1
|
Tanrisever M, Tekin B, Can UK, Istek O, Ozcan EC, Ozercan IH, Gelic T, Dundar S. The Effect of Local Melatonin Application on Bone Fracture Healing in Rat Tibias. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:146. [PMID: 39859128 PMCID: PMC11766808 DOI: 10.3390/medicina61010146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/31/2024] [Accepted: 01/15/2025] [Indexed: 01/27/2025]
Abstract
Background and Objectives: This study aimed to histologically evaluate the effects of local melatonin application at different doses on bone fracture healing. Materials and Methods: Thirty rats were divided into three groups, with ten rats in each group. In the control group (n = 10), a fracture line was created in the tibial bones, and fracture osteosynthesis was performed without any additional procedure. In the local melatonin dose 1 (MLT D-1) group (n = 10), a fracture line was created in the tibial bones, and 1.2 mg of lyophilized powder melatonin was applied locally before fracture osteosynthesis. In the local melatonin dose 2 (MLT D-2) group (n = 10), a fracture line was created in the tibial bones, and 3 mg of lyophilized powder melatonin was applied locally before fracture osteosynthesis. After a 12-week healing period, all subjects were sacrificed, and tibial bones were collected for histomorphometric analysis. Results: The percentage of bone formation was significantly higher in the MLT D-1 and MLT D-2 groups than in the control group. There was no statistically significant difference between the MLT D-1 and MLT D-2 groups. Conclusions: In conclusion, the study demonstrated that local melatonin application supports bone fracture by increasing bone formation, although different doses of melatonin did not lead to significant variations in fracture healing.
Collapse
Affiliation(s)
- Murat Tanrisever
- Department of Surgery, Faculty of Veterinary Medicine, Firat University, Elazig 23119, Türkiye;
| | - Bahar Tekin
- Department of Peridontology, Faculty of Dentistry, Firat University, Elazig 23119, Türkiye; (B.T.); (S.D.)
| | - Umit Koray Can
- Turkish Jockey Club Elazig Racecourse Horse Hospital, Elazig 23350, Türkiye;
| | - Ozmen Istek
- Department of Nursing, Faculty of Health Medicine, Mus Alparslan University, Mus 49250, Türkiye;
| | - Erhan Cahit Ozcan
- Department of Esthetic, Plastic and Reconstructive Surgery, Faculty of Medicine, Firat University, Elazig 23119, Türkiye;
| | - Ibrahim H. Ozercan
- Department of Pathology, Faculty of Medicine, Firat University, Elazig 23119, Türkiye;
| | - Turker Gelic
- Department of Surgery, Faculty of Veterinary Medicine, Firat University, Elazig 23119, Türkiye;
| | - Serkan Dundar
- Department of Peridontology, Faculty of Dentistry, Firat University, Elazig 23119, Türkiye; (B.T.); (S.D.)
| |
Collapse
|
2
|
Shokri M, Kharaziha M, Ahmadi Tafti H, Dalili F, Mehdinavaz Aghdam R, Ghiassi SR, Baghaban Eslaminejad M. Melatonin-loaded mesoporous zinc- and gallium-doped hydroxyapatite nanoparticles to control infection and bone repair. Biomater Sci 2024; 12:4194-4210. [PMID: 38980095 DOI: 10.1039/d4bm00377b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Effective treatment of infected bone defects resulting from multi-drug resistant bacteria (MDR) has emerged as a significant clinical challenge, highlighting the pressing demand for potent antibacterial bone graft substitutes. Mesoporous nanoparticles have been introduced as a promising class of biomaterials offering significant properties for treating bone infections. Herein, we synthesize antibacterial mesoporous hydroxyapatite substituted with zinc and gallium (Zn-Ga:mHA) nanoparticles using a facile sol-gel method. The resulting mesoporous nanoparticles are applied for the controlled release of melatonin (Mel). Zn-Ga:mHA nanoparticles with an average particle size of 36 ± 3 nm and pore size of 10.6 ± 0.4 nm reveal a Mel loading efficiency of 58 ± 1%. Results show that 50% of Mel is released within 20 h and its long-term release is recorded up to 50 h. The Zn-Ga:mHA nanoparticles exhibit highly effective antibacterial performance as reflected by a 19 ± 1% and 8 ± 2% viability reduction in Escherichia coli and Staphylococcus bacteria, respectively. Noticeably, Mel-loaded Zn-Ga:mHA nanoparticles are also cytocompatible and stimulate in vitro osteogenic differentiation of human mesenchymal stem cells (hMSCs) without any osteoinductive factor. In vivo studies in a rabbit skull also show significant regeneration of bone during 14 days. In summary, Mel-loaded Zn-Ga:mHA nanoparticles provide great potential as an antibacterial and osteogenic component in bone substitutes like hydrogels, scaffolds, and coatings.
Collapse
Affiliation(s)
- Mahshid Shokri
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
- Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahshid Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Hossein Ahmadi Tafti
- Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Faezeh Dalili
- School of Metallurgy & Materials Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | | | - Seyed Reza Ghiassi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Islamic Azad University, Garmsar Branch, Garmsar, Iran
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Sciences Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
3
|
Mei G, Wang J, Wang J, Ye L, Yi M, Chen G, Zhang Y, Tang Q, Chen L. The specificities, influencing factors, and medical implications of bone circadian rhythms. FASEB J 2024; 38:e23758. [PMID: 38923594 DOI: 10.1096/fj.202302582rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/14/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024]
Abstract
Physiological processes within the human body are regulated in approximately 24-h cycles known as circadian rhythms, serving to adapt to environmental changes. Bone rhythms play pivotal roles in bone development, metabolism, mineralization, and remodeling processes. Bone rhythms exhibit cell specificity, and different cells in bone display various expressions of clock genes. Multiple environmental factors, including light, feeding, exercise, and temperature, affect bone diurnal rhythms through the sympathetic nervous system and various hormones. Disruptions in bone diurnal rhythms contribute to the onset of skeletal disorders such as osteoporosis, osteoarthritis and skeletal hypoplasia. Conversely, these bone diseases can be effectively treated when aimed at the circadian clock in bone cells, including the rhythmic expressions of clock genes and drug targets. In this review, we describe the unique circadian rhythms in physiological activities of various bone cells. Then we summarize the factors synchronizing the diurnal rhythms of bone with the underlying mechanisms. Based on the review, we aim to build an overall understanding of the diurnal rhythms in bone and summarize the new preventive and therapeutic strategies for bone disorders.
Collapse
Affiliation(s)
- Gang Mei
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Jinyu Wang
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Jiajia Wang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Lanxiang Ye
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Ming Yi
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Guangjin Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Yifan Zhang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Qingming Tang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| |
Collapse
|
4
|
Okamoto HH, Cecon E, Nureki O, Rivara S, Jockers R. Melatonin receptor structure and signaling. J Pineal Res 2024; 76:e12952. [PMID: 38587234 DOI: 10.1111/jpi.12952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/05/2024] [Accepted: 03/24/2024] [Indexed: 04/09/2024]
Abstract
Melatonin (5-methoxy-N-acetyltryptamine) binds with high affinity and specificity to membrane receptors. Several receptor subtypes exist in different species, of which the mammalian MT1 and MT2 receptors are the best-characterized. They are members of the G protein-coupled receptor superfamily, preferentially coupling to Gi/o proteins but also to other G proteins in a cell-context-depending manner. In this review, experts on melatonin receptors will summarize the current state of the field. We briefly report on the discovery and classification of melatonin receptors, then focus on the molecular structure of human MT1 and MT2 receptors and highlight the importance of molecular simulations to identify new ligands and to understand the structural dynamics of these receptors. We then describe the state-of-the-art of the intracellular signaling pathways activated by melatonin receptors and their complexes. Brief statements on the molecular toolbox available for melatonin receptor studies and future perspectives will round-up this review.
Collapse
Affiliation(s)
- Hiroyuki H Okamoto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Erika Cecon
- Université Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Silvia Rivara
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Ralf Jockers
- Université Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
| |
Collapse
|
5
|
Karkehabadi H, Abbasi R, Najafi R, Khoshbin E. The effects of melatonin on the viability and osteogenic/odontogenic differentiation of human stem cells from the apical papilla. Mol Biol Rep 2023; 50:8959-8969. [PMID: 37715020 DOI: 10.1007/s11033-023-08747-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/08/2023] [Indexed: 09/17/2023]
Abstract
BACKGROUND An experimental study was conducted to examine whether melatonin influences osteogenic/odontogenic differentiation of human stem cells derived from the apical papilla (hSCAPs). MATERIALS AND METHODS In order to isolate hSCAPs, the undeveloped root of a third molar of a human tooth was used. Melatonin was administered to the experimental groups in an osteogenic medium. No treatment was administered to the control group. The methyl thiazolyl tetrazolium (MTT) assay was performed on days 1, 2, and 3 to assess cell viability (n = 8). A determination of odontogenic/osteogenic differentiation was accomplished using alkaline phosphatase (ALP) activity alizarin red staining (ARS) (n = 6), and the expression of osteogenic genes by real-time polymerase chain reaction (RT-PCR) (n = 3) on days 1, 2, and 7. Evaluation of the data was conducted using SPSS version 18. All experiments were conducted at least three times. The Mann Whitney U test, the ANOVA analysis, Tukey's test, and t-test was implemented to analyze the data (α = 0.05). RESULTS After 24 h, 48 h, and 72 h, No significant difference was observed between the control group and the melatonin treatment group in terms of viability of hSCAPs. (from 1 up to 10 µg/ml) (P > 0.05). The assessment of ARS and ALP activity showed that melatonin treatment enhanced osteogenic differentiation of hSCAPs (P < 0.001). Melatonin treatment caused hSCAPs to show an increase of genes related to osteogenic/odontogenic differentiation. These genes included ALP, dentin sialophosphoprotein (DSPP), dentin matrix protein 1 (DMP-1), and bone sialoprotein (BSP) (P < 0.001). CONCLUSIONS Melatonin treatment enhanced osteogenic/odontogenic differentiation of hSCAPs with a dose dependent effect on cell viability.
Collapse
Affiliation(s)
- Hamed Karkehabadi
- Department of Endodontics, Dental Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Roshanak Abbasi
- Department of Endodontics, Dental School, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rezvan Najafi
- Department of Medical Molecular & Genetics, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Elham Khoshbin
- Department of Endodontics, Dental School, Hamadan University of Medical Sciences, Hamadan, Iran.
- Hamadan Dental School, Shahid Fahmideh Street, PO Box 6517838677, Hamadan, Iran.
| |
Collapse
|
6
|
Bagherifard A, Hosseinzadeh A, Koosha F, Sheibani M, Karimi-Behnagh A, Reiter RJ, Mehrzadi S. Melatonin and bone-related diseases: an updated mechanistic overview of current evidence and future prospects. Osteoporos Int 2023; 34:1677-1701. [PMID: 37393580 DOI: 10.1007/s00198-023-06836-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/16/2023] [Indexed: 07/04/2023]
Abstract
PURPOSE Bone diseases account for an enormous cost burden on health systems. Bone disorders are considered as age-dependent diseases. The aging of world population has encouraged scientists to further explore the most effective preventive modalities and therapeutic strategies to overcome and reduce the high cost of bone disorders. Herein, we review the current evidence of melatonin's therapeutic effects on bone-related diseases. METHODS This review summarized evidences from in vitro, in vivo, and clinical studies regarding the effects of melatonin on bone-related diseases, with a focus on the molecular mechanisms. Electronically, Scopus and MEDLINE®/PubMed databases were searched for articles published on melatonin and bone-related diseases from inception to June 2023. RESULTS The findings demonstrated that melatonin has beneficial effect in bone- and cartilage-related disorders such as osteoporosis, bone fracture healing, osteoarthritis, and rheumatoid arthritis, in addition to the control of sleep and circadian rhythms. CONCLUSION A number of animal and clinical studies have indicated that various biological effects of melatonin may suggest this molecule as an effective therapeutic agent for controlling, diminishing, or suppressing bone-related disorders. Therefore, further clinical studies are required to clarify whether melatonin can be effective in patients with bone-related diseases.
Collapse
Affiliation(s)
- Abolfazl Bagherifard
- Bone and Joint Reconstruction Research Center, Department of Orthopedics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Fereshteh Koosha
- Department of Radiology Technology, Faculty of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Sheibani
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Russel J Reiter
- Department of Cellular and Structural Biology, Long School of Medicine, UT Health San Antonio, San Antonio, TX, USA
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Gonde NP, Rathod SR, Kolte AP. Comparative evaluation of 1% melatonin gel in the treatment of intrabony defect: A randomized controlled clinical trial. J Periodontol 2022; 93:1878-1888. [PMID: 35238041 DOI: 10.1002/jper.21-0515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/28/2022] [Accepted: 02/24/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND The present study aims to evaluate and compare the efficacy of locally delivered 1% melatonin gel as an adjunct to non-surgical periodontal therapy (NSPT) in treatment of intrabony defect in Stage III periodontitis, clinically, and radiographically using cone-beam computed tomography (CBCT). METHODS This split-mouth clinical trial randomly allotted 44 bilateral intrabony defect (in 22 patients) into two groups where Group I was treated with NSPT with locally delivered placebo gel while Group II was treated with NSPT with 1% melatonin gel. The intrabony defect fill measured from cemento-enamel junction (CEJ)-base of the defect (BD), and the difference in the measurement values of CEJ-BD from baseline to 6 months denoting the bone fill and bone volume evaluated at 6 months using CBCT were the primary outcome measures. Secondary outcome measures were change in probing depth (PD), clinical attachment level (CAL), plaque index, and modified sulcus bleeding index recorded at baseline, 3 months, and 6 months. RESULTS Both the study groups showed improvements in assessed parameters, however, a significant gain in intrabony defect fill was observed in Group II (1.46 ± 0.58) as compared with Group I (0.50 ± 0.38) and change in bone volume for Group I was 21.4645 ± 8.8980 mm3 and for Group II was 51.8418 ± 30.2329 mm3 with P < 0.0001.The mean reduction in PD and gain in CAL was 3.90 ± 0.78 and 2.94 ± 0.80 in Group II and in Group I it was 3.23 ± 0.90 and 1.96 ± 0.80 (P < 0.0001). CONCLUSION The use of 1% melatonin gel as an adjunct to NSPT is more beneficial in achieving better clinical and radiographic outcome at 6 months which indicates that adjunct use of melatonin gel to NSPT as a local drug delivery is preferred when compared with NSPT and placebo gel alone.
Collapse
Affiliation(s)
- Noopur P Gonde
- Department of Periodontics & Implantology, VSPM Dental College and Research Center, Nagpur, India
| | - Surekha R Rathod
- Department of Periodontics & Implantology, VSPM Dental College and Research Center, Nagpur, India
| | - Abhay P Kolte
- Department of Periodontics & Implantology, VSPM Dental College and Research Center, Nagpur, India
| |
Collapse
|
8
|
de Almeida CD, Sartoretto SC, Alves ATNN, de Brito Resende RF, de Albuquerque Calasans-Maia J, Moraschini V, Rossi A, Granjeiro JM, Sacco R, Calasans-Maia MD. Does Melatonin Associated with Nanostructured Calcium Phosphate Improve Alveolar Bone Repair? MEDICINA (KAUNAS, LITHUANIA) 2022; 58:1720. [PMID: 36556923 PMCID: PMC9783045 DOI: 10.3390/medicina58121720] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
Background and objectives: Calcium phosphates have been widely used as bone substitutes, but their properties are limited to osteoconduction. The association of calcium phosphates with osteoinductive bioactive molecules has been used as a strategy in regenerative medicine. Melatonin has been studied due to its cell protection and antioxidant functions, reducing osteoclastic activity and stimulating newly formed bone. This study aimed to evaluate the effect of topical application of melatonin associated with nanostructured carbonated hydroxyapatite microspheres in the alveolar bone repair of Wistar rats through histological and histomorphometric analysis. Materials and Methods: Thirty female Wistar rats (300 g) were used, divided randomly into three experimental groups (n = 10), G1: nanostructured carbonated hydroxyapatite microspheres associated with melatonin gel (CHA-M); G2: nanostructured carbonated hydroxyapatite (CHA); G3: blood clot (without alveolar filling). The animals were euthanized after 7 and 42 days of the postoperative period and processed for histological and histomorphometric evaluation. Kruskal-Wallis and Dunn's post-test were applied to investigate statistical differences between the groups at the same time point for new bone and connective tissue variables. Mann-Whitney was used to assess statistical differences between different time points and in the biomaterial variable. Results: Results showed a greater volume of residual biomaterial in the CHA-M than the CHA group (p = 0.007), and there were no significant differences in terms of newly formed bone and connective tissue between CHA and CHA-M after 42 days. Conclusions: This study concluded that both biomaterials improved alveolar bone repair from 7 to 42 days after surgery, and the association of CHA with melatonin gel reduced the biomaterial's biodegradation at the implanted site but did not improve the alveolar bone repair.
Collapse
Affiliation(s)
- Camila Diuana de Almeida
- Post-Graduation Program in Dentistry, Dentistry School, Federal Fluminense University, Niteroi 24020-140, Brazil
- Clinical Research in Dentistry Laboratory, School of Dentistry, Federal Fluminense University, Niteroi 24020-140, Brazil
| | - Suelen Cristina Sartoretto
- Clinical Research in Dentistry Laboratory, School of Dentistry, Federal Fluminense University, Niteroi 24020-140, Brazil
- Oral Surgery Department, Dentistry School, Federal Fluminense University, Niteroi 24020-140, Brazil
| | | | - Rodrigo Figueiredo de Brito Resende
- Clinical Research in Dentistry Laboratory, School of Dentistry, Federal Fluminense University, Niteroi 24020-140, Brazil
- Oral Surgery Department, Dentistry School, Federal Fluminense University, Niteroi 24020-140, Brazil
- Oral Surgery, Dentistry School, Iguaçu University, Nova Iguaçu 26260-045, Brazil
| | | | - Vittorio Moraschini
- Clinical Research in Dentistry Laboratory, School of Dentistry, Federal Fluminense University, Niteroi 24020-140, Brazil
- Oral Surgery Department, Dentistry School, Federal Fluminense University, Niteroi 24020-140, Brazil
| | - Alexandre Rossi
- Department of Condensed Matter, Applied Physics and Nanoscience, Brazilian Center for Research in Physics, Rio de Janeiro 22290-180, Brazil
| | - José Mauro Granjeiro
- Clinical Research in Dentistry Laboratory, School of Dentistry, Federal Fluminense University, Niteroi 24020-140, Brazil
| | - Roberto Sacco
- Oral Surgery Department, Division of Dentistry, School of Medical Science, The University of Manchester, Manchester M13 9PL, UK
| | - Mônica Diuana Calasans-Maia
- Clinical Research in Dentistry Laboratory, School of Dentistry, Federal Fluminense University, Niteroi 24020-140, Brazil
| |
Collapse
|
9
|
Impact of Melatonin on RAW264.7 Macrophages during Mechanical Strain. Int J Mol Sci 2022; 23:ijms232113397. [DOI: 10.3390/ijms232113397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/28/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
Abstract
The concentration of melatonin is elevated during the night when patients mainly wear removable orthodontic appliances. Next to periodontal ligament fibroblasts and osteoblasts, macrophages react to mechanical strain with an increased expression of inflammatory mediators. Here, we investigated the impact of melatonin on RAW264.7 macrophages exposed to tensile or compressive strain occurring during orthodontic tooth movement in the periodontal ligament. Before exposure to mechanical strain for 4 h, macrophages were pre-incubated with different melatonin concentrations for 24 h, to determine the dependence of melatonin concentration. Afterwards, we performed experiments with and without mechanical strain, the most effective melatonin concentration (25 µM), and the melatonin receptor 2 (MT2) specific antagonist 4P-PDOT. The expression of inflammatory genes and proteins was investigated by RT-qPCR, ELISAs, and immunoblot. Both tensile and compressive strain increased the expression of the investigated inflammatory factors interleukin-1-beta, interleukin-6, tumor necrosis factor alpha, and prostaglandin endoperoxide synthase-2. This effect was inhibited by the addition of melatonin. Incubation with 4P-PDOT blocked this anti-inflammatory effect of melatonin. Melatonin had an anti-inflammatory effect on macrophages exposed to mechanical strain, independent of the type of mechanical strain. As inhibition was possible with 4P-PDOT, the MT2 receptor might be involved in the regulation of the observed effects.
Collapse
|
10
|
Bondi CD, Rush BM, Hartman HL, Wang J, Al-Bataineh MM, Hughey RP, Tan RJ. Suppression of NRF2 Activity by HIF-1α Promotes Fibrosis after Ischemic Acute Kidney Injury. Antioxidants (Basel) 2022; 11:1810. [PMID: 36139884 PMCID: PMC9495756 DOI: 10.3390/antiox11091810] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/04/2022] [Accepted: 09/08/2022] [Indexed: 01/26/2023] Open
Abstract
Acute kidney injury (AKI) is a rapid decline in renal function and can occur after ischemia/reperfusion injury (IRI) to the tubular epithelia. The nuclear factor erythroid-2-related factor 2 (NRF2) pathway protects against AKI and AKI-to-chronic kidney disease (CKD) progression, but we previously demonstrated that severe IRI maladaptively reduced NRF2 activity in mice. To understand the mechanism of this response, we subjected C57BL/6J mice to unilateral kidney IRI with ischemia times that were titrated to induce mild to severe injury. Mild IRI increased NRF2 activity and was associated with renal recovery, whereas severe IRI decreased NRF2 activity and led to progressive CKD. Due to these effects of ischemia, we tested the hypothesis that hypoxia-inducible factor-1α (HIF-1α) mediates NRF2 activity. To mimic mild and severe ischemia, we activated HIF-1α in HK-2 cells in nutrient-replete or nutrient-deficient conditions. HIF-1α activation in nutrient-replete conditions enhanced NRF2 nuclear localization and activity. However, in nutrient-deficient conditions, HIF-1α activation suppressed NRF2 nuclear localization and activity. Nuclear localization was rescued with HIF-1α siRNA knockdown. Our results suggest that severe ischemic AKI leads to HIF-1α-mediated suppression of NRF2, leading to AKI-to-CKD progression.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Roderick J. Tan
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 152671, USA
| |
Collapse
|
11
|
Munmun F, Mohiuddin OA, Hoang VT, Burow ME, Bunnell BA, Sola VM, Carpentieri AR, Witt-Enderby PA. The role of MEK1/2 and MEK5 in melatonin-mediated actions on osteoblastogenesis, osteoclastogenesis, bone microarchitecture, biomechanics, and bone formation. J Pineal Res 2022; 73:e12814. [PMID: 35674448 DOI: 10.1111/jpi.12814] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 04/30/2022] [Accepted: 05/11/2022] [Indexed: 12/11/2022]
Abstract
Melatonin, the primary hormone involved in circadian entrainment, plays a significant role in bone physiology. This study aimed to assess the role of MEK1/2 and MEK5 in melatonin-mediated actions in mouse and human mesenchymal stem cells (MSCs) and on bone using small-molecule inhibitors and CRISPR/Cas9 knockout approaches. Consistent with in vitro studies performed in mMSCs and hMSCs, nightly (25 mg/kg, i.p., 45 days) injections with PD184352 (MEK1/2 inhibitor) or Bix02189 (MEK5 inhibitor) or SC-1-151 (MEK1/2/5 inhibitor) demonstrated that MEK1/2 and MEK5 were the primary drivers underlying melatonin's actions on bone density, microarchitecture (i.e., trabecular number, separation, and connectivity density), and bone mechanical properties (i.e., ultimate stress) through increases in osteogenic (RUNX2, BMP-2, FRA-1, OPG) expression and decreases in PPARγ. Furthermore, CRISPR/Cas9 knockout of MEK1 or MEK5 in mMSCs seeded on PLGA scaffolds and placed into critical-size calvarial defects in Balb(c) mice (male and female) revealed that treatment with melatonin (15 mg/L; p.o., nightly, 90 days) mediates sex-specific actions of MEK1 and MEK5 in new bone formation. This study is the first to demonstrate a role for MEK1/2 and MEK5 in modulating melatonin-mediated actions on bone formation in vivo and in a sex-specific manner.
Collapse
Affiliation(s)
- Fahima Munmun
- Division of Pharmaceutical Sciences, Duquesne University School of Pharmacy, Pittsburgh, Pennsylvania, USA
| | - Omair A Mohiuddin
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Van T Hoang
- Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Matthew E Burow
- Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Bruce A Bunnell
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Veronica M Sola
- Department of Oral Biology, Faculty of Odontology, National University of Cordoba, Cordoba, Argentina
| | - Agata R Carpentieri
- Faculty of Odontology, National University of Cordoba and National Council for Scientific and Technical Research (CONICET); Institute for Health Sciences Research (INICSA), Cordoba, Argentina
| | - Paula A Witt-Enderby
- Division of Pharmaceutical Sciences, Duquesne University School of Pharmacy, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
12
|
Solá VM, Aguilar JJ, Farías A, Vazquez Mosquera AP, Peralta López ME, Carpentieri AR. Melatonin protects gingival mesenchymal stem cells and promotes differentiation into osteoblasts. Cell Biochem Funct 2022; 40:636-646. [PMID: 35848411 DOI: 10.1002/cbf.3733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/01/2022] [Accepted: 07/03/2022] [Indexed: 11/09/2022]
Abstract
Melatonin (MEL) has antioxidant properties and participates in osteogenic differentiation. In periodontitis, in which increased oxidative stress and bone resorption are involved, mesenchymal stem cells derived from the gingiva (GMSCs) combined with MEL could be relevant for osteogenic regeneration. In this study, we studied the antioxidant and differentiating effect of MEL on an in vitro system of GMSCs. Primary culture of GMSCs from Wistar rats was developed to evaluate differentiation into osteoblasts with an appropriate medium with or without MEL. Marker genes of mesenchymal stem cells by real time-polymerase chain reaction, clonogenic capacity, and cell migration after wound assay were used to characterize GMSCs as mesenchymal stem cells. Alkaline phosphatase activity and the alizarin red technique were used to evaluate osteogenic activity and differentiation. MEL increased alkaline phosphatase activity and alizarin red values, promoting osteogenic differentiation. Besides this, MEL protected GMSCs in a model of cellular damage related to oxidative stress, returning viability to baseline. MEL was more effective in promoting and protecting GMSCs by the production of osteogenic cells when oxidative stress is present. This evidence supports the use of MEL as a novel bone-regenerative therapy in periodontal diseases.
Collapse
Affiliation(s)
- Verónica M Solá
- Cátedra "B" de Química Biológica, Facultad de Odontología, Universidad Nacional de Córdoba (UNC), Córdoba, Argentina.,Instituto de Investigaciones en Ciencias de la Salud (INICSA/UNC-CONICET), Córdoba, Argentina
| | - Juan J Aguilar
- Instituto de Virología Dr. José María Vanella, Facultad de Ciencias Médicas, UNC, Córdoba, Argentina.,Cátedra "B" de Introducción a la Física y Química Biológica, Facultad de Odontología, UNC, Córdoba, Argentina
| | - Adrián Farías
- Instituto de Virología Dr. José María Vanella, Facultad de Ciencias Médicas, UNC, Córdoba, Argentina
| | - Ana P Vazquez Mosquera
- Cátedra "B" de Química Biológica, Facultad de Odontología, Universidad Nacional de Córdoba (UNC), Córdoba, Argentina.,Instituto de Investigaciones en Ciencias de la Salud (INICSA/UNC-CONICET), Córdoba, Argentina.,Cátedra "B" de Introducción a la Física y Química Biológica, Facultad de Odontología, UNC, Córdoba, Argentina
| | - María E Peralta López
- Cátedra "B" de Química Biológica, Facultad de Odontología, Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
| | - Agata R Carpentieri
- Cátedra "B" de Química Biológica, Facultad de Odontología, Universidad Nacional de Córdoba (UNC), Córdoba, Argentina.,Instituto de Investigaciones en Ciencias de la Salud (INICSA/UNC-CONICET), Córdoba, Argentina
| |
Collapse
|
13
|
Liu C, Zhang W, Gao M, Yang K, Tan L, Zhao W. A Degradable and Osteogenic Mg-Based MAO-MT-PLGA Drug/Ion Delivery System for Treating an Osteoporotic Fracture. Pharmaceutics 2022; 14:1481. [PMID: 35890376 PMCID: PMC9320112 DOI: 10.3390/pharmaceutics14071481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/02/2022] [Accepted: 07/11/2022] [Indexed: 12/10/2022] Open
Abstract
Osteoporotic fractures are a very common bone disease that is difficult to completely cure. A large number of people worldwide suffer from pain caused by osteoporotic fractures every year, which can even cause disability and death. The compromised skeletal strength, lower density, trabecular microstructure, and bone-forming ability caused by osteoporotic fractures make them difficult to treat relative to normal fractures. An ideal scheme for osteoporotic fractures is to select internal fixation materials with matched mechanical and biological properties and carry anti-osteoporosis drugs on the plant to achieve bio-fixation and improve the condition of osteoporosis simultaneously. We designed a Mg-based MAO-MT-PLGA drug/ion delivery system (DDS) compatible with bone-like mechanical properties, degradation properties, and drug therapy. In this research, we evaluated the degradation behavior of Mg-based MAO-MT-PLGA DDS using immersion tests and electrochemical tests aided by SEM, EDS, XPS, XRD, and FT-IR. The DDS showed better corrosion resistance over Mg alloy and could release more Mg2+ due to the degradation of PLGA. According to cell viability and cell adhesion, the DDS showed better osteogenic characteristics over control group I (Mg alloy) and control group II (Mg-based MAO alloy), especially in the cells co-cultured with the leaching solution for 72 h, in which the DDS group increased to about 15% cell viability compared with group I (p < 0.05). The mRNA relative expressions, including ALP, collagen I, OCN, OPG, and Runx-2, as well as extracellular matrix calcium deposits of the DDS, are 1.5~2 times over control group I and control group II (p < 0.05), demonstrating a better ability to promote bone formation and inhibit bone resorption. After the DDS was implanted into the castrated rat model for one month, the trabeculae in the treatment group were significantly denser and stronger than those in the control group, with a difference of about 1.5 times in bone volume fraction, bone density, and the number of trabeculae, as well as the magnesium content in the bone tissue (p < 0.05). The above results demonstrated that the Mg-based MAO-MT-PLGA drug/ion delivery system is a potential treatment for osteoporotic fractures.
Collapse
Grants
- the National Key Research and Development Program of China (No. 2020YFC1107501),the National Natural Science Foundation of China (No. 51971222, 51801220), the Natural Science Foundation of Liaoning Province of China (No. 2020-MS-001, 2021-BS-118), the Nat the National Key Research and Development Program of China (No. 2020YFC1107501),the National Natural Science Foundation of China (No. 51971222, 51801220), the Natural Science Foundation of Liaoning Province of China (No. 2020-MS-001, 2021-BS-118), the Nat
Collapse
Affiliation(s)
- Changxin Liu
- School of Materials Science and Engineering, University of Science and Technology of China, No. 72 Wenhua Road, Shenyang 110016, China; (C.L.); (W.Z.)
- Shi-Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, No. 72 Wenhua Road, Shenyang 110016, China; (M.G.); (K.Y.)
| | - Wen Zhang
- School of Materials Science and Engineering, University of Science and Technology of China, No. 72 Wenhua Road, Shenyang 110016, China; (C.L.); (W.Z.)
- Shi-Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, No. 72 Wenhua Road, Shenyang 110016, China; (M.G.); (K.Y.)
| | - Ming Gao
- Shi-Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, No. 72 Wenhua Road, Shenyang 110016, China; (M.G.); (K.Y.)
| | - Ke Yang
- Shi-Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, No. 72 Wenhua Road, Shenyang 110016, China; (M.G.); (K.Y.)
| | - Lili Tan
- Shi-Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, No. 72 Wenhua Road, Shenyang 110016, China; (M.G.); (K.Y.)
| | - Wei Zhao
- Department of Orthopedics, The Fourth Hospital of China Medical University, No. 77 Puhe Road, Shenyang 110122, China
| |
Collapse
|
14
|
Ciortea VM, Borda MI, Motoașcă I, Șușman S, Ciubean AD, Pintea AL, Ungur RA, Iliescu MG, Irsay L. Influence of melatonin on systemic inflammatory status and bone histopathological modifications in female rats with surgically induced menopause. BALNEO AND PRM RESEARCH JOURNAL 2022. [DOI: 10.12680/balneo.2022.493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background. Melatonin, N-acetyl-5-methoxy-tryptamine is the major secretion product of the pineal gland with important anti-inflammatory and antioxidant properties, also being an im-portant marker of bone remodelling associated with menopause. Objectives. The aim of our study was to evaluate the effect of the co-administration of melatonin and estrogen on systemic inflammatory status and bone histopathological modifications in surgically induced menopau-sal female rats. Materials and methods. The study was performed on a number of 40 female rats, Wistar breed, which underwent bilateral surgical ovariectomy. Within 14 days postoperative, hormone replacement therapy with estrogen or estrogen with melatonin was initiated, in differ-ent doses. The treatment was administered for 12 consecutive weeks. At the end of the treatment we measured the serum levels of IL-6 and TNF-α. The femoral bones were harvested after sacri-ficing the animals and the thickness of the cortical bones was measured and histologically ana-lysed.
Results. Serum values of inflammatory markers were negatively correlated with melatonin ad-ministration, the differences being more important at higher doses of melatonin (for both IL-6 and TNF-α the difference between group E_2M with estrogen substitution and melatonin in double dose and control group W, without hormone replacement, was highly statistically signif-icant with p <0.0001). Bone diameters improved in the case of female rats that received hormone replacement with estrogen and higher dose of melatonin (p = 0.0004 between group E_2M, with hormone replacement and group W, control group). Conclusions. Melatonin improved inflam-matory status and bone histopathological changes in ovariectomized female rats.
Keywords: melatonin, estrogen replacement therapy, inflammation, low bone density
Collapse
Affiliation(s)
- Viorela Mihaela Ciortea
- 1 Department of Rehabilitation, ”Iuliu Hatieganu” University of Medicine and Pharmacy Cluj-Napoca, Romania 2 Clinical Rehabilitation Hospital Cluj-Napoca, Romania
| | - Monica Ileana Borda
- 1 Department of Rehabilitation, ”Iuliu Hatieganu” University of Medicine and Pharmacy Cluj-Napoca, Romania 2 Clinical Rehabilitation Hospital Cluj-Napoca, Romania
| | | | - Sergiu Șușman
- Department of Histology, ”Iuliu Hatieganu” University of Medicine and Pharmacy Cluj-Napoca, Romania
| | - Alina Deniza Ciubean
- Department of Rehabilitation, ”Iuliu Hatieganu” University of Medicine and Pharmacy Cluj-Napoca, Romania
| | - Alina Liliana Pintea
- Dental Medicine and Nursing Department, ”Lucian Blaga” University of Sibiu, Faculty of Medi-cine, Academic Emergency Hospital of Sibiu, Romania
| | - Rodica Ana Ungur
- 1 Department of Rehabilitation, ”Iuliu Hatieganu” University of Medicine and Pharmacy Cluj-Napoca, Romania 2 Clinical Rehabilitation Hospital Cluj-Napoca, Romania
| | | | - Laszlo Irsay
- 1 Department of Rehabilitation, ”Iuliu Hatieganu” University of Medicine and Pharmacy Cluj-Napoca, Romania 2 Clinical Rehabilitation Hospital Cluj-Napoca, Romania
| |
Collapse
|
15
|
|
16
|
Munmun F, Witt-Enderby PA. Mesenchymal Stem Cell and Monocyte Co-cultures. Methods Mol Biol 2022; 2550:353-364. [PMID: 36180705 DOI: 10.1007/978-1-0716-2593-4_36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Transwell co-cultures are critical to study cell-to-cell communication through the release of factors between different cells allowing for the simultaneous assessment of treatment effects on one cell type (e.g., Cell A) and their impact on another cell type (e.g., Cell B). This allows for the simultaneous assessment of two different cell types and the factors they secrete under the same treatment conditions, which minimizes interexperimental variability, demonstrates causation rather than association, and enhances the translatability of the findings to the in vivo condition. Here we describe transwell co-cultures of human mesenchymal stem cells (MSCs) and peripheral blood monocytes or pre-osteoclasts to assess osteoblast-mediated actions on osteoclastogenesis.
Collapse
Affiliation(s)
- Fahima Munmun
- Division of Pharmaceutical Sciences, Duquesne University School of Pharmacy, Pittsburgh, PA, USA
| | - Paula A Witt-Enderby
- Division of Pharmaceutical, Administrative and Social Sciences, Duquesne University School of Pharmacy, Pittsburgh, PA, USA.
| |
Collapse
|
17
|
Munmun F, Witt-Enderby PA. Melatonin effects on bone: Implications for use as a therapy for managing bone loss. J Pineal Res 2021; 71:e12749. [PMID: 34085304 DOI: 10.1111/jpi.12749] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/22/2021] [Accepted: 05/31/2021] [Indexed: 02/06/2023]
Abstract
Melatonin is the primary circadian output signal from the brain and is mainly synthesized in pinealocytes. The rhythm and secretion of melatonin are under the control of an endogenous oscillator located in the SCN or the master biological clock. Disruptions in circadian rhythms by shift work, aging, or light at night are associated with bone loss and increased fracture risk. Restoration of nocturnal melatonin peaks to normal levels or therapeutic levels through timed melatonin supplementation has been demonstrated to provide bone-protective actions in various models. Melatonin is a unique molecule with diverse molecular actions targeting melatonin receptors located on the plasma membrane or mitochondria or acting independently of receptors through its actions as an antioxidant or free radical scavenger to stimulate osteoblastogenesis, inhibit osteoclastogenesis, and improve bone density. Its additional actions on entraining circadian rhythms and improving quality of life in an aging population coupled with its safety profile make it an ideal therapeutic candidate for protecting against bone loss in susceptible populations. The intent of this review is to provide a focused discussion on bone loss and disorders of the bone as it relates to melatonin and conditions that modify melatonin levels with the hope that future therapies include those that include melatonin and correct those factors that modify melatonin levels like circadian disruption.
Collapse
Affiliation(s)
- Fahima Munmun
- Division of Pharmaceutical Sciences, Duquesne University School of Pharmacy, Pittsburgh, PA, USA
| | - Paula A Witt-Enderby
- Division of Pharmaceutical Sciences, Duquesne University School of Pharmacy, Pittsburgh, PA, USA
| |
Collapse
|
18
|
Lu X, Yu S, Chen G, Zheng W, Peng J, Huang X, Chen L. Insight into the roles of melatonin in bone tissue and bone‑related diseases (Review). Int J Mol Med 2021; 47:82. [PMID: 33760138 PMCID: PMC7979260 DOI: 10.3892/ijmm.2021.4915] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 02/17/2021] [Indexed: 12/18/2022] Open
Abstract
Bone‑related diseases comprise a large group of common diseases, including fractures, osteoporosis and osteoarthritis (OA), which affect a large number of individuals, particularly the elderly. The progressive destruction and loss of alveolar bone caused by periodontitis is a specific type of bone loss, which has a high incidence and markedly reduces the quality of life of patients. With the existing methods of prevention and treatment, the incidence and mortality of bone‑related diseases are still gradually increasing, creating a significant financial burden to societies worldwide. To prevent the occurrence of bone‑related diseases, delay their progression or reverse the injuries they cause, new alternative or complementary treatments need to be developed. Melatonin exerts numerous physiological effects, including inducing anti‑inflammatory and antioxidative functions, resetting circadian rhythms and promoting wound healing and tissue regeneration. Melatonin also participates in the health management of bone and cartilage. In the present review, the potential roles of melatonin in the pathogenesis and progression of bone injury, osteoporosis, OA and periodontitis are summarized. Furthermore, the high efficiency and diversity of the physiological regulatory effects of melatonin are highlighted and the potential benefits of the use of melatonin for the clinical prevention and treatment of bone‑related diseases are discussed.
Collapse
Affiliation(s)
- Xiaofeng Lu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Shaoling Yu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Guangjin Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Wenhao Zheng
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jinfeng Peng
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Xiaofei Huang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
19
|
Ferlazzo N, Andolina G, Cannata A, Costanzo MG, Rizzo V, Currò M, Ientile R, Caccamo D. Is Melatonin the Cornucopia of the 21st Century? Antioxidants (Basel) 2020; 9:antiox9111088. [PMID: 33167396 PMCID: PMC7694322 DOI: 10.3390/antiox9111088] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/26/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022] Open
Abstract
Melatonin, an indoleamine hormone produced and secreted at night by pinealocytes and extra-pineal cells, plays an important role in timing circadian rhythms (24-h internal clock) and regulating the sleep/wake cycle in humans. However, in recent years melatonin has gained much attention mainly because of its demonstrated powerful lipophilic antioxidant and free radical scavenging action. Melatonin has been proven to be twice as active as vitamin E, believed to be the most effective lipophilic antioxidant. Melatonin-induced signal transduction through melatonin receptors promotes the expression of antioxidant enzymes as well as inflammation-related genes. Melatonin also exerts an immunomodulatory action through the stimulation of high-affinity receptors expressed in immunocompetent cells. Here, we reviewed the efficacy, safety and side effects of melatonin supplementation in treating oxidative stress- and/or inflammation-related disorders, such as obesity, cardiovascular diseases, immune disorders, infectious diseases, cancer, neurodegenerative diseases, as well as osteoporosis and infertility.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Daniela Caccamo
- Correspondence: ; Tel.: +39-090-221-3386 or +39-090-221-3389
| |
Collapse
|
20
|
Zhao R, Tao L, Qiu S, Shen L, Tian Y, Gong Z, Tao ZB, Zhu Y. Melatonin rescues glucocorticoid-induced inhibition of osteoblast differentiation in MC3T3-E1 cells via the PI3K/AKT and BMP/Smad signalling pathways. Life Sci 2020; 257:118044. [PMID: 32622944 DOI: 10.1016/j.lfs.2020.118044] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/20/2020] [Accepted: 06/29/2020] [Indexed: 12/20/2022]
Abstract
AIMS High-dose glucocorticoid (GC) administration causes osteoporosis. Many previous studies from our group and other groups have shown that melatonin participates in the regulation of osteoblast proliferation and differentiation, especially low concentrations of melatonin, which enhance osteoblast osteogenesis. However, the role of melatonin in glucocorticoid-induced osteoblast differentiation remains unknown. MATERIALS AND METHODS An examination of the expression of osteoblast differentiation markers (ALP, OCN, COLL-1), as well as alkaline phosphatase staining and alkaline phosphatase enzymatic activity assay to measure osteoblast differentiation and quantifying Alizarin red S staining to measure mineralization, were performed to determine the effects of dexamethasone (Dex) and melatonin on the differentiation of MC3T3-E1 cells. We used immunofluorescence staining to detect the expression of Runx2 in melatonin-treated MC3T3-E1 cells. The expression of mRNA was determined by qRT-PCR, and protein levels were measured by western blotting. KEY FINDINGS In the present study, we found that 100 μM Dex significantly reduced osteoblast differentiation and mineralization in MC3T3-E1 cells and that 1 μM melatonin attenuated these inhibitory effects. We found that only inhibition of PI3K/AKT (MK2206) and BMP/Smad (LDN193189) signalling abolished melatonin-induced differentiation and mineralization. Meanwhile, MK2206 decreased the expression of P-AKT and P-Smad1/5/9 and LDN193189 decreased the expression of P-Smad1/5/9 but had no obvious effect on P-AKT expression in melatonin-treated and Dex-induced MC3T3-E1 cells. SIGNIFICANCE These findings suggest that melatonin rescues Dex-induced inhibition of osteoblast differentiation in MC3T3-E1 cells via the PI3K/AKT and BMP/Smad signalling pathways and that PI3K/AKT signalling may be the upstream signal of BMP/Smad signalling.
Collapse
Affiliation(s)
- Rui Zhao
- Department of Orthopaedics, The First Hospital of China Medical University, Shenyang 110001, China
| | - Lin Tao
- Department of Orthopaedics, The First Hospital of China Medical University, Shenyang 110001, China
| | - Shui Qiu
- Department of Orthopaedics, The First Hospital of China Medical University, Shenyang 110001, China
| | - Lin Shen
- Department of Orthopaedics, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yihao Tian
- Department of Orthopaedics, The First Hospital of China Medical University, Shenyang 110001, China
| | - Zunlei Gong
- Department of Orthopaedics, The First Hospital of China Medical University, Shenyang 110001, China
| | - Zheng Bo Tao
- Department of Orthopaedics, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yue Zhu
- Department of Orthopaedics, The First Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
21
|
Igarashi-Migitaka J, Seki A, Ikegame M, Honda M, Sekiguchi T, Mishima H, Shimizu N, Matsubara H, Srivastav AK, Hirayama J, Maruyama Y, Kamijo-Ikemori A, Hirata K, Hattori A, Suzuki N. Oral administration of melatonin contained in drinking water increased bone strength in naturally aged mice. Acta Histochem 2020; 122:151596. [PMID: 32778234 DOI: 10.1016/j.acthis.2020.151596] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/01/2020] [Accepted: 07/09/2020] [Indexed: 12/20/2022]
Abstract
Melatonin has recently been found to be a possible new regulator of bone metabolism. However, the influence of melatonin in natural age-related osteoporosis has not been fully elucidated yet, although there have been some reports regarding postmenopausal osteoporosis with melatonin treatments. The present study investigated the effects of long-term melatonin administration during the aging process on bone metabolism. Using quantitative computed tomography methods, we found that the total bone density of both the femur metaphysis and diaphysis decreased significantly in 20-month-old male mice. In the metaphysis, both trabecular bone mass and Polar-Strength Strain Index (SSI), which is an index of bone strength, decreased significantly. Judging from bone histomorphometry analysis, trabecular bone in 20-month-old male mice decreases significantly with age and is small and sparse, as compared to that of 4-month-old male mice. Loss of trabecular bone is one possible cause of loss of bone strength in the femoral bone. In the metaphysis, the melatonin administration group had significantly higher trabecular bone density than the non-administration group. The Polar-SSI, cortical area, and periosteal circumference in the diaphysis was also significantly higher with melatonin treatments. Since the melatonin receptor, MT2, was detected in both osteoblasts and osteoclasts of the femoral bone of male mice, we expect that melatonin acts on osteoblasts and osteoclasts to maintain the bone strength of the diaphysis and metaphysis. Thus, melatonin is a potential drug for natural age-related osteoporosis.
Collapse
|
22
|
Cerqueira A, Romero-Gavilán F, Araújo-Gomes N, García-Arnáez I, Martinez-Ramos C, Ozturan S, Azkargorta M, Elortza F, Gurruchaga M, Suay J, Goñi I. A possible use of melatonin in the dental field: Protein adsorption and in vitro cell response on coated titanium. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111262. [PMID: 32806297 DOI: 10.1016/j.msec.2020.111262] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 07/01/2020] [Accepted: 07/01/2020] [Indexed: 01/06/2023]
Abstract
Melatonin (MLT) is widely known for regulating the circadian cycles and has been studied for its role in bone regeneration and inflammation. Its application as a coating for dental implants can condition the local microenvironment, affecting protein deposition on its surface and the cellular and tissue response. Using sol-gel coatings as a release vehicle for MLT, the aim of this work was to assess the potential of this molecule in improving the osseointegration and inflammatory responses of a titanium substrate. The materials obtained were physicochemically characterized (scanning electron microscopy, contact angle, roughness, Fourier-transform infrared spectroscopy, nuclear magnetic resonance, Si release, MLT liberation, and degradation) and studied in vitro with MC3T3-E1 osteoblastic cells and RAW264.7 macrophage cells. Although MLT application led to an increased gene expression of RUNX2 and BMP2 in 10MTL, it did not improve ALP activity. On the other hand, MLT-enriched sol-gel materials presented potential effects in the adsorption of proteins related to inflammation, coagulation and angiogenesis pathways depending on the dosage used. Using LC-MS/MS, protein adsorption patterns were studied after incubation with human serum. Proteins related to the complement systems (CO7, IC1, CO5, CO8A, and CO9) were less adsorbed in materials with MLT; on the other hand, proteins with functions in the coagulation and angiogenesis pathways, such as A2GL and PLMN, showed a significant adsorption pattern.
Collapse
Affiliation(s)
- Andreia Cerqueira
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Av. Vicent Sos Baynat s/n, 12071 Castellón de la Plana, Spain
| | - Francisco Romero-Gavilán
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Av. Vicent Sos Baynat s/n, 12071 Castellón de la Plana, Spain.
| | - Nuno Araújo-Gomes
- Department of Developmental Bioengineering, University of Twente, Faculty of Science and Technology, 7522LW Enschede, the Netherlands
| | - Iñaki García-Arnáez
- Facultad de Ciencias Químicas, Universidad del País Vasco, P. M. de Lardizábal, 3, 20018 San Sebastián, Spain
| | - Cristina Martinez-Ramos
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de Valencia, Camino de Vera, s/n, 46022 Valencia, Spain
| | - Seda Ozturan
- Department of Periodontology, Faculty of Dentristy, Istambul Medeniyet University, Istanbul, Turkey
| | - Mikel Azkargorta
- Proteomics Platform, CIC bioGUNE, CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, 48160 Derio, Spain
| | - Félix Elortza
- Proteomics Platform, CIC bioGUNE, CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, 48160 Derio, Spain
| | - Mariló Gurruchaga
- Facultad de Ciencias Químicas, Universidad del País Vasco, P. M. de Lardizábal, 3, 20018 San Sebastián, Spain
| | - Julio Suay
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Av. Vicent Sos Baynat s/n, 12071 Castellón de la Plana, Spain
| | - Isabel Goñi
- Facultad de Ciencias Químicas, Universidad del País Vasco, P. M. de Lardizábal, 3, 20018 San Sebastián, Spain
| |
Collapse
|
23
|
Hasan M, Browne E, Guarinoni L, Darveau T, Hilton K, Witt-Enderby PA. Novel Melatonin, Estrogen, and Progesterone Hormone Therapy Demonstrates Anti-Cancer Actions in MCF-7 and MDA-MB-231 Breast Cancer Cells. BREAST CANCER-BASIC AND CLINICAL RESEARCH 2020; 14:1178223420924634. [PMID: 32636633 PMCID: PMC7318814 DOI: 10.1177/1178223420924634] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 04/13/2020] [Indexed: 12/28/2022]
Abstract
A novel melatonin, estrogen, and progesterone hormone therapy was developed as a safe bio-identical alternative hormone therapy for menopausal women based on the Women’s Health Initiative findings that PremPro™ increased breast cancer risk and mortality of all types of breast cancer in postmenopausal women. For HER2 breast cancer, melatonin, estrogen, and progesterone delayed tumor onset and reduced tumor incidence in neu female mice. For other breast cancers, its actions are unknown. In this study, melatonin, estrogen, and progesterone hormone therapy were assessed in human ER+ (MCF-7) and triple negative breast cancer (MDA-MB-231) cells, and found to decrease proliferation and migration of both breast cancer lines. Inhibition of MEK1/2 and 5 using PD98059 and BIX02189, respectively, inhibited proliferation and migration in MDA-MB-231 cells and proliferation in MCF-7 cells; however, when combined with melatonin, estrogen, and progesterone, BIX02189 blocked melatonin, estrogen, and progesterone–mediated inhibition of migration in MCF-7 cells and induced Elf-5. For MDA-MB-231 cells, BIX02189 combined with melatonin, estrogen, and progesterone inhibited proliferation and increased pERK1/2 and β1-INTEGRIN; levels of pERK5 remained low/nearly absent in both breast cancer lines. These findings demonstrate novel anti-cancer actions of melatonin, estrogen, and progesterone in ER+ and triple negative breast cancer cells through intricate MEK1/2- and MEK5-associated signaling cascades that favor anti-proliferation and anti-migration.
Collapse
Affiliation(s)
- Mahmud Hasan
- Division of Pharmaceutical, Administrative and Social Sciences, Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA, USA
| | - Erin Browne
- Division of Pharmaceutical, Administrative and Social Sciences, Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA, USA
| | - Laura Guarinoni
- Division of Pharmaceutical, Administrative and Social Sciences, Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA, USA
| | - Travis Darveau
- Division of Pharmaceutical, Administrative and Social Sciences, Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA, USA
| | - Katherine Hilton
- Division of Pharmaceutical, Administrative and Social Sciences, Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA, USA
| | - Paula A Witt-Enderby
- Division of Pharmaceutical, Administrative and Social Sciences, Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA, USA.,UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| |
Collapse
|
24
|
Chen M, Cecon E, Karamitri A, Gao W, Gerbier R, Ahmad R, Jockers R. Melatonin MT 1 and MT 2 receptor ERK signaling is differentially dependent on G i/o and G q/11 proteins. J Pineal Res 2020; 68:e12641. [PMID: 32080899 DOI: 10.1111/jpi.12641] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/15/2020] [Accepted: 02/17/2020] [Indexed: 12/14/2022]
Abstract
G protein-coupled receptors (GPCRs) transmit extracellular signals into cells by activating G protein- and β-arrestin-dependent pathways. Extracellular signal-regulated kinases (ERKs) play a central role in integrating these different linear inputs coming from a variety of GPCRs to regulate cellular functions. Here, we investigated human melatonin MT1 and MT2 receptors signaling through the ERK1/2 cascade by employing different biochemical techniques together with pharmacological inhibitors and siRNA molecules. We show that ERK1/2 activation by both receptors is exclusively G protein-dependent, without any participation of β-arrestin1/2 in HEK293 cells. ERK1/2 activation by MT1 is only mediated though Gi/o proteins, while MT2 is dependent on the cooperative activation of Gi/o and Gq/11 proteins. In the absence of Gq/11 proteins, however, MT2 -induced ERK1/2 activation switches to a β-arrestin1/2-dependent mode. The signaling cascade downstream of G proteins is the same for both receptors and involves activation of the PI3K/PKCζ/c-Raf/MEK/ERK cascade. The differential G protein dependency of MT1 - and MT2 -mediated ERK activation was confirmed at the level of EGR1 and FOS gene expression, two ERK1/2 target genes. Gi/o /Gq/11 cooperativity was also observed in Neuroscreen-1 cells expressing endogenous MT2 , whereas in the mouse retina, where MT2 is engaged into MT1 /MT2 heterodimers, ERK1/2 signaling is exclusively Gi/o -dependent. Collectively, our data reveal differential signaling modes of MT1 and MT2 in terms of ERK1/2 activation, with an unexpected Gi/o /Gq/11 cooperativity exclusively for MT2 . The plasticity of ERK activation by MT2 is highlighted by the switch to a β-arrestin1/2-dependent mode in the absence of Gq/11 proteins and by the switch to a Gi/o mode when engaged into MT1 /MT2 heterodimers, revealing a new mechanism underlying tissue-specific responses to melatonin.
Collapse
Affiliation(s)
- Min Chen
- Institut Cochin, CNRS, INSERM, Université de Paris, Paris, France
| | - Erika Cecon
- Institut Cochin, CNRS, INSERM, Université de Paris, Paris, France
| | | | - Wenwen Gao
- Institut Cochin, CNRS, INSERM, Université de Paris, Paris, France
| | - Romain Gerbier
- Institut Cochin, CNRS, INSERM, Université de Paris, Paris, France
| | - Raise Ahmad
- Institut Cochin, CNRS, INSERM, Université de Paris, Paris, France
| | - Ralf Jockers
- Institut Cochin, CNRS, INSERM, Université de Paris, Paris, France
| |
Collapse
|
25
|
Zheng M, Zhang F, Fan W, Jiang L, Li J, Xie S, Huang F, He H. Suppression of osteogenic differentiation and mitochondrial function change in human periodontal ligament stem cells by melatonin at physiological levels. PeerJ 2020; 8:e8663. [PMID: 32181054 PMCID: PMC7060754 DOI: 10.7717/peerj.8663] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/29/2020] [Indexed: 12/13/2022] Open
Abstract
N-Acetyl-5-methoxytryptamine (melatonin, MT) at pharmacological concentrations promotes the osteogenic differentiation of human bone marrow-derived mesenchymal stem cells; however, its role at physiological concentrations (1 pM–10 nM) remains unclear. We explored the effects of 1 pM–1 µM MT on the osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) and its underlying mitochondrial dynamics-mediated mechanisms. T he PDLSC phenotype was detected by flow cytometry and evaluated for three-line differentiation. Alkaline phosphatase activity assay and Alizarin red staining were used to evaluate osteogenic differentiation. Osteogenesis-related gene and protein expression levels were measured by quantitative reverse transcription -polymerase chain reaction and western blotting. Mitochondrial function assays were performed using reactive oxygen species, ATP and NAD+/NADH kits and molecular mechanisms of mitochondrial dynamics-related proteins were assessed by western blotting. Our results have shown that physiological MT concentrations induced differentiation of hPDLSCs and down-regulated osteopontin (OPN) and osteocalcin (OCN) expression levels, which were restored or even up-regulated by 1 µM MT (lowest pharmacological concentration). Compared to the osteogenic induction alone, this treatment decreased the intracellular ATP content, whereas the intracellular reactive oxygen species level and NAD+/NADH ratio were increased. Mitochondrial function- and dynamics-related protein expression levels were consistent with those of osteogenic genes following osteogenic induction and MT treatment of hPDLSCs at various physiological concentrations. Physiological MT concentrations inhibited the osteogenic differentiation of hPDLSCs and simultaneously altered mitochondrial function. These findings provide insights into the stem cell tissue engineering and functions of MT.
Collapse
Affiliation(s)
- Miaomiao Zheng
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Fuping Zhang
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Wenguo Fan
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Liulin Jiang
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Jingzhou Li
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Shanshan Xie
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Fang Huang
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Hongwen He
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
26
|
Zhou Y, Wang C, Si J, Wang B, Zhang D, Ding D, Zhang J, Wang H. Melatonin up-regulates bone marrow mesenchymal stem cells osteogenic action but suppresses their mediated osteoclastogenesis via MT 2 -inactivated NF-κB pathway. Br J Pharmacol 2020; 177:2106-2122. [PMID: 31900938 DOI: 10.1111/bph.14972] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 11/20/2019] [Accepted: 12/20/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND AND PURPOSE Melatonin is a neurohormone involved in bone homeostasis. Melatonin directs bone remodelling and the role of bone marrow mesenchymal stem cells (BMMSCs) in the regulating melatonin-mediated bone formation-resorption balance remains undefined. EXPERIMENTAL APPROACH Osteoporosis models were established and bone tissue and serum were collected to test the effects of melatonin on bone homeostasis. Melatonin receptors were knocked down, the NF-κB signalling pathway and receptor activator of NF-κB ligand (RANKL) expression were investigated. Communication between bone marrow mesenchymal stem cells and osteoclasts was detected with direct-contact or indirect-contact system. KEY RESULTS Bone loss and microstructure disorder in mice were reversed after melatonin treatment, as a result of anabolic and anti-resorptive effects. In vitro, a physiological (low) concentration of melatonin promoted the bone marrow mesenchymal stem cells, osteogenic lineage commitment and extracellular mineralization but had no impact on extracellular matrix synthesis. After MT knockdown, especially MT2 , the positive effects of melatonin on osteogenesis were attenuated. The canonical NF-κB signalling pathway was the first discovered downstream signalling pathway after MT receptor activation and was found to be down-regulated by melatonin during osteogenesis. Melatonin suppressed BMMSC-mediated osteoclastogenesis by inhibiting RANKL production in BMMSCs and this effect only occurred when BMMSCs and osteoclast precursors were co-cultured in an indirect-contact manner. CONCLUSION AND IMPLICATIONS Our work suggests that melatonin plays a crucial role in bone balance, significantly accelerates the osteogenic differentiation of bone marrow mesenchymal stem cells by suppressing the MT2 -dependent NF-κB signalling pathway, and down-regulates osteoclastogenesis via RANKL paracrine secretion.
Collapse
Affiliation(s)
- Yi Zhou
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China
| | - Chaowei Wang
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China
| | - Jinyan Si
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China
| | - Baixiang Wang
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China
| | - Denghui Zhang
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China
| | - Ding Ding
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China
| | - Jian Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huiming Wang
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China
| |
Collapse
|
27
|
Liu X, Chen Y, Mao AS, Xuan C, Wang Z, Gao H, An G, Zhu Y, Shi X, Mao C. Molecular recognition-directed site-specific release of stem cell differentiation inducers for enhanced joint repair. Biomaterials 2019; 232:119644. [PMID: 31884017 DOI: 10.1016/j.biomaterials.2019.119644] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 12/21/2022]
Abstract
The remarkable difference in cell type and matrix composition between two connected parts of a joint (cartilage and subchondral bone) makes it challenging to simultaneously regenerate both parts for joint repair. Thus we chemically designed a biphasic hydrogel made of two well-bonded shape-tunable hydrogel phases, termed bone-regenerating hydrogel (BRH) and cartilage-regenerating hydrogel (CRH). The BRH and CRH, encapsulating stem cells, were produced by photo-crosslinking bone and cartilage matrix-mimicking biopolymers and a nanobox (β-cyclodextrin) in situ in the subchondral bone defect and cartilage defect, respectively. The nanoboxes in BRH and CRH were loaded with osteogenic and chondrogenic differentiation inducers (melatonin and kartogenin) by host-guest interactions, respectively. Such interactions directed the sustained phase- and defect site-specific release of the inducers and subsequent site-specific stem cell differentiation into cartilage and bone forming cells for joint repair. The strategy opens up a new chemical approach to biomaterials with phase-specific drug release for tissue repair.
Collapse
Affiliation(s)
- Xuemin Liu
- School of Biomedical Science and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Yunhua Chen
- School of Biomedical Science and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 510006, China
| | | | - Chengkai Xuan
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Zhifang Wang
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, China
| | - Huichang Gao
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, China
| | - Geng An
- Department of Reproductive Medicine Third Affiliated Hospital of Guangzhou Medical University Guangzhou, 510150, China
| | - Ye Zhu
- Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, USA
| | - Xuetao Shi
- School of Biomedical Science and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 510006, China; Norman North High School, Norman, OK, 73069, USA; China Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China.
| | - Chuanbin Mao
- Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, USA.
| |
Collapse
|
28
|
Li J, Li N, Chen Y, Hui S, Fan J, Ye B, Fan Z, Zhang J, Zhao RC, Zhuang Q. SPRY4 is responsible for pathogenesis of adolescent idiopathic scoliosis by contributing to osteogenic differentiation and melatonin response of bone marrow-derived mesenchymal stem cells. Cell Death Dis 2019; 10:805. [PMID: 31645544 PMCID: PMC6811559 DOI: 10.1038/s41419-019-1949-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 08/16/2019] [Accepted: 08/26/2019] [Indexed: 12/18/2022]
Abstract
Adolescent idiopathic scoliosis (AIS) is a complex, three-dimensional deformity of the spine that commonly occurs in pubescent girls. Decreased osteogenic differentiation and aberrant melatonin signalling have been demonstrated in mesenchymal stem cells (MSCs) from AIS patients and are implicated in the pathogenesis of AIS. However, the molecular mechanisms underlying these abnormal cellular features remain largely unknown. Our previous work comparing gene expression profiles between MSCs from AIS patients and healthy controls identified 1027 differentially expressed genes. In the present study, we focused on one of the most downregulated genes, SPRY4, in the MAPK signalling pathway and examined its role in osteogenic differentiation. We found that SPRY4 is markedly downregulated in AIS MSCs. Knockdown of SPRY4 impaired differentiation of healthy MSCs to osteoblasts, while SPRY4 overexpression in AIS MSCs enhanced osteogenic differentiation. Furthermore, melatonin treatment boosted osteogenic differentiation, whereas SPRY4 ablation ablated the promotional effects of melatonin. Moreover, SPRY4 was upregulated by melatonin exposure and contributed to osteogenic differentiation and melatonin response in a MEK-ERK1/2 dependent manner. Thus, loss of SPRY4 in bone marrow derived-MSCs results in reduced osteogenic differentiation, and these defects are further aggravated under the influence of melatonin. Our findings provide new insights for understanding the role of melatonin in AIS aetiology and highlight the importance of MSCs in AIS pathogenesis.
Collapse
Affiliation(s)
- Jing Li
- Center of Excellence in Tissue Engineering, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy, Beijing, P.R. China
| | - Na Li
- Center of Excellence in Tissue Engineering, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy, Beijing, P.R. China
| | - Yunfei Chen
- Center of Excellence in Tissue Engineering, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy, Beijing, P.R. China
| | - Shangyi Hui
- Department of Anesthesiology, Peking Union Medical College Hospital, Beijing, P.R. China
| | - Junfen Fan
- Center of Excellence in Tissue Engineering, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy, Beijing, P.R. China
| | - Buqing Ye
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Zusen Fan
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jianguo Zhang
- Department of Orthopedics, Peking Union Medical College Hospital, Beijing, P.R. China.
| | - Robert Chunhua Zhao
- Center of Excellence in Tissue Engineering, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy, Beijing, P.R. China.
| | - Qianyu Zhuang
- Department of Orthopedics, Peking Union Medical College Hospital, Beijing, P.R. China.
| |
Collapse
|
29
|
Knani L, Bartolini D, Kechiche S, Tortoioli C, Murdolo G, Moretti M, Messaoudi I, Reiter RJ, Galli F. Melatonin prevents cadmium-induced bone damage: First evidence on an improved osteogenic/adipogenic differentiation balance of mesenchymal stem cells as underlying mechanism. J Pineal Res 2019; 67:e12597. [PMID: 31340072 DOI: 10.1111/jpi.12597] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 06/25/2019] [Accepted: 06/28/2019] [Indexed: 12/13/2022]
Abstract
Melatonin (MLT) plays a role in preserving bone health, a function that may depend on homeostatic effects on both mature osteoblasts and mesenchymal stem cells (MSCs) of the bone tissue. In this study, these functions of MLT have been investigated in rat bone (femur) and in human adipose MSC (hMSC) during chronic exposure to low-grade cadmium (Cd) toxicity, a serious public health concern. The in vivo findings demonstrate that MLT protects against Cd-induced bone metabolism disruption and accumulation of bone marrow adipocytes, a cue of impaired osteogenic potential of skeletal MSC niches. This latter symptom was recapitulated in hMSCs in which Cd toxicity stimulated adipogenic differentiation. MLT was found to rescue, at least in part, the osteogenic differentiation properties of these cells. This study reports on a new bone cytoprotection function of MLT pertinent to Cd toxicity and its interfering effect on skeletal MSC differentiation properties that is worth investigating for its possible impact on human bone pathophysiology.
Collapse
Affiliation(s)
- Latifa Knani
- Laboratoire LR11ES41 Génétique Biodiversité et Valorisation des Bio-ressources, Institut Supérieur de Biotechnologie de Monastir, Université de Monastir, Monastir, Tunisie
| | - Desirée Bartolini
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Safa Kechiche
- Laboratoire LR11ES41 Génétique Biodiversité et Valorisation des Bio-ressources, Institut Supérieur de Biotechnologie de Monastir, Université de Monastir, Monastir, Tunisie
| | - Cristina Tortoioli
- Section of Internal Medicine, Endocrine and Metabolic Sciences, University of Perugia, Perugia, Italy
| | - Giuseppe Murdolo
- Section of Internal Medicine, Endocrine and Metabolic Sciences, University of Perugia, Perugia, Italy
| | - Massimo Moretti
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Imed Messaoudi
- Laboratoire LR11ES41 Génétique Biodiversité et Valorisation des Bio-ressources, Institut Supérieur de Biotechnologie de Monastir, Université de Monastir, Monastir, Tunisie
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX, USA
| | - Francesco Galli
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| |
Collapse
|
30
|
Heo JS, Pyo S, Lim JY, Yoon DW, Kim BY, Kim JH, Kim GJ, Lee SG, Kim J. Biological effects of melatonin on human adipose‑derived mesenchymal stem cells. Int J Mol Med 2019; 44:2234-2244. [PMID: 31573052 PMCID: PMC6844604 DOI: 10.3892/ijmm.2019.4356] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/11/2019] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are capable of differentiating into other cell types and exhibit immunomodulatory effects. MSCs are affected by several intrinsic and extrinsic signaling modulators, including growth factors, cytokines, extracellular matrix and hormones. Melatonin, produced by the pineal gland, is a hormone that regulates sleep cycles. Recent studies have shown that melatonin improves the therapeutic effects of stem cells. The present study aimed to investigate whether melatonin enhances the biological activities of human adipose-derived MSCs. The results demonstrated that treatment with melatonin promoted cell proliferation by inducing SRY-box transcription factor 2 gene expression and preventing replicative senescence. In addition, melatonin exerted anti-adipogenic effects on MSCs. PCR analysis revealed that the expression of the CCAAT enhancer binding protein a gene, a key transcription factor in adipogenesis, was decreased following melatonin treatment, resulting in reduced adipogenic differentiation in an in vitro assay. The present study also examined the effect of melatonin on the immunomodulatory response using a co-culture system of human peripheral blood mononuclear cells and MSCs. Activated T cells were strongly inhibited following melatonin exposure compared with those in the control group. Finally, the favorable effects of melatonin on MSCs were confirmed using luzindole, a selective melatonin receptor antagonist. The proliferation-promoting, anti-inflammatory effects of melatonin suggested that melatonin-treated MSCs may be used for effective cell therapy.
Collapse
Affiliation(s)
- June Seok Heo
- Department of Integrated Biomedical and Life Sciences, College of Health Science, Korea University, Seoul 02841, Republic of Korea
| | - Sangshin Pyo
- Department of Integrated Biomedical and Life Sciences, College of Health Science, Korea University, Seoul 02841, Republic of Korea
| | - Ja-Yun Lim
- Department of Integrated Biomedical and Life Sciences, College of Health Science, Korea University, Seoul 02841, Republic of Korea
| | - Dae Wui Yoon
- Department of Biomedical Laboratory Science, College of Health Science, Jungwon University, Geosan, Chungbuk 28024, Republic of Korea
| | - Bo Yong Kim
- Department of Health and Environmental Science, College of Health Science, Korea University, Seoul 02841, Republic of Korea
| | - Jin-Hee Kim
- Department of Biomedical Laboratory Science, College of Health Science, Cheongju University, Cheongju, North Chungcheong 28497, Republic of Korea
| | - Gi Jin Kim
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi 13488, Republic of Korea
| | - Seung Gwan Lee
- Department of Health and Environmental Science, College of Health Science, Korea University, Seoul 02841, Republic of Korea
| | - Jinkwan Kim
- Department of Biomedical Laboratory Science, College of Health Science, Jungwon University, Geosan, Chungbuk 28024, Republic of Korea
| |
Collapse
|
31
|
Wang X, Liang T, Zhu Y, Qiu J, Qiu X, Lian C, Gao B, Peng Y, Liang A, Zhou H, Yang X, Liao Z, Li Y, Xu C, Su P, Huang D. Melatonin prevents bone destruction in mice with retinoic acid-induced osteoporosis. Mol Med 2019; 25:43. [PMID: 31462213 PMCID: PMC6714316 DOI: 10.1186/s10020-019-0107-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 07/24/2019] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The protective effect of melatonin against bone metabolism imbalance in osteoporosis (OP) induced by drugs such as retinoic acid (RA) is unclear. The aim of this study was to explore the role of melatonin in bone destruction based on a mouse model. METHODS RA-induced OP model mice were established. To assess the effect of melatonin on these mice, micro-CT was used to characterize the trabecular structure of normal mice and those treated with RA (model), RA + low-dose melatonin (Mlt-L), RA + high-dose melatonin (Mlt-H), and RA + alendronate sodium (positive control). The shape of the trabecular bone, the length and diameter of the femoral head and the height and diameter of vertebra(L1) of each group were also measured and the number of osteoclasts was determined by Tartrate-resistant acid phosphatase (TRACP) staining. Meanwhile, the expression of alkaline phosphatase (ALP) was evaluated by immunohistochemistry assays. The differences between groups in terms of liver and kidney oxidation-related indexes and serum and urinary indicators related to bone metabolism were also analyzed. Furthermore, qRT-PCR and western blotting were used to evaluate the effect of melatonin on osteogenic and osteoclastic differentiation in MC3T3-E1 and RAW264.7 cells, respectively. RESULTS RA induction led to a decrease in the amount and density of trabecular bone, a decrease in the length and diameter of the femur and height, diameter of the vertebra (L1), a decrease in bone mass and density and the expression of ALP, and an increase in the number of osteoclasts. Melatonin treatment alleviated these effects induced by RA, increasing the amount of trabecular bone in OP mice, improving the microstructure of the femur and vertebra(L1) and increasing bone mass bone density and the expression of ALP, as well as decreasing the number of osteoclasts. Additionally, blood and urinary bone metabolism-related indicators showed that melatonin promoted bone formation and inhibited bone resorption. Determination of oxidant and antioxidant biomarkers in the livers and kidneys of the mice revealed that melatonin promoted the antioxidant level and suppressed the level of oxidant molecules in these organs. In vitro, RA promoted osteoclasts and inhibit osteogenesis by increasing oxidative stress levels in the RAW264.7 and MC3T3-E1 cells, but melatonin reversed this effect. Melatonin may, therefore, play a role in the ERK/SMAD and NF-κB pathways. CONCLUSIONS Melatonin can alleviate bone loss in RA-induced OP model mice, repair the trabecular microstructure, and promote bone formation. These effects may be related to reducing oxidation levels in vivo and vitro through the ERK/SMAD and NF-κB pathways.
Collapse
Affiliation(s)
- Xudong Wang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, #107 West Yan Jiang Road, Guangzhou, 510120, Guangdong, China
| | - Tongzhou Liang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, #107 West Yan Jiang Road, Guangzhou, 510120, Guangdong, China
| | - Yuanxin Zhu
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, #107 West Yan Jiang Road, Guangzhou, 510120, Guangdong, China
| | - Jincheng Qiu
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, #107 West Yan Jiang Road, Guangzhou, 510120, Guangdong, China
| | - Xianjian Qiu
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, #107 West Yan Jiang Road, Guangzhou, 510120, Guangdong, China
| | - Chengjie Lian
- Department of Orthopedics, the First Affiliated Hospital of Sun Yat-sen University, #58 Zhongshan Road II, Guangzhou, 510080, Guangdong, China
| | - Bo Gao
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, #107 West Yan Jiang Road, Guangzhou, 510120, Guangdong, China
| | - Yan Peng
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, #107 West Yan Jiang Road, Guangzhou, 510120, Guangdong, China
| | - Anjing Liang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, #107 West Yan Jiang Road, Guangzhou, 510120, Guangdong, China
| | - Hang Zhou
- Department of Orthopedics, the First Affiliated Hospital of Sun Yat-sen University, #58 Zhongshan Road II, Guangzhou, 510080, Guangdong, China
| | - Xiaoming Yang
- Department of Orthopedics, the First Affiliated Hospital of Sun Yat-sen University, #58 Zhongshan Road II, Guangzhou, 510080, Guangdong, China
| | - Zhiheng Liao
- Department of Orthopedics, the First Affiliated Hospital of Sun Yat-sen University, #58 Zhongshan Road II, Guangzhou, 510080, Guangdong, China
| | - Yongyong Li
- Research Centre for Translational Medicine, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Caixia Xu
- Research Centre for Translational Medicine, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Peiqiang Su
- Department of Orthopedics, the First Affiliated Hospital of Sun Yat-sen University, #58 Zhongshan Road II, Guangzhou, 510080, Guangdong, China.
| | - Dongsheng Huang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, #107 West Yan Jiang Road, Guangzhou, 510120, Guangdong, China.
| |
Collapse
|
32
|
Anti-osteoporotic effects of melatonin and misoprostol in glucocorticoid-induced osteoporosis: An experimental study. JOURNAL OF SURGERY AND MEDICINE 2019. [DOI: 10.28982/josam.595295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
33
|
Çetin Altındal D, Gümüşderelioğlu M. Dual-functional melatonin releasing device loaded with PLGA microparticles and cyclodextrin inclusion complex for osteosarcoma therapy. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.05.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Hasan M, Marzouk MA, Adhikari S, Wright TD, Miller BP, Matossian MD, Elliott S, Wright M, Alzoubi M, Collins-Burow BM, Burow ME, Holzgrabe U, Zlotos DP, Stratford RE, Witt-Enderby PA. Pharmacological, Mechanistic, and Pharmacokinetic Assessment of Novel Melatonin-Tamoxifen Drug Conjugates as Breast Cancer Drugs. Mol Pharmacol 2019; 96:272-296. [PMID: 31221824 PMCID: PMC6666385 DOI: 10.1124/mol.119.116202] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 06/07/2019] [Indexed: 02/05/2023] Open
Abstract
Tamoxifen is used to prevent and treat estrogen receptor-positive (ER+) breast cancer (BC); however, its chronic use can increase uterine cancer risk and induce tamoxifen resistance. Novel melatonin-tamoxifen drug conjugates may be promising to treat BC and may help offset the adverse effects of tamoxifen usage alone due to the presence of melatonin. We synthesized and screened five drug conjugates (C2, C4, C5, C9, and C15 linked) for their effects on BC cell (MCF-7, tamoxifen-resistant MCF-7, mouse mammary carcinoma, MDA-MB-231, and BT-549) viability, migration, and binding affinity to melatonin receptor 1 (MT1R) and estrogen receptor 1 (ESR1). C4 and C5 demonstrated the most favorable pharmacological characteristics with respect to binding profiles (affinity for ESR1 and MT1R) and their potency/efficacy to inhibit BC cell viability and migration in four phenotypically diverse invasive ductal BC cell lines. C4 and C5 were further assessed for their actions against tamoxifen-resistant MCF-7 cells and a patient-derived xenograft triple-negative BC cell line (TU-BcX-4IC) and for their mechanisms of action using selective mitogen-activated protein kinase kinase MEK1/2, MEK5, and phosphoinositide 3-kinase (PI3K) inhibitors. C4 and C5 inhibited tamoxifen-resistant MCF-7 cells with equal potency (IC50 = 4-8 μM) and efficacy (∼90% inhibition of viability and migration) but demonstrated increased potency (IC50 = 80-211 μM) and efficacy (∼140% inhibition) to inhibit migration versus cell viability (IC50 = 181-304 mM; efficacy ∼80% inhibition) in TU-BcX-4IC cells. Unique pharmacokinetic profiles were observed, with C4 having greater bioavailability than C5. Further assessment of C4 and C5 demonstrates that they create novel pharmacophores within each BC cell that is context specific and involves MEK1/2/pERK1/2, MEK5/pERK5, PI3K, and nuclear factor κB. These melatonin-tamoxifen drug conjugates show promise as novel anticancer drugs and further preclinical and clinical evaluation is warranted.
Collapse
Affiliation(s)
- Mahmud Hasan
- Division of Pharmaceutical, Administrative and Social Sciences, Duquesne University, Pittsburgh, Pennsylvania (M.H., T.D.W., B.P.M., P.A.W.-E.); Department of Pharmaceutical Chemistry, German University in Cairo, New Cairo City, Cairo, Egypt (M.A.M., D.P.Z.); Purdue University, West Lafayette, Indiana (S.A.); Section of Hematology and Medical Oncology, Department of Medicine, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana (M.D.M., S.E., M.W., M.A., B.M.C.-B., M.E.B.); Institute of Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, Wuerzburg, Germany (U.H.); Indiana University School of Medicine, Indianapolis, Indiana (R.E.S.); and Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (P.A.W.-E.)
| | - Mohamed Akmal Marzouk
- Division of Pharmaceutical, Administrative and Social Sciences, Duquesne University, Pittsburgh, Pennsylvania (M.H., T.D.W., B.P.M., P.A.W.-E.); Department of Pharmaceutical Chemistry, German University in Cairo, New Cairo City, Cairo, Egypt (M.A.M., D.P.Z.); Purdue University, West Lafayette, Indiana (S.A.); Section of Hematology and Medical Oncology, Department of Medicine, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana (M.D.M., S.E., M.W., M.A., B.M.C.-B., M.E.B.); Institute of Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, Wuerzburg, Germany (U.H.); Indiana University School of Medicine, Indianapolis, Indiana (R.E.S.); and Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (P.A.W.-E.)
| | - Saugat Adhikari
- Division of Pharmaceutical, Administrative and Social Sciences, Duquesne University, Pittsburgh, Pennsylvania (M.H., T.D.W., B.P.M., P.A.W.-E.); Department of Pharmaceutical Chemistry, German University in Cairo, New Cairo City, Cairo, Egypt (M.A.M., D.P.Z.); Purdue University, West Lafayette, Indiana (S.A.); Section of Hematology and Medical Oncology, Department of Medicine, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana (M.D.M., S.E., M.W., M.A., B.M.C.-B., M.E.B.); Institute of Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, Wuerzburg, Germany (U.H.); Indiana University School of Medicine, Indianapolis, Indiana (R.E.S.); and Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (P.A.W.-E.)
| | - Thomas D Wright
- Division of Pharmaceutical, Administrative and Social Sciences, Duquesne University, Pittsburgh, Pennsylvania (M.H., T.D.W., B.P.M., P.A.W.-E.); Department of Pharmaceutical Chemistry, German University in Cairo, New Cairo City, Cairo, Egypt (M.A.M., D.P.Z.); Purdue University, West Lafayette, Indiana (S.A.); Section of Hematology and Medical Oncology, Department of Medicine, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana (M.D.M., S.E., M.W., M.A., B.M.C.-B., M.E.B.); Institute of Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, Wuerzburg, Germany (U.H.); Indiana University School of Medicine, Indianapolis, Indiana (R.E.S.); and Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (P.A.W.-E.)
| | - Benton P Miller
- Division of Pharmaceutical, Administrative and Social Sciences, Duquesne University, Pittsburgh, Pennsylvania (M.H., T.D.W., B.P.M., P.A.W.-E.); Department of Pharmaceutical Chemistry, German University in Cairo, New Cairo City, Cairo, Egypt (M.A.M., D.P.Z.); Purdue University, West Lafayette, Indiana (S.A.); Section of Hematology and Medical Oncology, Department of Medicine, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana (M.D.M., S.E., M.W., M.A., B.M.C.-B., M.E.B.); Institute of Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, Wuerzburg, Germany (U.H.); Indiana University School of Medicine, Indianapolis, Indiana (R.E.S.); and Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (P.A.W.-E.)
| | - Margarite D Matossian
- Division of Pharmaceutical, Administrative and Social Sciences, Duquesne University, Pittsburgh, Pennsylvania (M.H., T.D.W., B.P.M., P.A.W.-E.); Department of Pharmaceutical Chemistry, German University in Cairo, New Cairo City, Cairo, Egypt (M.A.M., D.P.Z.); Purdue University, West Lafayette, Indiana (S.A.); Section of Hematology and Medical Oncology, Department of Medicine, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana (M.D.M., S.E., M.W., M.A., B.M.C.-B., M.E.B.); Institute of Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, Wuerzburg, Germany (U.H.); Indiana University School of Medicine, Indianapolis, Indiana (R.E.S.); and Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (P.A.W.-E.)
| | - Steven Elliott
- Division of Pharmaceutical, Administrative and Social Sciences, Duquesne University, Pittsburgh, Pennsylvania (M.H., T.D.W., B.P.M., P.A.W.-E.); Department of Pharmaceutical Chemistry, German University in Cairo, New Cairo City, Cairo, Egypt (M.A.M., D.P.Z.); Purdue University, West Lafayette, Indiana (S.A.); Section of Hematology and Medical Oncology, Department of Medicine, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana (M.D.M., S.E., M.W., M.A., B.M.C.-B., M.E.B.); Institute of Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, Wuerzburg, Germany (U.H.); Indiana University School of Medicine, Indianapolis, Indiana (R.E.S.); and Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (P.A.W.-E.)
| | - Maryl Wright
- Division of Pharmaceutical, Administrative and Social Sciences, Duquesne University, Pittsburgh, Pennsylvania (M.H., T.D.W., B.P.M., P.A.W.-E.); Department of Pharmaceutical Chemistry, German University in Cairo, New Cairo City, Cairo, Egypt (M.A.M., D.P.Z.); Purdue University, West Lafayette, Indiana (S.A.); Section of Hematology and Medical Oncology, Department of Medicine, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana (M.D.M., S.E., M.W., M.A., B.M.C.-B., M.E.B.); Institute of Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, Wuerzburg, Germany (U.H.); Indiana University School of Medicine, Indianapolis, Indiana (R.E.S.); and Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (P.A.W.-E.)
| | - Madlin Alzoubi
- Division of Pharmaceutical, Administrative and Social Sciences, Duquesne University, Pittsburgh, Pennsylvania (M.H., T.D.W., B.P.M., P.A.W.-E.); Department of Pharmaceutical Chemistry, German University in Cairo, New Cairo City, Cairo, Egypt (M.A.M., D.P.Z.); Purdue University, West Lafayette, Indiana (S.A.); Section of Hematology and Medical Oncology, Department of Medicine, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana (M.D.M., S.E., M.W., M.A., B.M.C.-B., M.E.B.); Institute of Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, Wuerzburg, Germany (U.H.); Indiana University School of Medicine, Indianapolis, Indiana (R.E.S.); and Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (P.A.W.-E.)
| | - Bridgette M Collins-Burow
- Division of Pharmaceutical, Administrative and Social Sciences, Duquesne University, Pittsburgh, Pennsylvania (M.H., T.D.W., B.P.M., P.A.W.-E.); Department of Pharmaceutical Chemistry, German University in Cairo, New Cairo City, Cairo, Egypt (M.A.M., D.P.Z.); Purdue University, West Lafayette, Indiana (S.A.); Section of Hematology and Medical Oncology, Department of Medicine, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana (M.D.M., S.E., M.W., M.A., B.M.C.-B., M.E.B.); Institute of Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, Wuerzburg, Germany (U.H.); Indiana University School of Medicine, Indianapolis, Indiana (R.E.S.); and Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (P.A.W.-E.)
| | - Matthew E Burow
- Division of Pharmaceutical, Administrative and Social Sciences, Duquesne University, Pittsburgh, Pennsylvania (M.H., T.D.W., B.P.M., P.A.W.-E.); Department of Pharmaceutical Chemistry, German University in Cairo, New Cairo City, Cairo, Egypt (M.A.M., D.P.Z.); Purdue University, West Lafayette, Indiana (S.A.); Section of Hematology and Medical Oncology, Department of Medicine, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana (M.D.M., S.E., M.W., M.A., B.M.C.-B., M.E.B.); Institute of Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, Wuerzburg, Germany (U.H.); Indiana University School of Medicine, Indianapolis, Indiana (R.E.S.); and Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (P.A.W.-E.)
| | - Ulrike Holzgrabe
- Division of Pharmaceutical, Administrative and Social Sciences, Duquesne University, Pittsburgh, Pennsylvania (M.H., T.D.W., B.P.M., P.A.W.-E.); Department of Pharmaceutical Chemistry, German University in Cairo, New Cairo City, Cairo, Egypt (M.A.M., D.P.Z.); Purdue University, West Lafayette, Indiana (S.A.); Section of Hematology and Medical Oncology, Department of Medicine, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana (M.D.M., S.E., M.W., M.A., B.M.C.-B., M.E.B.); Institute of Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, Wuerzburg, Germany (U.H.); Indiana University School of Medicine, Indianapolis, Indiana (R.E.S.); and Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (P.A.W.-E.)
| | - Darius P Zlotos
- Division of Pharmaceutical, Administrative and Social Sciences, Duquesne University, Pittsburgh, Pennsylvania (M.H., T.D.W., B.P.M., P.A.W.-E.); Department of Pharmaceutical Chemistry, German University in Cairo, New Cairo City, Cairo, Egypt (M.A.M., D.P.Z.); Purdue University, West Lafayette, Indiana (S.A.); Section of Hematology and Medical Oncology, Department of Medicine, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana (M.D.M., S.E., M.W., M.A., B.M.C.-B., M.E.B.); Institute of Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, Wuerzburg, Germany (U.H.); Indiana University School of Medicine, Indianapolis, Indiana (R.E.S.); and Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (P.A.W.-E.)
| | - Robert E Stratford
- Division of Pharmaceutical, Administrative and Social Sciences, Duquesne University, Pittsburgh, Pennsylvania (M.H., T.D.W., B.P.M., P.A.W.-E.); Department of Pharmaceutical Chemistry, German University in Cairo, New Cairo City, Cairo, Egypt (M.A.M., D.P.Z.); Purdue University, West Lafayette, Indiana (S.A.); Section of Hematology and Medical Oncology, Department of Medicine, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana (M.D.M., S.E., M.W., M.A., B.M.C.-B., M.E.B.); Institute of Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, Wuerzburg, Germany (U.H.); Indiana University School of Medicine, Indianapolis, Indiana (R.E.S.); and Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (P.A.W.-E.)
| | - Paula A Witt-Enderby
- Division of Pharmaceutical, Administrative and Social Sciences, Duquesne University, Pittsburgh, Pennsylvania (M.H., T.D.W., B.P.M., P.A.W.-E.); Department of Pharmaceutical Chemistry, German University in Cairo, New Cairo City, Cairo, Egypt (M.A.M., D.P.Z.); Purdue University, West Lafayette, Indiana (S.A.); Section of Hematology and Medical Oncology, Department of Medicine, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana (M.D.M., S.E., M.W., M.A., B.M.C.-B., M.E.B.); Institute of Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, Wuerzburg, Germany (U.H.); Indiana University School of Medicine, Indianapolis, Indiana (R.E.S.); and Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (P.A.W.-E.)
| |
Collapse
|
35
|
Li Y, Feng C, Gao M, Jin M, Liu T, Yuan Y, Yan G, Gong R, Sun Y, He M, Fu Y, Zhang L, Huang Q, Ding F, Ma W, Bi Z, Xu C, Sukhareva N, Bamba D, Reiters R, Yang F, Cai B, Yang L. MicroRNA-92b-5p modulates melatonin-mediated osteogenic differentiation of bone marrow mesenchymal stem cells by targeting ICAM-1. J Cell Mol Med 2019; 23:6140-6153. [PMID: 31304676 PMCID: PMC6714169 DOI: 10.1111/jcmm.14490] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/14/2019] [Accepted: 05/19/2019] [Indexed: 12/15/2022] Open
Abstract
Osteoporosis is closely associated with the dysfunction of bone metabolism, which is caused by the imbalance between new bone formation and bone resorption. Osteogenic differentiation plays a vital role in maintaining the balance of bone microenvironment. The present study investigated whether melatonin participated in the osteogenic commitment of bone marrow mesenchymal stem cells (BMSCs) and further explored its underlying mechanisms. Our data showed that melatonin exhibited the capacity of regulating osteogenic differentiation of BMSCs, which was blocked by its membrane receptor inhibitor luzindole. Further study demonstrated that the expression of miR‐92b‐5p was up‐regulated in BMSCs after administration of melatonin, and transfection of miR‐92b‐5p accelerated osteogenesis of BMSCs. In contrast, silence of miR‐92b‐5p inhibited the osteogenesis of BMSCs. The increase in osteoblast differentiation of BMSCs caused by melatonin was attenuated by miR‐92b‐5p AMO as well. Luciferase reporter assay, real‐time qPCR analysis and western blot analysis confirmed that miR‐92b‐5p was involved in osteogenesis by directly targeting intracellular adhesion molecule‐1 (ICAM‐1). Melatonin improved the expression of miR‐92b‐5p, which could regulate the differentiation of BMSCs into osteoblasts by targeting ICAM‐1. This study provided novel methods for treating osteoporosis.
Collapse
Affiliation(s)
- Yuan Li
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Chao Feng
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Manqi Gao
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Mengyu Jin
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Tianyi Liu
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China.,College of Pharmacy, University of Cincinnati, Cincinnati, Ohio
| | - Ye Yuan
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Gege Yan
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Rui Gong
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yi Sun
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Mingyu He
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yutuo Fu
- Department of Orthopedics, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Lai Zhang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Qi Huang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Fengzhi Ding
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Wenya Ma
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhenggang Bi
- Department of Orthopedics, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Chaoqian Xu
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Natalia Sukhareva
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Djibril Bamba
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Russel Reiters
- Department of Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Fan Yang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Benzhi Cai
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China.,Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lei Yang
- Department of Orthopedics, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
36
|
Liu J, Shelkar GP, Zhao F, Clausen RP, Dravid SM. Modulation of burst firing of neurons in nucleus reticularis of the thalamus by GluN2C-containing NMDA receptors. Mol Pharmacol 2019; 96:mol.119.116780. [PMID: 31160332 PMCID: PMC6620419 DOI: 10.1124/mol.119.116780] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/17/2019] [Accepted: 05/24/2019] [Indexed: 12/11/2022] Open
Abstract
The GluN2C subunit of the NMDA receptor is enriched in the neurons in nucleus reticularis of the thalamus (nRT), but its role in regulating their function is not well understood. We found that deletion of GluN2C subunit did not affect spike frequency in response to depolarizing current injection or hyperpolarization-induced rebound burst firing of nRT neurons. D-cycloserine or CIQ (GluN2C/GluN2D positive allosteric modulator) did not affect the depolarization-induced spike frequency in nRT neurons. A newly identified highly potent and efficacious co-agonist of GluN1/GluN2C NMDA receptors, AICP, was found to reduce the spike frequency and burst firing of nRT neurons in wildtype but not GluN2C knockout. This effect was potentially due to facilitation of GluN2C-containing receptors because inhibition of NMDA receptors by AP5 did not affect spike frequency in nRT neurons. We evaluated the effect of intracerebroventricular injection of AICP. AICP did not affect basal locomotion or prepulse inhibition but facilitated MK-801-induced hyperlocomotion. This effect was observed in wildtype but not in GluN2C knockout mice demonstrating that AICP produces GluN2C-selective effects in vivo Using a chemogenetic approach we examined the role of nRT in this behavioral effect. Gq or Gi coupled DREADDs were selectively expressed in nRT neurons using cre-dependent viral vectors and PV-Cre mouse line. We found that similar to AICP effect, activation of Gq but not Gi coupled DREADD facilitated MK-801-induced hyperlocomotion. Together, these results identify a unique role of GluN2C-containing receptors in the regulation of nRT neurons and suggest GluN2C-selective in vivo targeting of NMDA receptors by AICP. SIGNIFICANCE STATEMENT: The nucleus reticularis of the thalamus composed of GABAergic neurons is termed as guardian of the gateway and is an important regulator of corticothalamic communication which may be impaired in autism, non-convulsive seizures and other conditions. We found that strong facilitation of tonic activity of GluN2C subtype of NMDA receptors using AICP, a newly identified glycine-site agonist of NMDA receptors, modulates the function of reticular thalamus neurons. AICP was also able to produce GluN2C-dependent behavioral effects in vivo. Together, these finding identify a novel mechanism and a pharmacological tool to modulate activity of reticular thalamic neurons in disease states.
Collapse
|
37
|
Çetin Altındal D, James EN, Kaplan DL, Gümüşderelioğlu M. Melatonin-induced osteogenesis with methanol-annealed silk materials. J BIOACT COMPAT POL 2019. [DOI: 10.1177/0883911519847489] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Melatonin, a hormone produced in the pineal gland, has been investigated for bone repair, remodeling, osteoporosis, as well as osseointegration of the implants. In this study, different concentrations of melatonin (0–2000-µM) were embedded into silk films annealed by methanol or water. Then, their capacity to differentiate human mesenchymal stem cells into osteoblasts was investigated for bone tissue regeneration. While methanol-annealed silk films have ~55% crystallinity, room-temperature water-annealed silk films have ~30% crystallinity by depending upon their different β-sheet contents. Melatonin-loaded silk films exhibited an initial burst release followed by a continuous release for up to 5 days, and the β-sheet content of silk films did not affect the release behavior of melatonin, an amphiphilic molecule. Moreover, human mesenchymal stem cells exhibited an increase in osteogenic markers such as alkaline phosphatase activity, osteocalcin, and runt-related transcription factor 2 expressions on the melatonin-loaded methanol-annealed silk films in both proliferation and osteogenic media. The bioactivity of the melatonin-modified silk films was further confirmed by the enhanced mineralization compared to silk films alone. This study demonstrated the feasibility of developing melatonin-loaded silk materials and the positive effect of releasing melatonin at micromolar concentrations on osteogenic differentiation of human mesenchymal stem cells cultured especially in osteogenic medium.
Collapse
Affiliation(s)
- Damla Çetin Altındal
- Department of Chemical Engineering, Hacettepe University, Ankara, Turkey
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Eric N James
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | | |
Collapse
|
38
|
Li T, Jiang S, Lu C, Yang W, Yang Z, Hu W, Xin Z, Yang Y. Melatonin: Another avenue for treating osteoporosis? J Pineal Res 2019; 66:e12548. [PMID: 30597617 DOI: 10.1111/jpi.12548] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/24/2018] [Accepted: 12/24/2018] [Indexed: 12/28/2022]
Abstract
Melatonin is a signal molecule that modulates the biological circadian rhythms of vertebrates. Melatonin deficiency is thought to be associated with several disorders, including insomnia, cancer, and cardiovascular and neurodegenerative diseases. Accumulating evidence has also indicated that melatonin may be involved in the homeostasis of bone metabolism. Age-related reductions in melatonin are considered to be critical factors in bone loss and osteoporosis with aging. Thus, serum melatonin levels might serve as a biomarker for the early detection and prevention of osteoporosis. Compared to conventional antiosteoporosis medicines, which primarily inhibit bone loss, melatonin both suppresses bone loss and promotes new bone formation. Mechanistically, by activating melatonin receptor 2 (MT2), melatonin upregulates the gene expression of alkaline phosphatase (ALP), bone morphogenetic protein 2 (BMP2), BMP6, osteocalcin, and osteoprotegerin to promote osteogenesis while inhibiting the receptor activator of NF-kB ligand (RANKL) pathway to suppress osteolysis. In view of the distinct actions of melatonin on bone metabolism, we hypothesize that melatonin may be a novel remedy for the prevention and clinical treatment of osteoporosis.
Collapse
Affiliation(s)
- Tian Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
- School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Shuai Jiang
- Department of Aerospace Medicine, The Fourth Military Medical University, Xi'an, China
| | - Chenxi Lu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Wenwen Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Zhi Yang
- School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Wei Hu
- School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Zhenlong Xin
- Graduate School, The Fourth Military Medical University, Xi'an, China
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| |
Collapse
|
39
|
Georgiev GN, Marinova E, Konakchieva R, Todorov P. Melatonin selectively influences the transcription of pluripotency and differentiation markers in human non-cancer cells. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1571440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Georgi Nikolaev Georgiev
- Department of Cytology, Histology and Embryology, Faculty of Biology, Sofia University ‘St. Kliment Ohridski’, Sofia, Bulgaria
| | - Elena Marinova
- Department of Cytology, Histology and Embryology, Faculty of Biology, Sofia University ‘St. Kliment Ohridski’, Sofia, Bulgaria
| | - Rossitza Konakchieva
- Department of Cytology, Histology and Embryology, Faculty of Biology, Sofia University ‘St. Kliment Ohridski’, Sofia, Bulgaria
| | - Plamen Todorov
- Department of Reproductive Biotechnologies and Cryobiology of Gametes, Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
40
|
Hu C, Li L. Melatonin plays critical role in mesenchymal stem cell-based regenerative medicine in vitro and in vivo. Stem Cell Res Ther 2019; 10:13. [PMID: 30635065 PMCID: PMC6329089 DOI: 10.1186/s13287-018-1114-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Although stem cells have emerged as promising sources for regenerative medicine, there are many potential safety hazards for their clinical application, including tumorigenicity, an availability shortage, senescence, and sensitivity to toxic environments. Mesenchymal stem cells (MSCs) have various advantages compared to other stem cells, including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs); thus, MSCs have been intensely investigated in recent studies. However, they are placed in a harsh environment after isolation and transplantation, and the adverse microenvironment substantially reduces the viability and therapeutic effects of MSCs. Intriguingly, melatonin (MT), which is primarily secreted by the pineal organ, has been found to influence the fate of MSCs during various physiological and pathological processes. In this review, we will focus on the recent progress made regarding the influence of MT on stem cell biology and its implications for regenerative medicine. In addition, several biomaterials have been proven to significantly improve the protective effects of MT on MSCs by controlling the release of MT. Collectively, MT will be a promising agent for enhancing MSC activities and the regenerative capacity via the regulation of reactive oxygen species (ROS) generation and the release of immune factors in regenerative medicine.
Collapse
Affiliation(s)
- Chenxia Hu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine, First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Lanjuan Li
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine, First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
41
|
St Hilaire MA, Rahman SA, Gooley JJ, Witt-Enderby PA, Lockley SW. Relationship between melatonin and bone resorption rhythms in premenopausal women. J Bone Miner Metab 2019; 37:60-71. [PMID: 29318392 DOI: 10.1007/s00774-017-0896-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 12/14/2017] [Indexed: 12/31/2022]
Abstract
Although evidence exists for a daily rhythm in bone metabolism, the contribution of factors such as melatonin levels, the light-dark cycle, and the sleep-wake cycle is difficult to differentiate given their highly correlated time courses. To examine these influences on bone resorption, we collected 48-h sequential urine samples under both ambulatory (8-h sleep:16-h wake) and constant routine (CR) (constant wake, posture, nutrition and dim light) conditions from 20 healthy premenopausal women. Urinary 6-sulphatoxymelatonin (aMT6s; ng/h) and the bone resorption marker amino-terminal cross-linked collagen I telopeptide (NTx; bone collagen equivalents nM/h) were assayed and fit by cosinor models to determine significant 24-h rhythms and acrophase. Most participants had significant 24-h aMT6s rhythms during both ambulatory and CR conditions (95 and 85%, respectively), but fewer had significant 24-h NTx rhythms (70 and 70%, respectively). Among individuals with significant rhythms, mean (± SD) aMT6s acrophase times were 3:57 ± 1:50 and 3:43 ± 1:25 h under ambulatory and CR conditions, respectively, and 23:44 ± 5:55 and 3:06 ± 5:15 h, respectively, for NTx. Mean 24-h levels of both aMT6s and NTx were significantly higher during CR compared with ambulatory conditions (p < 0.0001 and p = 0.03, respectively). Menstrual phase (follicular versus luteal) had no impact on aMT6s or NTx timing or 24-h levels. This study confirms an endogenous circadian rhythm in NTx with a night-time peak when measured under CR conditions, but also confirms that environmental factors such as the sleep-wake or light-dark cycles, posture or meal timing affects overall concentrations and peak timing under ambulatory conditions, the significance of which remains unclear.
Collapse
Affiliation(s)
- Melissa A St Hilaire
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, 221 Longwood Avenue BLI-438, Boston, MA, 02115, USA.
- Division of Sleep Medicine, Harvard Medical School, 221 Longwood Avenue BLI-438, Boston, MA, 02115, USA.
| | - Shadab A Rahman
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, 221 Longwood Avenue BLI-438, Boston, MA, 02115, USA
- Division of Sleep Medicine, Harvard Medical School, 221 Longwood Avenue BLI-438, Boston, MA, 02115, USA
| | - Joshua J Gooley
- Programme in Neuroscience and Behavioural Disorders, Duke-National University of Singapore Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Paula A Witt-Enderby
- Division of Pharmaceutical, Administrative and Social Sciences, Duquesne University School of Pharmacy, 600 Forbes Avenue, Pittsburgh, PA, 15282, USA
| | - Steven W Lockley
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, 221 Longwood Avenue BLI-438, Boston, MA, 02115, USA
- Division of Sleep Medicine, Harvard Medical School, 221 Longwood Avenue BLI-438, Boston, MA, 02115, USA
| |
Collapse
|
42
|
Purnama YHC, Mastutik G, Putra ST. Increased Activity Of Mature Osteoblast from Rat Bone Marrow-Mesenchymal Stem Cells tn Osteogenic Medium Exposed to Melatonin. FOLIA MEDICA INDONESIANA 2018. [DOI: 10.20473/fmi.v54i4.10714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Exposure to melatonin in the cultures of Bone Marrow Mesenchymal Stem Cells (BM-MSCs) in osteogenic medium is able to induce mesenchymal stem cells and preosteoblasts into active osteoblasts via several transduction signals such as ERK 1/2. Previous studies used a single dose of 50 nM and a physiological dose of 20-200 pg/ml. The objective of the study was to obtain an optimal dose of melatonin that enhances osteoblast activity by increasing the expression of ERK1/2 and ALP levels in the culture of Rat Bone Marrow Mesenchymal Stem Cells (BM-MSCs) in osteogenic medium. This study was an in vitro experimental laboratory study using BM-MSCs from rat femoral bone grown on osteogenic medium without or with exposure to melatonin in doses of 0, 50, 100, 150 nM for 21 days. BM-MSCs were characterized by immunocytochemical techniques (CD45- and CD 105+) and ERK 1/2 expression was checked 24 hours after exposure to melatonin, while ALP levels were examined on day 21 using ELISA technique. ERK 1/2 expression on BM-MScs exposed to melatonin in doses 0, 50, 100, and 150 nM were respectively 0.087, 0.095, 0.081, and 0.079. Mean ERK 1/2 expression in various groups showed a decrease along with increasing doses of melatonin. Among the four treatment groups, the administration of melatonin in a dose of 50 nM resulted in highest mean ERK 1/2 expression. ALP levels in BM-MSCs exposed to melatonin doses of 0, 50, 100, and 150 nM were 0.128; 0.130; 0.117, and 0.111 ng/ml respectively. Data showed that decreasing mean ALP levels occurred along with the addition of melatonin dose. In conclusion, the administration of melatonin 50 nM is the optimal dose to increase the differentiation of cultured rat BM-MSCs into active osteoblasts.
Collapse
|
43
|
Tyrovola JB. The "mechanostat" principle in cell differentiation. The osteochondroprogenitor paradigm. J Cell Biochem 2018; 120:37-44. [PMID: 30144147 DOI: 10.1002/jcb.27509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 07/25/2018] [Indexed: 12/13/2022]
Abstract
The "mechanostat" principle may be depicted as an oscillating signal of a signaling molecule, in which the amplitude, frequency, cumulative level, delay, and duration of the curve encode the information for concrete cellular responses and biological activities. When the oscillating signal is kept sustained (present delay), cell exit may be performed, whereas when the oscillating signal remains robust, cell proliferation may take place. B-catenin-Wnt signaling pathway has a key role in the differentiation of osteochondroprogenitor cells. Sustained downregulation of the β-catenin-Wnt pathway forces osteochondroprogenitors to a chondrogenic fate instead of an osteoblastic one. Other signaling, for example, bone morphogenetic protein and Notch signaling pathways interact with the Wnt pathway. The crosstalk between biochemical and mechanical stimuli produces the final information that leads to the final cell fate decisions, through the "mechanostat" principle.
Collapse
|
44
|
The multiple functions of melatonin in regenerative medicine. Ageing Res Rev 2018; 45:33-52. [PMID: 29630951 DOI: 10.1016/j.arr.2018.04.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 02/07/2023]
Abstract
Melatonin research has been experiencing hyper growth in the last two decades; this relates to its numerous physiological functions including anti-inflammation, oncostasis, circadian and endocrine rhythm regulation, and its potent antioxidant activity. Recently, a large number of studies have focused on the role of melatonin in the regeneration of cells or tissues after their partial loss. In this review, we discuss the recent findings on the molecular involvement of melatonin in the regeneration of various tissues including the nervous system, liver, bone, kidney, bladder, skin, and muscle, among others.
Collapse
|
45
|
Palin LP, Polo TOB, Batista FRDS, Gomes-Ferreira PHS, Garcia Junior IR, Rossi AC, Freire A, Faverani LP, Sumida DH, Okamoto R. Daily melatonin administration improves osseointegration in pinealectomized rats. J Appl Oral Sci 2018; 26:e20170470. [PMID: 29995145 PMCID: PMC6025886 DOI: 10.1590/1678-7757-2017-0470] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 02/05/2017] [Indexed: 11/30/2022] Open
Abstract
The hypothesis of this study was that the peri-implant bone healing of the group of pinealectomized rats would differ from the control group. The samples were subjected to immunohistochemical, microtomographic (total porosity and connectivity density), and fluorochrome (mineralized surface) analyses.
Collapse
Affiliation(s)
- Letícia Pitol Palin
- Univ. Estadual Paulista, Faculdade de Odontologia, Departamento de Ciências Básicas, Araçatuba, São Paulo, Brasil
| | - Tarik Ocon Braga Polo
- Univ. Estadual Paulista, Faculdade de Odontologia, Departamento de Cirurgia e Clínica Integrada, Araçatuba, São Paulo, Brasil
| | - Fábio Roberto de Souza Batista
- Univ. Estadual Paulista, Faculdade de Odontologia, Departamento de Cirurgia e Clínica Integrada, Araçatuba, São Paulo, Brasil
| | | | - Idelmo Rangel Garcia Junior
- Univ. Estadual Paulista, Faculdade de Odontologia, Departamento de Cirurgia e Clínica Integrada, Araçatuba, São Paulo, Brasil
| | - Ana Cláudia Rossi
- Universidade Estadual de Campinas, Faculdade de Odontologia de Piracicaba, Área de Anatomia, Piracicaba, São Paulo, Brasil
| | - Alexandre Freire
- Universidade Estadual de Campinas, Faculdade de Odontologia de Piracicaba, Área de Anatomia, Piracicaba, São Paulo, Brasil
| | - Leonardo Perez Faverani
- Univ. Estadual Paulista, Faculdade de Odontologia, Departamento de Cirurgia e Clínica Integrada, Araçatuba, São Paulo, Brasil
| | - Doris Hissako Sumida
- Univ. Estadual Paulista, Faculdade de Odontologia, Departamento de Ciências Básicas, Araçatuba, São Paulo, Brasil
| | - Roberta Okamoto
- Univ. Estadual Paulista, Faculdade de Odontologia, Departamento de Ciências Básicas, Araçatuba, São Paulo, Brasil
| |
Collapse
|
46
|
Moniruzzaman M, Ghosal I, Das D, Chakraborty SB. Melatonin ameliorates H 2O 2-induced oxidative stress through modulation of Erk/Akt/NFkB pathway. Biol Res 2018; 51:17. [PMID: 29891016 PMCID: PMC5996524 DOI: 10.1186/s40659-018-0168-5] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 06/06/2018] [Indexed: 12/14/2022] Open
Abstract
Background
Improper control on reactive oxygen species (ROS) elimination process and formation of free radicals causes tissue dysfunction. Pineal hormone melatonin is considered a potent regulator of such oxidative damage in different vertebrates. Aim of the current communication is to evaluate the levels of oxidative stress and ROS induced damage, and amelioration of oxidative status through melatonin induced activation of signaling pathways. Hepatocytes were isolated from adult Labeo rohita and exposed to H2O2 at three different doses (12.5, 25 and 50 µM) to observe peroxide induced damage in fish hepatocytes. Melatonin (25, 50 and 100 μg/ml) was administered against the highest dose of H2O2. Enzymatic and non-enzymatic antioxidants such as malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT) and glutathione (GSH) was measured spectrophotometrically. Expression level of heat shock proteins (HSP70 and HSP90), HSPs-associated signaling molecules (Akt, ERK, cytosolic and nuclear NFkB), and melatonin receptor was also measured by western blotting analysis. Results H2O2 induced oxidative stress significantly altered (P < 0.05) MDA and GSH level, SOD and CAT activity, and up regulated HSP70 and HSP90 expression in carp hepatocytes. Signaling proteins exhibited differential modulation as revealed from their expression patterns in H2O2-exposed fish hepatocytes, in comparison with control hepatocytes. Melatonin treatment of H2O2-stressed fish hepatocytes restored basal cellular oxidative status in a dose dependent manner. Melatonin was observed to be inducer of signaling process by modulation of signaling molecules and melatonin receptor. Conclusions The results suggest that exogenous melatonin at the concentration of 100 µg/ml is required to improve oxidative status of the H2O2-stressed fish hepatocytes. In H2O2 exposed hepatocytes, melatonin modulates expression of HSP70 and HSP90 that enable the hepatocytes to become stress tolerant and survive by altering the actions of ERK, Akt, cytosolic and nuclear NFkB in the signal transduction pathways. Study also confirms that melatonin could act through melatonin receptor coupled to ERK/Akt signaling pathways. This understanding of the mechanism by which melatonin regulates oxidative status in the stressed hepatocytes may initiate the development of novel strategies for hepatic disease therapy in future.
Collapse
Affiliation(s)
- Mahammed Moniruzzaman
- Fish Endocrinology Research Unit, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
| | - Indranath Ghosal
- Fish Endocrinology Research Unit, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
| | - Debjit Das
- Fish Endocrinology Research Unit, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
| | - Suman Bhusan Chakraborty
- Fish Endocrinology Research Unit, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal, 700019, India.
| |
Collapse
|
47
|
Cirmanova V, Zofkova I, Kasalicky P, Lanska V, Bayer M, Starka L, Kanceva R. Hormonal and bone parameters in pubertal girls. Physiol Res 2018; 66:S419-S424. [PMID: 28948826 DOI: 10.33549/physiolres.933733] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Here we analyzed associations between muscles mass, total bone mineral content (BMC), lumbar spine bone density (BMD L1-L4) and serum or urine hormones in healthy peripubertal girls. Total BMC and areal BMD L1-L4, muscle mass and fat were measured by dual-energy X-ray absorptiometry (DXA). Muscle force (N) was estimated by a dynamometer. Circulating estradiol, follicle-stimulating hormone (FSH), luteinizing hormone (LH), 25-hydroxy vitamin D, parathyroid hormone (PTH), insulin-like growth factor 1 (IGF-1), leptin, osteocalcin, bone isoenzyme of alkaline phosphatase (bALP) and total calcium and phosphorus were quantified as the nocturnal melatonin and serotonin urinary excretion. Partial correlations adjusted for height, Tanner score and physical activity confirmed positive relationships between BMC or BMD L1-L4 (Z-score) and lean mass or fat. Furthermore, positive relationship was observed between BMC or BMD L1-L4 (Z-score) and serum leptin. After adjustment for Tanner score and physical activity, positive associations were observed between lean mass and IGF-1, leptin levels or muscle force. We proved positive relationships between bone mass and serum leptin in peripubertal girls.
Collapse
Affiliation(s)
- V Cirmanova
- Institute of Endocrinology, Prague, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
48
|
Renn TY, Huang YK, Feng SW, Wang HW, Lee WF, Lin CT, Burnouf T, Chen LY, Kao PF, Chang HM. Prophylactic supplement with melatonin successfully suppresses the pathogenesis of periodontitis through normalizing RANKL/OPG ratio and depressing the TLR4/MyD88 signaling pathway. J Pineal Res 2018; 64. [PMID: 29274168 DOI: 10.1111/jpi.12464] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/13/2017] [Indexed: 12/11/2022]
Abstract
Periodontitis (PD) is an inflammatory disease characterized by gingival inflammation and resorption of alveolar bone. Impaired receptor activator of nuclear factor-kappa B ligand/osteoprotegerin (RANKL/OPG) signaling caused by enhanced production of pro-inflammatory cytokines plays an essential role in the pathogenesis of PD. Considering melatonin possesses significant anti-inflammatory property, this study aimed to determine whether prophylactic treatment with melatonin would effectively normalize RANKL/OPG signaling, depress toll-like receptor 4/myeloid differentiation factor 88 (TLR4/MyD88)-mediated pro-inflammatory cytokine activation, and successfully suppress the pathogenesis of PD. PD was induced in adult rats by placing the ligature at molar subgingival regions. Fourteen days before PD induction, 10, 50, or 100 mg/kg of melatonin was intraperitoneally injected for consecutive 28 days. Biochemical and enzyme-linked immunosorbent assay were used to detect TLR4/MyD88 activity, RANKL, OPG, interleukin 1β, interleukin 6, and tumor necrosis factor-α levels, respectively. The extent of bone loss, bone mineral intensity, and calcium intensity was further evaluated by scanning electron microscopy, micro-computed tomography, and energy-dispersive X-ray spectroscopy. Results indicated that high RANKL/OPG ratio, TLR4/MyD88 activity, and pro-inflammatory cytokine levels were detected following PD. Impaired biochemical findings paralleled well with severe bone loss and reduced calcium intensity. However, in rats pretreated with melatonin, all above parameters were successfully returned to nearly normal levels with maximal change observed in rats receiving 100 mg/kg. As prophylactic treatment with melatonin effectively normalizes RANKL/OPG signaling by depressing TLR4/MyD88-mediated pro-inflammatory cytokine production, dietary supplement with melatonin may serve as an advanced strategy to strengthen oral health to counteract PD-induced destructive damage.
Collapse
Affiliation(s)
- Ting-Yi Renn
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yung-Kai Huang
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Sheng-Wei Feng
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsiao-Wei Wang
- School of Dentistry - Master and PhD Program, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wei-Fang Lee
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Che-Tong Lin
- Department of Dentistry, Taipei Medical University Hospital, Taipei, Taiwan
| | - Thierry Burnouf
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Li-You Chen
- Department of Anatomy, School of Medicine, College of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Pan-Fu Kao
- Department of Nuclear Medicine, School of Medicine, College of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Hung-Ming Chang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
49
|
Maria S, Samsonraj RM, Munmun F, Glas J, Silvestros M, Kotlarczyk MP, Rylands R, Dudakovic A, van Wijnen AJ, Enderby LT, Lassila H, Dodda B, Davis VL, Balk J, Burow M, Bunnell BA, Witt-Enderby PA. Biological effects of melatonin on osteoblast/osteoclast cocultures, bone, and quality of life: Implications of a role for MT2 melatonin receptors, MEK1/2, and MEK5 in melatonin-mediated osteoblastogenesis. J Pineal Res 2018; 64:10.1111/jpi.12465. [PMID: 29285799 PMCID: PMC6711668 DOI: 10.1111/jpi.12465] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/13/2017] [Indexed: 01/05/2023]
Abstract
The Melatonin Osteoporosis Prevention Study (MOPS) demonstrated that nightly melatonin resulted in a time-dependent decrease in equilibrium ratios of serum osteoclasts and osteoblasts in perimenopausal women. This study examines mechanisms related to the ratios of osteoblasts and osteoclasts using coculture models (transwell or layered) of human mesenchymal stem cell (MSC) and human peripheral blood monocytes (PBMCs). Human MSC/PBMC cocultures exposed to melatonin in osteogenic (OS+) medium for 21 days induced osteoblast differentiation and mineralization; however, only in layered cocultures did melatonin inhibit osteoclastogenesis. Melatonin effects were mediated through MT2 melatonin receptors, MEK1/2, and MEK5. In layered but not transwell cocultures, melatonin increased OPG:RANKL ratios by inhibiting RANKL, suggesting that contact with osteoclasts during osteoblastogenesis inhibits RANKL secretion. Melatonin modulated expression of ERK1/2, ERK5, β1 integrin, GLUT4, and IRβ that was dependent upon the type of coculture; however, in both cultures, melatonin increased RUNX2 and decreased PPARγ expression, indicating a role for metabolic processes that control osteogenic vs adipogenic cell fates of MSCs. Furthermore, melatonin also has osteoblast-inducing effects on human adipose-derived MSCs. In vivo, one-year nightly melatonin (15 mg/L) given to neu female mice in their drinking water increased pErk1/2, pErk5, Runx2, and Opg and Rankl levels in bone consistent with melatonin's already reported bone-enhancing effects. Finally, analysis of daily logs from the MOPS demonstrated a significant improvement in mood and perhaps sleep quality in women receiving melatonin vs placebo. The osteoblast-inducing, bone-enhancing effects of melatonin and improvement in quality of life suggest that melatonin is a safe and effective bone loss therapy.
Collapse
Affiliation(s)
- Sifat Maria
- Division of Pharmaceutical, Administrative and Social Sciences, Duquesne University School of Pharmacy, Pittsburgh, PA, USA
| | | | - Fahima Munmun
- Division of Pharmaceutical, Administrative and Social Sciences, Duquesne University School of Pharmacy, Pittsburgh, PA, USA
| | - Jessica Glas
- Division of Pharmaceutical, Administrative and Social Sciences, Duquesne University School of Pharmacy, Pittsburgh, PA, USA
| | - Maria Silvestros
- Division of Pharmaceutical, Administrative and Social Sciences, Duquesne University School of Pharmacy, Pittsburgh, PA, USA
| | - Mary P. Kotlarczyk
- Division of Pharmaceutical, Administrative and Social Sciences, Duquesne University School of Pharmacy, Pittsburgh, PA, USA
| | - Ryan Rylands
- Division of Pharmaceutical, Administrative and Social Sciences, Duquesne University School of Pharmacy, Pittsburgh, PA, USA
| | - Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | | | | | - Holly Lassila
- Division of Clinical Sciences, Duquesne University School of Pharmacy, Pittsburgh, PA, USA
| | - Bala Dodda
- Division of Pharmaceutical, Administrative and Social Sciences, Duquesne University School of Pharmacy, Pittsburgh, PA, USA
| | - Vicki L. Davis
- Division of Pharmaceutical, Administrative and Social Sciences, Duquesne University School of Pharmacy, Pittsburgh, PA, USA
| | - Judy Balk
- West Penn/Allegheny Health System, Drexel University and Temple University, Pittsburgh, PA, USA
| | - Matt Burow
- Center for Stem Cell Research and Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Bruce A. Bunnell
- Center for Stem Cell Research and Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Paula A. Witt-Enderby
- Division of Pharmaceutical, Administrative and Social Sciences, Duquesne University School of Pharmacy, Pittsburgh, PA, USA
| |
Collapse
|
50
|
Melatonin and breast cancer: Evidences from preclinical and human studies. Crit Rev Oncol Hematol 2018; 122:133-143. [DOI: 10.1016/j.critrevonc.2017.12.018] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 10/20/2017] [Accepted: 12/27/2017] [Indexed: 12/22/2022] Open
|