1
|
Li YZ, Wang Y, Jiao Q, Chi J, Liang Y, Fan B, Li GY. Complexin regulation of synaptic vesicle release: mechanisms in the central nervous system and specialized retinal ribbon synapses. Cell Commun Signal 2024; 22:581. [PMID: 39627811 PMCID: PMC11613576 DOI: 10.1186/s12964-024-01942-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 11/11/2024] [Indexed: 12/08/2024] Open
Abstract
Synaptic ribbons, recognized for their pivotal role in conveying sensory signals in the visual pathway, are intricate assemblages of presynaptic proteins. Complexin (CPX) regulates synaptic vesicle fusion and neurotransmitter release by modulating the assembly of the soluble NSF attachment protein receptor (SNARE) complex, ensuring precise signal transmission in the retina and the broader central nervous system (CNS). While CPX1 or CPX2 isoforms (CPX1/2) play crucial roles in classical CNS synapses, CPX3 or CPX4 isoforms (CPX3/4) specifically regulate retinal ribbon synapses. These isoforms are essential for sustaining synaptic plasticity related to light signaling, adapting to changes in circadian rhythms, and dynamically regulating visual function under varying light conditions. This review explores the regulation of synaptic vesicle release by CPX in both the CNS and retinal ribbon synapses, with a focus on the mechanisms governing CPX3/4 function in the retina. Additionally, by reviewing the role of CPX and ribbon synapse dysfunction in non-retinal diseases, we further hypothesize the potential mechanisms of CPX in retinal diseases and propose therapeutic strategies targeting CPX to address retinal and CNS disorders associated with synaptic dysfunction.
Collapse
Affiliation(s)
- Yun-Zhi Li
- Department of Ophthalmology, The Second Norman Bethune Hospital of JiLin University, Changchun, 130041, China
| | - Yu Wang
- Department of Neurology, The Second Norman Bethune Hospital of JiLin University, Changchun, 130041, China
| | - Qing Jiao
- Department of Ophthalmology, The Second Norman Bethune Hospital of JiLin University, Changchun, 130041, China
| | - Jing Chi
- Department of Ophthalmology, The Second Norman Bethune Hospital of JiLin University, Changchun, 130041, China
| | - Yang Liang
- Department of Ophthalmology, The Second Norman Bethune Hospital of JiLin University, Changchun, 130041, China
| | - Bin Fan
- Department of Ophthalmology, The Second Norman Bethune Hospital of JiLin University, Changchun, 130041, China.
| | - Guang-Yu Li
- Department of Ophthalmology, The Second Norman Bethune Hospital of JiLin University, Changchun, 130041, China.
| |
Collapse
|
2
|
Trovò L, Kouvaros S, Schwenk J, Fernandez-Fernandez D, Fritzius T, Rem PD, Früh S, Gassmann M, Fakler B, Bischofberger J, Bettler B. Synaptotagmin-11 facilitates assembly of a presynaptic signaling complex in post-Golgi cargo vesicles. EMBO Rep 2024; 25:2610-2634. [PMID: 38698221 PMCID: PMC11169412 DOI: 10.1038/s44319-024-00147-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 05/05/2024] Open
Abstract
GABAB receptors (GBRs), the G protein-coupled receptors for GABA, regulate synaptic transmission throughout the brain. A main synaptic function of GBRs is the gating of Cav2.2-type Ca2+ channels. However, the cellular compartment where stable GBR/Cav2.2 signaling complexes form remains unknown. In this study, we demonstrate that the vesicular protein synaptotagmin-11 (Syt11) binds to both the auxiliary GBR subunit KCTD16 and Cav2.2 channels. Through these dual interactions, Syt11 recruits GBRs and Cav2.2 channels to post-Golgi vesicles, thus facilitating assembly of GBR/Cav2.2 signaling complexes. In addition, Syt11 stabilizes GBRs and Cav2.2 channels at the neuronal plasma membrane by inhibiting constitutive internalization. Neurons of Syt11 knockout mice exhibit deficits in presynaptic GBRs and Cav2.2 channels, reduced neurotransmitter release, and decreased GBR-mediated presynaptic inhibition, highlighting the critical role of Syt11 in the assembly and stable expression of GBR/Cav2.2 complexes. These findings support that Syt11 acts as a vesicular scaffold protein, aiding in the assembly of signaling complexes from low-abundance components within transport vesicles. This mechanism enables insertion of pre-assembled functional signaling units into the synaptic membrane.
Collapse
Affiliation(s)
- Luca Trovò
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | - Jochen Schwenk
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | | | | | - Simon Früh
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Martin Gassmann
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Bernd Fakler
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- CIBSS Center for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Center for Basics in NeuroModulation, Freiburg, Germany
| | | | - Bernhard Bettler
- Department of Biomedicine, University of Basel, Basel, Switzerland.
| |
Collapse
|
3
|
Achiro JM, Tao Y, Gao F, Lin CH, Watanabe M, Neumann S, Coppola G, Black DL, Martin KC. Aging differentially alters the transcriptome and landscape of chromatin accessibility in the male and female mouse hippocampus. Front Mol Neurosci 2024; 17:1334862. [PMID: 38318533 PMCID: PMC10839115 DOI: 10.3389/fnmol.2024.1334862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/02/2024] [Indexed: 02/07/2024] Open
Abstract
Aging-related memory impairment and pathological memory disorders such as Alzheimer's disease differ between males and females, and yet little is known about how aging-related changes in the transcriptome and chromatin environment differ between sexes in the hippocampus. To investigate this question, we compared the chromatin accessibility landscape and gene expression/alternative splicing pattern of young adult and aged mouse hippocampus in both males and females using ATAC-seq and RNA-seq. We detected significant aging-dependent changes in the expression of genes involved in immune response and synaptic function and aging-dependent changes in the alternative splicing of myelin sheath genes. We found significant sex-bias in the expression and alternative splicing of hundreds of genes, including aging-dependent female-biased expression of myelin sheath genes and aging-dependent male-biased expression of genes involved in synaptic function. Aging was associated with increased chromatin accessibility in both male and female hippocampus, especially in repetitive elements, and with an increase in LINE-1 transcription. We detected significant sex-bias in chromatin accessibility in both autosomes and the X chromosome, with male-biased accessibility enriched at promoters and CpG-rich regions. Sex differences in gene expression and chromatin accessibility were amplified with aging, findings that may shed light on sex differences in aging-related and pathological memory loss.
Collapse
Affiliation(s)
- Jennifer M. Achiro
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Yang Tao
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Fuying Gao
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Chia-Ho Lin
- Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, CA, United States
| | - Marika Watanabe
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Sylvia Neumann
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Giovanni Coppola
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Douglas L. Black
- Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, CA, United States
| | - Kelsey C. Martin
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| |
Collapse
|
4
|
Breitbart H, Grinshtein E. Mechanisms That Protect Mammalian Sperm from the Spontaneous Acrosome Reaction. Int J Mol Sci 2023; 24:17005. [PMID: 38069328 PMCID: PMC10707520 DOI: 10.3390/ijms242317005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
To acquire the capacity to fertilize the oocyte, mammalian spermatozoa must undergo a series of biochemical reactions in the female reproductive tract, which are collectively called capacitation. The capacitated spermatozoa subsequently interact with the oocyte zona-pellucida and undergo the acrosome reaction, which enables the penetration of the oocyte and subsequent fertilization. However, the spontaneous acrosome reaction (sAR) can occur prematurely in the sperm before reaching the oocyte cumulus oophorus, thereby jeopardizing fertilization. One of the main processes in capacitation involves actin polymerization, and the resulting F-actin is subsequently dispersed prior to the acrosome reaction. Several biochemical reactions that occur during sperm capacitation, including actin polymerization, protect sperm from sAR. In the present review, we describe the protective mechanisms that regulate sperm capacitation and prevent sAR.
Collapse
Affiliation(s)
- Haim Breitbart
- The Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | | |
Collapse
|
5
|
Nishad R, Betancourt-Solis M, Dey H, Heidelberger R, McNew JA. Regulation of Syntaxin3B-Mediated Membrane Fusion by T14, Munc18, and Complexin. Biomolecules 2023; 13:1463. [PMID: 37892145 PMCID: PMC10604575 DOI: 10.3390/biom13101463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Retinal neurons that form ribbon-style synapses operate over a wide dynamic range, continuously relaying visual information to their downstream targets. The remarkable signaling abilities of these neurons are supported by specialized presynaptic machinery, one component of which is syntaxin3B. Syntaxin3B is an essential t-SNARE protein of photoreceptors and bipolar cells that is required for neurotransmitter release. It has a light-regulated phosphorylation site in its N-terminal domain at T14 that has been proposed to modulate membrane fusion. However, a direct test of the latter has been lacking. Using a well-controlled in vitro fusion assay, we found that a phosphomimetic T14 syntaxin3B mutation leads to a small but significant enhancement of SNARE-mediated membrane fusion following the formation of the t-SNARE complex. While the addition of Munc18a had only a minimal effect on membrane fusion mediated by SNARE complexes containing wild-type syntaxin3B, a more significant enhancement was observed in the presence of Munc18a when the SNARE complexes contained a syntaxin3B T14 phosphomimetic mutant. Finally, we showed that the retinal-specific complexins (Cpx III and Cpx IV) inhibited membrane fusion mediated by syntaxin3B-containing SNARE complexes in a dose-dependent manner. Collectively, our results establish that membrane fusion mediated by syntaxin3B-containing SNARE complexes is regulated by the T14 residue of syntaxin3B, Munc18a, and Cpxs III and IV.
Collapse
Affiliation(s)
- Rajkishor Nishad
- Department of BioSciences, Rice University, 6500 Main Street, MS 601, Houston, TX 77005, USA;
| | - Miguel Betancourt-Solis
- Department of BioSciences, Rice University, 6500 Main Street, MS 601, Houston, TX 77005, USA;
- Lonza Biologics, 14905 Kirby Dr, Houston, TX 77047, USA
| | - Himani Dey
- Department of Neurobiology and Anatomy, McGovern Medical School, The University of Texas Health Science Center, Houston (UTHealth Houston), 6431 Fannin Street, Houston, TX 77030, USA;
| | - Ruth Heidelberger
- Department of Neurobiology and Anatomy, McGovern Medical School, The University of Texas Health Science Center, Houston (UTHealth Houston), 6431 Fannin Street, Houston, TX 77030, USA;
| | - James A. McNew
- Department of BioSciences, Rice University, 6500 Main Street, MS 601, Houston, TX 77005, USA;
| |
Collapse
|
6
|
Jung JW, Kim H, Park J, Woo J, Jeon E, Lee G, Park M, Kim S, Seo H, Cheon S, Dan K, Lee J, Ryu H, Han D. In-depth proteome analysis of brain tissue from Ewsr1 knockout mouse by multiplexed isobaric tandem mass tag labeling. Sci Rep 2023; 13:15261. [PMID: 37709831 PMCID: PMC10502055 DOI: 10.1038/s41598-023-42161-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 09/06/2023] [Indexed: 09/16/2023] Open
Abstract
EWS RNA binding protein 1 (EWSR1) is a multifunctional protein whose epigenetic signatures contribute to the pathogenesis of various human diseases, such as neurodegenerative disorders, skin development, and tumorigenic processes. However, the specific cellular functions and physiological characteristics of EWSR1 remain unclear. In this study, we used quantitative mass spectrometry-based proteomics with tandem mass tag labeling to investigate the global proteome changes in brain tissue in Ewsr1 knockout and wild-type mice. From 9115 identified proteins, we selected 118 differentially expressed proteins, which is common to three quantitative data processing strategies including only protein level normalizations and spectrum-protein level normalization. Bioinformatics analysis of these common differentially expressed proteins revealed that proteins up-regulated in Ewsr1 knockout mouse are mostly related to the positive regulation of bone remodeling and inflammatory response. The down-regulated proteins were associated with the regulation of neurotransmitter levels or amino acid metabolic processes. Collectively, these findings provide insight into the physiological function and pathogenesis of EWSR1 on protein level. Better understanding of EWSR1 and its protein interactions will advance the field of clinical research into neuronal disorders. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD026994.
Collapse
Affiliation(s)
- Jin Woo Jung
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul, 03082, South Korea
- Transdisciplinary Department of Medicine & Advanced Technology, Seoul National University Hospital, Seoul, 03082, South Korea
| | - Hyeyoon Kim
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul, 03082, South Korea
- Transdisciplinary Department of Medicine & Advanced Technology, Seoul National University Hospital, Seoul, 03082, South Korea
| | - Joonho Park
- Department of Pharmacology, CHA University College of Medicine, Pocheon-si, 11160, South Korea
| | - Jongmin Woo
- Center for Translational Biomedical Research, North Carolina Research Campus, University of North Carolina at Greensboro, Kannapolis, NC, 28081, USA
| | - Eunji Jeon
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul, 03082, South Korea
- Transdisciplinary Department of Medicine & Advanced Technology, Seoul National University Hospital, Seoul, 03082, South Korea
| | - Geeeun Lee
- Transdisciplinary Department of Medicine & Advanced Technology, Seoul National University Hospital, Seoul, 03082, South Korea
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, 03082, South Korea
| | - Minseo Park
- Transdisciplinary Department of Medicine & Advanced Technology, Seoul National University Hospital, Seoul, 03082, South Korea
| | - Sarang Kim
- Transdisciplinary Department of Medicine & Advanced Technology, Seoul National University Hospital, Seoul, 03082, South Korea
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, 03082, South Korea
| | - Hoseok Seo
- Transdisciplinary Department of Medicine & Advanced Technology, Seoul National University Hospital, Seoul, 03082, South Korea
- Interdisciplinary Program in Neuroscience, College of Natural Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Seongmin Cheon
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul, 03082, South Korea
| | - Kisoon Dan
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul, 03082, South Korea
| | - Junghee Lee
- Boston University Alzheimer's Disease Center and Department of Neurology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Hoon Ryu
- Boston University Alzheimer's Disease Center and Department of Neurology, Boston University School of Medicine, Boston, MA, 02118, USA.
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea.
| | - Dohyun Han
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul, 03082, South Korea.
- Transdisciplinary Department of Medicine & Advanced Technology, Seoul National University Hospital, Seoul, 03082, South Korea.
- Department of Medicine, College of Medicine, Seoul National University, Seoul, 03082, South Korea.
| |
Collapse
|
7
|
Grasso EM, Terakawa MS, Lai AL, Xue Xie Y, Ramlall TF, Freed JH, Eliezer D. Membrane Binding Induces Distinct Structural Signatures in the Mouse Complexin-1C-Terminal Domain. J Mol Biol 2023; 435:167710. [PMID: 35777466 PMCID: PMC9794636 DOI: 10.1016/j.jmb.2022.167710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 02/04/2023]
Abstract
Complexins play a critical role in regulating SNARE-mediated exocytosis of synaptic vesicles. Evolutionary divergences in complexin function have complicated our understanding of the role these proteins play in inhibiting the spontaneous fusion of vesicles. Previous structural and functional characterizations of worm and mouse complexins have indicated the membrane curvature-sensing C-terminal domain of these proteins is responsible for differences in inhibitory function. We have characterized the structure and dynamics of the mCpx1 CTD in the absence and presence of membranes and membrane mimetics using NMR, ESR, and optical spectroscopies. In the absence of lipids, the mCpx1 CTD features a short helix near its N-terminus and is otherwise disordered. In the presence of micelles and small unilamellar vesicles, the mCpx1 CTD forms a discontinuous helical structure in its C-terminal 20 amino acids, with no preference for specific lipid compositions. In contrast, the mCpx1 CTD shows distinct compositional preferences in its interactions with large unilamellar vesicles. These studies identify structural divergences in the mCpx1 CTD relative to the wCpx1 CTD in regions that are known to be critical to the wCpx1 CTD's role in inhibiting spontaneous fusion of synaptic vesicles, suggesting a potential structural basis for evolutionary divergences in complexin function.1.
Collapse
Affiliation(s)
- Emily M Grasso
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, United States
| | - Mayu S Terakawa
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, United States
| | - Alex L Lai
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, United States
| | - Ying Xue Xie
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, United States
| | - Trudy F Ramlall
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, United States
| | - Jack H Freed
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, United States
| | - David Eliezer
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
8
|
Lottermoser JA, Dittman JS. Complexin Membrane Interactions: Implications for Synapse Evolution and Function. J Mol Biol 2023; 435:167774. [PMID: 35931110 PMCID: PMC9807284 DOI: 10.1016/j.jmb.2022.167774] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 02/04/2023]
Abstract
The molecules and mechanisms behind chemical synaptic transmission have been explored for decades. For several of the core proteins involved in synaptic vesicle fusion, we now have a reasonably detailed grasp of their biochemical, structural, and functional properties. Complexin is one of the key synaptic proteins for which a simple mechanistic understanding is still lacking. Living up to its name, this small protein has been associated with a variety of roles differing between synapses and between species, but little consensus has been reached on its fundamental modes of action. Much attention has been paid to its deeply conserved SNARE-binding properties, while membrane-binding features of complexin and their functional significance have yet to be explored to the same degree. In this review, we summarize the known membrane interactions of the complexin C-terminal domain and their potential relevance to its function, synaptic localization, and evolutionary history.
Collapse
Affiliation(s)
| | - Jeremy S Dittman
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, United States.
| |
Collapse
|
9
|
López-Murcia FJ, Reim K, Taschenberger H. Complexins: Ubiquitously Expressed Presynaptic Regulators of SNARE-Mediated Synaptic Vesicle Fusion. ADVANCES IN NEUROBIOLOGY 2023; 33:255-285. [PMID: 37615870 DOI: 10.1007/978-3-031-34229-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Neurotransmitter release is a spatially and temporally tightly regulated process, which requires assembly and disassembly of SNARE complexes to enable the exocytosis of transmitter-loaded synaptic vesicles (SVs) at presynaptic active zones (AZs). While the requirement for the core SNARE machinery is shared by most membrane fusion processes, SNARE-mediated fusion at AZs is uniquely regulated to allow very rapid Ca2+-triggered SV exocytosis following action potential (AP) arrival. To enable a sub-millisecond time course of AP-triggered SV fusion, synapse-specific accessory SNARE-binding proteins are required in addition to the core fusion machinery. Among the known SNARE regulators specific for Ca2+-triggered SV fusion are complexins, which are almost ubiquitously expressed in neurons. This chapter summarizes the structural features of complexins, models for their molecular interactions with SNAREs, and their roles in SV fusion.
Collapse
Affiliation(s)
- Francisco José López-Murcia
- Department of Pathology and Experimental Therapy, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.
- Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.
| | - Kerstin Reim
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| | - Holger Taschenberger
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
10
|
Liang Q, Ofosuhene AP, Kiessling V, Liang B, Kreutzberger AJB, Tamm LK, Cafiso DS. Complexin-1 and synaptotagmin-1 compete for binding sites on membranes containing PtdInsP 2. Biophys J 2022; 121:3370-3380. [PMID: 36016497 PMCID: PMC9515229 DOI: 10.1016/j.bpj.2022.08.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/28/2022] [Accepted: 08/19/2022] [Indexed: 11/25/2022] Open
Abstract
Complexin-1 is an essential protein for neuronal exocytosis that acts to depress spontaneous fusion events while enhancing evoked neurotransmitter release. In addition to binding soluble N-ethylmaleimide-sensitive factor attachment protein receptors, it is well established that complexin associates with membranes in a manner that depends upon membrane curvature. In the present work, we examine the membrane binding of complexin using electron paramagnetic resonance spectroscopy, fluorescence anisotropy, and total internal reflection fluorescence microscopy. The apparent membrane affinity of complexin is found to strongly depend upon the concentration of protein used in the binding assay, and this is a result of a limited number of binding sites for complexin on the membrane interface. Although both the N- and C-terminal regions of complexin associate with the membrane interface, membrane affinity is driven by its C-terminus. Complexin prefers to bind liquid-disordered membrane phases and shows an enhanced affinity toward membranes containing phosphatidylinositol 4-5-bisphosphate (PI(4,5)P2). In the presence of PI(4,5)P2, complexin is displaced from the membrane surface by proteins that bind to or sequester PI(4,5)P2. In particular, the neuronal calcium sensor synaptotagmin-1 displaces complexin from the membrane but only when PI(4,5)P2 is present. Complexin and synaptotagmin compete on the membrane interface in the presence of PI(4,5)P2, and this interaction may play a role in calcium-triggered exocytosis by displacing complexin from its fusion-inhibiting state.
Collapse
Affiliation(s)
- Qian Liang
- Department of Chemistry, University of Virginia, Charlottesville, Virginia
| | - Akosua P Ofosuhene
- Department of Chemistry, University of Virginia, Charlottesville, Virginia
| | - Volker Kiessling
- Department of Molecular Physiology and Biological Physics University of Virginia, Charlottesville, Virginia; Center for Membrane Biology, University of Virginia, Charlottesville, Virginia
| | - Binyong Liang
- Department of Molecular Physiology and Biological Physics University of Virginia, Charlottesville, Virginia; Center for Membrane Biology, University of Virginia, Charlottesville, Virginia
| | - Alex J B Kreutzberger
- Department of Molecular Physiology and Biological Physics University of Virginia, Charlottesville, Virginia; Center for Membrane Biology, University of Virginia, Charlottesville, Virginia
| | - Lukas K Tamm
- Department of Molecular Physiology and Biological Physics University of Virginia, Charlottesville, Virginia; Center for Membrane Biology, University of Virginia, Charlottesville, Virginia
| | - David S Cafiso
- Department of Chemistry, University of Virginia, Charlottesville, Virginia; Center for Membrane Biology, University of Virginia, Charlottesville, Virginia.
| |
Collapse
|
11
|
Sarchione A, Marchand A, Taymans JM, Chartier-Harlin MC. Alpha-Synuclein and Lipids: The Elephant in the Room? Cells 2021; 10:2452. [PMID: 34572099 PMCID: PMC8467310 DOI: 10.3390/cells10092452] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 12/17/2022] Open
Abstract
Since the initial identification of alpha-synuclein (α-syn) at the synapse, numerous studies demonstrated that α-syn is a key player in the etiology of Parkinson's disease (PD) and other synucleinopathies. Recent advances underline interactions between α-syn and lipids that also participate in α-syn misfolding and aggregation. In addition, increasing evidence demonstrates that α-syn plays a major role in different steps of synaptic exocytosis. Thus, we reviewed literature showing (1) the interplay among α-syn, lipids, and lipid membranes; (2) advances of α-syn synaptic functions in exocytosis. These data underscore a fundamental role of α-syn/lipid interplay that also contributes to synaptic defects in PD. The importance of lipids in PD is further highlighted by data showing the impact of α-syn on lipid metabolism, modulation of α-syn levels by lipids, as well as the identification of genetic determinants involved in lipid homeostasis associated with α-syn pathologies. While questions still remain, these recent developments open the way to new therapeutic strategies for PD and related disorders including some based on modulating synaptic functions.
Collapse
Affiliation(s)
| | | | | | - Marie-Christine Chartier-Harlin
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172—LilNCog—Lille Neuroscience and Cognition, F-59000 Lille, France; (A.S.); (A.M.); (J.-M.T.)
| |
Collapse
|
12
|
Lux UT, Ehrenberg J, Joachimsthaler A, Atorf J, Pircher B, Reim K, Kremers J, Gießl A, Brandstätter JH. Cell Types and Synapses Expressing the SNARE Complex Regulating Proteins Complexin 1 and Complexin 2 in Mammalian Retina. Int J Mol Sci 2021; 22:ijms22158131. [PMID: 34360929 PMCID: PMC8348166 DOI: 10.3390/ijms22158131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/20/2021] [Accepted: 07/27/2021] [Indexed: 11/16/2022] Open
Abstract
Complexins (Cplxs) 1 to 4 are components of the presynaptic compartment of chemical synapses where they regulate important steps in synaptic vesicle exocytosis. In the retina, all four Cplxs are present, and while we know a lot about Cplxs 3 and 4, little is known about Cplxs 1 and 2. Here, we performed in situ hybridization experiments and bioinformatics and exploited Cplx 1 and Cplx 2 single-knockout mice combined with immunocytochemistry and light microscopy to characterize in detail the cell type and synapse-specific distribution of Cplx 1 and Cplx 2. We found that Cplx 2 and not Cplx 1 is the main isoform expressed in normal and displaced amacrine cells and ganglion cells in mouse retinae and that amacrine cells seem to operate with a single Cplx isoform at their conventional chemical synapses. Surprising was the finding that retinal function, determined with electroretinographic recordings, was altered in Cplx 1 but not Cplx 2 single-knockout mice. In summary, the results provide an important basis for future studies on the function of Cplxs 1 and 2 in the processing of visual signals in the mammalian retina.
Collapse
Affiliation(s)
- Uwe Thorsten Lux
- Division of Animal Physiology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany; (U.T.L.); (J.E.); (B.P.)
| | - Johanna Ehrenberg
- Division of Animal Physiology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany; (U.T.L.); (J.E.); (B.P.)
| | - Anneka Joachimsthaler
- Department of Ophthalmology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (A.J.); (J.A.); (J.K.); (A.G.)
| | - Jenny Atorf
- Department of Ophthalmology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (A.J.); (J.A.); (J.K.); (A.G.)
| | - Bianca Pircher
- Division of Animal Physiology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany; (U.T.L.); (J.E.); (B.P.)
| | - Kerstin Reim
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany;
| | - Jan Kremers
- Department of Ophthalmology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (A.J.); (J.A.); (J.K.); (A.G.)
| | - Andreas Gießl
- Department of Ophthalmology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (A.J.); (J.A.); (J.K.); (A.G.)
| | - Johann Helmut Brandstätter
- Division of Animal Physiology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany; (U.T.L.); (J.E.); (B.P.)
- Correspondence:
| |
Collapse
|
13
|
Banerjee S, Vernon S, Jiao W, Choi BJ, Ruchti E, Asadzadeh J, Burri O, Stowers RS, McCabe BD. Miniature neurotransmission is required to maintain Drosophila synaptic structures during ageing. Nat Commun 2021; 12:4399. [PMID: 34285221 PMCID: PMC8292383 DOI: 10.1038/s41467-021-24490-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 06/22/2021] [Indexed: 11/27/2022] Open
Abstract
The decline of neuronal synapses is an established feature of ageing accompanied by the diminishment of neuronal function, and in the motor system at least, a reduction of behavioural capacity. Here, we have investigated Drosophila motor neuron synaptic terminals during ageing. We observed cumulative fragmentation of presynaptic structures accompanied by diminishment of both evoked and miniature neurotransmission occurring in tandem with reduced motor ability. Through discrete manipulation of each neurotransmission modality, we find that miniature but not evoked neurotransmission is required to maintain presynaptic architecture and that increasing miniature events can both preserve synaptic structures and prolong motor ability during ageing. Our results establish that miniature neurotransmission, formerly viewed as an epiphenomenon, is necessary for the long-term stability of synaptic connections. Synaptic structures disintegrate and fragment as ageing progresses. Here the authors find that miniature neurotransmission is required to maintain adult motor synapse structures in Drosophila and that increasing miniature events can preserve motor ability during ageing.
Collapse
Affiliation(s)
- Soumya Banerjee
- Brain Mind Institute, EPFL - Swiss Federal Institute of Technology Lausanne, Lausanne, Switzerland
| | - Samuel Vernon
- Brain Mind Institute, EPFL - Swiss Federal Institute of Technology Lausanne, Lausanne, Switzerland
| | - Wei Jiao
- Brain Mind Institute, EPFL - Swiss Federal Institute of Technology Lausanne, Lausanne, Switzerland
| | - Ben Jiwon Choi
- Department of Biology, New York University, New York, USA
| | - Evelyne Ruchti
- Brain Mind Institute, EPFL - Swiss Federal Institute of Technology Lausanne, Lausanne, Switzerland
| | - Jamshid Asadzadeh
- Brain Mind Institute, EPFL - Swiss Federal Institute of Technology Lausanne, Lausanne, Switzerland
| | - Olivier Burri
- Brain Mind Institute, EPFL - Swiss Federal Institute of Technology Lausanne, Lausanne, Switzerland
| | - R Steven Stowers
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, USA
| | - Brian D McCabe
- Brain Mind Institute, EPFL - Swiss Federal Institute of Technology Lausanne, Lausanne, Switzerland.
| |
Collapse
|
14
|
Finkelstein M, Etkovitz N, Breitbart H. Ca 2+ signaling in mammalian spermatozoa. Mol Cell Endocrinol 2020; 516:110953. [PMID: 32712383 DOI: 10.1016/j.mce.2020.110953] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 06/08/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023]
Abstract
Calcium is an essential ion which regulates sperm motility, capacitation and the acrosome reaction (AR), three processes necessary for successful fertilization. The AR enables the spermatozoon to penetrate into the egg. In order to undergo the AR, the spermatozoon must reside in the female reproductive tract for several hours, during which a series of biochemical transformations takes place, collectively called capacitation. An early event in capacitation is relatively small elevation of intracellular Ca2+ (in the nM range) and bicarbonate, which collectively activate the soluble adenylyl cyclase to produce cyclic-AMP; c-AMP activates protein kinase A (PKA), leading to indirect tyrosine phosphorylation of proteins. During capacitation, there is an increase in the membrane-bound phospholipase C (PLC) which is activated prior to the AR by relatively high increase in intracellular Ca2+ (in the μM range). PLC catalyzes the hydrolysis of phosphatidyl-inositol-4,5-bisphosphate (PIP2) to diacylglycerol and inositol-trisphosphate (IP3), leading to activation of protein kinase C (PKC) and the IP3-receptor. PKC activates a Ca2+- channel in the plasma membrane, and IP3 activates the Ca2+- channel in the outer acrosomal membrane, leading to Ca2+ depletion from the acrosome. As a result, the plasma-membrane store-operated Ca2+ channel (SOCC) is activated to increase cytosolic Ca2+ concentration, enabling completion of the acrosome reaction. The hydrolysis of PIP2 by PLC results in the release and activation of PIP2-bound gelsolin, leading to F-actin dispersion, an essential step prior to the AR. Ca2+ is also involved in the regulation of sperm motility. During capacitation, the sperm develops a unique motility pattern called hyper-activated motility (HAM) which is essential for successful fertilization. The main Ca2+-channel that mediates HAM is the sperm-specific CatSper located in the sperm tail.
Collapse
Affiliation(s)
| | - Nir Etkovitz
- Sperm Bank, Sheba Hospital, Tel-Hashomer, Israel
| | - Haim Breitbart
- The Mina & Everard Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel.
| |
Collapse
|
15
|
Xu Y, Zhao XM, Liu J, Wang YY, Xiong LL, He XY, Wang TH. Complexin I knockout rats exhibit a complex neurobehavioral phenotype including profound ataxia and marked deficits in lifespan. Pflugers Arch 2019; 472:117-133. [PMID: 31875236 DOI: 10.1007/s00424-019-02337-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 02/07/2023]
Abstract
Complexin I (CPLX1), a presynaptic small molecule protein, forms SNARE complex in the central nervous system involved in the anchoring, pre-excitation, and fusion of axonal end vesicles. Abnormal expression of CPLX1 occurs in several neurodegenerative and psychiatric disorders that exhibit disrupted neurobehaviors. CPLX1 gene knockout induces severe ataxia and social behavioral deficits in mice, which has been poorly demonstrated. Here, to address the limitations of single-species models and to provide translational insights relevant to human diseases, we used CPLX1 knockout rats to further explore the function of the CPLX1 gene. The CRISPR/Cas9 gene editing system was adopted to generate CPLX1 knockout rats (CPLX1-/-). Then, we characterized the survival rate and behavioral phenotype of CPLX1-/- rats using behavioral analysis. To further explain this phenomenon, we performed blood glucose testing, Nissl staining, hematoxylin-eosin staining, and Golgi staining. We found that CPLX1-/- rats showed profound ataxia, dystonia, movement and exploratory deficits, and increased anxiety and sensory deficits but had normal cognitive function. Nevertheless, CPLX1-/- rats could swim without training. The abnormal histomorphology of the stomach and intestine were related to decreased weight and early death in these rats. Decreased dendritic branching was also found in spinal motor neurons in CPLX1-/- rats. In conclusion, CPLX1 gene knockout induced the abnormal histomorphology of the stomach and intestine and decreased dendritic branching in spinal motor neurons, causing different phenotypes between CPLX1-/- rats and mice, even though both of these phenotypes showed profound ataxia. These findings provide a new perspective for understanding the role of CPLX1.
Collapse
Affiliation(s)
- Yang Xu
- Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University & The Research Units of West China, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| | - Xiao-Ming Zhao
- Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University & The Research Units of West China, Chinese Academy of Medical Sciences, Chengdu, 610041, China.,Department of Basic Medicine, Medical School, Kunming University of Science and Technology, Kunming, 650500, China
| | - Jia Liu
- Institute of Neuroscience, Laboratory Zoology Department, Kunming Medical University, Kunming, 650500, China
| | - Yang-Yang Wang
- Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University & The Research Units of West China, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| | - Liu-Lin Xiong
- Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University & The Research Units of West China, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| | - Xiu-Ying He
- Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University & The Research Units of West China, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| | - Ting-Hua Wang
- Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University & The Research Units of West China, Chinese Academy of Medical Sciences, Chengdu, 610041, China. .,Institute of Neuroscience, Laboratory Zoology Department, Kunming Medical University, Kunming, 650500, China.
| |
Collapse
|
16
|
Nyenhuis SB, Thapa A, Cafiso DS. Phosphatidylinositol 4,5 Bisphosphate Controls the cis and trans Interactions of Synaptotagmin 1. Biophys J 2019; 117:247-257. [PMID: 31301806 DOI: 10.1016/j.bpj.2019.06.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/20/2019] [Accepted: 06/18/2019] [Indexed: 11/28/2022] Open
Abstract
Synaptotagmin 1 acts as the Ca2+ sensor for synchronous neurotransmitter release; however, the mechanism by which it functions is not understood and is presently a topic of considerable interest. Here, we describe measurements on full-length membrane-reconstituted synaptotagmin 1 using site-directed spin labeling in which we characterize the linker region as well as the cis (vesicle membrane) and trans (cytoplasmic membrane) binding of its two C2 domains. In the full-length protein, the C2A domain does not undergo membrane insertion in the absence of Ca2+; however, the C2B domain will bind to and penetrate in trans to a membrane containing phosphatidylinositol 4,5 bisphosphate, even if phosphatidylserine (PS) is present in the cis membrane. In the presence of Ca2+, the Ca2+ binding loops of C2A and C2B both insert into the membrane interface; moreover, C2A preferentially inserts into PS-containing bilayers and will bind in a cis configuration to membranes containing PS even if a phosphatidylinositol 4,5 bisphosphate membrane is presented in trans. The data are consistent with a bridging activity for synaptotagmin 1 in which the two domains bind to opposing vesicle and plasma membranes. The failure of C2A to bind membranes in the absence of Ca2+ and the long unstructured segment linking C2A to the vesicle membrane indicates that synaptotagmin 1 could act to significantly shorten the vesicle-plasma membrane distance with increasing levels of Ca2+.
Collapse
Affiliation(s)
- Sarah B Nyenhuis
- Department of Chemistry and Center for Membrane Biology, University of Virginia, Charlottesville, Virginia
| | - Anusa Thapa
- Department of Chemistry and Center for Membrane Biology, University of Virginia, Charlottesville, Virginia
| | - David S Cafiso
- Department of Chemistry and Center for Membrane Biology, University of Virginia, Charlottesville, Virginia.
| |
Collapse
|
17
|
Abstract
The past few years have resulted in an increased awareness and recognition of the prevalence and roles of intrinsically disordered proteins and protein regions (IDPs and IDRs, respectively) in synaptic vesicle trafficking and exocytosis and in overall synaptic organization. IDPs and IDRs constitute a class of proteins and protein regions that lack stable tertiary structure, but nevertheless retain biological function. Their significance in processes such as cell signaling is now well accepted, but their pervasiveness and importance in other areas of biology are not as widely appreciated. Here, we review the prevalence and functional roles of IDPs and IDRs associated with the release and recycling of synaptic vesicles at nerve terminals, as well as with the architecture of these terminals. We hope to promote awareness, especially among neuroscientists, of the importance of this class of proteins in these critical pathways and structures. The examples discussed illustrate some of the ways in which the structural flexibility conferred by intrinsic protein disorder can be functionally advantageous in the context of cellular trafficking and synaptic function.
Collapse
Affiliation(s)
- David Snead
- From the Department of Biochemistry, Weill Cornell Medicine, New York, New York 10021
| | - David Eliezer
- From the Department of Biochemistry, Weill Cornell Medicine, New York, New York 10021
| |
Collapse
|
18
|
Scholz N, Ehmann N, Sachidanandan D, Imig C, Cooper BH, Jahn O, Reim K, Brose N, Meyer J, Lamberty M, Altrichter S, Bormann A, Hallermann S, Pauli M, Heckmann M, Stigloher C, Langenhan T, Kittel RJ. Complexin cooperates with Bruchpilot to tether synaptic vesicles to the active zone cytomatrix. J Cell Biol 2019; 218:1011-1026. [PMID: 30782781 PMCID: PMC6400551 DOI: 10.1083/jcb.201806155] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 12/14/2018] [Accepted: 01/09/2019] [Indexed: 02/06/2023] Open
Abstract
By performing an in vivo screen in Drosophila melanogaster, Scholz, Ehmann, et al. identify Complexin as a functional interaction partner of Bruchpilot. The two proteins mediate a physical attachment of synaptic vesicles to the active zone cytomatrix and promote rapid, sustained synaptic transmission. Information processing by the nervous system depends on neurotransmitter release from synaptic vesicles (SVs) at the presynaptic active zone. Molecular components of the cytomatrix at the active zone (CAZ) regulate the final stages of the SV cycle preceding exocytosis and thereby shape the efficacy and plasticity of synaptic transmission. Part of this regulation is reflected by a physical association of SVs with filamentous CAZ structures via largely unknown protein interactions. The very C-terminal region of Bruchpilot (Brp), a key component of the Drosophila melanogaster CAZ, participates in SV tethering. Here, we identify the conserved SNARE regulator Complexin (Cpx) in an in vivo screen for molecules that link the Brp C terminus to SVs. Brp and Cpx interact genetically and functionally. Both proteins promote SV recruitment to the Drosophila CAZ and counteract short-term synaptic depression. Analyzing SV tethering to active zone ribbons of cpx3 knockout mice supports an evolutionarily conserved role of Cpx upstream of SNARE complex assembly.
Collapse
Affiliation(s)
- Nicole Scholz
- Institute of Physiology, Department of Neurophysiology, University of Würzburg, Würzburg, Germany.,Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Leipzig University, Leipzig, Germany
| | - Nadine Ehmann
- Institute of Physiology, Department of Neurophysiology, University of Würzburg, Würzburg, Germany.,Department of Animal Physiology, Institute of Biology, Leipzig University, Leipzig, Germany.,Carl Ludwig Institute for Physiology, Leipzig University, Leipzig, Germany
| | - Divya Sachidanandan
- Institute of Physiology, Department of Neurophysiology, University of Würzburg, Würzburg, Germany
| | - Cordelia Imig
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Benjamin H Cooper
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Olaf Jahn
- Proteomics Group, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Kerstin Reim
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Jutta Meyer
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Proteomics Group, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Göttingen Graduate School for Neurosciences, Biophysics and Molecular Biosciences, University of Göttingen, Germany
| | - Marius Lamberty
- Institute of Physiology, Department of Neurophysiology, University of Würzburg, Würzburg, Germany.,Department of Animal Physiology, Institute of Biology, Leipzig University, Leipzig, Germany.,Carl Ludwig Institute for Physiology, Leipzig University, Leipzig, Germany
| | - Steffen Altrichter
- Institute of Physiology, Department of Neurophysiology, University of Würzburg, Würzburg, Germany.,Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Leipzig University, Leipzig, Germany
| | - Anne Bormann
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Leipzig University, Leipzig, Germany
| | - Stefan Hallermann
- Carl Ludwig Institute for Physiology, Leipzig University, Leipzig, Germany
| | - Martin Pauli
- Institute of Physiology, Department of Neurophysiology, University of Würzburg, Würzburg, Germany
| | - Manfred Heckmann
- Institute of Physiology, Department of Neurophysiology, University of Würzburg, Würzburg, Germany
| | | | - Tobias Langenhan
- Institute of Physiology, Department of Neurophysiology, University of Würzburg, Würzburg, Germany .,Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Leipzig University, Leipzig, Germany
| | - Robert J Kittel
- Institute of Physiology, Department of Neurophysiology, University of Würzburg, Würzburg, Germany .,Department of Animal Physiology, Institute of Biology, Leipzig University, Leipzig, Germany.,Carl Ludwig Institute for Physiology, Leipzig University, Leipzig, Germany
| |
Collapse
|
19
|
Synaptic loss in schizophrenia: a meta-analysis and systematic review of synaptic protein and mRNA measures. Mol Psychiatry 2019; 24:549-561. [PMID: 29511299 PMCID: PMC6004314 DOI: 10.1038/s41380-018-0041-5] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/05/2018] [Accepted: 01/31/2018] [Indexed: 02/06/2023]
Abstract
Although synaptic loss is thought to be core to the pathophysiology of schizophrenia, the nature, consistency and magnitude of synaptic protein and mRNA changes has not been systematically appraised. Our objective was thus to systematically review and meta-analyse findings. The entire PubMed database was searched for studies from inception date to the 1st of July 2017. We selected case-control postmortem studies in schizophrenia quantifying synaptic protein or mRNA levels in brain tissue. The difference in protein and mRNA levels between cases and controls was extracted and meta-analysis conducted. Among the results, we found a significant reduction in synaptophysin in schizophrenia in the hippocampus (effect size: -0.65, p < 0.01), frontal (effect size: -0.36, p = 0.04), and cingulate cortices (effect size: -0.54, p = 0.02), but no significant changes for synaptophysin in occipital and temporal cortices, and no changes for SNAP-25, PSD-95, VAMP, and syntaxin in frontal cortex. There were insufficient studies for meta-analysis of complexins, synapsins, rab3A and synaptotagmin and mRNA measures. Findings are summarised for these, which generally show reductions in SNAP-25, PSD-95, synapsin and rab3A protein levels in the hippocampus but inconsistency in other regions. Our findings of moderate-large reductions in synaptophysin in hippocampus and frontal cortical regions, and a tendency for reductions in other pre- and postsynaptic proteins in the hippocampus are consistent with models that implicate synaptic loss in schizophrenia. However, they also identify potential differences between regions and proteins, suggesting synaptic loss is not uniform in nature or extent.
Collapse
|
20
|
Bykhovskaia M. Molecular Dynamics Simulations of the SNARE Complex. Methods Mol Biol 2018; 1860:3-13. [PMID: 30317495 DOI: 10.1007/978-1-4939-8760-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Molecular dynamics (MD) simulations enable in silico investigations of the dynamic behavior of proteins and protein complexes. Here, we describe MD simulations of the SNARE complex and its interactions with the neuronal protein complexin. Complexin is an effector of neuronal secretion that inhibits spontaneous fusion and is thought to clamp the fusion process via the interactions with the SNARE complex. We describe MD simulations of the SNARE complex alone and bound to complexin. The MD simulations under external forces imitating the repulsion between lipid bilayers enabled us to investigate unraveling and assembly of the SNARE complex.
Collapse
Affiliation(s)
- Maria Bykhovskaia
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI, USA. .,Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
21
|
Snead D, Eliezer D. Spectroscopic Characterization of Structure-Function Relationships in the Intrinsically Disordered Protein Complexin. Methods Enzymol 2018; 611:227-286. [PMID: 30471689 DOI: 10.1016/bs.mie.2018.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Complexins play a critical role in the regulation of neurotransmission by regulating SNARE-mediated exocytosis of synaptic vesicles. Complexins can exert either a facilitatory or an inhibitory effect on neurotransmitter release, depending on the context, and different complexin domains contribute differently to these opposing roles. Structural characterization of the central helix domain of complexin bound to the assembled SNARE bundle provided key insights into the functional mechanism of this domain of complexin, which is critical for both complexin activities, but many questions remain, particularly regarding the roles and mechanisms of other complexin domains. Recent progress has clarified the structural properties of these additional domains, and has led to various proposals regarding how they contribute to complexin function. This chapter describes spectroscopic approaches used in our laboratory and others, primarily involving circular dichroism and solution-state NMR spectroscopy, to characterize structure within complexins when isolated or when bound to interaction partners. The ability to characterize complexin structure enables structure/function studies employing in vitro or in vivo assays of complexin function. More generally, these types of approaches can be used to study the binding of other intrinsically disordered proteins or protein regions to membrane surfaces or for that matter to other large physiological binding partners.
Collapse
Affiliation(s)
- David Snead
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, United States
| | - David Eliezer
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, United States.
| |
Collapse
|
22
|
Makke M, Mantero Martinez M, Gaya S, Schwarz Y, Frisch W, Silva-Bermudez L, Jung M, Mohrmann R, Dhara M, Bruns D. A mechanism for exocytotic arrest by the Complexin C-terminus. eLife 2018; 7:38981. [PMID: 30044227 PMCID: PMC6075865 DOI: 10.7554/elife.38981] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 07/24/2018] [Indexed: 12/29/2022] Open
Abstract
ComplexinII (CpxII) inhibits non-synchronized vesicle fusion, but the underlying mechanisms have remained unclear. Here, we provide evidence that the far C-terminal domain (CTD) of CpxII interferes with SNARE assembly, thereby arresting tonic exocytosis. Acute infusion of a CTD-derived peptide into mouse chromaffin cells enhances synchronous release by diminishing premature vesicle fusion like full-length CpxII, indicating a direct, inhibitory function of the CTD that sets the magnitude of the primed vesicle pool. We describe a high degree of structural similarity between the CpxII CTD and the SNAP25-SN1 domain (C-terminal half) and show that the CTD peptide lowers the rate of SDS-resistant SNARE complex formation in vitro. Moreover, corresponding CpxII:SNAP25 chimeras do restore complexin's function and even 'superclamp' tonic secretion. Collectively, these results support a so far unrecognized clamping mechanism wherein the CpxII C-terminus hinders spontaneous SNARE complex assembly, enabling the build-up of a release-ready pool of vesicles for synchronized Ca2+-triggered exocytosis.
Collapse
Affiliation(s)
- Mazen Makke
- Institute for Physiology, Center of Integrative Physiology and Molecular Medicine, University of Saarland, Homburg, Germany
| | - Maria Mantero Martinez
- Institute for Physiology, Center of Integrative Physiology and Molecular Medicine, University of Saarland, Homburg, Germany
| | - Surya Gaya
- Institute for Physiology, Center of Integrative Physiology and Molecular Medicine, University of Saarland, Homburg, Germany
| | - Yvonne Schwarz
- Institute for Physiology, Center of Integrative Physiology and Molecular Medicine, University of Saarland, Homburg, Germany
| | - Walentina Frisch
- Institute for Physiology, Center of Integrative Physiology and Molecular Medicine, University of Saarland, Homburg, Germany
| | - Lina Silva-Bermudez
- Institute for Physiology, Center of Integrative Physiology and Molecular Medicine, University of Saarland, Homburg, Germany
| | - Martin Jung
- Institute for Medical Biochemistry and Molecular Biology, University of Saarland, Homburg, Germany
| | - Ralf Mohrmann
- Institute for Physiology, Otto-von-Guericke University, Magdeburg, Germany
| | - Madhurima Dhara
- Institute for Physiology, Center of Integrative Physiology and Molecular Medicine, University of Saarland, Homburg, Germany
| | - Dieter Bruns
- Institute for Physiology, Center of Integrative Physiology and Molecular Medicine, University of Saarland, Homburg, Germany
| |
Collapse
|
23
|
Somasundaram A, Taraska JW. Local protein dynamics during microvesicle exocytosis in neuroendocrine cells. Mol Biol Cell 2018; 29:1891-1903. [PMID: 29874123 PMCID: PMC6085826 DOI: 10.1091/mbc.e17-12-0716] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Calcium-triggered exocytosis is key to many physiological processes, including neurotransmitter and hormone release by neurons and endocrine cells. Dozens of proteins regulate exocytosis, yet the temporal and spatial dynamics of these factors during vesicle fusion remain unclear. Here we use total internal reflection fluorescence microscopy to visualize local protein dynamics at single sites of exocytosis of small synaptic-like microvesicles in live cultured neuroendocrine PC12 cells. We employ two-color imaging to simultaneously observe membrane fusion (using vesicular acetylcholine ACh transporter tagged to pHluorin) and the dynamics of associated proteins at the moments surrounding exocytosis. Our experiments show that many proteins, including the SNAREs syntaxin1 and VAMP2, the SNARE modulator tomosyn, and Rab proteins, are preclustered at fusion sites and rapidly lost at fusion. The ATPase N-ethylmaleimide–sensitive factor is locally recruited at fusion. Interestingly, the endocytic Bin-Amphiphysin-Rvs domain–containing proteins amphiphysin1, syndapin2, and endophilins are dynamically recruited to fusion sites and slow the loss of vesicle membrane-bound cargo from fusion sites. A similar effect on vesicle membrane protein dynamics was seen with the overexpression of the GTPases dynamin1 and dynamin2. These results suggest that proteins involved in classical clathrin-mediated endocytosis can regulate exocytosis of synaptic-like microvesicles. Our findings provide insights into the dynamics, assembly, and mechanistic roles of many key factors of exocytosis and endocytosis at single sites of microvesicle fusion in live cells.
Collapse
Affiliation(s)
- Agila Somasundaram
- Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Justin W Taraska
- Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
24
|
Depletion of the Third Complement Component Ameliorates Age-Dependent Oxidative Stress and Positively Modulates Autophagic Activity in Aged Retinas in a Mouse Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:5306790. [PMID: 28928904 PMCID: PMC5591916 DOI: 10.1155/2017/5306790] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/28/2017] [Accepted: 07/09/2017] [Indexed: 12/19/2022]
Abstract
The aim of the study was to investigate the influence of complement component C3 global depletion on the biological structure and function of the aged retina. In vivo morphology (OCT), electrophysiological function (ERG), and the expression of selected oxidative stress-, apoptosis-, and autophagy-related proteins were assessed in retinas of 12-month-old C3-deficient and WT mice. Moreover, global gene expression in retinas was analyzed by RNA arrays. We found that the absence of active C3 was associated with (1) alleviation of the age-dependent decrease in retinal thickness and gradual deterioration of retinal bioelectrical function, (2) significantly higher levels of antioxidant enzymes (catalase and glutathione reductase) and the antiapoptotic survivin and Mcl-1/Bak dimer, (3) lower expression of the cellular oxidative stress marker-4HNE-and decreased activity of proapoptotic caspase-3, (4) ameliorated retinal autophagic activity with localization of ubiquitinated protein conjugates commonly along the retinal pigment epithelium (RPE) layer, and (5) significantly increased expression of several gene sets associated with maintenance of the physiological functions of the neural retina. Our findings shed light on mechanisms of age-related retinal alterations by identifying C3 as a potential therapeutic target for retinal aging.
Collapse
|
25
|
Functional Roles of Complexin 3 and Complexin 4 at Mouse Photoreceptor Ribbon Synapses. J Neurosci 2017; 36:6651-67. [PMID: 27335398 DOI: 10.1523/jneurosci.4335-15.2016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 05/10/2016] [Indexed: 01/22/2023] Open
Abstract
UNLABELLED Complexins (Cplxs) are SNARE complex regulators controlling the speed and Ca(2+) sensitivity of SNARE-mediated synaptic vesicle fusion. We have shown previously that photoreceptor ribbon synapses in mouse retina are equipped with Cplx3 and Cplx4 and that lack of both Cplxs perturbs photoreceptor ribbon synaptic function; however, Cplx3/4 function in photoreceptor synaptic transmission remained elusive. To investigate Cplx3/4 function in photoreceptor ribbon synapses, voltage-clamp recordings from postsynaptic horizontal cells were performed in horizontal slice preparations of Cplx3/4 wild-type (WT) and Cplx3/4 double knock-out (DKO) mice. We measured tonic activity in light and dark, current responses to changes in luminous intensity, and electrically evoked postsynaptic responses. Cplx3/4 decreased the frequency of tonic events and shifted their amplitude distribution to smaller values. Light responses were sustained in the presence of Cplx3/4, but transient in their absence. Finally, Cplx3/4 increased synaptic vesicle release evoked by electrical stimulation. Using electron microscopy, we quantified the number of synaptic vesicles at presynaptic ribbons after light or dark adaptation. In Cplx3/4 WT photoreceptors, the number of synaptic vesicles associated with the ribbon base close to the release site was significantly lower in light than in dark. This is in contrast to Cplx3/4 DKO photoreceptors, in which the number of ribbon-associated synaptic vesicles remained unchanged regardless of the adaptational state. Our results indicate a suppressing and a facilitating action of Cplx3/4 on Ca(2+)-dependent tonic and evoked neurotransmitter release, respectively, and a regulatory role in the adaptation-dependent availability of synaptic vesicles for release at photoreceptor ribbon synapses. SIGNIFICANCE STATEMENT Synaptic vesicle fusion at active zones of chemical synapses is executed by SNARE complexes. Complexins (Cplxs) are SNARE complex regulators and photoreceptor ribbon synapses are equipped with Cplx3 and Cplx4. The absence of both Cplxs perturbs ribbon synaptic function. Because we lack information on Cplx function in photoreceptor synaptic transmission, we investigated Cplx function using voltage-clamp recordings from postsynaptic horizontal cells of Cplx3/4 wild-type and Cplx3/4 double knock-out mice and quantified synaptic vesicle number at the ribbon after light and dark adaptation using electron microscopy. The findings reveal a suppressing action of Cplx3/4 on tonic neurotransmitter release, a facilitating action on evoked release, and a regulatory role of Cplx3/4 in the adaptation-dependent availability of synaptic vesicles at mouse photoreceptor ribbon synapses.
Collapse
|
26
|
Wragg RT, Parisotto DA, Li Z, Terakawa MS, Snead D, Basu I, Weinstein H, Eliezer D, Dittman JS. Evolutionary Divergence of the C-terminal Domain of Complexin Accounts for Functional Disparities between Vertebrate and Invertebrate Complexins. Front Mol Neurosci 2017; 10:146. [PMID: 28603484 PMCID: PMC5445133 DOI: 10.3389/fnmol.2017.00146] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 04/30/2017] [Indexed: 12/19/2022] Open
Abstract
Complexin is a critical presynaptic protein that regulates both spontaneous and calcium-triggered neurotransmitter release in all synapses. Although the SNARE-binding central helix of complexin is highly conserved and required for all known complexin functions, the remainder of the protein has profoundly diverged across the animal kingdom. Striking disparities in complexin inhibitory activity are observed between vertebrate and invertebrate complexins but little is known about the source of these differences or their relevance to the underlying mechanism of complexin regulation. We found that mouse complexin 1 (mCpx1) failed to inhibit neurotransmitter secretion in Caenorhabditis elegans neuromuscular junctions lacking the worm complexin 1 (CPX-1). This lack of inhibition stemmed from differences in the C-terminal domain (CTD) of mCpx1. Previous studies revealed that the CTD selectively binds to highly curved membranes and directs complexin to synaptic vesicles. Although mouse and worm complexin have similar lipid binding affinity, their last few amino acids differ in both hydrophobicity and in lipid binding conformation, and these differences strongly impacted CPX-1 inhibitory function. Moreover, function was not maintained if a critical amphipathic helix in the worm CPX-1 CTD was replaced with the corresponding mCpx1 amphipathic helix. Invertebrate complexins generally shared more C-terminal similarity with vertebrate complexin 3 and 4 isoforms, and the amphipathic region of mouse complexin 3 significantly restored inhibitory function to worm CPX-1. We hypothesize that the CTD of complexin is essential in conferring an inhibitory function to complexin, and that this inhibitory activity has been attenuated in the vertebrate complexin 1 and 2 isoforms. Thus, evolutionary changes in the complexin CTD differentially shape its synaptic role across phylogeny.
Collapse
Affiliation(s)
- Rachel T Wragg
- Department of Biochemistry, Weill Cornell Medical College, New YorkNY, United States
| | - Daniel A Parisotto
- Department of Biochemistry, Weill Cornell Medical College, New YorkNY, United States
| | - Zhenlong Li
- Department of Physiology and Biophysics, Weill Cornell Medical College, New YorkNY, United States
| | - Mayu S Terakawa
- Department of Biochemistry, Weill Cornell Medical College, New YorkNY, United States
| | - David Snead
- Department of Biochemistry, Weill Cornell Medical College, New YorkNY, United States
| | - Ishani Basu
- Department of Biochemistry, Weill Cornell Medical College, New YorkNY, United States
| | - Harel Weinstein
- Department of Physiology and Biophysics, Weill Cornell Medical College, New YorkNY, United States.,Institute for Computational Biomedicine, Weill Cornell Medical College, New YorkNY, United States
| | - David Eliezer
- Department of Biochemistry, Weill Cornell Medical College, New YorkNY, United States
| | - Jeremy S Dittman
- Department of Biochemistry, Weill Cornell Medical College, New YorkNY, United States
| |
Collapse
|
27
|
Snead D, Lai AL, Wragg RT, Parisotto DA, Ramlall TF, Dittman JS, Freed JH, Eliezer D. Unique Structural Features of Membrane-Bound C-Terminal Domain Motifs Modulate Complexin Inhibitory Function. Front Mol Neurosci 2017; 10:154. [PMID: 28596722 PMCID: PMC5442187 DOI: 10.3389/fnmol.2017.00154] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/08/2017] [Indexed: 11/13/2022] Open
Abstract
Complexin is a small soluble presynaptic protein that interacts with neuronal SNARE proteins in order to regulate synaptic vesicle exocytosis. While the SNARE-binding central helix of complexin is required for both the inhibition of spontaneous fusion and the facilitation of synchronous fusion, the disordered C-terminal domain (CTD) of complexin is specifically required for its inhibitory function. The CTD of worm complexin binds to membranes via two distinct motifs, one of which undergoes a membrane curvature dependent structural transition that is required for efficient inhibition of neurotransmitter release, but the conformations of the membrane-bound motifs remain poorly characterized. Visualizing these conformations is required to clarify the mechanisms by which complexin membrane interactions regulate its function. Here, we employ optical and magnetic resonance spectroscopy to precisely define the boundaries of the two CTD membrane-binding motifs and to characterize their conformations. We show that the curvature dependent amphipathic helical motif features an irregular element of helical structure, likely a pi-bulge, and that this feature is important for complexin inhibitory function in vivo.
Collapse
Affiliation(s)
- David Snead
- Department of Biochemistry, Weill Cornell Medicine, New YorkNY, United States
| | - Alex L Lai
- Department of Chemistry and Chemical Biology, Cornell University, IthacaNY, United States
| | - Rachel T Wragg
- Department of Biochemistry, Weill Cornell Medicine, New YorkNY, United States
| | - Daniel A Parisotto
- Department of Biochemistry, Weill Cornell Medicine, New YorkNY, United States
| | - Trudy F Ramlall
- Department of Biochemistry, Weill Cornell Medicine, New YorkNY, United States
| | - Jeremy S Dittman
- Department of Biochemistry, Weill Cornell Medicine, New YorkNY, United States
| | - Jack H Freed
- Department of Chemistry and Chemical Biology, Cornell University, IthacaNY, United States
| | - David Eliezer
- Department of Biochemistry, Weill Cornell Medicine, New YorkNY, United States
| |
Collapse
|
28
|
Mannironi C, Biundo A, Rajendran S, De Vito F, Saba L, Caioli S, Zona C, Ciotti T, Caristi S, Perlas E, Del Vecchio G, Bozzoni I, Rinaldi A, Mele A, Presutti C. miR-135a Regulates Synaptic Transmission and Anxiety-Like Behavior in Amygdala. Mol Neurobiol 2017; 55:3301-3315. [PMID: 28488209 DOI: 10.1007/s12035-017-0564-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 04/17/2017] [Indexed: 02/03/2023]
Abstract
MicroRNAs are a class of non-coding RNAs with a growing relevance in the regulation of gene expression related to brain function and plasticity. They have the potential to orchestrate complex phenomena, such as the neuronal response to homeostatic challenges. We previously demonstrated the involvement of miR-135a in the regulation of early stress response. In the present study, we examine the role of miR-135a in stress-related behavior. We show that the knockdown (KD) of miR-135a in the mouse amygdala induces an increase in anxiety-like behavior. Consistently with behavioral studies, electrophysiological experiments in acute brain slices indicate an increase of amygdala spontaneous excitatory postsynaptic currents, as a result of miR-135a KD. Furthermore, we presented direct evidences, by in vitro assays and in vivo miRNA overexpression in the amygdala, that two key regulators of synaptic vesicle fusion, complexin-1 and complexin-2, are direct targets of miR-135a. In vitro analysis of miniature excitatory postsynaptic currents on miR-135a KD primary neurons indicates unpaired quantal excitatory neurotransmission. Finally, increased levels of complexin-1 and complexin-2 proteins were detected in the mouse amygdala after acute stress, accordingly to the previously observed stress-induced miR-135a downregulation. Overall, our results unravel a previously unknown miRNA-dependent mechanism in the amygdala for regulating anxiety-like behavior, providing evidences of a physiological role of miR-135a in the modulation of presynaptic mechanisms of glutamatergic neurotransmission.
Collapse
Affiliation(s)
- Cecilia Mannironi
- Istituto di Biologia e Patologia Molecolari, CNR, c/o Sapienza Universita' di Roma, Rome, Italy.
| | - Antonio Biundo
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Universita' di Roma, Rome, Italy
| | - Samyutha Rajendran
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Universita' di Roma, Rome, Italy
- Istituto di Biologia Cellulare e Neurobiologia, CNR, Rome, Italy
- Centro di Ricerca in Neurobiologia "D. Bovet", Sapienza Universita' di Roma, Rome, Italy
| | | | - Luana Saba
- Fondazione Santa Lucia, I.R.C.C.S, Rome, Italy
| | | | - Cristina Zona
- Fondazione Santa Lucia, I.R.C.C.S, Rome, Italy
- Dipartimento di Medicina dei Sistemi, Universita' di Roma "Tor Vergata", Rome, Italy
| | - Teresa Ciotti
- Istituto di Biologia Cellulare e Neurobiologia, CNR, Rome, Italy
| | - Silvana Caristi
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Universita' di Roma, Rome, Italy
| | - Emerald Perlas
- Mouse Biology Unit, European Molecular Biology Laboratory (EMBL), Monterotondo Scalo, Rome, Italy
| | - Giorgia Del Vecchio
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Universita' di Roma, Rome, Italy
| | - Irene Bozzoni
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Universita' di Roma, Rome, Italy
| | - Arianna Rinaldi
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Universita' di Roma, Rome, Italy
- Istituto di Biologia Cellulare e Neurobiologia, CNR, Rome, Italy
- Centro di Ricerca in Neurobiologia "D. Bovet", Sapienza Universita' di Roma, Rome, Italy
| | - Andrea Mele
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Universita' di Roma, Rome, Italy
- Istituto di Biologia Cellulare e Neurobiologia, CNR, Rome, Italy
- Centro di Ricerca in Neurobiologia "D. Bovet", Sapienza Universita' di Roma, Rome, Italy
| | - Carlo Presutti
- Istituto di Biologia e Patologia Molecolari, CNR, c/o Sapienza Universita' di Roma, Rome, Italy
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Universita' di Roma, Rome, Italy
| |
Collapse
|
29
|
Zdanowicz R, Kreutzberger A, Liang B, Kiessling V, Tamm LK, Cafiso DS. Complexin Binding to Membranes and Acceptor t-SNAREs Explains Its Clamping Effect on Fusion. Biophys J 2017; 113:1235-1250. [PMID: 28456331 DOI: 10.1016/j.bpj.2017.04.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/31/2017] [Accepted: 04/04/2017] [Indexed: 02/07/2023] Open
Abstract
Complexin-1 is a SNARE effector protein that decreases spontaneous neurotransmitter release and enhances evoked release. Complexin binds to the fully assembled four-helical neuronal SNARE core complex as revealed in competing molecular models derived from x-ray crystallography. Presently, it is unclear how complexin binding to the postfusion complex accounts for its effects upon spontaneous and evoked release in vivo. Using a combination of spectroscopic and imaging methods, we characterize in molecular detail how complexin binds to the 1:1 plasma membrane t-SNARE complex of syntaxin-1a and SNAP-25 while simultaneously binding the lipid bilayer at both its N- and C-terminal ends. These interactions are cooperative, and binding to the prefusion acceptor t-SNARE complex is stronger than to the postfusion core complex. This complexin interaction reduces the affinity of synaptobrevin-2 for the 1:1 complex, thereby retarding SNARE assembly and vesicle docking in vitro. The results provide the basis for molecular models that account for the observed clamping effect of complexin beginning with the acceptor t-SNARE complex and the subsequent activation of the clamped complex by Ca2+ and synaptotagmin.
Collapse
Affiliation(s)
- Rafal Zdanowicz
- Department of Chemistry, University of Virginia, Charlottesville, Virginia; Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia
| | - Alex Kreutzberger
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia; Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia
| | - Binyong Liang
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia; Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia
| | - Volker Kiessling
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia; Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia
| | - Lukas K Tamm
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia; Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia.
| | - David S Cafiso
- Department of Chemistry, University of Virginia, Charlottesville, Virginia; Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia.
| |
Collapse
|
30
|
Roy-Carson S, Natukunda K, Chou HC, Pal N, Farris C, Schneider SQ, Kuhlman JA. Defining the transcriptomic landscape of the developing enteric nervous system and its cellular environment. BMC Genomics 2017; 18:290. [PMID: 28403821 PMCID: PMC5389105 DOI: 10.1186/s12864-017-3653-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 03/22/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Motility and the coordination of moving food through the gastrointestinal tract rely on a complex network of neurons known as the enteric nervous system (ENS). Despite its critical function, many of the molecular mechanisms that direct the development of the ENS and the elaboration of neural network connections remain unknown. The goal of this study was to transcriptionally identify molecular pathways and candidate genes that drive specification, differentiation and the neural circuitry of specific neural progenitors, the phox2b expressing ENS cell lineage, during normal enteric nervous system development. Because ENS development is tightly linked to its environment, the transcriptional landscape of the cellular environment of the intestine was also analyzed. RESULTS Thousands of zebrafish intestines were manually dissected from a transgenic line expressing green fluorescent protein under the phox2b regulatory elements [Tg(phox2b:EGFP) w37 ]. Fluorescence-activated cell sorting was used to separate GFP-positive phox2b expressing ENS progenitor and derivatives from GFP-negative intestinal cells. RNA-seq was performed to obtain accurate, reproducible transcriptional profiles and the unbiased detection of low level transcripts. Analysis revealed genes and pathways that may function in ENS cell determination, genes that may be identifiers of different ENS subtypes, and genes that define the non-neural cellular microenvironment of the ENS. Differential expression analysis between the two cell populations revealed the expected neuronal nature of the phox2b expressing lineage including the enrichment for genes required for neurogenesis and synaptogenesis, and identified many novel genes not previously associated with ENS development. Pathway analysis pointed to a high level of G-protein coupled pathway activation, and identified novel roles for candidate pathways such as the Nogo/Reticulon axon guidance pathway in ENS development. CONCLUSION We report the comprehensive gene expression profiles of a lineage-specific population of enteric progenitors, their derivatives, and their microenvironment during normal enteric nervous system development. Our results confirm previously implicated genes and pathways required for ENS development, and also identify scores of novel candidate genes and pathways. Thus, our dataset suggests various potential mechanisms that drive ENS development facilitating characterization and discovery of novel therapeutic strategies to improve gastrointestinal disorders.
Collapse
Affiliation(s)
- Sweta Roy-Carson
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Kevin Natukunda
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Hsien-Chao Chou
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA.,Present Address: National Cancer Institute, US National Institutes of Health, Bethesda, Maryland, USA
| | - Narinder Pal
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA.,Present address: North Central Regional Plant Introduction Station, 1305 State Ave, Ames, IA, 50014, USA
| | - Caitlin Farris
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA.,Present address: Pioneer Hi-Bred International, Johnson, IA, 50131, USA
| | - Stephan Q Schneider
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Julie A Kuhlman
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA. .,642 Science II, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
31
|
Körber C, Kuner T. Molecular Machines Regulating the Release Probability of Synaptic Vesicles at the Active Zone. Front Synaptic Neurosci 2016; 8:5. [PMID: 26973506 PMCID: PMC4773589 DOI: 10.3389/fnsyn.2016.00005] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 02/17/2016] [Indexed: 11/13/2022] Open
Abstract
The fusion of synaptic vesicles (SVs) with the plasma membrane of the active zone (AZ) upon arrival of an action potential (AP) at the presynaptic compartment is a tightly regulated probabilistic process crucial for information transfer. The probability of a SV to release its transmitter content in response to an AP, termed release probability (Pr), is highly diverse both at the level of entire synapses and individual SVs at a given synapse. Differences in Pr exist between different types of synapses, between synapses of the same type, synapses originating from the same axon and even between different SV subpopulations within the same presynaptic terminal. The Pr of SVs at the AZ is set by a complex interplay of different presynaptic properties including the availability of release-ready SVs, the location of the SVs relative to the voltage-gated calcium channels (VGCCs) at the AZ, the magnitude of calcium influx upon arrival of the AP, the buffering of calcium ions as well as the identity and sensitivity of the calcium sensor. These properties are not only interconnected, but can also be regulated dynamically to match the requirements of activity patterns mediated by the synapse. Here, we review recent advances in identifying molecules and molecular machines taking part in the determination of vesicular Pr at the AZ.
Collapse
Affiliation(s)
- Christoph Körber
- Department of Functional Neuroanatomy, Institute of Anatomy and Cell Biology, Heidelberg University Heidelberg, Germany
| | - Thomas Kuner
- Department of Functional Neuroanatomy, Institute of Anatomy and Cell Biology, Heidelberg University Heidelberg, Germany
| |
Collapse
|
32
|
Stanzel S, Stubbusch J, Pataskar A, Howard MJ, Deller T, Ernsberger U, Tiwari VK, Rohrer H, Tsarovina K. Distinct roles of hand2 in developing and adult autonomic neurons. Dev Neurobiol 2016; 76:1111-24. [PMID: 26818017 DOI: 10.1002/dneu.22378] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/05/2016] [Accepted: 01/07/2016] [Indexed: 11/08/2022]
Abstract
The bHLH transcription factor Hand2 is essential for the acquisition and maintenance of noradrenergic properties of embryonic sympathetic neurons and controls neuroblast proliferation. Hand2 is also expressed in embryonic and postnatal parasympathetic ganglia and remains expressed in sympathetic neurons up to the adult stage. Here, we address its function in developing parasympathetic and adult sympathetic neurons. We conditionally deleted Hand2 in the parasympathetic sphenopalatine ganglion by crossing a line of floxed Hand2 mice with DbhiCre transgenic mice, taking advantage of the transient Dbh expression in parasympathetic ganglia. Hand2 elimination does not affect Dbh expression and sphenopalatine ganglion size at E12.5 and E16.5, in contrast to sympathetic ganglia. These findings demonstrate different functions for Hand2 in the parasympathetic and sympathetic lineage. Our previous Hand2 knockdown in postmitotic, differentiated chick sympathetic neurons resulted in decreased expression of noradrenergic marker genes but it was unclear whether Hand2 is required for maintaining noradrenergic neuron identity in adult animals. We now show that Hand2 elimination in adult Dbh-expressing sympathetic neurons does not decrease the expression of Th and Dbh, in contrast to the situation during development. However, gene expression profiling of adult sympathetic neurons identified 75 Hand2-dependent target genes. Interestingly, a notable proportion of down-regulated genes (15%) encode for proteins with synaptic and neurotransmission functions. These results demonstrate a change in Hand2 target genes during maturation of sympathetic neurons. Whereas Hand2 controls genes regulating noradrenergic differentiation during development, Hand2 seems to be involved in the regulation of genes controlling neurotransmission in adult sympathetic neurons. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1111-1124, 2016.
Collapse
Affiliation(s)
- Sabine Stanzel
- Developmental Neurobiology, Max-Planck-Institute for Brain Research, Max-von-Laue-Str. 4, Frankfurt/M, 60438, Germany
| | - Jutta Stubbusch
- Developmental Neurobiology, Max-Planck-Institute for Brain Research, Max-von-Laue-Str. 4, Frankfurt/M, 60438, Germany
| | - Abhijeet Pataskar
- Institute of Molecular Biology (IMB) Boehringer Ingelheim Foundation, Ackermannweg 4, Mainz, 55128, Germany
| | - Marthe J Howard
- Department of Neurosciences and Program in Neurosciences and Neurological Disorders, University of Toledo Health Sciences Campus, Toledo, Ohio, 43614
| | - Thomas Deller
- Institute of Clinical Neuroanatomy, Goethe University Frankfurt/M, Theodor-Stern-Kai 7, Frankfurt/M, 60590, Germany
| | - Uwe Ernsberger
- Developmental Neurobiology, Max-Planck-Institute for Brain Research, Max-von-Laue-Str. 4, Frankfurt/M, 60438, Germany.,Institute of Clinical Neuroanatomy, Goethe University Frankfurt/M, Theodor-Stern-Kai 7, Frankfurt/M, 60590, Germany.,Ernst-Strüngmann-Institute, Deutschordenstr. 46, Frankfurt/M, 60528, Germany
| | - Vijay K Tiwari
- Institute of Molecular Biology (IMB) Boehringer Ingelheim Foundation, Ackermannweg 4, Mainz, 55128, Germany
| | - Hermann Rohrer
- Developmental Neurobiology, Max-Planck-Institute for Brain Research, Max-von-Laue-Str. 4, Frankfurt/M, 60438, Germany.,Institute of Clinical Neuroanatomy, Goethe University Frankfurt/M, Theodor-Stern-Kai 7, Frankfurt/M, 60590, Germany.,Ernst-Strüngmann-Institute, Deutschordenstr. 46, Frankfurt/M, 60528, Germany
| | - Konstantina Tsarovina
- Developmental Neurobiology, Max-Planck-Institute for Brain Research, Max-von-Laue-Str. 4, Frankfurt/M, 60438, Germany
| |
Collapse
|
33
|
Dawidowski D, Cafiso DS. Munc18-1 and the Syntaxin-1 N Terminus Regulate Open-Closed States in a t-SNARE Complex. Structure 2016; 24:392-400. [PMID: 26876096 DOI: 10.1016/j.str.2016.01.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 12/29/2015] [Accepted: 01/08/2016] [Indexed: 10/22/2022]
Abstract
Neuronal exocytosis is mediated by SNARE proteins, which assemble into a highly stable four-helical bundle in a process that is not well understood. Here, electron paramagnetic resonance spectroscopy was used to examine how the t-SNAREs syntaxin and SNAP25 assemble in the presence and absence of the regulatory protein Munc18-1. Syntaxin and SNAP25 form a 2:1 complex, which is structurally heterogeneous and persists in the presence of excess SNAP25. Munc18-1 dissociates this 2:1 complex, but a 1:1 complex is retained where syntaxin is in a closed state. In the absence of an N-terminal fragment of syntaxin, Munc18-1 also stabilizes a 1:1 complex of sytaxin/SNAP25; however, syntaxin now samples an open state. These data demonstrate that the open-closed syntaxin equilibrium is shifted toward the open state when syntaxin and Munc18-1 are associated with SNAP25, and the results indicate that a syntaxin/SNAP25:Munc18-1 complex is a likely starting point for SNARE assembly.
Collapse
Affiliation(s)
- Damian Dawidowski
- Department of Chemistry, Center for Membrane Biology at the University of Virginia, McCormick Road, Charlottesville, VA 22904-4319, USA
| | - David S Cafiso
- Department of Chemistry, Center for Membrane Biology at the University of Virginia, McCormick Road, Charlottesville, VA 22904-4319, USA.
| |
Collapse
|
34
|
Cadwell CR, Palasantza A, Jiang X, Berens P, Deng Q, Yilmaz M, Reimer J, Shen S, Bethge M, Tolias KF, Sandberg R, Tolias AS. Electrophysiological, transcriptomic and morphologic profiling of single neurons using Patch-seq. Nat Biotechnol 2015; 34:199-203. [PMID: 26689543 DOI: 10.1038/nbt.3445] [Citation(s) in RCA: 391] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 12/02/2015] [Indexed: 01/21/2023]
Abstract
Despite the importance of the mammalian neocortex for complex cognitive processes, we still lack a comprehensive description of its cellular components. To improve the classification of neuronal cell types and the functional characterization of single neurons, we present Patch-seq, a method that combines whole-cell electrophysiological patch-clamp recordings, single-cell RNA-sequencing and morphological characterization. Following electrophysiological characterization, cell contents are aspirated through the patch-clamp pipette and prepared for RNA-sequencing. Using this approach, we generate electrophysiological and molecular profiles of 58 neocortical cells and show that gene expression patterns can be used to infer the morphological and physiological properties such as axonal arborization and action potential amplitude of individual neurons. Our results shed light on the molecular underpinnings of neuronal diversity and suggest that Patch-seq can facilitate the classification of cell types in the nervous system.
Collapse
Affiliation(s)
- Cathryn R Cadwell
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | - Athanasia Palasantza
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.,Ludwig Institute for Cancer Research, Stockholm, Sweden
| | - Xiaolong Jiang
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | - Philipp Berens
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA.,Bernstein Center for Computational Neuroscience, Tübingen, Germany.,Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.,Werner Reichardt Center for Integrative Neuroscience and Institute of Theoretical Physics, University of Tübingen, Tübingen, Germany
| | - Qiaolin Deng
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.,Ludwig Institute for Cancer Research, Stockholm, Sweden
| | - Marlene Yilmaz
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.,Ludwig Institute for Cancer Research, Stockholm, Sweden
| | - Jacob Reimer
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | - Shan Shen
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | - Matthias Bethge
- Bernstein Center for Computational Neuroscience, Tübingen, Germany.,Werner Reichardt Center for Integrative Neuroscience and Institute of Theoretical Physics, University of Tübingen, Tübingen, Germany.,Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Kimberley F Tolias
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA.,Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Rickard Sandberg
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.,Ludwig Institute for Cancer Research, Stockholm, Sweden
| | - Andreas S Tolias
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA.,Bernstein Center for Computational Neuroscience, Tübingen, Germany
| |
Collapse
|
35
|
miR-191 and miR-135 are required for long-lasting spine remodelling associated with synaptic long-term depression. Nat Commun 2015; 5:3263. [PMID: 24535612 PMCID: PMC3951436 DOI: 10.1038/ncomms4263] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 01/15/2014] [Indexed: 12/26/2022] Open
Abstract
Activity-dependent modification of dendritic spines, subcellular compartments accommodating postsynaptic specializations in the brain, is an important cellular mechanism for brain development, cognition and synaptic pathology of brain disorders. NMDA receptor-dependent long-term depression (NMDAR-LTD), a prototypic form of synaptic plasticity, is accompanied by prolonged remodeling of spines. The mechanisms underlying long-lasting spine remodeling in NMDAR-LTD, however, are largely unclear. Here we show that LTD induction causes global changes in miRNA transcriptomes affecting many cellular activities. Specifically, we show that expression changes of miR-191 and miR-135 are required for maintenance but not induction of spine restructuring. Moreover, we find that actin depolymerization and AMPA receptor exocytosis are regulated for extended periods of time by miRNAs to support long-lasting spine plasticity. These findings reveal a novel miRNA mediated-mechanism and a new role of AMPA receptor exocytosis in long-lasting spine plasticity, and identify a number of candidate miRNAs involved in LTD.
Collapse
|
36
|
Körber C, Horstmann H, Venkataramani V, Herrmannsdörfer F, Kremer T, Kaiser M, Schwenger DB, Ahmed S, Dean C, Dresbach T, Kuner T. Modulation of Presynaptic Release Probability by the Vertebrate-Specific Protein Mover. Neuron 2015. [PMID: 26212709 DOI: 10.1016/j.neuron.2015.07.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Mover, a member of the exquisitely small group of vertebrate-specific presynaptic proteins, has been discovered as an interaction partner of the scaffolding protein Bassoon, yet its function has not been elucidated. We used adeno-associated virus (AAV)-mediated shRNA expression to knock down Mover in the calyx of Held in vivo. Although spontaneous synaptic transmission remained unaffected, we found a strong increase of the evoked EPSC amplitude. The size of the readily releasable pool was unaltered, but short-term depression was accelerated and enhanced, consistent with an increase in release probability after Mover knockdown. This increase in release probability was not caused by alterations in Ca(2+) influx but rather by a higher Ca(2+) sensitivity of the release machinery, as demonstrated by presynaptic Ca(2+) uncaging. We therefore conclude that Mover expression in certain subsets of synapses negatively regulates synaptic release probability, constituting a novel mechanism to tune synaptic transmission.
Collapse
Affiliation(s)
- Christoph Körber
- Institute of Anatomy and Cell Biology, Heidelberg University, Im Neuenheimer Feld 307, 69120 Heidelberg, Germany.
| | - Heinz Horstmann
- Institute of Anatomy and Cell Biology, Heidelberg University, Im Neuenheimer Feld 307, 69120 Heidelberg, Germany
| | - Varun Venkataramani
- Institute of Anatomy and Cell Biology, Heidelberg University, Im Neuenheimer Feld 307, 69120 Heidelberg, Germany
| | - Frank Herrmannsdörfer
- Institute of Anatomy and Cell Biology, Heidelberg University, Im Neuenheimer Feld 307, 69120 Heidelberg, Germany
| | - Thomas Kremer
- Institute of Anatomy and Cell Biology, Heidelberg University, Im Neuenheimer Feld 307, 69120 Heidelberg, Germany
| | - Michaela Kaiser
- Institute of Anatomy and Cell Biology, Heidelberg University, Im Neuenheimer Feld 307, 69120 Heidelberg, Germany
| | - Darius B Schwenger
- Institute of Anatomy and Cell Biology, Heidelberg University, Im Neuenheimer Feld 307, 69120 Heidelberg, Germany
| | - Saheeb Ahmed
- European Neuroscience Institute, Grisebachstrasse 5, 37077 Göttingen, Germany
| | - Camin Dean
- European Neuroscience Institute, Grisebachstrasse 5, 37077 Göttingen, Germany
| | - Thomas Dresbach
- Institute of Anatomy and Cell Biology, Heidelberg University, Im Neuenheimer Feld 307, 69120 Heidelberg, Germany; Department of Anatomy and Embryology, Centre of Anatomy, University of Göttingen, Kreuzbergring 36, 37075 Göttingen, Germany
| | - Thomas Kuner
- Institute of Anatomy and Cell Biology, Heidelberg University, Im Neuenheimer Feld 307, 69120 Heidelberg, Germany.
| |
Collapse
|
37
|
Wichmann C. Molecularly and structurally distinct synapses mediate reliable encoding and processing of auditory information. Hear Res 2015; 330:178-90. [PMID: 26188105 DOI: 10.1016/j.heares.2015.07.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 06/21/2015] [Accepted: 07/10/2015] [Indexed: 01/20/2023]
Abstract
Hearing impairment is the most common human sensory deficit. Considering the sophisticated anatomy and physiology of the auditory system, disease-related failures frequently occur. To meet the demands of the neuronal circuits responsible for processing auditory information, the synapses of the lower auditory pathway are anatomically and functionally specialized to process acoustic information indefatigably with utmost temporal precision. Despite sharing some functional properties, the afferent synapses of the cochlea and of auditory brainstem differ greatly in their morphology and employ distinct molecular mechanisms for regulating synaptic vesicle release. Calyceal synapses of the endbulb of Held and the calyx of Held profit from a large number of release sites that project onto one principal cell. Cochlear inner hair cell ribbon synapses exhibit a unique one-to-one relation of the presynaptic active zone to the postsynaptic cell and use hair-cell-specific proteins such as otoferlin for vesicle release. The understanding of the molecular physiology of the hair cell ribbon synapse has been advanced by human genetics studies of sensorineural hearing impairment, revealing human auditory synaptopathy as a new nosological entity.
Collapse
Affiliation(s)
- Carolin Wichmann
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience & InnerEarLab, University Medical Center, Göttingen, Germany.
| |
Collapse
|
38
|
Bruckner JJ, Zhan H, O'Connor-Giles KM. Advances in imaging ultrastructure yield new insights into presynaptic biology. Front Cell Neurosci 2015; 9:196. [PMID: 26052269 PMCID: PMC4440913 DOI: 10.3389/fncel.2015.00196] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 05/05/2015] [Indexed: 11/13/2022] Open
Abstract
Synapses are the fundamental functional units of neural circuits, and their dysregulation has been implicated in diverse neurological disorders. At presynaptic terminals, neurotransmitter-filled synaptic vesicles are released in response to calcium influx through voltage-gated calcium channels activated by the arrival of an action potential. Decades of electrophysiological, biochemical, and genetic studies have contributed to a growing understanding of presynaptic biology. Imaging studies are yielding new insights into how synapses are organized to carry out their critical functions. The development of techniques for rapid immobilization and preservation of neuronal tissues for electron microscopy (EM) has led to a new renaissance in ultrastructural imaging that is rapidly advancing our understanding of synapse structure and function.
Collapse
Affiliation(s)
- Joseph J Bruckner
- Cell and Molecular Biology Training Program, University of Wisconsin-Madison Madison, WI, USA
| | - Hong Zhan
- Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison Madison, WI, USA
| | - Kate M O'Connor-Giles
- Cell and Molecular Biology Training Program, University of Wisconsin-Madison Madison, WI, USA ; Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison Madison, WI, USA ; Laboratory of Genetics, University of Wisconsin-Madison Madison, WI, USA
| |
Collapse
|
39
|
Behaviour and prefrontal protein differences in C57BL/6N and 129 X1/SvJ mice. Brain Res Bull 2015; 116:16-24. [PMID: 26003851 DOI: 10.1016/j.brainresbull.2015.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 05/11/2015] [Accepted: 05/12/2015] [Indexed: 01/24/2023]
Abstract
Experimental animals provide valuable opportunities to establish aetiological mechanisms and test new treatments for neurodevelopmental psychiatric conditions. However, it is increasingly appreciated that inter-strain differences cannot be neglected in the experimental design. In addition, the importance of including females in preclinical - but also clinical - research is now recognised. Here, we compared behaviour and prefrontal protein differences in male and female C57BL/6N and 129X1/SvJ mice as both are commonly used experimental rodents. Relative to 129X1/SvJ mice, both sexes of C57BL/6N mice had weaker sensorimotor gating, measured in the prepulse inhibition (PPI) of startle paradigm, and were more sensitive to amphetamine challenge in the open field. The pattern of protein expression in the prefrontal cortex of C57BL6N mice was also clearly distinct from 129X1/SvJ mice. Proteins differentially expressed were those associated with oxidative metabolism, receptor protein signalling, cell communication and signal transduction and energy pathways. We suggest that the C57BL/6N mouse may usefully proxy features of the neurodevelopmental disorders and could have application in pre-translational screening of new therapeutic approaches. The 129X1/SvJ strain in contrast, might be better suited to experimental studies of causal risk factors expected to lower PPI and increase amphetamine sensitivity.
Collapse
|
40
|
Functional roles of complexin in neurotransmitter release at ribbon synapses of mouse retinal bipolar neurons. J Neurosci 2015; 35:4065-70. [PMID: 25740533 DOI: 10.1523/jneurosci.2703-14.2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ribbon synapses of photoreceptor cells and bipolar neurons in the retina signal graded changes in light intensity via sustained release of neurotransmitter. One molecular specialization of retinal ribbon synapses is the expression of complexin protein subtypes Cplx3 and Cplx4, whereas conventional synapses express Cplx1 and Cplx2. Because complexins bind to the molecular machinery for synaptic vesicle fusion (the SNARE complex) and modulate transmitter release at conventional synapses, we examined the roles of ribbon-specific complexin in regulating release at ribbon synapses of ON bipolar neurons from mouse retina. To interfere acutely with the interaction of native complexins with the SNARE complex, a peptide consisting of the highly conserved SNARE-binding domain of Cplx3 was introduced via a whole-cell patch pipette placed directly on the synaptic terminal, and vesicle fusion was monitored using capacitance measurements and FM-dye destaining. The inhibitory peptide, but not control peptides, increased spontaneous synaptic vesicle fusion, partially depleted reserve synaptic vesicles, and reduced fusion triggered by opening voltage-gated calcium channels under voltage clamp, without affecting the number of synaptic vesicles associated with ribbons, as revealed by electron microscopy of recorded terminals. The results are consistent with a dual role for ribbon-specific complexin, acting as a brake on the SNARE complex to prevent spontaneous fusion in the absence of calcium influx, while at the same time facilitating release evoked by depolarization.
Collapse
|
41
|
Synaptic plasticity in the auditory system: a review. Cell Tissue Res 2015; 361:177-213. [PMID: 25896885 DOI: 10.1007/s00441-015-2176-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 03/18/2015] [Indexed: 01/19/2023]
Abstract
Synaptic transmission via chemical synapses is dynamic, i.e., the strength of postsynaptic responses may change considerably in response to repeated synaptic activation. Synaptic strength is increased during facilitation, augmentation and potentiation, whereas a decrease in synaptic strength is characteristic for depression and attenuation. This review attempts to discuss the literature on short-term and long-term synaptic plasticity in the auditory brainstem of mammals and birds. One hallmark of the auditory system, particularly the inner ear and lower brainstem stations, is information transfer through neurons that fire action potentials at very high frequency, thereby activating synapses >500 times per second. Some auditory synapses display morphological specializations of the presynaptic terminals, e.g., calyceal extensions, whereas other auditory synapses do not. The review focuses on short-term depression and short-term facilitation, i.e., plastic changes with durations in the millisecond range. Other types of short-term synaptic plasticity, e.g., posttetanic potentiation and depolarization-induced suppression of excitation, will be discussed much more briefly. The same holds true for subtypes of long-term plasticity, like prolonged depolarizations and spike-time-dependent plasticity. We also address forms of plasticity in the auditory brainstem that do not comprise synaptic plasticity in a strict sense, namely short-term suppression, paired tone facilitation, short-term adaptation, synaptic adaptation and neural adaptation. Finally, we perform a meta-analysis of 61 studies in which short-term depression (STD) in the auditory system is opposed to short-term depression at non-auditory synapses in order to compare high-frequency neurons with those that fire action potentials at a lower rate. This meta-analysis reveals considerably less STD in most auditory synapses than in non-auditory ones, enabling reliable, failure-free synaptic transmission even at frequencies >100 Hz. Surprisingly, the calyx of Held, arguably the best-investigated synapse in the central nervous system, depresses most robustly. It will be exciting to reveal the molecular mechanisms that set high-fidelity synapses apart from other synapses that function much less reliably.
Collapse
|
42
|
Abstract
Exocytosis is a highly regulated process that consists of multiple functionally, kinetically and/or morphologically definable stages such as recruitment, targeting, tethering and docking of secretory vesicles with the plasma membrane, priming of the fusion machinery and calcium-triggered membrane fusion. After fusion, the membrane around the secretory vesicle is incorporated into the plasma membrane and the granule releases its contents. The proteins involved in these processes belong to several highly conserved families: Rab GTPases, SNAREs (soluble NSF-attachment protein receptors), α-SNAP (α-NSF attachment protein), NSF (N-ethylmaleimide-sensitive factor), Munc13 and -18, complexins and synaptotagmins. In the present article, the molecules of exocytosis are reviewed, using human sperm as a model system. Sperm exocytosis is driven by isoforms of the same proteinaceous fusion machinery mentioned above, with their functions orchestrated in a hierarchically organized and unidirectional signalling cascade. In addition to the universal exocytosis regulator calcium, this cascade includes other second messengers such as diacylglycerol, inositol 1,4,5-trisphosphate and cAMP, as well as the enzymes that synthesize them and their target proteins. Of special interest is the cAMP-binding protein Epac (exchange protein directly activated by cAMP) due in part to its enzymatic activity towards Rap. The activation of Epac and Rap leads to a highly localized calcium signal which, together with assembly of the SNARE complex, governs the final stages of exocytosis. The source of this releasable calcium is the secretory granule itself.
Collapse
|
43
|
Kiessling V, Liang B, Tamm LK. Reconstituting SNARE-mediated membrane fusion at the single liposome level. Methods Cell Biol 2015; 128:339-63. [PMID: 25997356 DOI: 10.1016/bs.mcb.2015.02.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Successful reconstitutions of SNARE-mediated intracellular membrane fusion have been achieved in bulk fusion assays since 1998 and in single liposome fusion assays since 2004. Especially in neuronal presynaptic SNARE-mediated exocytosis, fusion is controlled by numerous accessory proteins, of which some functions have also been reconstituted in vitro. The development of and results obtained with two fundamentally different single liposome fusion assays, namely liposome-to-supported membrane and liposome-to-liposome, are reviewed. Both assays distinguish between liposome docking and fusion steps of the overall fusion reaction and both assays are capable of resolving hemi-and full-fusion intermediates and end states. They have opened new windows for elucidating the mechanisms of these fundamentally important cellular reactions with unprecedented time and molecular resolution. Although many of the molecular actors in this process have been discovered, we have only scratched the surface of looking at their fascinating plays, interactions, and choreographies that lead to vesicle traffic as well as neurotransmitter and hormone release in the cell.
Collapse
Affiliation(s)
- Volker Kiessling
- Center for Membrane Biology and Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Binyong Liang
- Center for Membrane Biology and Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Lukas K Tamm
- Center for Membrane Biology and Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
44
|
Hass J, Walton E, Kirsten H, Turner J, Wolthusen R, Roessner V, Sponheim SR, Holt D, Gollub R, Calhoun VD, Ehrlich S. Complexin2 modulates working memory-related neural activity in patients with schizophrenia. Eur Arch Psychiatry Clin Neurosci 2015; 265:137-45. [PMID: 25297695 PMCID: PMC4342303 DOI: 10.1007/s00406-014-0550-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 09/30/2014] [Indexed: 12/11/2022]
Abstract
The specific contribution of risk or candidate gene variants to the complex phenotype of schizophrenia is largely unknown. Studying the effects of such variants on brain function can provide insight into disease-associated mechanisms on a neural systems level. Previous studies found common variants in the complexin2 (CPLX2) gene to be highly associated with cognitive dysfunction in schizophrenia patients. Similarly, cognitive functioning was found to be impaired in Cplx2 gene-deficient mice if they were subjected to maternal deprivation or mild brain trauma during puberty. Here, we aimed to study seven common CPLX2 single-nucleotide polymorphisms (SNPs) and their neurogenetic risk mechanisms by investigating their relationship to a schizophrenia-related functional neuroimaging intermediate phenotype. We examined functional MRI and genotype data collected from 104 patients with DSM-IV-diagnosed schizophrenia and 122 healthy controls who participated in the Mind Clinical Imaging Consortium study of schizophrenia. Seven SNPs distributed over the whole CPLX2 gene were tested for association with working memory-elicited neural activity in a frontoparietal neural network. Three CPLX2 SNPs were significantly associated with increased neural activity in the dorsolateral prefrontal cortex and intraparietal sulcus in the schizophrenia sample, but showed no association in healthy controls. Since increased working memory-related neural activity in individuals with or at risk for schizophrenia has been interpreted as 'neural inefficiency,' these findings suggest that certain variants of CPLX2 may contribute to impaired brain function in schizophrenia, possibly combined with other deleterious genetic variants, adverse environmental events, or developmental insults.
Collapse
Affiliation(s)
- Johanna Hass
- Department of Child and Adolescent Psychiatry, School of Medicine, TU Dresden, Dresden, Germany
| | - Esther Walton
- Department of Child and Adolescent Psychiatry, School of Medicine, TU Dresden, Dresden, Germany
| | - Holger Kirsten
- Institute for Medical Informatics, Statistics and Epidemiology (IMISE), University of Leipzig, Leipzig, Germany,LIFE (Leipzig Interdisciplinary Research Cluster of Genetic Factors, Phenotypes and Environment), University of Leipzig, Leipzig, Germany
| | | | - Rick Wolthusen
- Department of Child and Adolescent Psychiatry, School of Medicine, TU Dresden, Dresden, Germany,MGH/MIT/HMS Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA USA,Department of Psychiatry, Massachusetts General Hospital, Boston, MA USA
| | - Veit Roessner
- Department of Child and Adolescent Psychiatry, School of Medicine, TU Dresden, Dresden, Germany
| | - Scott R Sponheim
- Department of Psychiatry and the Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN USA
| | - Daphne Holt
- MGH/MIT/HMS Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA USA,Department of Psychiatry, Massachusetts General Hospital, Boston, MA USA
| | - Randy Gollub
- MGH/MIT/HMS Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA USA,Department of Psychiatry, Massachusetts General Hospital, Boston, MA USA
| | - Vince D Calhoun
- The MIND Research Network, Albuquerque, NM USA,Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM USA
| | - Stefan Ehrlich
- Department of Child and Adolescent Psychiatry, School of Medicine, TU Dresden, Dresden, Germany,MGH/MIT/HMS Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA USA,Department of Psychiatry, Massachusetts General Hospital, Boston, MA USA
| |
Collapse
|
45
|
Radoff DT, Dong Y, Snead D, Bai J, Eliezer D, Dittman JS. The accessory helix of complexin functions by stabilizing central helix secondary structure. eLife 2014; 3. [PMID: 25383924 PMCID: PMC4270070 DOI: 10.7554/elife.04553] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 11/07/2014] [Indexed: 02/06/2023] Open
Abstract
The presynaptic protein complexin (CPX) is a critical regulator of synaptic vesicle fusion, but the mechanisms underlying its regulatory effects are not well understood. Its highly conserved central helix (CH) directly binds the ternary SNARE complex and is required for all known CPX functions. The adjacent accessory helix (AH) is not conserved despite also playing an important role in CPX function, and numerous models for its mechanism have been proposed. We examined the impact of AH mutations and chimeras on CPX function in vivo and in vitro using C. elegans. The mouse AH fully restored function when substituted into worm CPX suggesting its mechanism is evolutionarily conserved. CPX inhibitory function was impaired when helix propagation into the CH was disrupted whereas replacing the AH with a non-native helical sequence restored CPX function. We propose that the AH operates by stabilizing CH secondary structure rather than through protein or lipid interactions. DOI:http://dx.doi.org/10.7554/eLife.04553.001 The nervous system sends information around the body in the form of electrical signals that travel through cells called neurons. These signals cannot pass across the small gaps—called synapses—that separate neighboring neurons. Instead, when electrical signals reach the synapse, chemicals called neurotransmitters are released across the gap and trigger an electrical signal in the next neuron. Neurotransmitters are stored within neurons in small envelopes of membrane known as synaptic vesicles. They are released when the vesicles fuse with the membrane that surrounds the neuron. This fusion process must be tightly controlled to ensure that information is passed between the neurons at the right time. Complexin is a small protein that controls vesicle fusion by binding to a group of proteins called the SNARE complex. It contains two structured sections called the central helix and the accessory helix, which are both important for vesicle fusion. The central helix is able to bind to the SNARE proteins, and it has the same sequence of amino acids—the building blocks of proteins—in all animals. However, the sequence of amino acids in the accessory helix varies widely across different animals and it is not clear whether it performs the same role in all of them. Radoff et al. studied complexin in the nematode worm C. elegans, and found that when its accessory helix is replaced with the amino acid sequence from the mouse one, it can still properly control vesicle fusion. Indeed, complexin can still work properly when its accessory helix is replaced with an artificial protein helix that has a similar shape. These experiments suggest that the overall structure of the accessory helix is more important than its exact sequence of amino acids. Radoff et al. propose that its role in vesicle fusion is to stabilize the structure of the central helix to allow it to bind to the SNARE proteins. The next challenge is to understand how vesicle fusion is prevented when complexin binds to the SNARE proteins. DOI:http://dx.doi.org/10.7554/eLife.04553.002
Collapse
Affiliation(s)
- Daniel T Radoff
- Department of Biochemistry, Weill Cornell Medical College, New York, United States
| | - Yongming Dong
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - David Snead
- Department of Biochemistry, Weill Cornell Medical College, New York, United States
| | - Jihong Bai
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - David Eliezer
- Department of Biochemistry, Weill Cornell Medical College, New York, United States
| | - Jeremy S Dittman
- Department of Biochemistry, Weill Cornell Medical College, New York, United States
| |
Collapse
|
46
|
Snead D, Wragg RT, Dittman JS, Eliezer D. Membrane curvature sensing by the C-terminal domain of complexin. Nat Commun 2014; 5:4955. [PMID: 25229806 PMCID: PMC4180495 DOI: 10.1038/ncomms5955] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 08/11/2014] [Indexed: 11/11/2022] Open
Abstract
Complexin functions at presynaptic nerve terminals to inhibit spontaneous SNARE-mediated synaptic vesicle exocytosis, while enhancing stimulated neurotransmitter release. The C-terminal domain (CTD) of complexin is essential for its inhibitory function and has been implicated in localizing complexin to synaptic vesicles via direct membrane interactions. Here we show that complexin's CTD is highly sensitive to membrane curvature, which it senses via tandem motifs, a C-terminal motif containing a mix of bulky hydrophobic and positively charged residues, and an adjacent amphipathic region that can bind membranes in either a disordered or a helical conformation. Helix formation requires membrane packing defects found on highly curved membrane surfaces. Mutations that disrupt helix formation without disrupting membrane binding compromise complexin's inhibitory function in vivo. Thus, this membrane curvature-dependent conformational transition, combined with curvature sensitive binding by the adjacent C-terminal motif, constitute a novel mechanism for activating complexin's inhibitory function on the surface of synaptic vesicles.
Collapse
Affiliation(s)
- David Snead
- Department of Biochemistry, Weill Cornell Medical College, New York, New York 10065, USA
| | - Rachel T Wragg
- Department of Biochemistry, Weill Cornell Medical College, New York, New York 10065, USA
| | - Jeremy S Dittman
- Department of Biochemistry, Weill Cornell Medical College, New York, New York 10065, USA
| | - David Eliezer
- Department of Biochemistry, Weill Cornell Medical College, New York, New York 10065, USA
| |
Collapse
|
47
|
Choi BJ, Imlach WL, Jiao W, Wolfram V, Wu Y, Grbic M, Cela C, Baines RA, Nitabach MN, McCabe BD. Miniature neurotransmission regulates Drosophila synaptic structural maturation. Neuron 2014; 82:618-34. [PMID: 24811381 PMCID: PMC4022839 DOI: 10.1016/j.neuron.2014.03.012] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2014] [Indexed: 11/28/2022]
Abstract
Miniature neurotransmission is the transsynaptic process where single synaptic vesicles spontaneously released from presynaptic neurons induce miniature postsynaptic potentials. Since their discovery over 60 years ago, miniature events have been found at every chemical synapse studied. However, the in vivo necessity for these small-amplitude events has remained enigmatic. Here, we show that miniature neurotransmission is required for the normal structural maturation of Drosophila glutamatergic synapses in a developmental role that is not shared by evoked neurotransmission. Conversely, we find that increasing miniature events is sufficient to induce synaptic terminal growth. We show that miniature neurotransmission acts locally at terminals to regulate synapse maturation via a Trio guanine nucleotide exchange factor (GEF) and Rac1 GTPase molecular signaling pathway. Our results establish that miniature neurotransmission, a universal but often-overlooked feature of synapses, has unique and essential functions in vivo. Miniature, but not evoked, neurotransmission is required for synapse development Miniature neurotransmission bidirectionally regulates synaptic terminal maturation Miniature events signal locally through the GEF Trio and the GTPase Rac1 Miniature neurotransmission has unique and essential functions in vivo
Collapse
Affiliation(s)
- Ben Jiwon Choi
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Center for Motor Neuron Biology and Disease, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Wendy L Imlach
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Center for Motor Neuron Biology and Disease, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Department of Neuroscience, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Wei Jiao
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Center for Motor Neuron Biology and Disease, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Department of Neuroscience, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Verena Wolfram
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PL, UK
| | - Ying Wu
- Department of Cellular and Molecular Physiology, Department of Genetics, Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale School of Medicine, New Haven, CT 06520, USA
| | - Mark Grbic
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Center for Motor Neuron Biology and Disease, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Carolina Cela
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Center for Motor Neuron Biology and Disease, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Richard A Baines
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PL, UK
| | - Michael N Nitabach
- Department of Cellular and Molecular Physiology, Department of Genetics, Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale School of Medicine, New Haven, CT 06520, USA
| | - Brian D McCabe
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Center for Motor Neuron Biology and Disease, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Department of Neuroscience, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
48
|
Heiker JT, Kunath A, Kosacka J, Flehmig G, Knigge A, Kern M, Stumvoll M, Kovacs P, Blüher M, Klöting N. Identification of genetic loci associated with different responses to high-fat diet-induced obesity in C57BL/6N and C57BL/6J substrains. Physiol Genomics 2014; 46:377-84. [DOI: 10.1152/physiolgenomics.00014.2014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We have recently demonstrated that C57BL/6NTac and C57BL/6JRj substrains are significantly different in their response to high-fat diet-induced obesity (DIO). The C57BL/6JRj substrain seems to be protected from DIO and genetic differences between C57BL/6J and C57BL/6N substrains at 11 single nucleotide polymorphism (SNP) loci have been identified. To define genetic variants as well as differences in parameters of glucose homeostasis and insulin sensitivity between C57BL/6NTac and C57BL/6JRj substrains that may explain the different response to DIO, we analyzed 208 first backcross (BC1) hybrids of C57BL/6NTac and C57BL/6JRj [(C57BL/6NTac × C57BL/6JRj)F1 × C57BL/6NTac] mice. Body weight, epigonadal and subcutaneous fat mass, circulating leptin, as well as parameters of glucose metabolism were measured after 10 wk of high-fat diet (HFD). Genetic profiling of BC1 hybrids were performed using TaqMan SNP genotyping assays. Furthermore, to assess whether SNP polymorphisms could affect mRNA level, we carried out gene expression analysis in murine liver samples. Human subcutaneous adipose tissue was used to verify murine data of SNAP29. We identified four sex-specific variants that are associated with the extent of HFD-induced weight gain and fat depot mass. BC1 hybrids carrying the combination of risk or beneficial alleles exhibit the phenotypical extremes of the parental strains. Murine and human SC expression analysis revealed Snap29 as strongest candidate. Our data indicate an important role of these loci in responsiveness to HFD-induced obesity and suggest genes of the synaptic vesicle release system such as Snap29 being involved in the regulation of high-fat DIO.
Collapse
Affiliation(s)
- John T. Heiker
- Department of Medicine, Endocrinology and Diabetes, Leipzig University, Leipzig, Germany
- Institute of Biochemistry, Leipzig University, Leipzig, Germany
| | - Anne Kunath
- IFB AdiposityDiseases, Junior Research Group 2 “Animal models of obesity”, Leipzig University, Leipzig, Germany; and
| | - Joanna Kosacka
- Department of Medicine, Endocrinology and Diabetes, Leipzig University, Leipzig, Germany
| | - Gesine Flehmig
- Department of Medicine, Endocrinology and Diabetes, Leipzig University, Leipzig, Germany
- IFB AdiposityDiseases, Leipzig University, Leipzig, Germany
| | - Anja Knigge
- Department of Medicine, Endocrinology and Diabetes, Leipzig University, Leipzig, Germany
| | - Matthias Kern
- Department of Medicine, Endocrinology and Diabetes, Leipzig University, Leipzig, Germany
| | - Michael Stumvoll
- Department of Medicine, Endocrinology and Diabetes, Leipzig University, Leipzig, Germany
- IFB AdiposityDiseases, Leipzig University, Leipzig, Germany
| | - Peter Kovacs
- IFB AdiposityDiseases, Leipzig University, Leipzig, Germany
| | - Matthias Blüher
- Department of Medicine, Endocrinology and Diabetes, Leipzig University, Leipzig, Germany
- IFB AdiposityDiseases, Leipzig University, Leipzig, Germany
| | - Nora Klöting
- Department of Medicine, Endocrinology and Diabetes, Leipzig University, Leipzig, Germany
- IFB AdiposityDiseases, Junior Research Group 2 “Animal models of obesity”, Leipzig University, Leipzig, Germany; and
| |
Collapse
|
49
|
Truchet S, Chat S, Ollivier-Bousquet M. Milk secretion: The role of SNARE proteins. J Mammary Gland Biol Neoplasia 2014; 19:119-30. [PMID: 24264376 DOI: 10.1007/s10911-013-9311-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 11/13/2013] [Indexed: 12/21/2022] Open
Abstract
During lactation, polarized mammary epithelial secretory cells (MESCs) secrete huge quantities of the nutrient molecules that make up milk, i.e. proteins, fat globules and soluble components such as lactose and minerals. Some of these nutrients are only produced by the MESCs themselves, while others are to a great extent transferred from the blood. MESCs can thus be seen as a crossroads for both the uptake and the secretion with cross-talks between intracellular compartments that enable spatial and temporal coordination of the secretion of the milk constituents. Although the physiology of lactation is well understood, the molecular mechanisms underlying the secretion of milk components remain incompletely characterized. Major milk proteins, namely caseins, are secreted by exocytosis, while the milk fat globules are released by budding, being enwrapped by the apical plasma membrane. Prolactin, which stimulates the transcription of casein genes, also induces the production of arachidonic acid, leading to accelerated casein transport and/or secretion. Because of their ability to form complexes that bridge two membranes and promote their fusion, SNARE (Soluble N-ethylmaleimide-Sensitive Factor Attachment Protein Receptor) proteins are involved in almost all intracellular trafficking steps and exocytosis. As SNAREs can bind arachidonic acid, they could be the effectors of the secretagogue effect of prolactin in MESCs. Indeed, some SNAREs have been observed between secretory vesicles and lipid droplets suggesting that these proteins could not only orchestrate the intracellular trafficking of milk components but also act as key regulators for both the coupling and coordination of milk product secretion in response to hormones.
Collapse
Affiliation(s)
- Sandrine Truchet
- INRA, UR1196 Génomique et Physiologie de la Lactation, 78352, Jouy-en-Josas Cedex, France,
| | | | | |
Collapse
|
50
|
Biesemann C, Grønborg M, Luquet E, Wichert SP, Bernard V, Bungers SR, Cooper B, Varoqueaux F, Li L, Byrne JA, Urlaub H, Jahn O, Brose N, Herzog E. Proteomic screening of glutamatergic mouse brain synaptosomes isolated by fluorescence activated sorting. EMBO J 2014; 33:157-70. [PMID: 24413018 DOI: 10.1002/embj.201386120] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
For decades, neuroscientists have used enriched preparations of synaptic particles called synaptosomes to study synapse function. However, the interpretation of corresponding data is problematic as synaptosome preparations contain multiple types of synapses and non-synaptic neuronal and glial contaminants. We established a novel Fluorescence Activated Synaptosome Sorting (FASS) method that substantially improves conventional synaptosome enrichment protocols and enables high-resolution biochemical analyses of specific synapse subpopulations. Employing knock-in mice with fluorescent glutamatergic synapses, we show that FASS isolates intact ultrapure synaptosomes composed of a resealed presynaptic terminal and a postsynaptic density as assessed by light and electron microscopy. FASS synaptosomes contain bona fide glutamatergic synapse proteins but are almost devoid of other synapse types and extrasynaptic or glial contaminants. We identified 163 enriched proteins in FASS samples, of which FXYD6 and Tpd52 were validated as new synaptic proteins. FASS purification thus enables high-resolution biochemical analyses of specific synapse subpopulations in health and disease.
Collapse
Affiliation(s)
- Christoph Biesemann
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|