1
|
Bisikirska B, Labella R, Cuesta-Dominguez A, Luo N, De Angelis J, Mosialou I, Lin CS, Beck D, Lata S, Shyu PT, McMahon DJ, Guo E, Hagen J, Chung WK, Shane E, Cohen A, Kousteni S. Melatonin receptor 1A variants as genetic cause of idiopathic osteoporosis. Sci Transl Med 2024; 16:eadj0085. [PMID: 39413162 DOI: 10.1126/scitranslmed.adj0085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 03/19/2024] [Accepted: 09/23/2024] [Indexed: 10/18/2024]
Abstract
Idiopathic osteoporosis (IOP) is a rare form of early-onset osteoporosis diagnosed in patients with no known metabolic or hormonal cause of bone loss and unknown pathogenesis. Patients with IOP commonly report both childhood fractures and family history of osteoporosis, raising the possibility of genetic etiologies of IOP. Whole-exome sequencing analyses of different IOP cohorts identified multiple variants in melatonin receptor 1A (MTNR1A) with a potential pathogenic outcome. A rare MTNR1A variant (rs374152717) was found in members of an Ashkenazi Jewish family with IOP, and an MTNR1A variant (rs28383653) was found in a nonrelated female IOP cohort (4%). Both variants occur at a substantially higher frequency in Ashkenazi Jewish individuals than in the general population. We investigated consequences of the heterozygous (rs374152717) variant [MTNR1Ac.184+1G>T (MTNR1Ac.184+1G>T)] on bone physiology. A mouse model of the human rs374152717 variant reproduced the low bone mass (BM) phenotype of young-adult patients with IOP. Low BM occurred because of induction of senescence in mutant osteoblasts followed by compromised differentiation and function. In human cells, introduction of rs374152717 led to translation of a nonfunctional protein and subsequent dysregulation of melatonin signaling. These studies provide evidence that MTNR1A mutations entail a genetic etiology of IOP and establish the rs374152717 variant as a loss-of-function allele that impairs bone turnover by inducing senescence in osteoblasts. The higher prevalence of the MTNR1A variants identified in IOP cohorts versus the general population indicates a greater risk of IOP in those carrying these variants, especially Ashkenazi Jewish individuals bearing the rs374152717 variant.
Collapse
Affiliation(s)
- Brygida Bisikirska
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY 10032, USA
| | - Rossella Labella
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY 10032, USA
| | - Alvaro Cuesta-Dominguez
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY 10032, USA
| | - Na Luo
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Jessica De Angelis
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY 10032, USA
| | - Ioanna Mosialou
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY 10032, USA
| | - Chyuan-Sheng Lin
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - David Beck
- New York University Grossman School of Medicine, New York, NY 10012, USA
| | - Sneh Lata
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Peter Timothy Shyu
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Donald J McMahon
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Edward Guo
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Jacob Hagen
- Department of Pediatrics and Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Wendy K Chung
- Department of Pediatrics and Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Elizabeth Shane
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Adi Cohen
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Stavroula Kousteni
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
2
|
Roberts FL, Cataldo LR, Fex M. Monoamines' role in islet cell function and type 2 diabetes risk. Trends Mol Med 2023; 29:1045-1058. [PMID: 37722934 DOI: 10.1016/j.molmed.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/20/2023]
Abstract
The two monoamines serotonin and melatonin have recently been highlighted as potent regulators of islet hormone secretion and overall glucose homeostasis in the body. In fact, dysregulated signaling of both amines are implicated in β-cell dysfunction and development of type 2 diabetes mellitus (T2DM). Serotonin is a key player in β-cell physiology and plays a role in expansion of β-cell mass. Melatonin regulates circadian rhythm and nutrient metabolism and reduces insulin release in human and rodent islets in vitro. Herein, we focus on the role of serotonin and melatonin in islet physiology and the pathophysiology of T2DM. This includes effects on hormone secretion, receptor expression, genetic variants influencing β-cell function, melatonin treatment, and compounds that alter serotonin availability and signaling.
Collapse
Affiliation(s)
- Fiona Louise Roberts
- Lund University Diabetes Centre, Department of Clinical Sciences, Unit for Molecular Metabolism, SE-21428 Malmö, Sweden
| | - Luis Rodrigo Cataldo
- Lund University Diabetes Centre, Department of Clinical Sciences, Unit for Molecular Metabolism, SE-21428 Malmö, Sweden; The Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - Malin Fex
- Lund University Diabetes Centre, Department of Clinical Sciences, Unit for Molecular Metabolism, SE-21428 Malmö, Sweden.
| |
Collapse
|
3
|
Sun Q, Zhang J, Li X, Yang G, Cheng S, Guo D, Zhang Q, Sun F, Zhao F, Yang D, Wang S, Wang T, Liu S, Zou L, Zhang Y, Liu H. The ubiquitin-specific protease 8 antagonizes melatonin-induced endocytic degradation of MT1 receptor to promote lung adenocarcinoma growth. J Adv Res 2022; 41:1-12. [PMID: 36328739 PMCID: PMC9637587 DOI: 10.1016/j.jare.2022.01.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 12/24/2022] Open
Abstract
Melatonin can induce the downregulation of the MT1 receptor. MT1 receptor internalization incurred by melatonin follows the canonical endolysosomal pathway. The ubiquitin-specific protease 8 antagonizes the endocytic degradation of the MT1 receptor. The suppression of ubiquitin-specific protease 8 potentiates the cancer-inhibitory effects of melatonin in vitro. Combination of USP8 inhibition and melatonin treatment effectively deters tumor growth in xenograft mouse models.
Introduction The human genome encodes two melatonin receptors (MT1 and MT2) that relay melatonin signals to cellular interior. Accumulating evidence has linked melatonin to multiple health benefits, among which its anticancer effects have become well-established. However, the implications of its receptors in lung adenocarcinoma have so far remained incompletely understood. Objectives This study aims to investigate the response of the MT1 receptor to melatonin treatment and its dynamic regulation by ubiquitin-specific protease 8 (USP8) in lung adenocarcinoma. Methods The mRNA levels of MT1 and MT2 receptors were analyzed with sequencing data. The expression and localization of the MT1 receptor with melatonin treatment were investigated by immunoblotting, immunofluorescence and confocal microscopy assays. Endocytic deubiquitylases were screened to identify MT1 association. The effects of USP8 were assessed with shRNA-mediated knockdown and small molecule inhibitor. The combined efficacy of melatonin and USP8 suppression was also evaluated using xenograft animal models. Results Bioinformatic analysis revealed increased expression of the MT1 receptor in lung adenocarcinoma tissues. Melatonin treatment leads to the downregulation of the MT1 receptor in lung adenocarcinoma cells, which is attributed to receptor endocytosis and lysosomal degradation via the canonical endo-lysosomal route. USP8 negatively regulates the endocytic degradation of the MT1 receptor incurred by melatonin exposure and thus protects lung adenocarcinoma cell growth. USP8 suppression by knockdown or pharmacological inhibition effectively deters cancer cell proliferation and sensitizes lung adenocarcinoma cells to melatonin in vitro. Furthermore, USP8 silencing significantly potentiates the anticancer effects of melatonin in xenograft tumor models. Conclusion The MT1 receptor responds to melatonin treatment and is endocytosed for lysosomal degradation that is counteracted by USP8. The inhibition of USP8 demonstrates tumor-suppressive effects and thus can be exploited as potential therapeutic strategy either as monotherapy or combined therapy with melatonin.
Collapse
|
4
|
Wang J, Zhuo Z, Ma X, Liu Y, Xu J, He C, Fu Y, Wang F, Ji P, Zhang L, Liu G. Melatonin Alleviates the Suppressive Effect of Hypoxanthine on Oocyte Nuclear Maturation and Restores Meiosis via the Melatonin Receptor 1 (MT1)-Mediated Pathway. Front Cell Dev Biol 2021; 9:648148. [PMID: 33937242 PMCID: PMC8083900 DOI: 10.3389/fcell.2021.648148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/17/2021] [Indexed: 01/12/2023] Open
Abstract
It is well known that hypoxanthine (HX) inhibits nuclear maturation of oocytes by elevating the intracellular cAMP level, while melatonin (MT) is a molecule that reduces cAMP production, which may physiologically antagonize this inhibition and restore the meiosis process. We conducted in vitro and in vivo studies to examine this hypothesis. The results showed that 10-3 M MT potentiated the inhibitory effect of HX on mouse oocyte meiosis by lowering the rate of germinal vesicle breakdown (GVBD) and the first polar body (PB1). However, 10-5 M and 10-7 M MT significantly alleviated the nuclear suppression induced by HX and restored meiosis in 3- and 6-week-old mouse oocytes, respectively. We identified that the rate-limiting melatonin synthetic enzyme AANAT and melatonin membrane receptor MT1 were both expressed in oocytes and cumulus cells at the GV and MII stages. Luzindole, a non-selective melatonin membrane receptor antagonist, blocked the activity of MT on oocyte meiotic recovery (P < 0.05). This observation indicated that the activity of melatonin was mediated by the MT1 receptor. To understand the molecular mechanism further, MT1 knockout (KO) mice were constructed. In this MT1 KO animal model, the PB1 rate was significantly reduced with the excessive expression of cAPM synthases (Adcy2, Adcy6, Adcy7, and Adcy9) in the ovaries of these animals. The mRNA levels of Nppc and Npr2 were upregulated while the genes related to progesterone synthesis (Cyp11a11), cholesterol biosynthesis (Insig1), and feedback (Lhcgr, Prlr, and Atg7) were downregulated in the granulosa cells of MT1 KO mice (P < 0.05). The altered gene expression may be attributed to the suppression of oocyte maturation. In summary, melatonin protects against nuclear inhibition caused by HX and restores oocyte meiosis via MT1 by reducing the intracellular concentration of cAMP.
Collapse
Affiliation(s)
- Jing Wang
- Beijing Key Laboratory of Animal Genetic Improvement, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhiyong Zhuo
- Beijing Key Laboratory of Animal Genetic Improvement, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China.,Beijing Keao Xieli Feed Co., Ltd., Beijing, China
| | - Xiao Ma
- Beijing Key Laboratory of Animal Genetic Improvement, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yunjie Liu
- Beijing Key Laboratory of Animal Genetic Improvement, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jing Xu
- Beijing Key Laboratory of Animal Genetic Improvement, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Changjiu He
- Beijing Key Laboratory of Animal Genetic Improvement, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yao Fu
- Beijing Key Laboratory of Animal Genetic Improvement, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Feng Wang
- Beijing Key Laboratory of Animal Genetic Improvement, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Pengyun Ji
- Beijing Key Laboratory of Animal Genetic Improvement, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lu Zhang
- Beijing Key Laboratory of Animal Genetic Improvement, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Guoshi Liu
- Beijing Key Laboratory of Animal Genetic Improvement, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
Noseda ACD, Rodrigues LS, Targa ADS, Ilkiw JL, Fagotti J, Dos Santos PD, Cecon E, Markus RP, Solimena M, Jockers R, Lima MMS. MT 2 melatonin receptors expressed in the olfactory bulb modulate depressive-like behavior and olfaction in the 6-OHDA model of Parkinson's disease. Eur J Pharmacol 2021; 891:173722. [PMID: 33159932 DOI: 10.1016/j.ejphar.2020.173722] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 10/27/2020] [Accepted: 11/01/2020] [Indexed: 12/26/2022]
Abstract
Melatonin MT1 and MT2 receptors are expressed in the glomerular layer of the olfactory bulb (OB); however, the role of these receptors has not been evaluated until now. Considering the association of the OB with olfactory and depressive disorders in Parkinson's disease (PD), we sought to investigate the involvement of melatonin receptors in these non-motor disturbances in an intranigral 6-hydroxydopamine (6-OHDA)-lesioned rat model of PD. We demonstrate the presence of functional melatonin receptors in dopaminergic neurons of the glomerular layer. Local administration of melatonin (MLT, 1 μg/μl), luzindole (LUZ, 5 μg/μl) or the MT2-selective receptor drug 4-P-PDOT (5 μg/μl) reversed the depressive-like behavior elicited by 6-OHDA. Sequential administration of 4-P-PDOT and MLT (5 μg/μl, 1 μg/μl) promoted additive antidepressant-like effects. In the evaluation of olfactory discrimination, LUZ induced an olfactory impairment when associated with the nigral lesion-induced impairment. Thus, our results suggest that melatonin MT2 receptors expressed in the glomerular layer are involved in depressive-like behaviors and in olfactory function associated with PD.
Collapse
Affiliation(s)
- Ana Carolina D Noseda
- Department of Physiology, Federal University of Paraná, Curitiba, PR, Brazil; Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Lais S Rodrigues
- Department of Physiology, Federal University of Paraná, Curitiba, PR, Brazil; Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Adriano D S Targa
- Department of Physiology, Federal University of Paraná, Curitiba, PR, Brazil; Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil; Translational Research in Respiratory Medicine, Hospital Universitari Arnau de Vilanova-Santa Maria, IRBLleida, Lleida, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Jessica L Ilkiw
- Department of Physiology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Juliane Fagotti
- Department of Physiology, Federal University of Paraná, Curitiba, PR, Brazil
| | | | - Erika Cecon
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris, France
| | - Regina P Markus
- Department of Physiology, Institute of Bioscience, University of São Paulo, São Paulo, Brazil
| | - Michele Solimena
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden, Dresden, Germany; German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Ralf Jockers
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris, France
| | - Marcelo M S Lima
- Department of Physiology, Federal University of Paraná, Curitiba, PR, Brazil; Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil.
| |
Collapse
|
6
|
Li DJ, Tong J, Li YH, Meng HB, Ji QX, Zhang GY, Zhu JH, Zhang WJ, Zeng FY, Huang G, Hua X, Shen FM, Wang P. Melatonin safeguards against fatty liver by antagonizing TRAFs-mediated ASK1 deubiquitination and stabilization in a β-arrestin-1 dependent manner. J Pineal Res 2019; 67:e12611. [PMID: 31541591 DOI: 10.1111/jpi.12611] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 08/17/2019] [Accepted: 09/14/2019] [Indexed: 12/15/2022]
Abstract
Melatonin has been previously shown to prevent nonalcoholic fatty liver disease (NAFLD), yet the underlying mechanisms are poorly understood. Here, we identified a previously unknown regulatory action of melatonin on apoptosis signal-regulating kinase 1 (ASK1) signaling pathway in the pathogenesis and development of NAFLD. Although melatonin administration did not alter food intake, it significantly alleviated fatty liver phenotypes, including the body weight gain, insulin resistance, hepatic lipid accumulation, steatohepatitis, and fibrosis in a high-fat diet (HFD)-induced NAFLD mouse model (in vivo). The protection of melatonin against NAFLD was not affected by inactivation of Kupffer cell in this model. In NAFLD mice liver, ASK1 signal cascade was substantially activated, evidence by the enhancement of total ASK1, phospho-ASK1, phospho-MKK3/6, phospho-p38, phospho-MKK4/7, and phospho-JNK. Melatonin treatment significantly suppressed the ASK1 upregulation and the phosphorylation of ASK1, MKK3/6, MKK4/7, p38, and JNK. Mechanistically, we found that lipid stress triggered the interaction between ASK1 and TNF receptor-associated factors (TRAFs), including TRAF1, TRAF2, and TRAF6, which resulted in ASK1 deubiquitination and thereby increased ASK1 protein stability. Melatonin did not alter ASK1 mRNA level; however, it activated a scaffold protein β-arrestin-1 and enabled it to bind to ASK1, which antagonized the TRAFs-mediated ASK1 deubiquitination, and thus reduced ASK1 protein stability. Consistent with these findings, knockout of β-arrestin-1 in mice partly abolished the protection of melatonin against NAFLD. Taken together, our results for the first time demonstrate that melatonin safeguards against NAFLD by eliminating ASK1 activation via inhibiting TRAFs-mediated ASK1 deubiquitination and stabilization in a β-arrestin-1 dependent manner.
Collapse
Affiliation(s)
- Dong-Jie Li
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, China
- Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Jie Tong
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Yong-Hua Li
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Hong-Bo Meng
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qing-Xin Ji
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Guo-Yan Zhang
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Jia-Hui Zhu
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Wen-Jing Zhang
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Fei-Yan Zeng
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Gang Huang
- Department of Urology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xia Hua
- Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Fu-Ming Shen
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Pei Wang
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Tongji University School of Medicine, Tongji University, Shanghai, China
- Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai, China
| |
Collapse
|
7
|
Phylogenetic Reclassification of Vertebrate Melatonin Receptors To Include Mel1d. G3-GENES GENOMES GENETICS 2019; 9:3225-3238. [PMID: 31416806 PMCID: PMC6778780 DOI: 10.1534/g3.119.400170] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The circadian and seasonal actions of melatonin are mediated by high affinity G-protein coupled receptors (melatonin receptors, MTRs), classified into phylogenetically distinct subtypes based on sequence divergence and pharmacological characteristics. Three vertebrate MTR subtypes are currently described: MT1 (MTNR1A), MT2 (MTNR1B), and Mel1c (MTNR1C / GPR50), which exhibit distinct affinities, tissue distributions and signaling properties. We present phylogenetic and comparative genomic analyses supporting a revised classification of the vertebrate MTR family. We demonstrate four ancestral vertebrate MTRs, including a novel molecule hereafter named Mel1d. We reconstructed the evolution of each vertebrate MTR, detailing genetic losses in addition to gains resulting from whole genome duplication events in teleost fishes. We show that Mel1d was lost separately in mammals and birds and has been previously mistaken for an MT1 paralogue. The genetic and functional diversity of vertebrate MTRs is more complex than appreciated, with implications for our understanding of melatonin actions in different taxa. The significance of our findings, including the existence of Mel1d, are discussed in an evolutionary and functional context accommodating a robust phylogenetic assignment of MTR gene family structure.
Collapse
|
8
|
Endogenous and Exogenous Melatonin Exposure Attenuates Hepatic MT 1 Melatonin Receptor Protein Expression in Rat. Antioxidants (Basel) 2019; 8:antiox8090408. [PMID: 31540398 PMCID: PMC6770540 DOI: 10.3390/antiox8090408] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/13/2019] [Accepted: 09/15/2019] [Indexed: 12/22/2022] Open
Abstract
Melatonin receptors are highly relevant for the hepatoprotective effects of the pineal hormone melatonin after experimental hemorrhagic shock in rats. In this study, we sought to determine the spatial expression pattern and a putative regulation of two melatonin receptors, membrane bound type 1 and 2 (MT1 and MT2), in the liver of rats. In a male rat model (Sprague Dawley) of hemorrhage and resuscitation, we investigated the gene expression and protein of MT1 and MT2 in rat liver by utilizing real-time quantitative polymerase chain reaction, a western blot analysis, and immunohistochemistry. Plasma melatonin content was measured by an enzyme-linked immunosorbent assay. Male rats underwent hemorrhage and were resuscitated with shed blood and a Ringer’s solution (n = 8 per group). After 90 min of hemorrhage, animals were given vehicle, melatonin, or ramelteon (each 1.0 mg/kg intravenously). Sham-operated controls did not undergo hemorrhage but were treated likewise. Plasma melatonin was significantly increased in all groups treated with melatonin and also after hemorrhagic shock. Only MT1, but not the MT2 messenger ribonucleic acid (mRNA) and protein, was detected in the rat liver. The MT1 protein was located in pericentral fields of liver lobules in sham-operated animals. After hemorrhagic shock and treatment with melatonin or ramelteon, the hepatic MT1 protein amount was significantly attenuated in all groups compared to sham controls (50% reduction; p < 0.001). With respect to MT1 mRNA, no significant changes were observed between groups (p = 0.264). Our results indicate that both endogenous melatonin exposure from hemorrhagic shock, as well as exogenous melatonin and ramelteon exposure, may attenuate melatonin receptors in rat hepatocytes, possibly by means of desensitization.
Collapse
|
9
|
Palmitoylation as a Functional Regulator of Neurotransmitter Receptors. Neural Plast 2018; 2018:5701348. [PMID: 29849559 PMCID: PMC5903346 DOI: 10.1155/2018/5701348] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 01/29/2018] [Indexed: 12/11/2022] Open
Abstract
The majority of neuronal proteins involved in cellular signaling undergo different posttranslational modifications significantly affecting their functions. One of these modifications is a covalent attachment of a 16-C palmitic acid to one or more cysteine residues (S-palmitoylation) within the target protein. Palmitoylation is a reversible modification, and repeated cycles of palmitoylation/depalmitoylation might be critically involved in the regulation of multiple signaling processes. Palmitoylation also represents a common posttranslational modification of the neurotransmitter receptors, including G protein-coupled receptors (GPCRs) and ligand-gated ion channels (LICs). From the functional point of view, palmitoylation affects a wide span of neurotransmitter receptors activities including their trafficking, sorting, stability, residence lifetime at the cell surface, endocytosis, recycling, and synaptic clustering. This review summarizes the current knowledge on the palmitoylation of neurotransmitter receptors and its role in the regulation of receptors functions as well as in the control of different kinds of physiological and pathological behavior.
Collapse
|
10
|
Kleber A, Ruf CG, Wolf A, Fink T, Glas M, Wolf B, Volk T, Abend M, Mathes AM. Melatonin or ramelteon therapy differentially affects hepatic gene expression profiles after haemorrhagic shock in rat--A microarray analysis. Exp Mol Pathol 2015; 99:189-97. [PMID: 26116814 DOI: 10.1016/j.yexmp.2015.06.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 06/23/2015] [Indexed: 12/25/2022]
Abstract
BACKGROUND & AIMS Melatonin has been demonstrated to reduce liver damage in different models of stress. However, there is only limited information on the impact of this hormone on hepatic gene expression. The aim of this study was, to investigate the influence of melatonin or the melatonergic agonist ramelteon on hepatic gene expression profiles after haemorrhagic shock using a whole genome microarray analysis. METHODS Male Sprague-Dawley rats (200-300 g, n=4/group) underwent haemorrhagic shock (mean arterial pressure 35±5 mmHg). After 90 min of shock, animals were resuscitated with shed blood and Ringer's and treated with vehicle (5% dimethyl sulfoxide), melatonin or ramelteon (each 1.0 mg/kg intravenously). Sham-operated animals were treated likewise but did not undergo haemorrhage. After 2 h of reperfusion, the liver was harvested, and a whole genome microarray analysis was performed. Functional gene expression profiles were determined using the Panther® classification system; promising candidate genes were evaluated by quantitative polymerase chain reaction (PCR). RESULTS Microarray and PCR data showed a good correlation (r(2)=0.84). A strong influence of melatonin on receptor mediated signal transduction was revealed using the functional gene expression profile analysis, whereas ramelteon mainly influenced transcription factors. Shock-induced upregulation of three candidate genes with relevant functions for hepatocytes (ppp1r15a, dusp5, rhoB) was significantly reduced by melatonin (p<0.05 vs. shock/vehicle), but not by ramelteon. Two genes previously known as haemorrhage-induced (il1b, s100a8) were transcriptionally repressed by both drugs. CONCLUSIONS Melatonin and ramelteon appear to induce specific hepatic gene expression profiles after haemorrhagic shock in rats. The observed differences between both substances are likely to be attributable to a distinct mechanism of action in these agents.
Collapse
Affiliation(s)
- Astrid Kleber
- Department of Anaesthesiology, Intensive Care and Pain Therapy, Saarland University Medical Center, Homburg (Saar), Germany.
| | - Christian G Ruf
- Department of Urology, Bundeswehrkrankenhaus Koblenz, Germany.
| | - Alexander Wolf
- Department of Anaesthesiology, Intensive Care and Pain Therapy, Saarland University Medical Center, Homburg (Saar), Germany.
| | - Tobias Fink
- Department of Anaesthesiology, Intensive Care and Pain Therapy, Saarland University Medical Center, Homburg (Saar), Germany.
| | - Michael Glas
- Department of Anaesthesiology, Intensive Care and Pain Therapy, Saarland University Medical Center, Homburg (Saar), Germany
| | - Beate Wolf
- Department of Anaesthesiology, Intensive Care and Pain Therapy, Saarland University Medical Center, Homburg (Saar), Germany.
| | - Thomas Volk
- Department of Anaesthesiology, Intensive Care and Pain Therapy, Saarland University Medical Center, Homburg (Saar), Germany.
| | - Michael Abend
- Bundeswehr Institute of Radiobiology, München, Germany.
| | | |
Collapse
|
11
|
Valproic Acid Influences MTNR1A Intracellular Trafficking and Signaling in a β-Arrestin 2-Dependent Manner. Mol Neurobiol 2015; 53:1237-1246. [DOI: 10.1007/s12035-014-9085-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 12/29/2014] [Indexed: 10/24/2022]
|
12
|
Synthetic melatoninergic ligands: achievements and prospects. ISRN BIOCHEMISTRY 2014; 2014:843478. [PMID: 25937968 PMCID: PMC4393004 DOI: 10.1155/2014/843478] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 01/16/2014] [Indexed: 01/17/2023]
Abstract
Pineal hormone melatonin is widely used in the treatment of disorders of circadian rhythms. The presence of melatonin receptors in various animal tissues motivates the use of this hormone in some other diseases. For this reason, in recent years investigators continued the search for synthetic analogues of melatonin which are metabolically stable and selective to receptors. This review includes recent information about the most famous melatonin analogues, their structure, properties, and physiological features of the interaction with melatonin receptors.
Collapse
|
13
|
Isola M, Ekström J, Diana M, Solinas P, Cossu M, Lilliu MA, Loy F, Isola R. Subcellular distribution of melatonin receptors in human parotid glands. J Anat 2013; 223:519-24. [PMID: 23998562 DOI: 10.1111/joa.12105] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2013] [Indexed: 12/29/2022] Open
Abstract
The hormone melatonin influences oral health through a variety of actions, such as anti-inflammatory, anti-oxidant, immunomodulatory and antitumour. Many of these melatonin functions are mediated by a family of membrane receptors expressed in the oral epithelium and salivary glands. Using immunoblotting and immunohistochemistry, recent studies have shown that the melatonin membrane receptors, MT1 and MT2, are present in rat and human salivary glands. To date, no investigation has dealt with the ultrastructural distribution of the melatonin receptors. This was the aim of the present study, using the immunogold method applied to the human parotid gland. Reactivity to MT1 and, with less intensity, to MT2 appeared in the secretory granules of acinar cells and in the cytoplasmic vesicles of both acinar and ductal cells. Plasma membranes were also stained, albeit slightly. The peculiar intracytoplasmic distribution of these receptors may indicate that there is an uptake/transport system for melatonin from the circulation into the saliva.
Collapse
Affiliation(s)
- M Isola
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Melatonin receptor genes in vertebrates. Int J Mol Sci 2013; 14:11208-23. [PMID: 23712359 PMCID: PMC3709728 DOI: 10.3390/ijms140611208] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 04/28/2013] [Accepted: 05/20/2013] [Indexed: 01/06/2023] Open
Abstract
Melatonin receptors are members of the G protein-coupled receptor (GPCR) family. Three genes for melatonin receptors have been cloned. The MT1 (or Mel1a or MTNR1A) and MT2 (or Mel1b or MTNR1B) receptor subtypes are present in humans and other mammals, while an additional melatonin receptor subtype, Mel1c (or MTNR1C), has been identified in fish, amphibians and birds. Another melatonin related orphan receptor, GPR50, which does not bind melatonin, is found exclusively in mammals. The hormone melatonin is secreted primarily by the pineal gland, with highest levels occurring during the dark period of a circadian cycle. This hormone acts systemically in numerous organs. In the brain, it is involved in the regulation of various neural and endocrine processes, and it readjusts the circadian pacemaker, the suprachiasmatic nucleus. This article reviews recent studies of gene organization, expression, evolution and mutations of melatonin receptor genes of vertebrates. Gene polymorphisms reveal that numerous mutations are associated with diseases and disorders. The phylogenetic analysis of receptor genes indicates that GPR50 is an outgroup to all other melatonin receptor sequences. GPR50 may have separated from a melatonin receptor ancestor before the split between MTNR1C and the MTNR1A/B ancestor.
Collapse
|
15
|
Kumari S, Dash D. Melatonin elevates intracellular free calcium in human platelets by inositol 1,4,5-trisphosphate independent mechanism. FEBS Lett 2011; 585:2345-51. [DOI: 10.1016/j.febslet.2011.05.067] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 05/27/2011] [Indexed: 10/18/2022]
|
16
|
Sethi S, Radio NM, Kotlarczyk MP, Chen CT, Wei YH, Jockers R, Witt-Enderby PA. Determination of the minimal melatonin exposure required to induce osteoblast differentiation from human mesenchymal stem cells and these effects on downstream signaling pathways. J Pineal Res 2010; 49:222-38. [PMID: 20626586 DOI: 10.1111/j.1600-079x.2010.00784.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The purpose of this study was to determine the critical time periods of melatonin treatment required to induce human mesenchymal stem cells (hAMSCs) into osteoblasts and to determine which osteogenic genes are involved in the process. The study design consisted of adding melatonin for different times (2, 5, 10, 14 or 21 days) toward the end of a 21-day treatment containing osteogenic (OS+) medium or at the beginning of the 21-day treatment and then withdrawn. The results show that a 21-day continuous melatonin treatment was required to induce both alkaline phosphatase (ALP) activity and calcium deposition and these effects were mediated through MT₂Rs. Functional analysis revealed that peak ALP levels induced by melatonin were accompanied by attenuation of melatonin-mediated inhibition of forskolin-induced cAMP accumulation. Immunoprecipitation and western blot analyses, respectively, showed that MT₂R/β-arrestin scaffolds complexed to Gi, MEK1/2 and ERK1/2 formed in these differentiated hAMSCs (i.e., when ALP levels were highest) where ERK1/2 resided primarily in the cytosol. It is hypothesized that these complexes form to modulate the subcellular localization of ERK1/2 to affect osteogenic gene expression. Using real-time RT-PCR, chronic melatonin exposure induced the expression of osteogenic genes RUNX-2, osteocalcin and BMP-2, through MT₂Rs. No melatonin-mediated changes in the mRNA expression of ALP, BMP-6 or in the oxidative enzymes MtTFA, PGC-1α, Polγ, NRF-1, PDH, PDK and LDH occurred. These data show that a continuous 21-day melatonin exposure is required to induce osteoblast differentiation from hAMSCs through the formation of MT₂R/Gi/β-arrestin/MEK/ERK1/2 complexes to induce osteogenesis.
Collapse
Affiliation(s)
- Shalini Sethi
- Duquesne University School of Pharmacy, Division of Pharmaceutical Sciences, Pittsburgh, PA 15282, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Luchetti F, Canonico B, Betti M, Arcangeletti M, Pilolli F, Piroddi M, Canesi L, Papa S, Galli F. Melatonin signaling and cell protection function. FASEB J 2010; 24:3603-24. [PMID: 20534884 DOI: 10.1096/fj.10-154450] [Citation(s) in RCA: 252] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Besides its well-known regulatory role on circadian rhythm, the pineal gland hormone melatonin has other biological functions and a distinct metabolism in various cell types and peripheral tissues. In different tissues and organs, melatonin has been described to act as a paracrine and also as an intracrine and autocrine agent with overall homeostatic functions and pleiotropic effects that include cell protection and prosurvival factor. These latter effects, documented in a number of in vitro and in vivo studies, are sustained through both receptor-dependent and -independent mechanisms that control detoxification and stress response genes, thus conferring protection against a number of xenobiotics and endobiotics produced by acute and chronic noxious stimuli. Redox-sensitive components are included in the cell protection signaling of melatonin and in the resulting transcriptional response that involves the control of NF-κB, AP-1, and Nrf2. By these pathways, melatonin stimulates the expression of antioxidant and detoxification genes, acting in turn as a glutathione system enhancer. A further and converging mechanism of cell protection by this indoleamine described in different models seems to lie in the control of damage and signaling function of mitochondria that involves decreased production of reactive oxygen species and activation of the antiapoptotic and redox-sensitive element Bcl2. Recent evidence suggests that upstream components in this mitochondrial route include the calmodulin pathway with its central role in melatonin signaling and the survival-promoting component of MAPKs, ERK1/2. In this review article, we will discuss these and other molecular aspects of melatonin signaling relevant to cell protection and survival mechanisms.
Collapse
Affiliation(s)
- Francesca Luchetti
- Dipartimento di Scienze Dell’Uomo dell’Ambiente e della Natura, Università degli Studi di Urbino Carlo Bo, Urbino, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Regodón S, del Prado Míguez M, Jardín I, López JJ, Ramos A, Paredes SD, Rosado JA. Melatonin, as an adjuvant-like agent, enhances platelet responsiveness. J Pineal Res 2009; 46:275-85. [PMID: 19196436 DOI: 10.1111/j.1600-079x.2008.00658.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Melatonin exerts immunomodulatory actions that enhance the magnitude and quality of immune responses specific for certain antigens; this has raised the possibility of using melatonin to design novel vaccine adjuvant systems. The present study investigated the effect of subcutaneous slow-release melatonin implants and subcutaneous melatonin injections on the responsiveness of circulating platelets in sheep after vaccination against Dichelobacter nodosus (A1 and C serotypes), the bacterium that causes ovine footrot, a major cause of lameness in sheep. The experiments were carried out in sheep from a farm located in an area of Mediterranean-type ecosystem. Plasma melatonin levels were determined by radioimmunoassay, sheep platelet aggregation was monitored using an aggregometer and Ca2+ mobilization was determined by spectrofluorimetry using fura-2. Administration of melatonin either by implants or subcutaneous injections increased plasma melatonin concentrations, an effect that was found to be greater and more sustained when melatonin was administered via implants. Vaccination per se, as well as melatonin, increased the percentage and rate of platelet aggregation and reduced the lag-time in response to the physiological agonist thrombin, an effect that was found to be significantly greater when melatonin was administered to vaccinated animals. Melatonin enhanced thrombin-evoked Ca2+ release and entry and further increased Ca2+ mobilization observed in platelets from vaccinated sheep. These observations suggest that the use of melatonin, as a novel adjuvant, induces beneficial effects on platelet function and haemostasis, and opens new perspectives for therapeutic manipulation of immune responses to vaccination.
Collapse
Affiliation(s)
- Sergio Regodón
- Department of Animal Medicine, University of Extremadura, Cáceres, Spain
| | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Melatonin acts both as a hormone of the pineal gland and as a local regulator molecule in various tissues. Quantities of total tissue melatonin exceed those released from the pineal. With regard to this dual role, to the orchestrating, systemic action on various target tissues, melatonin is highly pleiotropic. Numerous secondary effects result from the control of the circadian pacemaker and, in seasonal breeders, of the hypothalamic/pituitary hormonal axes. In mammals, various binding sites for melatonin have been identified, the membrane receptors MT(1) and MT(2), which are of utmost chronobiological importance, ROR and RZR isoforms as nuclear receptors from the retinoic acid receptor superfamily, quinone reductase 2, calmodulin, calreticulin, and mitochondrial binding sites. The G protein-coupled receptors (GPCRs) MT(1) and MT(2) are capable of parallel or alternate signaling via different Galpha subforms, in particular, Galpha(i) (2/) (3) and Galpha(q), and via Gbetagamma, as well. Multiple signaling can lead to the activation of different cascades and/or ion channels. Melatonin frequently decreases cAMP, but also activates phospholipase C and protein kinase C, acts via the MAP kinase and PI3 kinase/Akt pathways, modulates large conductance Ca(2+)-activated K(+) and voltage-gated Ca(2+) channels. MT(1) and MT(2) can form homo and heterodimers, and MT(1) interacts with other proteins in the plasma membrane, such as an orphan GPCR, GPR50, and the PDZ domain scaffolding protein MUPP1, effects which negatively or positively influence signaling capacity. Cross-talks between different signaling pathways, including influences of the membrane receptors on nuclear binding sites, are discussed. (c) 2009 International Union of Biochemistry and Molecular Biology, Inc.
Collapse
Affiliation(s)
- Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany.
| |
Collapse
|