1
|
Qiu H, Zhang M, Li M, Chen C, Wang H, Yue X. Methamphetamine and Methamphetamine-Induced Neuronal Exosomes Modulate the Activity of Rab7a via PTEN to Exert an Influence on the Disordered Autophagic Flux Induced in Neurons. Int J Mol Sci 2025; 26:2644. [PMID: 40141286 PMCID: PMC11941945 DOI: 10.3390/ijms26062644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/06/2025] [Accepted: 03/13/2025] [Indexed: 03/28/2025] Open
Abstract
Autophagy is a critical mechanism by which methamphetamine (METH) induces neuronal damage and neurotoxicity. Prolonged METH exposure can result in the accumulation of autophagosomes within cells. The autophagy process encompasses several essential vesicle-related biological steps, collectively referred to as the autophagic flux. However, the precise mechanisms by which METH modulates the autophagic flux and the underlying pathways remain to be elucidated. In this study, we utilized a chronic METH exposure mouse model and cell model to demonstrate that METH treatment leads to an increase in p62 and LC3B-II and the accumulation of autophagosomes in striatal neurons and SH-SY5Y cells. To assess autophagic flux, this study utilized autophagy inhibitors and inducers. The results demonstrated that the lysosomal inhibitor chloroquine exacerbated autophagosome accumulation; however, blocking autophagosome formation with 3-methyladenine did not prevent METH-induced autophagosome accumulation. Compared to the autophagy activator rapamycin, METH significantly reduced autophagosome-lysosome fusion, leading to autophagosome accumulation. Rab7a is a critical regulator of autophagosome-lysosome fusion. Although Rab7a expression was upregulated in SH-SY5Y cells and brain tissues after METH treatment, immunoprecipitation experiments revealed weakened interactions between Rab7a and the lysosomal protein RILP. Overexpression of active Rab7a (Rab7a Q67L) significantly alleviated the METH-induced upregulation of LC3-II and p62. PTEN, a key regulator of Rab7a dephosphorylation, was downregulated following METH treatment, resulting in decreased Rab7a dephosphorylation and reduced Rab7a activity, thereby contributing to autophagosome accumulation. We further investigated the role of neuronal exosomes in the autophagy process. Our results demonstrated that the miRNA expression profiles in exosomes released by METH-induced SH-SY5Y cells were significantly altered, with 122 miRNAs upregulated and 151 miRNAs downregulated. KEGG and GO enrichment analyses of these differentially expressed miRNAs and their target genes revealed significant associations with the autophagy pathway and potential regulation of PTEN expression. Our experiments confirmed that METH-induced exosomes reduced PTEN expression levels and decreased Rab7a dephosphorylation, thereby exacerbating autophagic flux impairment and autophagosome accumulation. In conclusion, our study indicated that METH and its induced neuronal exosomes downregulate PTEN expression, leading to reduced Rab7a dephosphorylation. This, in turn, hinders the fusion of autophagosomes and lysosomes, ultimately resulting in autophagic flux impairment and neuronal damage.
Collapse
Affiliation(s)
- Hai Qiu
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China; (H.Q.); (M.Z.); (C.C.)
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Manting Zhang
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China; (H.Q.); (M.Z.); (C.C.)
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Minchun Li
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China;
| | - Chuanxiang Chen
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China; (H.Q.); (M.Z.); (C.C.)
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Huijun Wang
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China; (H.Q.); (M.Z.); (C.C.)
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xia Yue
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China; (H.Q.); (M.Z.); (C.C.)
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
2
|
Zhu CZ, Li GZ, Lyu HF, Lu YY, Li Y, Zhang XN. Modulation of autophagy by melatonin and its receptors: implications in brain disorders. Acta Pharmacol Sin 2025; 46:525-538. [PMID: 39448859 PMCID: PMC11845611 DOI: 10.1038/s41401-024-01398-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/17/2024] [Indexed: 10/26/2024]
Abstract
Autophagy plays a crucial role in maintaining neuronal homeostasis and function, and its disruption is linked to various brain diseases. Melatonin, an endogenous hormone that primarily acts through MT1 and MT2 receptors, regulates autophagy via multiple pathways. Growing evidence indicates that melatonin's ability to modulate autophagy provides therapeutic and preventive benefits in brain disorders, including neurodegenerative and affective diseases. In this review, we summarize the key mechanisms by which melatonin affects autophagy and explore its therapeutic potential in the treatment of brain disorders.
Collapse
Affiliation(s)
- Chen-Ze Zhu
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, 310058, China
| | - Gui-Zhi Li
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 311399, China
| | - Hai-Feng Lyu
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 311399, China
| | - Yang-Yang Lu
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, 310058, China
| | - Yue Li
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, 310058, China
| | - Xiang-Nan Zhang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, 310058, China.
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China.
| |
Collapse
|
3
|
Rashidi SK, Dezfouli MA, Khodagholi F, Dadashpour M, Shabani AA. Protective effect of melatonin against methamphetamine-induced attention deficits through miR-181/SIRT1 axis in the prefrontal cortex. Mol Biol Rep 2024; 51:690. [PMID: 38796575 DOI: 10.1007/s11033-024-09631-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 05/09/2024] [Indexed: 05/28/2024]
Abstract
INTRODUCTION Methamphetamine (METH) is an addictive psychostimulant with deleterious effects on the central nervous system. Chronic use of METH in high doses impairs cognition, attention and executive functions, but the underlying mechanisms are still unclear. Sirtuin 1 (SIRT1) is a post-translational regulator that is downregulated following METH neurotoxicity. Melatonin is a neuroprotective hormone that enhances mitochondrial metabolism. Here, we evaluated the effect of melatonin on METH-induced attention deficits disorder and the involvement of the miR-181/SIRT1 axis in melatonin neuroprotection. METHODS AND RESULTS METH at a dose of 5 mg/kg was injected for 21 consecutive days. The animals were assigned to receive either melatonin or the vehicle after METH injections. Attention levels were evaluated with abject-based attention test. In the prefrontal cortex, the expression levels of miR-181a-5p, SIRT1, p53 and CCAR2, as well as the mtDNA copy numbers were evaluated using qRT-PCR and western blotting. The outcomes revealed that melatonin treatment following METH injections improved METH-induced attention deficits. METH toxicity can be associated with changes in the miR-181/SIRT1 axis, elevated levels of p53 and COXII, and decreased levels of mtDNA in the prefrontal cortex of adult rats. Interestingly, administration of melatonin can improve the expression of these molecules and reduces the toxic effects of METH. CONCLUSION Melatonin ameliorated the neurotoxicity of METH in the prefrontal cortex and the miR-181/SIRT1 axis is involve in the protective effects of melatonin. However, melatonin can be potentially administrated to improve attention impairment in METH use disorders.
Collapse
Affiliation(s)
- Seyed Khalil Rashidi
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Mitra Ansari Dezfouli
- Department of Neurology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Dadashpour
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Akbar Shabani
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
4
|
Huang Y, Jiang C, Liu X, Tang W, Gui H, Sun T, Xu D, He M, Han M, Qiu H, Chen M, Huang S. Melatonin suppresses TLR4-mediated RSV infection in the central nervous cells by inhibiting NLRP3 inflammasome formation and autophagy. J Cell Mol Med 2024; 28:e18338. [PMID: 38683122 PMCID: PMC11057421 DOI: 10.1111/jcmm.18338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 03/22/2024] [Accepted: 03/29/2024] [Indexed: 05/01/2024] Open
Abstract
Respiratory syncytial virus (RSV) infects neuronal cells in the central nervous system (CNS), resulting in neurological symptoms. In the present study, we intended to explore the mechanism of RSV infection-induced neuroinflammatory injury from the perspective of the immune response and sought to identify effective protective measures against the injury. The findings showed that toll-like receptor 4 (TLR4) was activated after RSV infection in human neuronal SY5Y cells. Furthermore, TLR4 activation induced autophagy and apoptosis in neuronal cells, promoted the formation of the NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome, and increased the secretion of downstream inflammatory cytokines such as interleukin-1β (IL-1β), interleukin-18 (IL-18) and tumour necrosis factor-α (TNF-α). Interestingly, blockade of TLR4 or treatment with exogenous melatonin significantly suppressed TLR4 activation as well as TLR4-mediated apoptosis, autophagy and immune responses. Therefore, we infer that melatonin may act on the TLR4 to ameliorate RSV-induced neuronal injury, which provides a new therapeutic target for RSV infection.
Collapse
Affiliation(s)
- Yixuan Huang
- Department of EndocrinologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Chengcheng Jiang
- Department of Microbiology, School of Basic Medical SciencesAnhui Medical UniversityHefeiChina
| | - Xiaojie Liu
- Department of Microbiology, School of Basic Medical SciencesAnhui Medical UniversityHefeiChina
| | - Wei Tang
- Department of Microbiology, School of Basic Medical SciencesAnhui Medical UniversityHefeiChina
| | - Hongya Gui
- Department of Microbiology, School of Basic Medical SciencesAnhui Medical UniversityHefeiChina
| | - Tao Sun
- Department of Microbiology, School of Basic Medical SciencesAnhui Medical UniversityHefeiChina
| | - Doudou Xu
- Department of PediatricsThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Maozhang He
- Department of Microbiology, School of Basic Medical SciencesAnhui Medical UniversityHefeiChina
| | - Maozhen Han
- School of Life SciencesAnhui Medical UniversityHefeiChina
| | - Huan Qiu
- School of NursingAnhui Medical UniversityHefeiChina
| | - Mingwei Chen
- Department of EndocrinologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Shenghai Huang
- Department of Microbiology, School of Basic Medical SciencesAnhui Medical UniversityHefeiChina
- School of Life SciencesAnhui Medical UniversityHefeiChina
- Department of Clinical LaboratoryAnhui Public Health Clinical Center, The First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| |
Collapse
|
5
|
Kapil L, Kumar V, Kaur S, Sharma D, Singh C, Singh A. Role of Autophagy and Mitophagy in Neurodegenerative Disorders. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:367-383. [PMID: 36974405 DOI: 10.2174/1871527322666230327092855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 12/19/2022] [Accepted: 01/11/2023] [Indexed: 03/29/2023]
Abstract
Autophagy is a self-destructive cellular process that removes essential metabolites and waste from inside the cell to maintain cellular health. Mitophagy is the process by which autophagy causes disruption inside mitochondria and the total removal of damaged or stressed mitochondria, hence enhancing cellular health. The mitochondria are the powerhouses of the cell, performing essential functions such as ATP (adenosine triphosphate) generation, metabolism, Ca2+ buffering, and signal transduction. Many different mechanisms, including endosomal and autophagosomal transport, bring these substrates to lysosomes for processing. Autophagy and endocytic processes each have distinct compartments, and they interact dynamically with one another to complete digestion. Since mitophagy is essential for maintaining cellular health and using genetics, cell biology, and proteomics techniques, it is necessary to understand its beginning, particularly in ubiquitin and receptor-dependent signalling in injured mitochondria. Despite their similar symptoms and emerging genetic foundations, Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS) have all been linked to abnormalities in autophagy and endolysosomal pathways associated with neuronal dysfunction. Mitophagy is responsible for normal mitochondrial turnover and, under certain physiological or pathological situations, may drive the elimination of faulty mitochondria. Due to their high energy requirements and post-mitotic origin, neurons are especially susceptible to autophagic and mitochondrial malfunction. This article focused on the importance of autophagy and mitophagy in neurodegenerative illnesses and how they might be used to create novel therapeutic approaches for treating a wide range of neurological disorders.
Collapse
Affiliation(s)
- Lakshay Kapil
- Department of Pharmacology, ISF College of Pharmacy, Moga-142001, Punjab India
- Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, India
| | - Vishal Kumar
- Department of Pharmacology, ISF College of Pharmacy, Moga-142001, Punjab India
- Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, India
| | - Simranjit Kaur
- Department of Pharmacology, ISF College of Pharmacy, Moga-142001, Punjab India
- Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, India
| | - Deepali Sharma
- Department of Pharmacology, ISF College of Pharmacy, Moga-142001, Punjab India
- Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, India
| | - Charan Singh
- Department of Pharmaceutics (School of Pharmacy), H.N.B. Garhwal University, Srinagar - 246174, Garhwal (Uttarakhand), India
- Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, India
| | - Arti Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga-142001, Punjab India
- Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, India
| |
Collapse
|
6
|
De Luca SN, Vlahos R. Targeting accelerated pulmonary ageing to treat chronic obstructive pulmonary disease-induced neuropathological comorbidities. Br J Pharmacol 2024; 181:3-20. [PMID: 37828646 PMCID: PMC10952708 DOI: 10.1111/bph.16263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/06/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a major incurable health burden, ranking as the third leading cause of death worldwide, mainly driven by cigarette smoking. COPD is characterised by persistent airway inflammation, lung function decline and premature ageing with the presence of pulmonary senescent cells. This review proposes that cellular senescence, a state of stable cell cycle arrest linked to ageing, induced by inflammation and oxidative stress in COPD, extends beyond the lungs and affects the systemic circulation. This pulmonary senescent profile will reach other organs via extracellular vesicles contributing to brain inflammation and damage, and increasing the risk of neurological comorbidities, such as stroke, cerebral small vessel disease and Alzheimer's disease. The review explores the role of cellular senescence in COPD-associated brain conditions and investigates the relationship between cellular senescence and circadian rhythm in COPD. Additionally, it discusses potential therapies, including senomorphic and senolytic treatments, as novel strategies to halt or improve the progression of COPD.
Collapse
Affiliation(s)
- Simone N. De Luca
- Centre for Respiratory Science and Health, School of Health & Biomedical SciencesRMIT UniversityMelbourneVictoriaAustralia
| | - Ross Vlahos
- Centre for Respiratory Science and Health, School of Health & Biomedical SciencesRMIT UniversityMelbourneVictoriaAustralia
| |
Collapse
|
7
|
Polvat T, Prasertporn T, Na Nakorn P, Pannengpetch S, Suwanjang W, Panmanee J, Ngampramuan S, Cornish JL, Chetsawang B. Proteomic Analysis Reveals the Neurotoxic Effects of Chronic Methamphetamine Self-Administration-Induced Cognitive Impairments and the Role of Melatonin-Enhanced Restorative Process during Methamphetamine Withdrawal. J Proteome Res 2023; 22:3348-3359. [PMID: 37676068 PMCID: PMC10563163 DOI: 10.1021/acs.jproteome.3c00502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Indexed: 09/08/2023]
Abstract
Cognitive flexibility is a crucial ability in humans that can be affected by chronic methamphetamine (METH) addiction. The present study aimed to elucidate the mechanisms underlying cognitive impairment in mice chronically administered METH via an oral self-administration method. Further, the effect of melatonin treatment on recovery of METH-induced cognitive impairment was also investigated. Cognitive performance of the mice was assessed using an attentional set shift task (ASST), and possible underlying neurotoxic mechanisms were investigated by proteomic and western blot analysis of the prefrontal cortex (PFC). The results showed that mice-administered METH for 21 consecutive days exhibited poor cognitive performance compared to controls. Cognitive deficit in mice partly recovered after METH withdrawal. In addition, mice treated with melatonin during METH withdrawal showed a higher cognitive recovery than vehicle-treated METH withdrawal mice. Proteomic and western blot analysis revealed that METH self-administration increased neurotoxic markers, including disruption to the regulation of mitochondrial function, mitophagy, and decreased synaptic plasticity. Treatment with melatonin during withdrawal restored METH-induced mitochondria and synaptic impairments. These findings suggest that METH-induced neurotoxicity partly depends on mitochondrial dysfunction leading to autophagy-dependent cell death and that the recovery of neurological impairments may be enhanced by melatonin treatment during the withdrawal period.
Collapse
Affiliation(s)
- Tanthai Polvat
- Research
Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
- Center
of Emotional Health, Department of Psychology, Macquarie University, Balaclava Road, North Ryde, NSW 2109, Australia
| | - Tanya Prasertporn
- Research
Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
| | - Piyada Na Nakorn
- Center
for Research Innovation and Bioinformatics, Faculty of Medical Technology, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
| | - Supitcha Pannengpetch
- Center
for Research Innovation and Bioinformatics, Faculty of Medical Technology, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
| | - Wilasinee Suwanjang
- Center
for Research Innovation and Bioinformatics, Faculty of Medical Technology, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
| | - Jiraporn Panmanee
- Research
Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
| | - Sukhonthar Ngampramuan
- Research
Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
| | - Jennifer L. Cornish
- Center
of Emotional Health, Department of Psychology, Macquarie University, Balaclava Road, North Ryde, NSW 2109, Australia
| | - Banthit Chetsawang
- Research
Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
| |
Collapse
|
8
|
Salama BM, Helmy MW, Fouad H, Shamaa MM, Houssen ME. The Synergistic Antitumor Effect of Decitabine and Vorinostat Combination on HepG2 Human Hepatocellular Carcinoma Cell Line via Epigenetic Modulation of Autophagy-Apoptosis Molecular Crosstalk. Curr Issues Mol Biol 2023; 45:5935-5949. [PMID: 37504291 PMCID: PMC10378248 DOI: 10.3390/cimb45070375] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a worldwide health issue. Epigenetic alterations play a crucial role in HCC tumorigenesis. Using epigenetic modulators for HCC treatment confers a promising therapeutic effect. The aim of this study was to explore the effect of a decitabine (DAC) and vorinostat (VOR) combination on the crosstalk between apoptosis and autophagy in the HCC HepG2 cell line at 24 h and 72 h. Median inhibitory concentrations (IC50s) of VOR and DAC were assessed in the HepG2 cell line. The activity of caspase-3 was evaluated colorimetrically, and Cyclin D1(CCND1), Bcl-2, ATG5, ATG7, and P62 levels were assessed using ELISA at different time intervals (24 h and 72 h), while LC3IIB and Beclin-1gene expression were measured by using qRT-PCR. The synergistic effect of VOR and DAC was confirmed due to the observed combination indices (CIs) and dose reduction indices (DRIs). The combined treatment with both drugs inhibited the proliferation marker (CCND1), and enhanced apoptosis compared with each drug alone at 24 h and 72 h (via active caspase-3 upregulation and Bcl-2 downregulation). Moreover, the combination induced autophagy as an early event via upregulation of Beclin-1, LC3IIB, ATG5, and ATG7 gene expression. The initial induction of autophagy started to decrease after 72 h due to Beclin-1 downregulation, and there was decreased expression of LC3IIB compared with the value at 24 h. Herein, epigenetic modulation via the VOR/DAC combination showed an antitumor effect through the coordination of an autophagy-apoptosis crosstalk and promotion of autophagy-induced apoptosis, which ultimately led to the cellular death of HCC cancer cells.
Collapse
Affiliation(s)
- Basant M Salama
- Department of Biochemistry, Faculty of Pharmacy, Damanhour University, Damanhour 22511, Egypt
| | - Maged W Helmy
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Damanhour University, Damanhour 22511, Egypt
- Pharmacology and Toxicology Department, Clinical and Biological Sciences Division, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria 1029, Egypt
| | - Hosny Fouad
- Pharmacology Department, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
- Department of Biochemistry, Clinical and Biological Science Division, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria 1029, Egypt
| | - Marium M Shamaa
- Department of Biochemistry, Clinical and Biological Science Division, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria 1029, Egypt
| | - Maha E Houssen
- Department of Biochemistry, Faculty of Pharmacy, Damanhour University, Damanhour 22511, Egypt
| |
Collapse
|
9
|
Altaf MA, Sharma N, Srivastava D, Mandal S, Adavi S, Jena R, Bairwa RK, Gopalakrishnan AV, Kumar A, Dey A, Lal MK, Tiwari RK, Kumar R, Ahmed P. Deciphering the melatonin-mediated response and signalling in the regulation of heavy metal stress in plants. PLANTA 2023; 257:115. [PMID: 37169910 DOI: 10.1007/s00425-023-04146-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 04/25/2023] [Indexed: 05/13/2023]
Abstract
MAIN CONCLUSION Melatonin has a protective effect against heavy metal stress in plants by immobilizing HM in cell walls and sequestering them in root cell vacuoles, reducing HM's translocation from roots to shoots. It enhances osmolyte production, increases antioxidant enzyme activity, and improves photosynthesis, thereby improving cellular functions. Understanding the melatonin-mediated response and signalling can sustain crop production in heavy metal-stressed soils. Melatonin is a pleiotropic signal molecule that plays a critical role in plant growth and stress tolerance, particularly against heavy metals in soil. Heavy metals (HMs) are ubiquitously found in the soil-water environment and readily taken up by plants, thereby disrupting mineral nutrient homeostasis, osmotic balance, oxidative stress, and altered primary and secondary metabolism. Plants combat HM stress through inbuilt defensive mechanisms, such as metal exclusion, restricted foliar translocation, metal sequestration and compartmentalization, chelation, and scavenging of free radicals by antioxidant enzymes. Melatonin has a protective effect against the damaging effects of HM stress in plants. It achieves this by immobilizing HM in cell walls and sequestering them in root cell vacuoles, reducing HM's translocation from roots to shoots. This mechanism improves the uptake of macronutrients and micronutrients in plants. Additionally, melatonin enhances osmolyte production, improving the plant's water relations, and increasing the activity of antioxidant enzymes to limit lipid peroxidation and reactive oxygen species (ROS) levels. Melatonin also decreases chlorophyll degradation while increasing its synthesis, and enhances RuBisCO activity for better photosynthesis. All these functions contribute to improving the cellular functions of plants exposed to HM stress. This review aims to gain better insight into the melatonin-mediated response and signalling under HM stress in plants, which may be useful in sustaining crop production in heavy metal-stressed soils.
Collapse
Affiliation(s)
- Muhammad Ahsan Altaf
- School of Horticulture, Hainan University, Haikou, 570228, People's Republic of China
| | - Nitin Sharma
- Dr Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, 173230, India
| | - Dipali Srivastava
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Sayanti Mandal
- Institute of Bioinformatics Biotechnology (IBB), Savitribai Phule Pune University (SPPU), Pune, Maharashtra, India
- Department of Biotechnology, Dr. D. Y. Patil Arts, Commerce & Science College, Pimpri, Pune, 411018, India
| | - Sandeep Adavi
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
- ICAR-National Institute of Biotic Stress Management, Raipur, 493225, India
| | - Rupak Jena
- ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India
| | - Rakesh Kumar Bairwa
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, 132001, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Awadhesh Kumar
- ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, West Bengal, 700073, India
| | - Milan Kumar Lal
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India.
| | - Rahul Kumar Tiwari
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India.
| | - Ravinder Kumar
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India.
| | - Parvaiz Ahmed
- Department of Botany, GDC, Pulwama, Jammu and Kashmir, 192301, India.
| |
Collapse
|
10
|
Zeng R, Pu HY, Zhang XY, Yao ML, Sun Q. Methamphetamine: Mechanism of Action and Chinese Herbal Medicine Treatment for Its Addiction. Chin J Integr Med 2023:10.1007/s11655-023-3635-y. [PMID: 37074617 DOI: 10.1007/s11655-023-3635-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2023] [Indexed: 04/20/2023]
Abstract
With the proliferation of synthetic drugs, research on the mechanism of action of addictive drugs and treatment methods is of great significance. Among them, methamphetamine (METH) is the most representative amphetamine synthetic drug, and the treatment of METH addiction has become an urgent medical and social problem. In recent years, the therapeutic effects of Chinese herbal medicines on METH addiction have gained widespread attention because of their non-addictiveness, multiple targets, low side effects, low cost, and other characteristics. Previous studies have identified a variety of Chinese herbal medicines with effects on METH addiction. Based on the research on METH in recent years, this article summarizes the mechanism of action of METH as the starting point and briefly reviews the Chinese herbal medicine-based treatment of METH.
Collapse
Affiliation(s)
- Rui Zeng
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Hong-Yu Pu
- North Sichuan Medical College, Nanchong, Sichuan Province, 637000, China
| | - Xin-Yue Zhang
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Meng-Lin Yao
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Qin Sun
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, China.
| |
Collapse
|
11
|
Zare N, Maghsoudi N, Mirbehbahani SH, Foolad F, Khakpour S, Mansouri Z, Khodagholi F, Ghorbani Yekta B. Prenatal Methamphetamine Hydrochloride Exposure Leads to Signal Transduction Alteration and Cell Death in the Prefrontal Cortex and Amygdala of Male and Female Rats' Offspring. J Mol Neurosci 2022; 72:2233-2241. [PMID: 36056281 DOI: 10.1007/s12031-022-02062-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/23/2022] [Indexed: 12/13/2022]
Abstract
In the last decade, there has been a great increase in methamphetamine hydrochloride (METH) abuse by pregnant women that exposes fetus and human offspring to a wide variety of developmental impairments that may be the underlying causes of future psychosocial issues. Herein, we investigated whether prenatal METH exposure with different doses (2 and 5 mg/kg) could influence neuronal cell death and antioxidant level in the different brain regions of adult male and female offspring. Adult male and female Wistar rats prenatally exposed to METH (2 or 5 mg/kg) and/or saline was used in this study. At week 12, adult rats' offspring were decapitated to collect different brain region tissues including amygdala (AMY) and prefrontal cortices (PFC). Western blot analysis was performed to evaluate the apoptosis- and autophagy-related markers, and enzymatic assay was used to measure the level of catalase and also reduced glutathione (GSH). Our results showed that METH exposure during pregnancy increased the level of apoptosis (BAX/Bcl-2 and Caspase-3) and autophagy (Beclin-1 and LC3II/LC3I) in the PFC and AMY areas of both male and female offspring's brain. Also, we found an elevation in the GSH content of all both mentioned brain areas and catalase activity of PFC in the offspring's brain. These changes were more significant in female offspring. Being prenatally exposed to METH increased cell death at least partly via apoptosis and autophagy in AMY and PFC of male and female offspring's brain, while the antioxidant system tried to protect cells in these regions.
Collapse
Affiliation(s)
- Nayereh Zare
- Department of Anatomical Sciences and Cognitive Neuroscience, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Nader Maghsoudi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Hamidreza Mirbehbahani
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Forough Foolad
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Shahrzad Khakpour
- Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zahra Mansouri
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Batool Ghorbani Yekta
- Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran. .,Herbal Pharmacology Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
12
|
Guo D, Huang X, Xiong T, Wang X, Zhang J, Wang Y, Liang J. Molecular mechanisms of programmed cell death in methamphetamine-induced neuronal damage. Front Pharmacol 2022; 13:980340. [PMID: 36059947 PMCID: PMC9428134 DOI: 10.3389/fphar.2022.980340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/28/2022] [Indexed: 12/02/2022] Open
Abstract
Methamphetamine, commonly referred to as METH, is a highly addictive psychostimulant and one of the most commonly misused drugs on the planet. Using METH continuously can increase your risk for drug addiction, along with other health complications like attention deficit disorder, memory loss, and cognitive decline. Neurotoxicity caused by METH is thought to play a significant role in the onset of these neurological complications. The molecular mechanisms responsible for METH-caused neuronal damage are discussed in this review. According to our analysis, METH is closely associated with programmed cell death (PCD) in the process that causes neuronal impairment, such as apoptosis, autophagy, necroptosis, pyroptosis, and ferroptosis. In reviewing this article, some insights are gained into how METH addiction is accompanied by cell death and may help to identify potential therapeutic targets for the neurological impairment caused by METH abuse.
Collapse
Affiliation(s)
- Dongming Guo
- Institute of Translational Medicine, Medical, Yangzhou University, Yangzhou, China
| | - Xinlei Huang
- Institute of Translational Medicine, Medical, Yangzhou University, Yangzhou, China
| | - Tianqing Xiong
- Institute of Translational Medicine, Medical, Yangzhou University, Yangzhou, China
| | - Xingyi Wang
- Institute of Translational Medicine, Medical, Yangzhou University, Yangzhou, China
| | - Jingwen Zhang
- Institute of Translational Medicine, Medical, Yangzhou University, Yangzhou, China
| | - Yingge Wang
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Jingyan Liang
- Institute of Translational Medicine, Medical, Yangzhou University, Yangzhou, China
- *Correspondence: Jingyan Liang,
| |
Collapse
|
13
|
Nopparat C, Boontor A, Panmanee J, Govitrapong P. Melatonin Attenuates Methamphetamine-Induced Alteration of Amyloid β Precursor Protein Cleaving Enzyme Expressions via Melatonin Receptor in Human Neuroblastoma Cells. Neurotox Res 2022; 40:1086-1095. [PMID: 35648367 DOI: 10.1007/s12640-022-00522-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/26/2022] [Accepted: 05/21/2022] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD) is the most prominent neurodegenerative disease represented by the loss of memory and cognitive impairment symptoms and is one of the major health imperilments among the elderly. Amyloid (Aβ) deposit inside the neuron is one of the characteristic pathological hallmarks of this disease, leading to neuronal cell death. In the amyloidogenic processing, the amyloid precursor protein (APP) is cleaved by beta-secretase and γ-secretase to generate Aβ. Methamphetamine (METH) is a psychostimulant drug that causes neurodegeneration and detrimental cognitive deficits. The analogy between the neurotoxic and neurodegenerative profile of METH and AD pathology necessitates an exploration of the underlying molecular mechanisms. In the present study, we found that METH ineluctably affects APP processing, which might contribute to the marked production of Aβ in human neuroblastoma cells. Melatonin, an indolamine produced and released by the pineal gland as well as other extrapineal, has been protective against METH-induced neurodegenerative processes, thus rescuing neuronal cell death. However, the precise action of melatonin on METH has yet to be determined. We further propose to investigate the protective properties of melatonin on METH-induced APP-cleaving secretases. Pretreatment with melatonin significantly reversed METH-induced APP-cleaving secretases and Aβ production. In addition, pretreatment with luzindole, a melatonin receptor antagonist, significantly prevented the protective effect of melatonin, suggesting that the attenuation of the toxic effect on METH-induced APP processing by melatonin was mediated via melatonin receptor. The present results suggested that melatonin has a beneficial role in preventing Aβ generation in a cellular model of METH-induced AD.
Collapse
Affiliation(s)
- Chutikorn Nopparat
- Innovative Learning Center, Srinakharinwirot University, Sukhumvit 23, Bangkok, 10110, Thailand
| | - Anuttree Boontor
- Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, 10210, Thailand
| | - Jiraporn Panmanee
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Nakhonpathom, 73170, Thailand
| | - Piyarat Govitrapong
- Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, 10210, Thailand.
| |
Collapse
|
14
|
Protection of the PC12 Cells by Nesfatin-1 Against Methamphetamine-Induced Neurotoxicity. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10417-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Jameie SB, Kazemian A, Sanadgol Z, Asadzadeh Bayqara S, Jameie MS, Farhadi M. Coenzyme Q10 reduces expression of apoptotic markers in adult rat nucleus accumbens dopaminergic neurons treated with methamphetamine. Mol Biol Rep 2022; 49:2273-2281. [PMID: 35034284 DOI: 10.1007/s11033-021-07049-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/02/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Abuse of addictive drugs such as methamphetamine (METH) has become a global problem, leading to many social, economic, and health disturbances, including neurological and cognitive disorders. Neuronal damage is reported in chronic METH abusers. The neuroprotective role of CoQ10 has been shown in many studies. In the present study, we aimed to assess the pre and post-efficacy of CoQ10 on the dopaminergic neurons of the Nucleus Accumbens (de Miranda et al. in Food Res Int 121:641-647, 2019) in the male adult rats treated with METH. METHODS 80 rats were randomly divided into eight groups (n = 10), including: negative control (intact), positive control (received 5 mg/kg/day METH/IP), three post-treatment groups (METH + 5, 10, 20 mg/kg CoQ10) and three pre-treatment groups (received 5, 10, 20 mg/kg CoQ10 as pre-treatment for 14 days before METH injection). The expression of Bax, Bcl-2, Bax/Bcl-2 ratio, P53, Caspase-3 and tyrosine hydroxylase in NAc studied using western blotting. Nissl staining was used to study the neuronal density of NAc. RESULTS Our results showed that the different doses of CoQ10 in METH-treated animals significantly changed pro-apoptotic proteins' expression in the benefit of neuronal survival of NAc (P < 0.05). Neuronal density in NAc were significantly lower in the METH group compared to the control and CoQ10 treated groups. Pre- and post-treatment with different doses of CoQ10 restored the neuronal damage in NAc. CONCLUSIONS CoQ10 could decrease the activation of pro-apoptotic proteins and reduce the neurodegenerative effects induced by METH. From a clinical point of view, it seems that certain antioxidants such as CoQ10 should receive more attention in clinical trial research. We believe that antioxidants could be the promising for drug abuse treatment in the future.
Collapse
Affiliation(s)
- S B Jameie
- Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - A Kazemian
- Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Z Sanadgol
- Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Microbiology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - S Asadzadeh Bayqara
- Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mana Sadat Jameie
- Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran.,Cardiovascular Diseases Research Institute, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - M Farhadi
- Department of Microbiology, Karaj Branch, Islamic Azad University, Karaj, Iran.
| |
Collapse
|
16
|
Hu Y, He T, Zhu J, Wang X, Tong J, Li Z, Dong J. The Link between Circadian Clock Genes and Autophagy in Chronic Obstructive Pulmonary Disease. Mediators Inflamm 2021; 2021:2689600. [PMID: 34733115 PMCID: PMC8560276 DOI: 10.1155/2021/2689600] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 10/08/2021] [Indexed: 11/29/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD), a progressive respiratory disease, is characterized by the alveolar epithelium injury and persistent airway inflammation. It is documented that oscillation and dysregulated expression of circadian clock genes, like Bmal1, Per1, and Per2, involved in COPD pathogenies, including chronic inflammation and imbalanced autophagy level, and targeting the associations of circadian rhythm and autophagy is promising strategies in the management and treatment of COPD. Herein, we reviewed the mechanisms of the circadian clock and the unbalance of the autophagic level in COPD, as well as the link between the two, so as to provide further theoretical bases for the study on the pathogenesis of COPD.
Collapse
Affiliation(s)
- Yuedi Hu
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, No. 1, Qianjiang Road, Hefei City, Anhui Province, China
| | - Tiantian He
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, No. 1, Qianjiang Road, Hefei City, Anhui Province, China
| | - Jie Zhu
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, No. 1, Qianjiang Road, Hefei City, Anhui Province, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
- Institute of Traditional Chinese Medicine Prevention and Control on Respiratory Disease, Anhui Academy of Chinese Medicine, No. 117, Meishan Road, Hefei City, Anhui Province, China
| | - Xiaole Wang
- Institute of Traditional Chinese Medicine Prevention and Control on Respiratory Disease, Anhui Academy of Chinese Medicine, No. 117, Meishan Road, Hefei City, Anhui Province, China
| | - Jiabing Tong
- Institute of Traditional Chinese Medicine Prevention and Control on Respiratory Disease, Anhui Academy of Chinese Medicine, No. 117, Meishan Road, Hefei City, Anhui Province, China
- Department of Respiratory Medicine, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Meishan Road, Hefei City, Anhui Province, China
| | - Zegeng Li
- Institute of Traditional Chinese Medicine Prevention and Control on Respiratory Disease, Anhui Academy of Chinese Medicine, No. 117, Meishan Road, Hefei City, Anhui Province, China
- Department of Respiratory Medicine, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Meishan Road, Hefei City, Anhui Province, China
| | - Jingcheng Dong
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| |
Collapse
|
17
|
Alamdari AF, Rahnemayan S, Rajabi H, Vahed N, Kashani HRK, Rezabakhsh A, Sanaie S. Melatonin as a promising modulator of aging related neurodegenerative disorders: Role of microRNAs. Pharmacol Res 2021; 173:105839. [PMID: 34418564 DOI: 10.1016/j.phrs.2021.105839] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/02/2021] [Accepted: 08/16/2021] [Indexed: 02/07/2023]
Abstract
One of the host risk factors involved in aging-related diseases is coupled with the reduction of endogenous melatonin (MLT) synthesis in the pineal gland. MLT is considered a well-known pleiotropic regulatory hormone to modulate a multitude of biological processes such as the regulation of circadian rhythm attended by potent anti-oxidant, anti-inflammatory, and anti-cancer properties. It has also been established that the microRNAs family, as non-coding mRNAs regulating post-transcriptional processes, also serve a crucial role to promote MLT-related advantageous effects in both experimental and clinical settings. Moreover, the anti-aging impact of MLT and miRNAs participation jointly are of particular interest, recently. In this review, we aimed to scrutinize recent advances concerning the therapeutic implications of MLT, particularly in the brain tissue in the face of aging. We also assessed the possible interplay between microRNAs and MLT, which could be considered a therapeutic strategy to slow down the aging process in the nervous system.
Collapse
Affiliation(s)
- Arezoo Fathalizadeh Alamdari
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sama Rahnemayan
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Rajabi
- Research Center for Translational Medicine, School of Medicine, Koç University, Istanbul, Turkey
| | - Nafiseh Vahed
- Research Center for Evidence-Based Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Reza Khayat Kashani
- Department of Neurosurgery, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aysa Rezabakhsh
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Emergency Medicine Research Team, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Sarvin Sanaie
- Neurosciences Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
18
|
Pathological methamphetamine exposure triggers the accumulation of neuropathic protein amyloid-β by inhibiting UCHL1. Neurotoxicology 2021; 86:19-25. [PMID: 34175320 DOI: 10.1016/j.neuro.2021.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 06/10/2021] [Accepted: 06/22/2021] [Indexed: 11/21/2022]
Abstract
Methamphetamine (METH), a powerful psychoactive drug, causes damage to the nervous system and leads to degenerative changes similar to Alzheimer's disease (AD), however, the molecular mechanism between the toxicity of METH and AD-related symptoms remains poorly understood. In this study, we investigated the effect of METH exposure on the accumulation of amyloid-β by establishing the animal and cell models. The results showed that METH exposure increased amyloid precursor protein (APP) and β-secretase (BACE1), contributed to the accumulation of amyloid-β, and which was alleviated with the pretreatment of BACE1 inhibitor. In addition, METH exposure decreased ubiquitin carboxy-terminal hydrolases L1 (UCHL1) which was related to the degradation of BACE1, and therefore led to the up-regulation of BACE1. In summary, the study could provide a new insight into the molecular mechanisms of METH toxicity and new evidence for the link between METH abuse and AD.
Collapse
|
19
|
Hossain MF, Wang N, Chen R, Li S, Roy J, Uddin MG, Li Z, Lim LW, Song YQ. Exploring the multifunctional role of melatonin in regulating autophagy and sleep to mitigate Alzheimer's disease neuropathology. Ageing Res Rev 2021; 67:101304. [PMID: 33610813 DOI: 10.1016/j.arr.2021.101304] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/12/2021] [Accepted: 02/15/2021] [Indexed: 12/12/2022]
Abstract
Melatonin (MLT) is a neurohormone that is regulated by the circadian clock and plays multifunctional roles in numerous neurodegenerative disorders, such as Alzheimer's disease (AD). AD is the most common form of dementia and is associated with the degradation of axons and synapses resulting in memory loss and cognitive impairment. Despite extensive research, there is still no effective cure or specific treatment to prevent the progression of AD. The pathogenesis of AD involves atrophic alterations in the brain that also result in circadian alterations, sleep disruption, and autophagic dysfunction. In this scenario, MLT and autophagy play a central role in removing the misfolded protein aggregations. MLT also promotes autophagy through inhibiting methamphetamine toxicity to protect against neuronal cell death in AD brain. Besides, MLT plays critical roles as either a pro-autophagic indicator or anti-autophagic regulator depending on the phase of autophagy. MLT also has antioxidant properties that can counteract mitochondrial damage, oxidative stress, and apoptosis. Aging, a major risk factor for AD, can change sleep patterns and sleep quality, and MLT can improve sleep quality through regulating sleep cycles. The primary purpose of this review is to explore the putative mechanisms of the beneficial effects of MLT in AD patients. Furthermore, we also summarize the findings from preclinical and clinical studies on the multifunctional roles of MLT on autophagic regulation, the control of the circadian clock-associated genes, and sleep regulation.
Collapse
|
20
|
Mueed Z, Mehta D, Rai PK, Kamal MA, Poddar NK. Cross-Interplay between Osmolytes and mTOR in Alzheimer's Disease Pathogenesis. Curr Pharm Des 2021; 26:4699-4711. [PMID: 32418522 DOI: 10.2174/1381612826666200518112355] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/15/2020] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease, categorized by the piling of amyloid-β (Aβ), hyperphosphorylated tau, PHFs, NFTs and mTOR hyperactivity, is a neurodegenerative disorder, affecting people across the globe. Osmolytes are known for osmoprotectants and play a pivotal role in protein folding, function and protein stability, thus, preventing proteins aggregation, and counteracting effects of denaturing solutes on proteins. Osmolytes (viz., sorbitol, inositol, and betaine) perform a pivotal function of maintaining homeostasis during hyperosmotic stress. The selective advantage of utilising osmolytes over inorganic ions by cells is in maintaining cell volume without compromising cell function, which is important for organs such as the brain. Osmolytes have been documented not only as neuroprotectors but they also seem to act as neurodegenerators. Betaine, sucrose and trehalose supplementation has been seen to induce autophagy thereby inhibiting the accumulation of Aβ. In contrast, sucrose has also been associated with mTOR hyperactivity, a hallmark of AD pathology. The neuroprotective action of taurine is revealed when taurine supplementation is seen to inhibit neural damage, apoptosis and oxidative damage. Inositol stereoisomers (viz., scyllo-inositol and myo-inositol) have also been seen to inhibit Aβ production and plaque formation in the brain, inhibiting AD pathogenesis. However, TMAO affects the aging process adversely by deregulating the mTOR signalling pathway and then kindling cognitive dysfunction via degradation of chemical synapses and synaptic plasticity. Thus, it can be concluded that osmolytes may act as a probable therapeutic approach for neurodevelopmental disorders. Here, we have reviewed and focussed upon the impact of osmolytes on mTOR signalling pathway and thereby its role in AD pathogenesis.
Collapse
Affiliation(s)
- Zeba Mueed
- Department of Biotechnology, Invertis University, Bareilly, Uttar Pradesh, India
| | - Devanshu Mehta
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, India
| | - Pankaj K Rai
- Department of Biotechnology, Invertis University, Bareilly, Uttar Pradesh, India
| | - Mohammad A Kamal
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia,Enzymoics; Novel Global Community Educational Foundation, 7 Peterlee Place, Hebersham, NSW 2770, Australia
| | - Nitesh K Poddar
- Department of Biosciences, Manipal University Jaipur, Rajasthan, India
| |
Collapse
|
21
|
Nopparat C, Chaopae W, Boontem P, Sopha P, Wongchitrat P, Govitrapong P. Melatonin Attenuates High Glucose-Induced Changes in Beta Amyloid Precursor Protein Processing in Human Neuroblastoma Cells. Neurochem Res 2021; 47:2568-2579. [PMID: 33713326 DOI: 10.1007/s11064-021-03290-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/16/2021] [Accepted: 02/26/2021] [Indexed: 01/13/2023]
Abstract
Diabetes mellitus (DM), one of metabolic diseases, has been suggested as a risk factor for Alzheimer's disease (AD). However, how the metabolic pathway activates amyloid precursor protein (APP) processing enzymes then contributes to the increase of amyloid-beta (Aβ) production, is not clearly understood. In the present study, we aimed to examine the protective effect of melatonin against hyperglycemia-induced alterations in the amyloidogenic pathway. High concentration of glucose was used to induce hyperglycemia in human neuroblastoma SH-SY5Y cells. We found that 30 mM glucose affected the expression of insulin receptors and glucose transporters, which indicated the disruption of glucose sensing. High glucose induced the activation of the phosphorylated protein kinase B (pAkt)/GSK-3β signaling pathway and a significant increase in the expression of β-site beta APP cleaving enzyme (BACE1), presenilin1 (PS1) and Aβ42. Pretreatment with melatonin significantly reversed these parameters. We also showed that these effects are similar to those effects in the presence of the GSK-3β blocker, N-(4-methoxybenyl)-N'-(5-nitro-1,3-thiazol-2-yl) urea (ARA) in glucose-treated hyperglycemic cells. These suggested that melatonin exerted an inhibitory effect on the activation of APP-cleaving enzymes via the GSK-3β signaling pathway. Pretreatment with luzindole, a melatonin receptor MT1 antagonist, significantly prevented the effect of melatonin on the glucose-induced increase level of APP processing enzymes. This suggested that melatonin attenuated the toxic effect on hyperglycemia involving the amyloidogenic pathway partially mediated via melatonin receptor. Taken together the present results suggested that melatonin has a beneficial role in preventing Aβ generation in a cellular model of hyperglycemia-induced DM.
Collapse
Affiliation(s)
- Chutikorn Nopparat
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Worawut Chaopae
- Chulabhorn Graduate Institute, Chulabhorn Royal Academy, 54 Kamphaeng Phet 6 Road Lak Si, Bangkok, 10210, Thailand
| | - Parichart Boontem
- Chulabhorn Graduate Institute, Chulabhorn Royal Academy, 54 Kamphaeng Phet 6 Road Lak Si, Bangkok, 10210, Thailand
| | - Pattarawut Sopha
- Chulabhorn Graduate Institute, Chulabhorn Royal Academy, 54 Kamphaeng Phet 6 Road Lak Si, Bangkok, 10210, Thailand
| | - Prapimpun Wongchitrat
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Piyarat Govitrapong
- Chulabhorn Graduate Institute, Chulabhorn Royal Academy, 54 Kamphaeng Phet 6 Road Lak Si, Bangkok, 10210, Thailand.
| |
Collapse
|
22
|
Physiological and Molecular Responses to Acid Rain Stress in Plants and the Impact of Melatonin, Glutathione and Silicon in the Amendment of Plant Acid Rain Stress. Molecules 2021; 26:molecules26040862. [PMID: 33562098 PMCID: PMC7915782 DOI: 10.3390/molecules26040862] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 12/21/2022] Open
Abstract
Air pollution has been a long-term problem, especially in urban areas, that eventually accelerates the formation of acid rain (AR), but recently it has emerged as a serious environmental issue worldwide owing to industrial and economic growth, and it is also considered a major abiotic stress to agriculture. Evidence showed that AR exerts harmful effects in plants, especially on growth, photosynthetic activities, antioxidant activities and molecular changes. Effectiveness of several bio-regulators has been tested so far to arbitrate various physiological, biochemical and molecular processes in plants under different diverse sorts of environmental stresses. In the current review, we showed that silicon (tetravalent metalloid and semi-conductor), glutathione (free thiol tripeptide) and melatonin (an indoleamine low molecular weight molecule) act as influential growth regulators, bio-stimulators and antioxidants, which improve plant growth potential, photosynthesis spontaneity, redox-balance and the antioxidant defense system through quenching of reactive oxygen species (ROS) directly and/or indirectly under AR stress conditions. However, earlier research findings, together with current progresses, would facilitate the future research advancements as well as the adoption of new approaches in attenuating the consequence of AR stress on crops, and might have prospective repercussions in escalating crop farming where AR is a restraining factor.
Collapse
|
23
|
Ali M, Tumbeh Lamin-Samu A, Muhammad I, Farghal M, Khattak AM, Jan I, ul Haq S, Khan A, Gong ZH, Lu G. Melatonin Mitigates the Infection of Colletotrichum gloeosporioides via Modulation of the Chitinase Gene and Antioxidant Activity in Capsicum annuum L. Antioxidants (Basel) 2020; 10:antiox10010007. [PMID: 33374725 PMCID: PMC7822495 DOI: 10.3390/antiox10010007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 12/21/2022] Open
Abstract
Anthracnose, caused by Colletotrichum gloeosporioides, is one of the most damaging pepper (Capsicum annum L.) disease. Melatonin induces transcription of defense-related genes that enhance resistance to pathogens and mediate physiological activities in plants. To study whether the melatonin-mediated pathogen resistance is associated with chitinase gene (CaChiIII2), pepper plants and Arabidopsis seeds were treated with melatonin, then CaChiIII2 activation, hydrogen peroxide (H2O2) levels, and antioxidant enzymes activity during plant–pathogen interactions were investigated. Melatonin pretreatment uncoupled the knockdown of CaChiIII2 and transiently activated its expression level in both control and CaChiIII2-silenced pepper plants and enhanced plant resistance. Suppression of CaChiIII2 in pepper plants showed a significant decreased in the induction of defense-related genes and resistance to pathogens compared with control plants. Moreover, melatonin efficiently enabled plants to maintain intracellular H2O2 concentrations at steady-state levels and enhanced the activities of antioxidant enzymes, which possibly improved disease resistance. The activation of the chitinase gene CaChiIII2 in transgenic Arabidopsis lines was elevated under C. gloeosporioides infection and exhibited resistance through decreasing H2O2 biosynthesis and maintaining H2O2 at a steady-state level. Whereas melatonin primed CaChiIII2-overexpressed (OE) and wild-type (WT) Arabidopsis seedlings displayed a remarkable increase in root-length compared to the unprimed WT plants. Using an array of CaChiIII2 knockdown and OE, we found that melatonin efficiently induced CaChiIII2 and other pathogenesis-related genes expressions, responsible for the innate immunity response of pepper against anthracnose disease.
Collapse
Affiliation(s)
- Muhammad Ali
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.A.); (A.T.L.-S.); (M.F.)
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Anthony Tumbeh Lamin-Samu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.A.); (A.T.L.-S.); (M.F.)
| | - Izhar Muhammad
- College of Agronomy, Northwest A&F University, Yangling 712100, China;
| | - Mohamed Farghal
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.A.); (A.T.L.-S.); (M.F.)
| | - Abdul Mateen Khattak
- Department of Horticulture, The University of Agriculture, Peshawar 25120, Pakistan; (A.M.K.); (S.u.H.)
| | - Ibadullah Jan
- Department of Agriculture, University of Swabi, Khyber Pakhtunkhwa 9291, Pakistan;
| | - Saeed ul Haq
- Department of Horticulture, The University of Agriculture, Peshawar 25120, Pakistan; (A.M.K.); (S.u.H.)
| | - Abid Khan
- Department of Horticulture, The University of Haripur, Haripur 22620, Pakistan;
| | - Zhen-Hui Gong
- College of Horticulture, Northwest A&F University, Yangling 712100, China
- Correspondence: (Z.-H.G.); (G.L.)
| | - Gang Lu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.A.); (A.T.L.-S.); (M.F.)
- Correspondence: (Z.-H.G.); (G.L.)
| |
Collapse
|
24
|
Xu JH, Wang Z, Mou JJ, Zhao XY, Geng XC, Wu M, Xue HL, Chen L, Xu LX. The effect of autophagy and mitochondrial fission on Harderian gland is greater than apoptosis in male hamsters during different photoperiods. PLoS One 2020; 15:e0241561. [PMID: 33253255 PMCID: PMC7704011 DOI: 10.1371/journal.pone.0241561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 10/18/2020] [Indexed: 11/28/2022] Open
Abstract
Photoperiod is an important factor of mammalian seasonal rhythm. Here, we studied morphological differences in the Harderian gland (HG), a vital photosensitive organ, in male striped dwarf hamsters (Cricetulus barabensis) under different photoperiods (short photoperiod, SP; moderate photoperiod, MP; long photoperiod, LP), and investigated the underlying molecular mechanisms related to these morphological differences. Results showed that carcass weight and HG weight were lower under SP and LP conditions. There was an inverse correlation between blood melatonin levels and photoperiod in the order SP > MP > LP. Protein expression of hydroxyindole-O-methyltransferase (HIOMT), a MT synthesis-related enzyme, was highest in the SP group. Protein expression of bax/bcl2 showed no significant differences, indicating that the level of apoptosis remained stable. Protein expression of LC3II/LC3I was higher in the SP group than that in the MP group. Furthermore, comparison of changes in the HG ultrastructure demonstrated autolysosome formation in the LP, suggesting the lowest autophagy level in under MP. Furthermore, the protein expression levels of ATP synthase and mitochondrial fission factor were highest in the MP group, whereas citrate synthase, dynamin-related protein1, and fission1 remained unchanged in the three groups. The change trends of ATP synthase and citrate synthase activity were similar to that of protein expression among the three groups. In summary, the up-regulation of autophagy under SP and LP may be a primary factor leading to loss of HG weight and reduced mitochondrial energy supply capacity.
Collapse
Affiliation(s)
- Jin-Hui Xu
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Zhe Wang
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Jun-Jie Mou
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Xiang-Yu Zhao
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Xiao-Cui Geng
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, China
- Yiheyuan School, Yiyuan, Shandong, China
| | - Ming Wu
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Hui-Liang Xue
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Lei Chen
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Lai-Xiang Xu
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, China
- * E-mail:
| |
Collapse
|
25
|
Mishra S, Dunkerly-Eyring BL, Keceli G, Ranek MJ. Phosphorylation Modifications Regulating Cardiac Protein Quality Control Mechanisms. Front Physiol 2020; 11:593585. [PMID: 33281625 PMCID: PMC7689282 DOI: 10.3389/fphys.2020.593585] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022] Open
Abstract
Many forms of cardiac disease, including heart failure, present with inadequate protein quality control (PQC). Pathological conditions often involve impaired removal of terminally misfolded proteins. This results in the formation of large protein aggregates, which further reduce cellular viability and cardiac function. Cardiomyocytes have an intricately collaborative PQC system to minimize cellular proteotoxicity. Increased expression of chaperones or enhanced clearance of misfolded proteins either by the proteasome or lysosome has been demonstrated to attenuate disease pathogenesis, whereas reduced PQC exacerbates pathogenesis. Recent studies have revealed that phosphorylation of key proteins has a potent regulatory role, both promoting and hindering the PQC machinery. This review highlights the recent advances in phosphorylations regulating PQC, the impact in cardiac pathology, and the therapeutic opportunities presented by harnessing these modifications.
Collapse
Affiliation(s)
- Sumita Mishra
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Brittany L Dunkerly-Eyring
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD, United States
| | - Gizem Keceli
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Mark J Ranek
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
26
|
Luo F, Sandhu AF, Rungratanawanich W, Williams GE, Akbar M, Zhou S, Song BJ, Wang X. Melatonin and Autophagy in Aging-Related Neurodegenerative Diseases. Int J Mol Sci 2020; 21:ijms21197174. [PMID: 32998479 PMCID: PMC7584015 DOI: 10.3390/ijms21197174] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023] Open
Abstract
With aging, the nervous system gradually undergoes degeneration. Increased oxidative stress, endoplasmic reticulum stress, mitochondrial dysfunction, and cell death are considered to be common pathophysiological mechanisms of various neurodegenerative diseases (NDDs) such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), organophosphate-induced delayed neuropathy (OPIDN), and amyotrophic lateral sclerosis (ALS). Autophagy is a cellular basic metabolic process that degrades the aggregated or misfolded proteins and abnormal organelles in cells. The abnormal regulation of neuronal autophagy is accompanied by the accumulation and deposition of irregular proteins, leading to changes in neuron homeostasis and neurodegeneration. Autophagy exhibits both a protective mechanism and a damage pathway related to programmed cell death. Because of its "double-edged sword", autophagy plays an important role in neurological damage and NDDs including AD, PD, HD, OPIDN, and ALS. Melatonin is a neuroendocrine hormone mainly synthesized in the pineal gland and exhibits a wide range of biological functions, such as sleep control, regulating circadian rhythm, immune enhancement, metabolism regulation, antioxidant, anti-aging, and anti-tumor effects. It can prevent cell death, reduce inflammation, block calcium channels, etc. In this review, we briefly discuss the neuroprotective role of melatonin against various NDDs via regulating autophagy, which could be a new field for future translational research and clinical studies to discover preventive or therapeutic agents for many NDDs.
Collapse
Affiliation(s)
- Fang Luo
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (F.L.); (A.F.S.); (G.E.W.)
| | - Aaron F. Sandhu
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (F.L.); (A.F.S.); (G.E.W.)
| | - Wiramon Rungratanawanich
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA; (W.R.); (B.-J.S.)
| | - George E. Williams
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (F.L.); (A.F.S.); (G.E.W.)
| | - Mohammed Akbar
- Division of Neuroscience & Behavior, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Shuanhu Zhou
- Departments of Orthopedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA; (W.R.); (B.-J.S.)
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (F.L.); (A.F.S.); (G.E.W.)
- Correspondence:
| |
Collapse
|
27
|
Gou H, Sun D, Hao L, An M, Xie B, Cong B, Ma C, Wen D. Cholecystokinin-8 attenuates methamphetamine-induced inflammatory activation of microglial cells through CCK2 receptor. Neurotoxicology 2020; 81:70-79. [PMID: 32916201 DOI: 10.1016/j.neuro.2020.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 09/04/2020] [Accepted: 09/05/2020] [Indexed: 11/25/2022]
Abstract
Methamphetamine (METH) exposure reportedly promotes microglial activation and pro-inflammatory cytokines secretion. Sustained inflammation in abusers of psychostimulant drugs further induces neural damage. Cholecystokinin-8 (CCK-8) is a gut-brain peptide which exerts a wide range of biological activities in the gastrointestinal tract and central nervous system. We previously found that pre-treatment with CCK-8 inhibited behavioural and histologic changes typically induced by repeated exposure to METH. Here, we aimed to estimate the effects of CCK-8 on METH-induced neuro-inflammation, which is markedly characterized by microglia activation and increased pro-inflammatory cytokines production in vivo and in vitro. Moreover, we assessed the subtypes of the CCK receptor mediating the regulatory effects of CCK-8, and the changes in the NF-κB signalling pathway. We found that CCK-8 inhibited METH-induced microglial activation and IL-6 and TNF-α generation in vivo and in vitro in a dose-dependent manner. Furthermore, co-treatment of CCK-8 with METH significantly attenuated the activation of the NF-κB signalling pathway by activating the CCK2 receptor subtype in N9 cells. In conclusion, our findings indicated the inhibitory effect of CCK-8 on METH-induced neuro-inflammation in vivo and in vitro, and suggested the underlying mechanism may involve the activation of the CCK2 receptor, which downregulated the NF-κB signalling pathway induced by METH stimulation.
Collapse
Affiliation(s)
- Hongyan Gou
- Gastrointestinal cancer biology & therapeutics laboratory, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, PR China; Department of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Province, Shijiazhuang 050017, PR China
| | - Donglei Sun
- Department of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Province, Shijiazhuang 050017, PR China; Department of Gastroenterology, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Xinhua District, Shijiazhuang 050035, PR China
| | - Lijing Hao
- Department of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Province, Shijiazhuang 050017, PR China; Department of Anesthesiology, The third hospital of Hebei Medical University, Shi Jiazhuang, 050051, PR China
| | - Meiling An
- Department of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Province, Shijiazhuang 050017, PR China
| | - Bing Xie
- Department of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Province, Shijiazhuang 050017, PR China; Department of Anesthesiology, The third hospital of Hebei Medical University, Shi Jiazhuang, 050051, PR China
| | - Bin Cong
- Department of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Province, Shijiazhuang 050017, PR China
| | - Chunling Ma
- Department of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Province, Shijiazhuang 050017, PR China.
| | - Di Wen
- Department of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Province, Shijiazhuang 050017, PR China.
| |
Collapse
|
28
|
Raoofi A, Delbari A, Mahdian D, Mojadadi MS, Amini A, Javadinia SS, Dadashizadeh G, Ahrabi B, Ebrahimi V, Mousavi Khaneghah A. Toxicology of long-term and high-dose administration of methylphenidate on the kidney tissue - a histopathology and molecular study. Toxicol Mech Methods 2020; 30:611-619. [PMID: 32746681 DOI: 10.1080/15376516.2020.1805665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The present study aims to assess the influences of oral methylphenidate on kidney function and structure versus vehicle treatment in adult male rats. In this study, thirty adult male rats equally into two treatment groups divided randomly, and among them, MPH has been administered for 21 days, at doses of 20 mg/kg, and the control group has received salin. In renal, under the effect of MPH applying quantitative real-time PCR, we analyzed nephrotoxicity-related molecular pathways like autophagy, inflammation, and apoptosis. Moreover, the levels of GSH, CAT, and SOD were investigated as antioxidant enzymes. Afterward, stereological analysis in MPH-treated rats has been performed. Analysis of qPCR displayed inflammation, impaired autophagy, and enhanced apoptosis with histological changes in the kidney's tissue, also an important rise in the antioxidant enzymes' level. Besides, 20 mg/kg of MPH led to a decline in the mean of Bowman's space thickness and renal corpuscle's volume in comparison to the control rats. Collectively, our histological and molecular data implicit that in the kidney region, administrating of MPH evoked discriminative expression alterations in nephrotoxicity-associated signaling cascades, specifically autophagy, inflammation, and apoptosis paired with important damage to kidney tissue.
Collapse
Affiliation(s)
- Amir Raoofi
- Leishmaniasis Research Center, Department of Anatomy, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Ali Delbari
- Leishmaniasis Research Center, Department of Anatomy, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Davood Mahdian
- Cellular and Molecular Research Center, Department of Pharmacology, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Mohammad-Shafi Mojadadi
- Leishmaniasis Research Center, Department of Immunology, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Abdollah Amini
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Sadat Javadinia
- Leishmaniasis Research Center, Department of Anatomy, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Ghazaleh Dadashizadeh
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Behnaz Ahrabi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Ebrahimi
- Faculty of Medicine, Department of Anatomy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amin Mousavi Khaneghah
- Faculty of Food Engineering, Department of Food Science, University of Campinas (UNICAMP), São Paulo, Brazil
| |
Collapse
|
29
|
Lin CT, Lecca D, Yang LY, Luo W, Scerba MT, Tweedie D, Huang PS, Jung YJ, Kim DS, Yang CH, Hoffer BJ, Wang JY, Greig NH. 3,6'-dithiopomalidomide reduces neural loss, inflammation, behavioral deficits in brain injury and microglial activation. eLife 2020; 9:e54726. [PMID: 32589144 PMCID: PMC7375814 DOI: 10.7554/elife.54726] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 06/12/2020] [Indexed: 12/19/2022] Open
Abstract
Traumatic brain injury (TBI) causes mortality and disability worldwide. It can initiate acute cell death followed by secondary injury induced by microglial activation, oxidative stress, inflammation and autophagy in brain tissue, resulting in cognitive and behavioral deficits. We evaluated a new pomalidomide (Pom) analog, 3,6'-dithioPom (DP), and Pom as immunomodulatory agents to mitigate TBI-induced cell death, neuroinflammation, astrogliosis and behavioral impairments in rats challenged with controlled cortical impact TBI. Both agents significantly reduced the injury contusion volume and degenerating neuron number evaluated histochemically and by MRI at 24 hr and 7 days, with a therapeutic window of 5 hr post-injury. TBI-induced upregulated markers of microglial activation, astrogliosis and the expression of pro-inflammatory cytokines, iNOS, COX-2, and autophagy-associated proteins were suppressed, leading to an amelioration of behavioral deficits with DP providing greater efficacy. Complementary animal and cellular studies demonstrated DP and Pom mediated reductions in markers of neuroinflammation and α-synuclein-induced toxicity.
Collapse
Affiliation(s)
- Chih-Tung Lin
- Graduate Institute of Medical Sciences, Taipei Medical UniversityTaipeiTaiwan
| | - Daniela Lecca
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIHBaltimoreUnited States
| | - Ling-Yu Yang
- Graduate Institute of Medical Sciences, Taipei Medical UniversityTaipeiTaiwan
| | - Weiming Luo
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIHBaltimoreUnited States
| | - Michael T Scerba
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIHBaltimoreUnited States
| | - David Tweedie
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIHBaltimoreUnited States
| | - Pen-Sen Huang
- Graduate Institute of Medical Sciences, Taipei Medical UniversityTaipeiTaiwan
| | - Yoo-Jin Jung
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIHBaltimoreUnited States
| | - Dong Seok Kim
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIHBaltimoreUnited States
- AevisBio IncGaithersburgUnited States
- AevisBio IncDaejeonRepublic of Korea
| | - Chih-Hao Yang
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical UniversityTaipeiTaiwan
| | - Barry J Hoffer
- Department of Neurological Surgery, Case Western Reserve UniversityClevelandUnited States
| | - Jia-Yi Wang
- Graduate Institute of Medical Sciences, Taipei Medical UniversityTaipeiTaiwan
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei Medical UniversityTaipeiTaiwan
- Neuroscience Research Center, Taipei Medical UniversityTaipeiTaiwan
| | - Nigel H Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIHBaltimoreUnited States
| |
Collapse
|
30
|
LC3 and ATG5 overexpression and neuronal cell death in the prefrontal cortex of postmortem chronic methamphetamine users. J Chem Neuroanat 2020; 107:101802. [PMID: 32416129 DOI: 10.1016/j.jchemneu.2020.101802] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/29/2020] [Accepted: 05/07/2020] [Indexed: 12/19/2022]
Abstract
Methamphetamine (METH) abuse is accompanied by oxidative stress, METH-induced neurotoxicity, and apoptosis. Oxidative stress has devastating effects on the structure of proteins and cells. Autophagy is an evolutionarily conserved intracellular regulated mechanism for orderly degradation of dysfunctional proteins or removing damaged organelles. The precise role of autophagy in oxidative stress-induced apoptosis of dopaminergic neuronal cells caused by METH has not clarified completely. In this study, we sought to evaluate the effects of METH abuse on autophagy in the prefrontal cortex of postmortem users, mainly focusing on the ATG5 and LC3 during neuroinflammation. Postmortem molecular and histological examination was done for two groups containing 12 non-addicted and 14 METH addicted cases. ATG5 and LC3 expression were analyzed by real-time PCR and immunohistochemistry (IHC) methods. Histopathological analysis was performed by stereological cell counting of neuronal cells using Hematoxylin and Eosin (H & E) staining technique. In order to detect DNA damage in the prefrontal lobe, Tunnel staining was performed. Real-time PCR and IHC assay showed overexpression of ATG5 and LC3 protein in the prefrontal cortex of Meth users. The cell death and neuronal degeneration were increased significantly based on Tunel assay and the stereological analysis in the Prefrontal cortex. Chronic METH exposure probably induces ATG5 and LC3 overexpression and neuronal cell death in the Prefrontal cortex of the postmortem cases.
Collapse
|
31
|
Wang Z, Xu JH, Mou JJ, Kong XT, Wu M, Xue HL, Xu LX. Photoperiod Affects Harderian Gland Morphology and Secretion in Female Cricetulus barabensis: Autophagy, Apoptosis, and Mitochondria. Front Physiol 2020; 11:408. [PMID: 32435203 PMCID: PMC7218128 DOI: 10.3389/fphys.2020.00408] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 04/06/2020] [Indexed: 12/16/2022] Open
Abstract
Photoperiod is an important factor of mammalian seasonal rhythm. The Harderian gland (HG) appears to act as a “standby” structure of the retinal-pineal axis, mediating light signals in vitro and neuroendocrine regulation in vivo; however, the effect of photoperiod on the HG is not clear. Here, we studied morphological differences in the HG of female striped dwarf hamsters (Cricetulus barabensis), a small mammal that experiences an annual rhythm, under different photoperiods (i.e., SP, short photoperiod; MP, moderate photoperiod; LP, long photoperiod), and further investigated the molecular mechanisms related to these morphological differences. Results showed that body weight, carcass weight, and HG weight were higher in the SP and LP groups than that in the MP group. Protein expression of hydroxyindole-o-methyltransferase, a key enzyme in melatonin synthesis, was higher in the SP group than in the other two groups. Somatostatin showed highest expression in the LP group. Furthermore, comparison of changes in the HG ultrastructure demonstrated autolysosome formation in the SP group. Protein aggregation and mRNA expression of LC3 and protein expression of LC3II/LC3I were higher in the SP group than in the MP group, indicating elevated autophagy under SP. Chromatin agglutination and mitochondrial damage were observed and bax/bcl2 and cytochrome C expression increased at the protein and mRNA levels in the SP and LP groups, suggesting increased apoptosis. Protein expression of dynamin-related protein 1 and mitochondrial fission factor (Mff) were highest in the SP group, suggesting elevated mitochondrial fission. Protein expression levels of adenosine triphosphate (ATP) synthase and citrate synthase were lower in the LP group than in the SP and MP groups. These results indicated that autophagy and apoptosis imbalance under SP and LP conditions may have led to HG weight loss and up-regulation of mitochondrial apoptosis may have weakened mitochondrial function under LP conditions. Finally, melatonin synthesis appeared to be positively correlated with the time hamsters entered darkness.
Collapse
Affiliation(s)
- Zhe Wang
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Jin-Hui Xu
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Jun-Jie Mou
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Xiao-Tong Kong
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Ming Wu
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Hui-Liang Xue
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Lai-Xiang Xu
- College of Life Sciences, Qufu Normal University, Qufu, China
| |
Collapse
|
32
|
Yang GM, Li L, Xue FL, Ma CL, Zeng XF, Zhao YN, Zhang DX, Yu Y, Yan QW, Zhou YQ, Hong SJ, Li LH. The Potential Role of PKA/CREB Signaling Pathway Concerned with Gastrodin Administration on Methamphetamine-Induced Conditioned Place Preference Rats and SH-SY5Y Cell Line. Neurotox Res 2020; 37:926-935. [PMID: 31900897 DOI: 10.1007/s12640-019-00150-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/16/2019] [Accepted: 12/11/2019] [Indexed: 02/07/2023]
Abstract
To investigate the effects of gastrodin (GAS) on methamphetamine (MA)-induced conditioned place preference (CPP) in rats and explore its potential mechanisms. MA (10 mg/kg) was initially injected intraperitoneally (i.p.) in rats, after which they were administered either MA or saline alternately from day 4 to 13 (D4-13) for 10 days, followed by treatment with GAS (10 or 20 mg/kg, i.p.) on D15-21 for 7 days. The rats underwent CPP testing after MA and GAS treatment. In vitro, SH-SY5Y cells were exposed to MA (2.0 mM) for 24 h, followed by treatment with GAS (2.0 or 4.0 mM) for 24 h. The expression levels of PKA, P-PKA, CREB, and P-CREB proteins in the prefrontal cortex, nucleus accumbens, and ventral tegmental area of MA-induced CPP rats and in SH-SY5Y cells were detected by Western blot analysis. The MA-induced CPP rat model was successfully established. The administration of MA stimulated a significant alteration in behavior, as measured by the CPP protocol. After treatment with GAS, the amount of time rats spent in the MA-paired chamber was significantly reduced. Results also showed that MA increased the expression levels of PKA, P-PKA, CREB, and p-CREB proteins in the prefrontal cortex, nucleus accumbens, and ventral tegmental area of CPP rats and in SH-SY5Y cells (p < 0.05). GAS attenuated the effect of MA-induced CPP in rats and decreased the expression levels of proteins in vivo and in vitro. Our study suggests that GAS can attenuate the effects of MA-induced CPP in rats by regulating the PKA/CREB signaling pathway.
Collapse
Affiliation(s)
- Gen-Meng Yang
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Lu Li
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, 510000, Guangdong, China
| | - Feng-Lin Xue
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, Yunnan, China
- Department of Pathology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Chen-Li Ma
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Xiao-Feng Zeng
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Yong-Na Zhao
- International Education School, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Dong-Xian Zhang
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Yang Yu
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Qian-Wen Yan
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Yi-Qing Zhou
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Shi-Jun Hong
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, Yunnan, China.
| | - Li-Hua Li
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, Yunnan, China.
| |
Collapse
|
33
|
The circadian rhythm in intervertebral disc degeneration: an autophagy connection. Exp Mol Med 2020; 52:31-40. [PMID: 31983731 PMCID: PMC7000407 DOI: 10.1038/s12276-019-0372-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/01/2019] [Accepted: 09/17/2019] [Indexed: 02/08/2023] Open
Abstract
There is one circadian clock in the central nervous system and another in the peripheral organs, and the latter is driven by an autoregulatory molecular clock composed of several core clock genes. The height, water content, osmotic pressure and mechanical characteristics of intervertebral discs (IVDs) have been demonstrated to exhibit a circadian rhythm (CR). Recently, a molecular clock has been shown to exist in IVDs, abolition of which can lead to stress in nucleus pulposus cells (NPCs), contributing to intervertebral disc degeneration (IDD). Autophagy is a fundamental cellular process in eukaryotes and is essential for individual cells or organs to respond and adapt to changing environments; it has also been demonstrated to occur in human NPCs. Increasing evidence supports the hypothesis that autophagy is associated with CR. Thus, we review the connection between CR and autophagy and the roles of these mechanisms in IDD.
Collapse
|
34
|
Raza Z, Naureen Z. Melatonin ameliorates the drug induced nephrotoxicity: Molecular insights. Nefrologia 2019; 40:12-25. [PMID: 31735377 DOI: 10.1016/j.nefro.2019.06.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 05/29/2019] [Accepted: 06/07/2019] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Drug-induced nephrotoxicity is a frequent adverse event that can lead to acute or chronic kidney disease and increase the healthcare expenditure. It has high morbidity and mortality incidence in 40-70% of renal injuries and accounts for 66% cases of renal failure in elderly population. OBJECTIVE Amelioration of drug-induced nephrotoxicity has been long soughed to improve the effectiveness of therapeutic drugs. This study was conducted to review the melatonin potential to prevent the pathogenesis of nephrotoxicity induced by important nephrotoxic drugs. METHODS We analyzed the relevant studies indexed in Pubmed, Medline, Scielo and Web of science to explain the molecular improvements following melatonin co-administration with special attention to oxidative stress, inflammation and apoptosis as key players of drug-induced nephrotoxicity. RESULTS A robust consensus among researchers of these studies suggested that melatonin efficiently eradicate the chain reaction of free radical production and induced the endogenous antioxidant enzymes which attenuate the lipid peroxidation of cellular membranes and subcellular oxidative stress in drug-induced nephrotoxicity. This agreement was further supported by the melatonin role in disintegration of inflammatory process through inhibition of principle pro-inflammatory or apoptotic cytokines such as TNF-α and NF-κB. These studies highlighted that alleviation of drug-induced renal toxicity is a function of melatonin potential to down regulate the cellular inflammatory and oxidative injury process and to stimulate the cellular repair or defensive mechanisms. CONCLUSION The comprehensive nephroprotection and safer profile suggests the melatonin to be a useful adjunct to improve the safety of nephrotoxic drugs.
Collapse
Affiliation(s)
- Zohaib Raza
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan.
| | - Zainab Naureen
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| |
Collapse
|
35
|
Feng Y, Xu F, Wang SM, Wu SX, Zhang XH, Gao YX, Li YL, Zhong DB, Yin JZ, Feng YM. Melatonin attenuates nicotine-induced autophagy and neurological changes by decreasing the production of reactive oxygen species. Int J Neurosci 2019; 130:391-397. [PMID: 31721620 DOI: 10.1080/00207454.2019.1692833] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Purpose: The aim of this study was to explore the mechanism of neurological changes underlying the toxicity of nicotine.Materials and methods: Rat pheochromocytoma 12 (PC12) cells and human neuroglia (HM) cells were used. The ROS levels of the cells were detected by the FACScan. Autophagy flux was monitored by a tandem monomeric RFP-GFP-tagged LC3 lentivirus. The autophagic proteins LC3, SQSTM1/p62 and Beclin1 were detected by western blot assay. In order to evaluate the effects of nicotine and melatonin on the morphological changes of neurons, primary cortical neurons were obtained and immunocytochemistry of TUBB3 tubulin were conducted.Results: Nicotine increased the levels of reactive oxygen species (ROS) in PC12 and HM cells in a concentration-dependent manner. Microscopy showed increased autophagic flux in nicotine-treated PC12 cells. Subsequent western blotting results showed that nicotine induced increase in the levels of LC3B-II and Beclin1, and decreased SQSTM1/p62 in a concentration-dependent manner. Finally, nicotine treatment reduced the length of TUBB3-positive axons and dendrites. Melatonin, a mitochondrially targeted antioxidant, reduced the ROS level, and blocked autophagy activation and the morphologic structural changes induced by nicotine.Conclusions: Our results suggested that the role of nicotine in neuronal toxicity maybe through the induction of ROS and the subsequent activation of autophagy. These effects could be restored by melatonin.
Collapse
Affiliation(s)
- Yue Feng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Fang Xu
- Research Institute of Nutrition and Food Science, Kunming Medical University, Kunming, China.,Yunnan Key Laboratory of Nutrition and Food Safety, Kunming Medical University, Kunming, China
| | - Song-Mei Wang
- Research Institute of Nutrition and Food Science, Kunming Medical University, Kunming, China.,Yunnan Key Laboratory of Nutrition and Food Safety, Kunming Medical University, Kunming, China
| | - Shao-Xiong Wu
- Research Institute of Nutrition and Food Science, Kunming Medical University, Kunming, China.,Yunnan Key Laboratory of Nutrition and Food Safety, Kunming Medical University, Kunming, China
| | - Xue-Hui Zhang
- Research Institute of Nutrition and Food Science, Kunming Medical University, Kunming, China.,Yunnan Key Laboratory of Nutrition and Food Safety, Kunming Medical University, Kunming, China
| | - Yan-Xiang Gao
- Research Institute of Nutrition and Food Science, Kunming Medical University, Kunming, China
| | - Ya-Ling Li
- Department of Gastroenterology, Yunnan First People's Hospital, Kunming, China
| | - Du-Bo Zhong
- Yunnan Yunce Quality Testing Co., Ltd, Kunming, China
| | - Jian-Zhong Yin
- Research Institute of Nutrition and Food Science, Kunming Medical University, Kunming, China.,Yunnan Key Laboratory of Nutrition and Food Safety, Kunming Medical University, Kunming, China
| | - Yue-Mei Feng
- Research Institute of Nutrition and Food Science, Kunming Medical University, Kunming, China.,Yunnan Key Laboratory of Nutrition and Food Safety, Kunming Medical University, Kunming, China
| |
Collapse
|
36
|
Tehrani AM, Boroujeni ME, Aliaghaei A, Feizi MAH, Safaralizadeh R. Methamphetamine induces neurotoxicity-associated pathways and stereological changes in prefrontal cortex. Neurosci Lett 2019; 712:134478. [DOI: 10.1016/j.neulet.2019.134478] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 08/18/2019] [Accepted: 09/02/2019] [Indexed: 01/22/2023]
|
37
|
Wu H, Liu J, Yin Y, Zhang D, Xia P, Zhu G. Therapeutic Opportunities in Colorectal Cancer: Focus on Melatonin Antioncogenic Action. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9740568. [PMID: 31637261 PMCID: PMC6766109 DOI: 10.1155/2019/9740568] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 08/31/2019] [Indexed: 12/17/2022]
Abstract
Colorectal cancer (CRC) influences individual health worldwide with high morbidity and mortality. Melatonin, which shows multiple physiological functions (e.g., circadian rhythm, immune modulation, and antioncogenic action), can be present in almost all organisms and found in various tissues including gastrointestinal tract. Notably, melatonin disruption is closely associated with the elevation of CRC incidence, indicating that melatonin is effective in suppressing CRC development and progression. Mechanistically, melatonin favors in activating apoptosis and colon cancer immunity, while reducing proliferation, autophagy, metastasis, and angiogenesis, thereby exerting its anticarcinogenic effects. This review highlights that melatonin can be an adjuvant therapy and be beneficial in treating patients suffering from CRC.
Collapse
Affiliation(s)
- Hucong Wu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Jiaqi Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Yi Yin
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Dong Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Pengpeng Xia
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| |
Collapse
|
38
|
Evidence that melatonin downregulates Nedd4-1 E3 ligase and its role in cellular survival. Toxicol Appl Pharmacol 2019; 379:114686. [DOI: 10.1016/j.taap.2019.114686] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/14/2019] [Accepted: 07/16/2019] [Indexed: 01/06/2023]
|
39
|
Kevil CG, Goeders NE, Woolard MD, Bhuiyan MS, Dominic P, Kolluru GK, Arnold CL, Traylor JG, Orr AW. Methamphetamine Use and Cardiovascular Disease. Arterioscler Thromb Vasc Biol 2019; 39:1739-1746. [PMID: 31433698 DOI: 10.1161/atvbaha.119.312461] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
While the opioid epidemic has garnered significant attention, the use of methamphetamines is growing worldwide independent of wealth or region. Following overdose and accidents, the leading cause of death in methamphetamine users is cardiovascular disease, because of significant effects of methamphetamine on vasoconstriction, pulmonary hypertension, atherosclerotic plaque formation, cardiac arrhythmias, and cardiomyopathy. In this review, we examine the current literature on methamphetamine-induced changes in cardiovascular health, discuss the potential mechanisms regulating these varied effects, and highlight our deficiencies in understanding how to treat methamphetamine-associated cardiovascular dysfunction.
Collapse
Affiliation(s)
- Christopher G Kevil
- From the Departments of Pathology and Translational Pathobiology (C.G.K., M.S.B., G.K.K., J.G.T., A.W.O.), LSU Health Sciences Center, Shreveport, LA.,Cellular and Molecular Physiology (C.G.K., M.S.B., A.W.O.), LSU Health Sciences Center, Shreveport, LA.,Cell Biology and Anatomy (C.G.K., A.W.O.), LSU Health Sciences Center, Shreveport, LA
| | - Nicholas E Goeders
- Pharmacology, Toxicology, and Neuroscience (N.E.G.), LSU Health Sciences Center, Shreveport, LA
| | - Matthew D Woolard
- Microbiology and Immunology (M.D.W.), LSU Health Sciences Center, Shreveport, LA
| | - Md Shenuarin Bhuiyan
- From the Departments of Pathology and Translational Pathobiology (C.G.K., M.S.B., G.K.K., J.G.T., A.W.O.), LSU Health Sciences Center, Shreveport, LA.,Cellular and Molecular Physiology (C.G.K., M.S.B., A.W.O.), LSU Health Sciences Center, Shreveport, LA
| | - Paari Dominic
- Medicine (P.D., C.L.A.), LSU Health Sciences Center, Shreveport, LA
| | - Gopi K Kolluru
- From the Departments of Pathology and Translational Pathobiology (C.G.K., M.S.B., G.K.K., J.G.T., A.W.O.), LSU Health Sciences Center, Shreveport, LA
| | - Connie L Arnold
- Medicine (P.D., C.L.A.), LSU Health Sciences Center, Shreveport, LA
| | - James G Traylor
- From the Departments of Pathology and Translational Pathobiology (C.G.K., M.S.B., G.K.K., J.G.T., A.W.O.), LSU Health Sciences Center, Shreveport, LA
| | - A Wayne Orr
- From the Departments of Pathology and Translational Pathobiology (C.G.K., M.S.B., G.K.K., J.G.T., A.W.O.), LSU Health Sciences Center, Shreveport, LA.,Cellular and Molecular Physiology (C.G.K., M.S.B., A.W.O.), LSU Health Sciences Center, Shreveport, LA.,Cell Biology and Anatomy (C.G.K., A.W.O.), LSU Health Sciences Center, Shreveport, LA
| |
Collapse
|
40
|
Valvassori SS, Gava FF, Dal-Pont GC, Simões HL, Damiani-Neves M, Andersen ML, Boeck CR, Quevedo J. Effects of lithium and valproate on ERK/JNK signaling pathway in an animal model of mania induced by amphetamine. Heliyon 2019; 5:e01541. [PMID: 31193305 PMCID: PMC6525279 DOI: 10.1016/j.heliyon.2019.e01541] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 04/11/2019] [Accepted: 04/16/2019] [Indexed: 12/13/2022] Open
Abstract
Bipolar disorder (BD) is a severe and chronic psychiatric disorder, characterized by recurrent mood episodes of depression and mania. Some studies have indicated that there are ERK and JNK pathways alterations in the brain from bipolar patients. The animal model of mania induced by dextroamphetamine (d-AMPH) has been considered an excellent model to study intracellular alterations related to BD. The present study aimed to evaluate the effects of lithium (Li) and valproate (VPA) on the behavioral and ERK1/2/JNK1/2 signaling pathway in an animal model of mania induced by d-AMPH. Wistar rats were first given d-AMPH or saline (Sal) for 14 days, and then, between the 8th and 14th days, the rats were treated with Li, VPA, or Sal. The open-field test was used to evaluate the locomotion and exploration behaviors of rats. The levels of phosphorylated ERK1/2 and JNK1/2 were assessed in the hippocampus and frontal cortex of the rats. Li and VPA reversed the increased of locomotion and exploration induced by d-AMPH. The treatment with VPA or AMPH per se decreased the levels of pERK1 in the hippocampus. The treatment with VPA in the animals submitted to the administration of d-AMPH decreased the levels of ERK1, JNK-1, and JNK-2 phosphorylated in the hippocampus of the animals. The treatment with Li decreased the JNK-1 phosphorylated in the hippocampus of the animals submitted to the animal model of mania induced by d-AMPH. Although the association of VPA plus amphetamine alters some proteins involved in the JNK pathway in the hippocampus, these alterations were very random and seemed that were not related to the d-AMPH-induced manic-like behavior. These results suggest that the manic-like effects induced by d-AMPH and the antimanic effects of mood stabilizers, Li and VPA, are not related to the alteration on ERK1/2 and JNK1/2 pathways.
Collapse
Affiliation(s)
- Samira S Valvassori
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Fernanda F Gava
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Gustavo C Dal-Pont
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Henio Leonardo Simões
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Marcela Damiani-Neves
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Monica Levy Andersen
- Master's Degree in Health and Life Sciences, Postgraduate Program in Nanosciences, Franciscan University, Santa Maria, RS, Brazil
| | | | - João Quevedo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.,Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.,Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.,Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
41
|
Debnath B, Islam W, Li M, Sun Y, Lu X, Mitra S, Hussain M, Liu S, Qiu D. Melatonin Mediates Enhancement of Stress Tolerance in Plants. Int J Mol Sci 2019; 20:E1040. [PMID: 30818835 PMCID: PMC6429401 DOI: 10.3390/ijms20051040] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/18/2019] [Accepted: 02/22/2019] [Indexed: 02/07/2023] Open
Abstract
Melatonin is a multifunctional signaling molecule, ubiquitously distributed in different parts of plants and responsible for stimulating several physiological responses to adverse environmental conditions. In the current review, we showed that the biosynthesis of melatonin occurred in plants by themselves, and accumulation of melatonin fluctuated sharply by modulating its biosynthesis and metabolic pathways under stress conditions. Melatonin, with its precursors and derivatives, acted as a powerful growth regulator, bio-stimulator, and antioxidant, which delayed leaf senescence, lessened photosynthesis inhibition, and improved redox homeostasis and the antioxidant system through a direct scavenging of reactive oxygen species (ROS) and reactive nitrogen species (RNS) under abiotic and biotic stress conditions. In addition, exogenous melatonin boosted the growth, photosynthetic, and antioxidant activities in plants, confirming their tolerances against drought, unfavorable temperatures, salinity, heavy metals, acid rain, and pathogens. However, future research, together with recent advancements, would support emerging new approaches to adopt strategies in overcoming the effect of hazardous environments on crops and may have potential implications in expanding crop cultivation against harsh conditions. Thus, farming communities and consumers will benefit from elucidating food safety concerns.
Collapse
Affiliation(s)
- Biswojit Debnath
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
- Department of Horticulture, Sylhet Agricultural University, Sylhet 3100, Bangladesh.
| | - Waqar Islam
- College of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China.
| | - Min Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Yueting Sun
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Xiaocao Lu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Sangeeta Mitra
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Mubasher Hussain
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Shuang Liu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Dongliang Qiu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
42
|
Shukla M, Chinchalongporn V, Govitrapong P, Reiter RJ. The role of melatonin in targeting cell signaling pathways in neurodegeneration. Ann N Y Acad Sci 2019; 1443:75-96. [PMID: 30756405 DOI: 10.1111/nyas.14005] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/17/2018] [Accepted: 01/02/2019] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases are typified by neuronal loss associated with progressive dysfunction and clinical presentation. Neurodegenerative diseases are characterized by the intra- and extracellular conglomeration of misfolded proteins that occur because of abnormal protein dynamics and genetic manipulations; these trigger processes of cell death in these disorders. The disrupted signaling mechanisms involved are oxidative stress-mediated mitochondrial and calcium signaling deregulation, alterations in immune and inflammatory signaling, disruption of autophagic integrity, proteostasis dysfunction, and anomalies in the insulin, Notch, and Wnt/β-catenin signaling pathways. Herein, we accentuate some of the contemporary translational approaches made in characterizing the underlying mechanisms of neurodegeneration. Melatonin-induced cognitive enhancement and inhibition of oxidative signaling substantiates the efficacy of melatonin in combating neurodegenerative processes. Our review considers in detail the possible roles of melatonin in understanding the synergistic pathogenic mechanisms between aggregated proteins and in regulating, modulating, and preventing the altered signaling mechanisms discovered in cellular and animal models along with clinical evaluations pertaining to neurodegeneration. Furthermore, this review showcases the therapeutic potential of melatonin in preventing and treating neurodegenerative diseases with optimum prognosis.
Collapse
Affiliation(s)
- Mayuri Shukla
- Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Vorapin Chinchalongporn
- Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, Thailand.,Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Thailand
| | - Piyarat Govitrapong
- Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, Thailand.,Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Thailand
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center San Antonio, San Antonio, Texas
| |
Collapse
|
43
|
Boga JA, Caballero B, Potes Y, Perez-Martinez Z, Reiter RJ, Vega-Naredo I, Coto-Montes A. Therapeutic potential of melatonin related to its role as an autophagy regulator: A review. J Pineal Res 2019; 66:e12534. [PMID: 30329173 DOI: 10.1111/jpi.12534] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/01/2018] [Accepted: 10/08/2018] [Indexed: 12/16/2022]
Abstract
There are several pathologies, syndromes, and physiological processes in which autophagy is involved. This process of self-digestion that cells trigger as a survival mechanism is complex and tightly regulated, according to the homeostatic conditions of the organ. However, in all cases, its relationship with oxidative stress alterations is evident, following a pathway that suggests endoplasmic reticulum stress and/or mitochondrial changes. There is accumulating evidence of the beneficial role that melatonin has in the regulation and restoration of damaged autophagic processes. In this review, we focus on major physiological changes such as aging and essential pathologies including cancer, neurodegenerative diseases, viral infections and obesity, and document the essential role of melatonin in the regulation of autophagy in each of these different situations.
Collapse
Affiliation(s)
- Jose A Boga
- Service of Microbiology, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Beatriz Caballero
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Department of Morphology and Cell Biology, University of Oviedo, Oviedo, Spain
| | - Yaiza Potes
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Department of Morphology and Cell Biology, University of Oviedo, Oviedo, Spain
| | - Zulema Perez-Martinez
- Service of Microbiology, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, Texas
| | - Ignacio Vega-Naredo
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Department of Morphology and Cell Biology, University of Oviedo, Oviedo, Spain
| | - Ana Coto-Montes
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Department of Morphology and Cell Biology, University of Oviedo, Oviedo, Spain
| |
Collapse
|
44
|
Wang DD, Jin MF, Zhao DJ, Ni H. Reduction of Mitophagy-Related Oxidative Stress and Preservation of Mitochondria Function Using Melatonin Therapy in an HT22 Hippocampal Neuronal Cell Model of Glutamate-Induced Excitotoxicity. Front Endocrinol (Lausanne) 2019; 10:550. [PMID: 31440210 PMCID: PMC6694460 DOI: 10.3389/fendo.2019.00550] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/23/2019] [Indexed: 12/26/2022] Open
Abstract
Recent evidence indicates that autophagy-mediated mitochondrial homeostasis is crucial for oxidative stress-related brain damage and repair. The highest concentration of melatonin is in the mitochondria of cells, and melatonin exhibits well-known antioxidant properties. We investigated the impact and mechanism involved in mitochondrial function and the mitochondrial oxidative stress/autophagy regulator parameters of glutamate cytotoxicity in mouse HT22 hippocampal neurons. We tested the hypothesis that melatonin confers neuroprotective effects via protecting against mitochondrial impairment and mitophagy. Cells were divided into four groups: the control group, melatonin alone group, glutamate injury group, and melatonin pretreatment group. We found that glutamate induced significant changes in mitochondrial function/oxidative stress-related parameters. Leptin administration preserved mitochondrial function, and this effect was associated with increased superoxide dismutase, glutathione (GSH), and mitochondrial membrane potential and decreased GSSG (oxidized glutathione) and mitochondrial reactive oxygen species. Melatonin significantly reduced the fluorescence intensity of mitophagy via the Beclin-1/Bcl-2 pathway, which involves Beclin-1 and Bcl-2 proteins. The mitophagy inhibitor CsA corrected these glutamate-induce changes, as measured by the fluorescence intensity of Mitophagy-Tracker Red CMXROS, mitochondrial ROS, and mitochondrial membrane potential changes. These findings indicate that melatonin exerts neuroprotective effects against glutamate-induced excitotoxicity by reducing mitophagy-related oxidative stress and maintaining mitochondrial function.
Collapse
|
45
|
Li J, Wang W, Tong P, Leung CK, Yang G, Li Z, Li N, Sun X, Han Y, Lu C, Kuang D, Dai J, Zeng X. Autophagy Induction by HIV-Tat and Methamphetamine in Primary Midbrain Neuronal Cells of Tree Shrews via the mTOR Signaling and ATG5/ATG7 Pathway. Front Neurosci 2018; 12:921. [PMID: 30574066 PMCID: PMC6291520 DOI: 10.3389/fnins.2018.00921] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/23/2018] [Indexed: 12/22/2022] Open
Abstract
Background: Addictive stimulant drugs, such as methamphetamine (METH), increase the risk of exposure to the human immunodeficiency virus-1 (HIV-1) infection and thus predispose individuals to the development of HIV-associated neurocognitive disorders (HANDs). Previous studies have indicated that HIV-Tat (the transactivator of transcription) and METH can synergistically induce autophagy in SH-SY5Y neuroblastoma cells and that autophagy plays a pivotal role in the neuronal dysfunction in HANDs. However, the underlying mechanism of METH-and HIV-Tat-induced neuronal autophagy remains unclear. Methods: We cultured primary midbrain neuronal cells of tree shrews and treated them with METH and HIV-Tat to study the role of METH and HIV-Tat in inducing autophagy. We evaluated the effects of the single or combined treatment of METH and HIV-Tat on the protein expressions of the autophagy-related genes, including Beclin-1 and LC3B, ATG5, and ATG7 in METH and HIV-Tat-induced autophagy. In addition, the presence of autophagosomes in the METH and/or HIV-Tat treatment was revealed using transmission electron microscopy. Results: The results indicated that METH increased the protein levels of LC3B and Beclin-1, and these effects were significantly enhanced by HIV-Tat. Moreover, the results suggested that ATG5 and ATG7 were involved in the METH and HIV-Tat-induced autophagy. In addition, it was found that mTOR inhibition via pharmacological intervention could trigger autophagy and promote METH and HIV-Tat-induced autophagy. Discussion: Overall, this study contributes to the knowledge of the molecular underpinnings of METH and HIV-Tat-induced autophagy in primary midbrain neuronal cells. Our findings may facilitate the development of therapeutic strategies for METH-and HIV-Tat-induced autophagy in HANDs.
Collapse
Affiliation(s)
- Juan Li
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, The Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China.,School of Basic Medicine, Kunming Medical University, Kunming, China
| | - Wenguang Wang
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, The Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Pinfen Tong
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, The Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Chi-Kwan Leung
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Chinese University of Hong Kong - Shandong University (CUHK-SDU) Joint Laboratory of Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Genmeng Yang
- School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Zhen Li
- School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Na Li
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, The Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Xiaomei Sun
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, The Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Yuanyuan Han
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, The Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Caixia Lu
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, The Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Dexuan Kuang
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, The Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Jiejie Dai
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, The Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Xiaofeng Zeng
- School of Forensic Medicine, Kunming Medical University, Kunming, China
| |
Collapse
|
46
|
Reiter RJ, Tan DX, Rosales-Corral S, Galano A, Jou MJ, Acuna-Castroviejo D. Melatonin Mitigates Mitochondrial Meltdown: Interactions with SIRT3. Int J Mol Sci 2018; 19:E2439. [PMID: 30126181 PMCID: PMC6121285 DOI: 10.3390/ijms19082439] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/03/2018] [Accepted: 08/08/2018] [Indexed: 02/07/2023] Open
Abstract
Melatonin exhibits extraordinary diversity in terms of its functions and distribution. When discovered, it was thought to be uniquely of pineal gland origin. Subsequently, melatonin synthesis was identified in a variety of organs and recently it was shown to be produced in the mitochondria. Since mitochondria exist in every cell, with a few exceptions, it means that every vertebrate, invertebrate, and plant cell produces melatonin. The mitochondrial synthesis of melatonin is not photoperiod-dependent, but it may be inducible under conditions of stress. Mitochondria-produced melatonin is not released into the systemic circulation, but rather is used primarily in its cell of origin. Melatonin's functions in the mitochondria are highly diverse, not unlike those of sirtuin 3 (SIRT3). SIRT3 is an NAD+-dependent deacetylase which regulates, among many functions, the redox state of the mitochondria. Recent data proves that melatonin and SIRT3 post-translationally collaborate in regulating free radical generation and removal from mitochondria. Since melatonin and SIRT3 have cohabitated in the mitochondria for many eons, we predict that these molecules interact in many other ways to control mitochondrial physiology. It is predicted that these mutual functions will be intensely investigated in the next decade and importantly, we assume that the findings will have significant applications for preventing/delaying some age-related diseases and aging itself.
Collapse
Affiliation(s)
- Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA.
| | - Dun Xian Tan
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA.
| | - Sergio Rosales-Corral
- Centro de Investigacion Biomedica de Occidente, Instituto Mexicano del Seguro Social, Guardalajara, 4436 Jalisco, Mexico.
| | - Annia Galano
- Departamento de Quimica, Universidad Antonoma Metropolitana-Unidad Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, C.P. 09340 Mexico D.F., Mexico.
| | - Mei-Jie Jou
- Department of Physiology and Pharmacology, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan 333, Taiwan.
| | - Dario Acuna-Castroviejo
- Departamento de Fisiologia, Instituto de Biotecnologia, Universidad de Granada, Avenida de Conocimiento S/U, 18016 Granada, Spain.
| |
Collapse
|
47
|
Roohbakhsh A, Shamsizadeh A, Hayes A, Reiter RJ, Karimi G. Melatonin as an endogenous regulator of diseases: The role of autophagy. Pharmacol Res 2018; 133:265-276. [DOI: 10.1016/j.phrs.2018.01.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/17/2017] [Accepted: 01/29/2018] [Indexed: 12/22/2022]
|
48
|
Xie XL, He JT, Wang ZT, Xiao HQ, Zhou WT, Du SH, Xue Y, Wang Q. Lactulose attenuates METH-induced neurotoxicity by alleviating the impaired autophagy, stabilizing the perturbed antioxidant system and suppressing apoptosis in rat striatum. Toxicol Lett 2018; 289:107-113. [PMID: 29550550 DOI: 10.1016/j.toxlet.2018.03.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/07/2018] [Accepted: 03/13/2018] [Indexed: 12/25/2022]
Abstract
Methamphetamine (METH) is a widely abused psychostimulant. Lactulose is a non-absorbable sugar, which effectively decreases METH-induced neurotoxicity in rat. However, the exact mechanisms need further investigation. In this study, 5-week-old male Sprague Dawley rats received METH (15 mg/kg, 8 intraperitoneal injections, 12-h interval) or saline and received lactulose (5.3 g/kg, oral gavage, 12-h interval) or vehicle 2 days prior to the METH administration. Compared to the control group, in the METH alone group, cytoplasmic vacuolar degeneration in hepatocytes, higher levels of alanine transaminase, aspartate transaminase and ammonia, overproduction of reactive oxygen species (ROS) and increase of superoxide dismutase activity in the blood were observed. Moreover, in rat striatum, expressions of nuclear factor erythroid 2-relatted factor-2 (Nrf2) and heme oxygenase-1 were suppressed in the nucleus, although over-expression of Nrf2 were observed in cytoplasm. Over-expressions of BECN1 and LC3-II indicated initiation of autophagy, while overproduction of p62 might suggest deficient autophagic vesicle turnover and impaired autophagy. Furthermore, accumulation of p62 cloud interact with Keap1 and then aggravate cytoplasmic accumulation of Nrf2. Consistently, over-expressions of cleaved caspase 3 and poly(ADP-ribose) polymerase-1 suggested the activation of apoptosis. The pretreatment with lactulose significantly decreased rat hepatic injury, suppressed hyperammonemia and ROS generation, alleviated the impaired autophagy in striatum, rescued the antioxidant system and repressed apoptosis. Taken together, with decreased blood ammonia, lactulose pretreatment reduced METH-induced neurotoxicity through alleviating the impaired autophagy, stabilizing the perturbed antioxidant system and suppressing apoptosis in rat striatum.
Collapse
Affiliation(s)
- Xiao-Li Xie
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No. 1838 North Guangzhou Road, 510515 Guangzhou, China
| | - Jie-Tao He
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, No. 1838 North Guangzhou Road, 510515 Guangzhou, China
| | - Zheng-Tao Wang
- The 2013 Class, 8-Year Program, The First Clinical Medical School, Southern Medical University, No. 1838 North Guangzhou Road, 510515 Guangzhou, China
| | - Huan-Qin Xiao
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Road, 510000 Guangzhou, China
| | - Wen-Tao Zhou
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No. 1838 North Guangzhou Road, 510515 Guangzhou, China
| | - Si-Hao Du
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, No. 1838 North Guangzhou Road, 510515 Guangzhou, China
| | - Ye Xue
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, No. 1838 North Guangzhou Road, 510515 Guangzhou, China
| | - Qi Wang
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, No. 1838 North Guangzhou Road, 510515 Guangzhou, China.
| |
Collapse
|
49
|
Neuroprotective effects of pifithrin-α against traumatic brain injury in the striatum through suppression of neuroinflammation, oxidative stress, autophagy, and apoptosis. Sci Rep 2018; 8:2368. [PMID: 29402897 PMCID: PMC5799311 DOI: 10.1038/s41598-018-19654-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 01/02/2018] [Indexed: 12/12/2022] Open
Abstract
Cortical and hippocampal neuronal damages caused by traumatic brain injury (TBI) are associated with motor and cognitive impairments; however, only little attention paid to the striatal damage. It is known that the p53 tumor-suppressor transcription factor participated in TBI-induced secondary brain damage. We investigated how the p53 inactivator pifithrin (PFT)-α affected TBI-induced striatal neuronal damage at 24 h post-injury. Sprague-Dawley rats subjected to a controlled cortical impact were used as TBI models. We observed that p53 mRNA significantly increased, whereas p53 protein expression was distributed predominantly in neurons but not in glia cells in striatum after TBI. PFT-α improved motor deficit following TBI. PFT-α suppressed TBI-induced striatal glial activation and expression of proinflammatory cytokines. PFT-α alleviated TBI-induced oxidative damage TBI induced autophagy was evidenced by increased protein expression of Beclin-1 and shift of microtubule-associated light chain (LC)3-I to LC3-II, and decreased p62. These effects were reduced by PFT-α. Post-injury PFT-α treatment reduced the number of degenerating (FJC-positive) and apoptotic neurons. Our results suggest that PFT-α may provide neuroprotective effects via p53-dependent or -independent mechanisms depending on the cell type and timing after the TBI and can possibly be developed into a novel therapy to ameliorate TBI-induced neuronal damage.
Collapse
|
50
|
Dehdashtian E, Mehrzadi S, Yousefi B, Hosseinzadeh A, Reiter RJ, Safa M, Ghaznavi H, Naseripour M. Diabetic retinopathy pathogenesis and the ameliorating effects of melatonin; involvement of autophagy, inflammation and oxidative stress. Life Sci 2018; 193:20-33. [DOI: 10.1016/j.lfs.2017.12.001] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/19/2017] [Accepted: 12/01/2017] [Indexed: 12/12/2022]
|