receptors on medium spiny nucleus accumbens (NAc) neurons where they antagonize dopamine receptor activity. It remains unclear whether adenosine receptor stimulation in the NAc restores cocaine-induced enhancements in dopamine receptor sensitivity. The goal of these studies was to determine whether stimulating A(1) or A(2A) receptors in the NAc reduces the expression of cocaine sensitization. Rats were sensitized with 7 daily treatments of cocaine (15 mg/kg, i.p.). Following one-week withdrawal, the effects of intra-NAc microinjections of the adenosine kinase inhibitor (ABT-702), the adenosine deaminase inhibitor (deoxycoformycin; DCF), the specific A(1) receptor agonist (CPA) and the specific A(2A) receptor agonist (CGS 21680) were tested on the behavioral expression of cocaine sensitization. The results indicate that intra-NAc pretreatment of ABT-702 and DCF dose-dependently blocked the expression of cocaine sensitization while having no effects on acute cocaine sensitivity, suggesting that upregulation of endogenous adenosine in the accumbens is sufficient to non-selectively stimulate adenosine receptors and reverse the expression of cocaine sensitization. Intra-NAc treatment of CPA significantly inhibited the expression of cocaine sensitization, which was reversed by both A(1) and A(2A) receptor antagonism. Intra-NAc treatment of CGS 21680 also significantly inhibited the expression of cocaine sensitization, which was selectively reversed by A(2A), but not A(1), receptor antagonism. Finally, CGS 21680 also inhibited the expression of quinpirole cross-sensitization. Together, these findings suggest that adenosine receptor stimulation in the NAc is sufficient to reverse the behavioral expression of cocaine sensitization and that A(2A) receptors blunt cocaine-induced sensitization of postsynaptic D(2) receptors.
Collapse
Affiliation(s)
- Benjamin D Hobson
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, USA
| | | | | |
Collapse
|
31
|
Adenosine A2A receptors in the nucleus accumbens bi-directionally alter cocaine seeking in rats. Neuropsychopharmacology 2012; 37:1245-56. [PMID: 22169945 PMCID: PMC3306886 DOI: 10.1038/npp.2011.312] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Repeated cocaine administration enhances dopamine D(2) receptor sensitivity in the mesolimbic dopamine system, which contributes to drug relapse. Adenosine A(2A) receptors are colocalized with D(2) receptors on nucleus accumbens (NAc) medium spiny neurons where they antagonize D(2) receptor activity. Thus, A(2A) receptors represent a target for reducing enhanced D(2) receptor sensitivity that contributes to cocaine relapse. The aim of these studies were to determine the effects of adenosine A(2A) receptor modulation in the NAc on cocaine seeking in rats that were trained to lever press for cocaine. Following at least 15 daily self-administration sessions and 1 week of abstinence, lever pressing was extinguished in daily extinction sessions. We subsequently assessed the effects of intra-NAc core microinjections of the A(2A) receptor agonist, CGS 21680 (4-[2-[[6-amino-9-(N-ethyl-b-D-ribofuranuronamidosyl)-9H-purin-2-yl]amino]ethyl]benzenepropanoic acid hydrochloride), and the A(2A) receptor antagonist, MSX-3 (3,7-dihydro-8-[(1E)-2-(3-methoxyphenyl)ethenyl]-7-methyl-3-[3-(phosphonooxy)propyl-1-(2-propynyl)-1H-purine-2,6-dione disodium salt hydrate), in modulating cocaine- and quinpirole-induced reinstatement to cocaine seeking. Intra-NAc pretreatment of CGS 21680 reduced both cocaine- and quinpirole-induced reinstatement. These effects were specific to cocaine reinstatement as intra-NAc CGS 21680 had no effect on sucrose seeking in rats trained to self-administer sucrose pellets. Intra-NAc treatment with MSX-3 modestly reinstated cocaine seeking when given alone, and exacerbated both cocaine- and quinpirole-induced reinstatement. Interestingly, the exacerbation of cocaine seeking produced by MSX-3 was only observed at sub-threshold doses of cocaine and quinpirole, suggesting that removing tonic A(2A) receptor activity enables behaviors mediated by dopamine receptors. Taken together, these findings suggest that A(2A) receptor stimulation reduces, while A(2A) blockade amplifies, D(2) receptor signaling in the NAc that mediates cocaine relapse.
Collapse
|
32
|
Beauvais G, Atwell K, Jayanthi S, Ladenheim B, Cadet JL. Involvement of dopamine receptors in binge methamphetamine-induced activation of endoplasmic reticulum and mitochondrial stress pathways. PLoS One 2011; 6:e28946. [PMID: 22174933 PMCID: PMC3236770 DOI: 10.1371/journal.pone.0028946] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 11/17/2011] [Indexed: 01/11/2023] Open
Abstract
Single large doses of methamphetamine (METH) cause endoplasmic reticulum (ER) stress and mitochondrial dysfunctions in rodent striata. The dopamine D1 receptor appears to be involved in these METH-mediated stresses. The purpose of this study was to investigate if dopamine D1 and D2 receptors are involved in ER and mitochondrial stresses caused by single-day METH binges in the rat striatum. Male Sprague-Dawley rats received 4 injections of 10 mg/kg of METH alone or in combination with a putative D1 or D2 receptor antagonist, SCH23390 or raclopride, respectively, given 30 min prior to each METH injection. Rats were euthanized at various timepoints afterwards. Striatal tissues were used in quantitative RT-PCR and western blot analyses. We found that binge METH injections caused increased expression of the pro-survival genes, BiP/GRP-78 and P58IPK, in a SCH23390-sensitive manner. METH also caused up-regulation of ER-stress genes, Atf2, Atf3, Atf4, CHOP/Gadd153 and Gadd34. The expression of heat shock proteins (HSPs) was increased after METH injections. SCH23390 completely blocked induction in all analyzed ER stress-related proteins that included ATF3, ATF4, CHOP/Gadd153, HSPs and caspase-12. The dopamine D2-like antagonist, raclopride, exerted small to moderate inhibitory influence on some METH-induced changes in ER stress proteins. Importantly, METH caused decreases in the mitochondrial anti-apoptotic protein, Bcl-2, but increases in the pro-apoptotic proteins, Bax, Bad and cytochrome c, in a SCH23390-sensitive fashion. In contrast, raclopride provided only small inhibition of METH-induced changes in mitochondrial proteins. These findings indicate that METH-induced activation of striatal ER and mitochondrial stress pathways might be more related to activation of SCH23390-sensitive receptors.
Collapse
Affiliation(s)
- Genevieve Beauvais
- Molecular Neuropsychiatry Research Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, Maryland, United States of America
- Faculté de Pharmacie, Université Paris Descartes, Paris, France
| | - Kenisha Atwell
- Molecular Neuropsychiatry Research Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, Maryland, United States of America
| | - Subramaniam Jayanthi
- Molecular Neuropsychiatry Research Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, Maryland, United States of America
| | - Bruce Ladenheim
- Molecular Neuropsychiatry Research Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, Maryland, United States of America
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
33
|
Ion channels and schizophrenia: a gene set-based analytic approach to GWAS data for biological hypothesis testing. Hum Genet 2011; 131:373-91. [PMID: 21866342 DOI: 10.1007/s00439-011-1082-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 08/08/2011] [Indexed: 01/11/2023]
Abstract
Schizophrenia is a complex genetic disorder. Gene set-based analytic (GSA) methods have been widely applied for exploratory analyses of large, high-throughput datasets, but less commonly employed for biological hypothesis testing. Our primary hypothesis is that variation in ion channel genes contribute to the genetic susceptibility to schizophrenia. We applied Exploratory Visual Analysis (EVA), one GSA application, to analyze European-American (EA) and African-American (AA) schizophrenia genome-wide association study datasets for statistical enrichment of ion channel gene sets, comparing GSA results derived under three SNP-to-gene mapping strategies: (1) GENIC; (2) 500-Kb; (3) 2.5-Mb and three complimentary SNP-to-gene statistical reduction methods: (1) minimum p value (pMIN); (2) a novel method, proportion of SNPs per Gene with p values below a pre-defined α-threshold (PROP); and (3) the truncated product method (TPM). In the EA analyses, ion channel gene set(s) were enriched under all mapping and statistical approaches. In the AA analysis, ion channel gene set(s) were significantly enriched under pMIN for all mapping strategies and under PROP for broader mapping strategies. Less extensive enrichment in the AA sample may reflect true ethnic differences in susceptibility, sampling or case ascertainment differences, or higher dimensionality relative to sample size of the AA data. More consistent findings under broader mapping strategies may reflect enhanced power due to increased SNP inclusion, enhanced capture of effects over extended haplotypes or significant contributions from regulatory regions. While extensive pMIN findings may reflect gene size bias, the extent and significance of PROP and TPM findings suggest that common variation at ion channel genes may capture some of the heritability of schizophrenia.
Collapse
|
34
|
Assis MA, Valdomero A, García-Keller C, Sotomayor C, Cancela LM. Decrease of lymphoproliferative response by amphetamine is mediated by dopamine from the nucleus accumbens: influence on splenic met-enkephalin levels. Brain Behav Immun 2011; 25:647-57. [PMID: 21237264 DOI: 10.1016/j.bbi.2011.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2010] [Revised: 01/04/2011] [Accepted: 01/06/2011] [Indexed: 02/08/2023] Open
Abstract
Despite the mesocorticolimbic dopaminergic pathway being one of the main substrates underlying stimulating and reinforcing effects induced by psychostimulant drugs, there is little information regarding its role in their effects at the immune level. We have previously demonstrated that acute exposure to amphetamine (5 mg/kg, i.p.) induced an inhibitory effect on the splenic T-cell proliferative response, along with an increase in the methionine(met)-enkephalin content at limbic and immune levels, 4 days after drug administration. In this study, we investigated if a possible dopamine mechanism underlies these amphetamine-induced effects by administering D1 and D2 dopaminergic antagonists or a dopaminergic terminal neurotoxin before the drug. Pre-treatment with either SCH-23390 (0.1 mg/kg, i.p.) or raclopride (0.1 mg/kg, i.p.), a D1 or D2 dopaminergic receptor antagonist, respectively, abrogated the effects of amphetamine on the lymphoproliferative response and on met-enkephalin levels of the spleen. The amphetamine-induced increase in limbic met-enkephalin content was suppressed by SCH-23390 but not by raclopride pre-treatment. Finally, an intra-accumbens 6-hydroxy-dopamine injection administered 2 weeks previously prevented amphetamine-induced effects on the lymphoproliferative response and on met-enkephalin levels in the prefrontal cortex and spleen. These findings strongly suggest that D1 and D2 dopaminergic receptors are involved in amphetamine-induced effects at immune level as regards the lymphoproliferative response and the changes in spleen met-enkephalin content, whereas limbic met-enkephalin levels were modulated only by the D1 dopaminergic receptors. In addition, this study showed that a mesolimbic component modulated amphetamine-induced effects on the immune response, as previously shown at a behavioral level.
Collapse
Affiliation(s)
- María Amparo Assis
- Departamento de Farmacología (IFEC-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | | | | | | |
Collapse
|
35
|
Conrad KL, Ford K, Marinelli M, Wolf ME. Dopamine receptor expression and distribution dynamically change in the rat nucleus accumbens after withdrawal from cocaine self-administration. Neuroscience 2010; 169:182-94. [PMID: 20435100 DOI: 10.1016/j.neuroscience.2010.04.056] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 04/22/2010] [Accepted: 04/24/2010] [Indexed: 11/25/2022]
Abstract
Dopamine receptors (DARs) in the nucleus accumbens (NAc) are critical for cocaine's actions but the nature of adaptations in DAR function after repeated cocaine exposure remains controversial. This may be due in part to the fact that different methods used in previous studies measured different DAR pools. In the present study, we used a protein crosslinking assay to make the first measurements of DAR surface expression in the NAc of cocaine-experienced rats. Intracellular and total receptor levels were also quantified. Rats self-administered saline or cocaine for 10 days. The entire NAc, or core and shell subregions, were collected one or 45 days later, when rats are known to exhibit low and high levels of cue-induced drug seeking, respectively. We found increased cell surface D1 DARs in the NAc shell on the first day after discontinuing cocaine self-administration (designated withdrawal day 1, or WD1) but this normalized by WD45. Decreased intracellular and surface D2 DAR levels were observed in the cocaine group. In shell, both measures decreased on WD1 and WD45. In core, decreased D2 DAR surface expression was only observed on WD45. Similarly, WD45 but not WD1 was associated with increased D3 DAR surface expression in the core. Taking into account many other studies, we suggest that decreased D2 DAR and increased D3 DAR surface expression on WD45 may contribute to enhanced cocaine-seeking after prolonged withdrawal, although this is likely to be a modulatory effect, in light of the mediating effect previously demonstrated for AMPA-type glutamate receptors.
Collapse
Affiliation(s)
- K L Conrad
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064-3095, USA
| | | | | | | |
Collapse
|
36
|
Cenci MA, Konradi C. Maladaptive striatal plasticity in L-DOPA-induced dyskinesia. PROGRESS IN BRAIN RESEARCH 2010; 183:209-33. [PMID: 20696322 DOI: 10.1016/s0079-6123(10)83011-0] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Dopamine (DA) replacement therapy with l-DOPA remains the most effective treatment for Parkinson's disease, but causes dyskinesia (abnormal involuntary movements) in the vast majority of the patients. The basic mechanisms of l-DOPA-induced dyskinesia (LID) have become the object of intense research focusing on neurochemical and molecular adaptations in the striatum. Here we review this vast literature and highlight trends that converge into a unifying pathophysiological interpretation. We propose that the core molecular alteration of striatal neurons in LID consists in an inability to turn down supersensitive signaling responses downstream of DA D1 receptors (where supersensitivity is primarily caused by DA denervation). The sustained activation of intracellular signaling pathways induced by each dose of l-DOPA leads to abnormal cellular plasticity and high bioenergetic expenditure. The over-exploitation of signaling pathways and energy reserves during treatment impairs the ability of striatal neurons to dynamically gate cortically driven motor commands. LID thus exemplifies a disorder where 'too much' molecular plasticity leads to plasticity failure in the striatum.
Collapse
Affiliation(s)
- M Angela Cenci
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden.
| | | |
Collapse
|
37
|
Bachtell RK, Self DW. Effects of adenosine A2A receptor stimulation on cocaine-seeking behavior in rats. Psychopharmacology (Berl) 2009; 206:469-78. [PMID: 19641899 PMCID: PMC2759773 DOI: 10.1007/s00213-009-1624-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Accepted: 07/12/2009] [Indexed: 11/30/2022]
Abstract
RATIONALE Dopamine (DA) receptor stimulation in the nucleus accumbens (NAc) plays an important role in regulating cocaine-seeking behavior. Adenosine receptors antagonize the effects of DA receptor stimulation on intracellular signaling, neuronal output, and behavior. OBJECTIVES The goal of the present study is to determine the effects of adenosine A(2A) receptor stimulation on reinstatement of cocaine-seeking behavior in rats. METHODS Rats were trained to lever press for cocaine in daily self-administration sessions on a fixed-ratio 1 schedule for 3 weeks. After 1 week of abstinence, lever pressing was extinguished in six daily extinction sessions. We subsequently assessed the effects of the adenosine A(2A) receptor agonist, CGS 21680, on cocaine-, quinpirole (D(2) agonist)-, and cue-induced reinstatement to cocaine seeking. We also assessed the effects of CGS 21680 on sucrose seeking in rats extinguished from sucrose self-administration. RESULTS Pretreatment of CGS 21680 dose-dependently blunted cocaine-induced reinstatement (15 mg/kg, i.p.). Pretreatment with CGS 21680 (0.03 mg/kg, i.p.) also attenuated quinpirole- and cue-induced reinstatement. A minimally effective dose of CGS 21680 failed to alter cocaine-induced locomotor activity or sucrose seeking. CONCLUSIONS Stimulation of adenosine A(2A) receptors antagonizes reinstatement of cocaine seeking elicited by cocaine, DA D(2)-receptor stimulation, and cocaine-conditioned cues. These findings suggest that adenosine A(2A) receptor stimulation may oppose DA D(2) receptor signaling in the NAc that mediates cocaine relapse.
Collapse
Affiliation(s)
- Ryan K. Bachtell
- Department of Psychology and Neuroscience, University of Colorado, Boulder, CO 80309-0345
| | - David W. Self
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9070
| |
Collapse
|
38
|
Yim AJ, Andersen ML, Soeiro AC, Tufik S, Oliveira MGM. Acute systemic blockade of D2 receptors does not accelerate the extinction of cocaine-associated place preference. Brain Res 2009; 1304:122-8. [PMID: 19766608 DOI: 10.1016/j.brainres.2009.09.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 09/11/2009] [Accepted: 09/12/2009] [Indexed: 10/20/2022]
Abstract
Facilitation of extinction can be used as a therapeutic tool in treatment of both post-traumatic stress disorder and drug addiction. The present study examined whether the blockade of D2 receptors before each extinction trial would accelerate the extinction of cocaine-induced place preference. Male Wistar rats were initially conditioned and tested for a cocaine-associated place-preference (20 mg/kg). On the following day after the initial test, the animals were submitted to extinction training. This training consisted of daily sessions in which the subjects were alternatively confined during 30 min in the saline and cocaine-associated environment. However, 30 min before each extinction trial the animals received a systemic injection of D2 antagonist sulpiride. While one group was treated with a dose of 50 mg/kg (ip), the other group was treated with a dose of 100 mg/kg. An additional control group received injections of saline during extinction trials. Twenty-four hours after the last extinction trial, the animals were tested again for their preferences to cocaine and saline associated environments. Since one round of extinction trial was not sufficient to produce extinction of cocaine associated place preference, the animals were submitted to a second cycle of extinction trials and test. The systemic administration of the two doses of sulpiride (50 and 100 mg/kg) 30 min before each conditioning did not enhance the extinction of cocaine-associated place preference. This finding suggests that the D2 receptors are not involved in a acute protocol of extinction of cocaine-induced place preference.
Collapse
Affiliation(s)
- A J Yim
- Faculdade de Medicina Veterinária-Universidade Federal do Tocantins, BR 153- Km112, Zona Rural, 77804-970, Araguaina, Caixa-Postal: 132, Brazil.
| | | | | | | | | |
Collapse
|
39
|
Kim Y, Kim M, Kim H, Kim K. Effect of lavender oil on motor function and dopamine receptor expression in the olfactory bulb of mice. JOURNAL OF ETHNOPHARMACOLOGY 2009; 125:31-35. [PMID: 19560529 DOI: 10.1016/j.jep.2009.06.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 06/02/2009] [Accepted: 06/18/2009] [Indexed: 05/28/2023]
Abstract
AIM OF THE STUDY Although treatment with the essential oil of lavender induces neuroemotional changes, there is a lack of data regarding its specific effects on neurotransduction, especially dopaminergic neurotransduction. We investigated the relationship between altered motor activity and changes in the expression of dopamine receptors (DR), particularly the receptor subtypes D2 and D3, in lavender oil-treated mice. MATERIALS AND METHODS After the administration of lavender oil (intraperitoneal injections of 10-1000 mg/kg lavender oil once per day for 5 days), motor coordination and dopamine receptor expression were examined in the olfactory bulb and the striatum of the mouse brain. RESULTS After 5 days, mice treated with 1000 mg/kg lavender oil showed significantly increased rotarod activity when compared to controls. Although DRD2 expression showed no change in the olfactory bulb or striatum of lavender-treated mice, DRD3 expression increased significantly in the olfactory bulb; this increase was dose-dependent and was observed at both the mRNA and protein levels. CONCLUSIONS These data indicate that altered dopamine D3 receptor subtype homeostasis in the olfactory bulb may contribute to lavender oil-induced behavioral change.
Collapse
Affiliation(s)
- Younghee Kim
- Department of Public Health, Keimyung University, Taegu 704-701, Republic of Korea
| | | | | | | |
Collapse
|
40
|
Calcium homeostasis is dysregulated in parkinsonian patients with L-DOPA-induced dyskinesias. Clin Neuropharmacol 2009; 32:133-9. [PMID: 18978486 DOI: 10.1097/wnf.0b013e3181761466] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Long-term treatment of Parkinson disease (PD) is frequently associated with l-3,4-dihydroxyphenylalanine (L-DOPA)-induced dyskinesias (LIDs). L-DOPA-induced dyskinesias are likely due to changes in the signal transduction pathways, at the striatal level, related to pulsatile stimulation of dopamine receptors. We investigated whether markers of this phenomenon can also be detected peripherally. We analyzed mRNA expression for D5 (D1-like) and D3 (D2-like) receptors and levels of second messengers, such as cAMP and free intracellular Ca2+ ([Ca2+]i), in peripheral blood lymphocytes of PD patients with (LID+) or without LIDs (LID-). Patients with PD showed depressed [Ca2+]i rise in response to mitogen-induced activation. The defect was more pronounced in LID+ (-33% with respect to healthy controls) than in LID- patients (-20%). Peripheral blood lymphocyte levels of cAMP were decreased in both LID+ (3.8 +/- 2.9 pmol/10 cells) and LID- patients (4.2 +/- 2.4 pmol/10(6) cells), with respect to controls (6 +/- 2.6 pmol/10(6) cells). No differences were found in dopamine receptor mRNA expression. Our results demonstrate that second messenger levels are altered in the peripheral blood lymphocytes of PD patients treated with dopaminergic agents and that patients with LIDs show further alterations in the regulation of [Ca2+]i homeostasis. This may represent a distinctive trait of patients prone to develop dyskinetic movements.
Collapse
|
41
|
Abstract
Classical dopaminergic signaling paradigms and emerging studies on direct physical interactions between the D(1) dopamine (DA) receptor and the NMDA glutamate receptor predict a reciprocally facilitating, positive feedback loop. This loop, if not controlled, may cause concomitant overactivation of both D(1) and NMDA receptors, triggering neurotoxicity. Endogenous protective mechanisms must exist. Here, we report that PSD-95, a prototypical structural and signaling scaffold in the postsynaptic density, inhibits D(1)-NMDA receptor subunit 1 (NR1) NMDA receptor association and uncouples NMDA receptor-dependent enhancement of D(1) signaling. This uncoupling is achieved, at least in part, via a disinhibition mechanism by which PSD-95 abolishes NMDA receptor-dependent inhibition of D(1) internalization. Knockdown of PSD-95 immobilizes D(1) receptors on the cell surface and escalates NMDA receptor-dependent D(1) cAMP signaling in neurons. Thus, in addition to its role in receptor stabilization and synaptic plasticity, PSD-95 acts as a brake on the D(1)-NMDA receptor complex and dampens the interaction between them.
Collapse
|
42
|
Sahu A, Tyeryar KR, Vongtau HO, Sibley DR, Undieh AS. D5 dopamine receptors are required for dopaminergic activation of phospholipase C. Mol Pharmacol 2009; 75:447-53. [PMID: 19047479 PMCID: PMC2684903 DOI: 10.1124/mol.108.053017] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Accepted: 12/01/2008] [Indexed: 11/22/2022] Open
Abstract
Dopamine activates phospholipase C in discrete regions of the mammalian brain, and this action is believed to be mediated through a D(1)-like receptor. Although multiple lines of evidence exclude a role for the D(1) subtype of D(1)-like receptors in the phosphoinositide response, the D(5) subtype has not been similarly examined. Here, mice lacking D(5) dopamine receptors were tested for dopamine agonist-induced phosphoinositide signaling both in vitro and in vivo. The results show that hippocampal, cortical, and striatal tissues of D(5) receptor knockout mice significantly or completely lost the ability to produce inositol phosphate or diacylglycerol messengers after stimulation with dopamine or several selective D(1)-like receptor agonists. Moreover, endogenous inositol-1,4,5-trisphosphate stimulation by the phospholipase C-selective D(1)-like agonist 3-methyl-6-chloro-7,8-dihydroxy-1-[3methylphenyl]-2,3,4,5-tetrahydro-1H-3-benzazepine (SKF83959) was robust in wild-type animals but undetectable in the D(5) receptor mutants. Hence, D(5) receptors are required for dopamine and selective D(1)-like agonists to induce phospholipase C-mediated phosphoinositide signaling in the mammalian brain.
Collapse
Affiliation(s)
- Asha Sahu
- Department of Pharmaceutical Sciences, Laboratory of Integrative Neuropharmacology, Thomas Jefferson University School of Pharmacy, Philadelphia, PA 19107, USA
| | | | | | | | | |
Collapse
|
43
|
Molecular profiling of striatonigral and striatopallidal medium spiny neurons past, present, and future. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2009; 89:1-35. [PMID: 19900613 DOI: 10.1016/s0074-7742(09)89001-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Defining distinct molecular properties of the two striatal medium spiny neurons (MSNs) has been a challenging task for basal ganglia (BG) neuroscientists. Identifying differential molecular components in each MSN subtype is crucial for BG researchers to understand functional properties of these two neurons. The two MSN populations are morphologically identical except in their projections through the direct verses indirect BG pathways and they are heterogeneously dispersed throughout the dorsal striatum (dStr) and nucleus accumbens (NAc). These characteristics have made it difficult for researchers to distinguish and isolate these two neuronal populations thereby hindering progress toward a more comprehensive understanding of their differential molecular properties. Researchers began to investigate molecular differences in the striatonigral and striatopallidal neurons using in situ hybridization (ISH) techniques and single cell reverse transcription-polymerase chain reaction (scRT-PCR). Currently the field is utilizing more advanced techniques for large-scale gene expression studies including fluorescence activated cell sorting (FACS) of MSNs, from which RNA is purified, from fluorescent reporter transgenic mice or use of transgenic mice in which ribosomes from each MSN are tagged and can be immunoprecipitated followed by RNA isolation, a technique termed translating ribosomal affinity purification (TRAP). Additionally, the availability of fluorescent reporter mice for each MSN subtype is allowing, scientists to perform more accurate histology studies evaluating differential protein expression and signaling changes in each cell subtype. Finally, researchers are able to evaluate the role of specific genes in vivo by utilizing cell type-specific mouse models including Cre driver lines that can be crossed with conditional overexpression or knockout systems. This is a very exciting time in the BG field because researchers are well equipped with the most progressive tools to comprehensively evaluate molecular components in the two MSNs and their consequence on BG functional output in the normal, diseased, and developing brain.
Collapse
|
44
|
Unger EL, Wiesinger JA, Hao L, Beard JL. Dopamine D2 receptor expression is altered by changes in cellular iron levels in PC12 cells and rat brain tissue. J Nutr 2008; 138:2487-94. [PMID: 19022977 PMCID: PMC3415866 DOI: 10.3945/jn.108.095224] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Iron deficiency anemia in early life alters the development and functioning of the dopamine neurotransmitter system, but data regarding the specific effects of brain iron loss on dopamine D(2) receptor regulation are lacking. Cell culture and animal models were employed in this study to determine whether D(2) receptor expression is altered when cellular iron levels are depleted. Endogenous D(2) receptor-expressing PC12 cells exposed to increasing concentrations of the iron chelator desferrioxamine (25-100 micromol/L) exhibited dose-dependent decreases in total D(2) receptor protein concentrations (20-65%), but there were minimal effects on D(2) receptor mRNA levels. When iron-deficient cells were repleted with ferric ammonium citrate for 24 h, D(2) receptor protein densities were similar to control. Dietary iron deficiency for 6 wk in weanling rats also reduced regional iron concentrations by nearly 50% in the ventral midbrain and caudate but did not affect D(2) receptor mRNA levels in the ventral midbrain. Iron deficiency significantly reduced membrane D(2) receptor protein levels by >70% in caudate, whereas cytosolic concentrations showed only 25% losses. D(2) receptor protein densities and regional iron concentrations were restored within 2 wk of dietary iron repletion. These results support the concept that D(2) receptor gene expression is not significantly changed by iron deficiency, whereas dopamine receptor trafficking is affected and is likely related to known dopamine system alterations in iron deficiency.
Collapse
Affiliation(s)
- Erica L. Unger
- Department of Nutritional Sciences and Intergrative Biosciences Graduate Program, The Pennsylvania State University, University Park, PA 16802
| | - Jason A. Wiesinger
- Department of Nutritional Sciences and Intergrative Biosciences Graduate Program, The Pennsylvania State University, University Park, PA 16802
| | - Lei Hao
- Department of Nutritional Sciences and Intergrative Biosciences Graduate Program, The Pennsylvania State University, University Park, PA 16802
| | - John L. Beard
- Department of Nutritional Sciences and Intergrative Biosciences Graduate Program, The Pennsylvania State University, University Park, PA 16802,To whom correspondence should be addressed. E-mail:
| |
Collapse
|
45
|
Karlsson RM, Hefner KR, Sibley DR, Holmes A. Comparison of dopamine D1 and D5 receptor knockout mice for cocaine locomotor sensitization. Psychopharmacology (Berl) 2008; 200:117-27. [PMID: 18600316 PMCID: PMC2586326 DOI: 10.1007/s00213-008-1165-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Accepted: 04/06/2008] [Indexed: 02/03/2023]
Abstract
RATIONALE There is compelling support for the contribution of dopamine and the D1R-like (D1R, D5R) receptor subfamily to the behavioral and neural effects of psychostimulant drugs of abuse. The relative roles of D1R and D5R subtypes in mediating these effects are not clear. OBJECTIVES The objectives of this study are to directly compare (C57BL/6J congenic) D1R knockout (KO) and D5R KO mice for baseline locomotor exploration, acute locomotor responses to cocaine, and locomotor sensitization to repeated cocaine administration, and to examine cocaine conditioned place preference (CPP) in D5R KO. MATERIALS AND METHODS D1R KO, D5R KO, and wild-type (WT) were assessed for baseline open field exploration, locomotor-stimulating effects of 15 mg/kg acute cocaine and sensitized locomotor responses to cocaine after repeated home cage treatment with 20 or 30 mg/kg cocaine. D5R KO and WT were tested for CPP to 15 mg/kg cocaine. RESULTS D1R KO showed modest basal hyperactivity and increased center exploration relative to WT. Acute locomotor responses to cocaine were consistently absent in D1R KO, but intact in D5R KO. D5R KO showed normal locomotor sensitization to cocaine and normal cocaine CPP. D1R KO failed to show a sensitized locomotor response to 30 mg/kg cocaine. Failure to sensitize in D1R KO was not because of excessive stereotypies. Surprisingly, D1R KO showed a strong trend for sensitization to 20 mg/kg cocaine. CONCLUSIONS D5R KO does not alter acute or sensitized locomotor responses to cocaine or cocaine CPP. D1R KO abolishes acute locomotor response to cocaine, but does not fully prevent locomotor sensitization to cocaine at all doses.
Collapse
Affiliation(s)
- Rose-Marie Karlsson
- Section on Behavioral Science and Genetics, Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health
| | - Kathryn R. Hefner
- Section on Behavioral Science and Genetics, Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health
| | - David R. Sibley
- Molecular Neuropharmacology Section, National Institute of Neurological Disease and Stroke, National Institute of Mental Health
| | - Andrew Holmes
- Section on Behavioral Science and Genetics, Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health
- Corresponding author: Andrew Holmes, PhD Section on Behavioral Science and Genetics Laboratory for Integrative Neuroscience National Institute on Alcohol Abuse and Alcoholism 5625 Fishers Lane Rm 2N09 Rockville, MD 20852−9411 USA Telephone: 301−402−3519 Fax: 301−480−1952
| |
Collapse
|
46
|
Stanwood GD. Protein-protein interactions and dopamine D2 receptor signaling: a calcium connection. Mol Pharmacol 2008; 74:317-9. [PMID: 18511653 DOI: 10.1124/mol.108.049098] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The third cytoplasmic loop is a crucial site of physical contact between some G protein-coupled receptors (GPCRs) and their respective G proteins. However, interactions not only occur among these proteins but also involve a number of additional protein binding partners. Modulation of these protein-protein interactions may represent an important new avenue of pharmacotherapy through which signaling of GPCRs can be modulated. In the current issue of Molecular Pharmacology, Liu et al. (p. 371) report that dopamine D(2) receptors interact with the Ca(2+) binding protein S100B. Using the third intracellular loop of the dopamine D(2) receptor as bait in a bacterial two-hybrid system, S100B was determined to be a potential binding partner. They used pull-down assays both in vitro and in vivo to confirm the interaction and define its specificity. Neither the D(3) nor the D(4) receptor expresses the motif conferring the interaction, and peptides based on the third intracellular loop of the D(3) receptor did not pull down S100B. Some groups might stop there, but Liu and colleagues moved on to demonstrate colocalization of the D(2) receptor and S100B by immunostaining. Functional assays were then used to show that coexpression of S100B with the D(2) receptor increases the ability of D(2) receptors to activate ERK and to inhibit adenylyl cyclase. These data suggest that S100B coexpression may serve as an important mediator of D(2) receptor signaling efficacy in the brain. These interactions contribute to cellular, regional, and developmental differences in D(2) receptor activation.
Collapse
Affiliation(s)
- Gregg D Stanwood
- Department of Pharmacology, Vanderbilt Kennedy Center, 23rd Ave South, 476 RRB, Nashville TN 37232-6600, USA.
| |
Collapse
|
47
|
Bazzini E, Samuele A, Granelli M, Levandis G, Armentero MT, Nappi G, Blandini F. Proteasomal inhibition and apoptosis regulatory changes in human isolated lymphocytes: The synergistic role of dopamine. J Cell Biochem 2008; 103:877-85. [PMID: 17647258 DOI: 10.1002/jcb.21457] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Abnormal deposition of protein aggregates and increased susceptibility to apoptotic cell death may result from defects in the activity of the ubiquitin-proteasome system (UPS); neurotoxicity related to UPS defects seems to require dopamine to be fully expressed. The aim of this study was to investigate the pro-apoptotic effects caused by proteasomal activity inhibition, as well as the synergistic effect of dopaminergic stimulation in human lymphocytes isolated from healthy volunteers. Cells were incubated 20 h at 37 degrees C, with: (1) lactacystin, (2) increasing concentrations of dopamine or (3) mixture of dopamine and lactacystin. Activities of proteasome 20S and pro-apoptotic caspases-3 and -9 and levels of anti-apoptotic Bcl-2 were measured with fluorimetric or immunochemical assays, while a "DNA diffusion" assay was used to determine the apoptosis. Incubation of lymphocytes with lactacystin, which caused reduction of proteasomal activity, was associated with activation of caspases. A clear, dose-dependent reduction of proteasomal activity was also seen in the presence of increasing doses of dopamine, which was accompanied by a slight dose-dependent increase of caspases activities and Bcl-2 levels. Both effects on proteasome and caspase activities were enhanced when cells were simultaneously exposed to lactacystin and elevated concentrations of dopamine. Apoptosis was detected in all treated samples, but not in controls, without significant differences among the treatment groups; however, the association of dopamine and lactacystin induced a clear reduction in the number of cells being analyzed, pointing to marked cytotoxicity. Our data confirm the potentiation of cytotoxicity related to proteasome inhibition, in the presence of dopaminergic stimulation.
Collapse
Affiliation(s)
- Eleonora Bazzini
- Laboratory of Functional Neurochemistry, Neurological Institute C. Mondino, Pavia, Italy
| | | | | | | | | | | | | |
Collapse
|
48
|
Nam J, Kim K. Abnormal Motor Function and the Expression of Striatal Dopamine D2 Receptors in Manganese-Treated Mice. Biol Pharm Bull 2008; 31:1894-7. [DOI: 10.1248/bpb.31.1894] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Jungmin Nam
- Department of Public Health, Keimyung University
| | - Kisok Kim
- Department of Public Health, Keimyung University
- TMR Center, Keimyung University
| |
Collapse
|
49
|
Coffeen U, López-Avila A, Ortega-Legaspi JM, del Angel R, López-Muñoz FJ, Pellicer F. Dopamine receptors in the anterior insular cortex modulate long-term nociception in the rat. Eur J Pain 2007; 12:535-43. [PMID: 17936656 DOI: 10.1016/j.ejpain.2007.08.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Revised: 08/14/2007] [Accepted: 08/23/2007] [Indexed: 10/22/2022]
Abstract
The rostral agranular insular cortex (RAIC) receives dopaminergic projections from the mesolimbic system, which has been involved in the modulation of nociceptive processes. In this study we determined the contribution of dopamine D(1) and D(2) receptors in the RAIC regarding nociception processing in a neuropathic pain model, as well as inflammatory articular nociception measured as pain-induced functional impairment in the rat (PIFIR). Microinjection of vehicle or substances into the RAIC was performed after the induction of nociception. The groups were treated with: a dopamine D(1) receptor antagonist (SCH-23390), a dopamine D(1) receptor agonist (SKF-38393), a dopamine D(2) receptor agonist (TNPA) and a dopamine D(2) receptor antagonist (spiperone). Chronic nociception, induced by denervation, was measured by the autotomy score in which onset and incidence were also determined. The SCH-23390 and TNPA groups showed a decrease in the autotomy score and a delay on the onset as compared to control, whereas the PIFIR groups did not show statistical differences. This work shows the differential role of dopamine receptors within the RAIC in which the activation of D(2) or the blockade of D(1) receptors elicit antinociception.
Collapse
Affiliation(s)
- Ulises Coffeen
- Laboratorio de Neurofisiología Integrativa, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de Fuente, Camino a Xochimilco 101, San Lorenzo Huipulco, Tlalpan, México D.F. CP. 14370, Mexico
| | | | | | | | | | | |
Collapse
|
50
|
King SS, Jones KL, Mullenix BA, Heath DT. Seasonal relationships between dopamine D1 and D2 receptor and equine FSH receptor mRNA in equine ovarian epithelium. Anim Reprod Sci 2007; 108:259-66. [PMID: 17935915 DOI: 10.1016/j.anireprosci.2007.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Accepted: 08/20/2007] [Indexed: 12/01/2022]
Abstract
Dopamine (DA) blockade during anestrus or early spring transition can facilitate ovarian recrudescence and advance the timing of the first ovulation of the season. Some laboratories have reported variable results using DA antagonists to stimulate follicular growth during the mid-portion of the anestrual period. Differences in DA antagonist efficacy may be due to the FSH secretory status of the anestrous mare and the presence or absence of functional ovarian FSH receptors. We hypothesize that direct ovarian dopaminergic input can affect follicular growth through regulation of FSH receptor (FSHr) populations. To investigate this, the amount of DA D1 and D2 receptor (D1r, D2r) and FSHr mRNA was quantified in ovarian tissues in anestrous and mares expressing estrus at typical intervals that are detected during the breeding season. Ovaries (n=26) were collected from 10 anestrous mares and 13 mares that had initiated estrous cycles (n=8 luteal; n=5 follicular phase). The quantity of D1r and D2r mRNA and FSHr mRNA was determined in cortex of both groups and granulosa/theca (those having initiated estrous cycles) tissues by semi-quantitative polymerase chain reaction using the comparative cycle time method. The reference gene was glyceraldehyde-3-phosphate dehydrogenase. The fold-change for each sample was calculated based on a calibrator sample. Fold-change values for D1r and D2r were the dependent variable and tissue was the independent variable in a one-way ANOVA. Results of fold-change in FSHr were compared by ANCOVA due to unequal sample sizes from each mare. Correlations between receptors within each tissue type were determined. For each receptor type and tissue, correlations between follicular and luteal phases were determined. The fold-change of D1r mRNA was less than D2r mRNA in all tissue types and between seasons. The quantity of D2r message in ovarian cortex was greater (p<0.05) during anestrus than after estrous cycles had been initiated. Fold-change in D2r in granulosa/theca was not different dependant on estrous cycle phase or follicle size. Quantity of FSHr mRNA was less in anestrous ovarian cortex and greater after estrous cycles had been initiated. FSHr mRNA fold-change in the ovarian cortex after estrous cycle initiation was not different between estrous cycle phases, but was greater in smaller (<30mm) follicles compared with larger (> or =30mm) follicles. We have demonstrated an inverse temporal relation between ovarian D2r and FSHr in mares dependant upon season. The functional significance of this relationship deserves further study.
Collapse
Affiliation(s)
- S S King
- Department of Animal Science, Food and Nutrition, Southern Illinois University Carbondale, Mailcode 4417, 1205 Lincoln Drive, Carbondale, IL 62901, USA.
| | | | | | | |
Collapse
|