1
|
Wang Y, Guo S, Shi Y, Wei X, Chen W, Zhang Y, Yuan X, Sun L. Lupus nephritis as an independent risk factor for carotid atherosclerosis in patients with systemic lupus erythematosus. Clin Rheumatol 2025:10.1007/s10067-025-07413-z. [PMID: 40138152 DOI: 10.1007/s10067-025-07413-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/07/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025]
Abstract
OBJECTIVE Systemic lupus erythematosus (SLE) is associated with an elevated risk of atherosclerosis, with lupus nephritis (LN) representing a critical and potentially fatal target organ damage. This study aims to investigate the prevalence of LN in SLE patients, and its correlation with carotid atherosclerosis (CA). METHODS A total of 151 SLE patients (age, 50.9 ± 14.6 years, 87.4% women) were included in the study. The 2024 KDIGO guideline was used to assess the LN prevalence, and carotid artery ultrasound was performed to identify plaque and intima-media thickness (IMT). The correlation between LN and CA in SLE patients was evaluated, and logistic regression analysis was conducted to identify CA risk factors. RESULTS A total of 47.0% of SLE patients exhibited LN, and the prevalence of CA was 37.7%. Patients with LN exhibited a higher carotid plaque ratio (47.9% vs 28.7%, p = 0.015) and IMT values [1.0(0.7, 1.1) mm vs. 0.8(0.7, 1.0) mm, p < 0.010] compared to those without LN. The presence of LN (p = 0.002), male sex (p = 0.039), age (p < 0.001), and serum TC (total cholesterol) (p = 0.016) were independent risk factors for SLE patients with CA. LN and related renal parameters demonstrated a strong association with CA in patients with SLE. CONCLUSION The prevalence of LN was significantly correlated with CA in SLE patients, indicating that early identification of LN in SLE patients has a high risk of CA, which may facilitate targeted prevention and reduce cardiovascular morbidity. Key Points • Lupus nephritis (LN) was present in 47.0% of systemic lupus erythematosus (SLE) patients, and carotid atherosclerosis (CA) was prevalent in 37.7% of the study. • Systemic lupus erythematosus (SLE) patients with lupus nephritis (LN) exhibited significantly higher carotid plaque ratios and increased intima-media thickness compared to those without LN. • The presence of lupus nephritis (LN), male sex, advanced age, and elevated total cholesterol levels was identified as independent risk factors for carotid atherosclerosis (CA) in patients with systemic lupus erythematosus (SLE).
Collapse
Affiliation(s)
- Yujiao Wang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Simin Guo
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Yirui Shi
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Xuzhou Medical University, Nanjing, China
| | - Xiaoquan Wei
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Nanjing Medical University, Nanjing, China
| | - Weiwei Chen
- Department of Rheumatology and Immunology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, China
| | - Yaqi Zhang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinran Yuan
- Department of Rheumatology and Immunology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, China.
| | - Lingyun Sun
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China.
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Xuzhou Medical University, Nanjing, China.
- Department of Rheumatology and Immunology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, China.
| |
Collapse
|
2
|
Abstract
Notch signaling is a highly conserved signaling pathway that coordinates cellular differentiation during the development and homeostasis in numerous organs and tissues across metazoans. Activation of Notch signaling relies on direct contact between neighboring cells and mechanical pulling of the Notch receptors by the Notch ligands. Notch signaling is commonly used in developmental processes to coordinate the differentiation into distinct cell fates of neighboring cells. In this Development at a Glance article, we describe the current understanding of the Notch pathway activation and the different regulatory levels that control the pathway. We then describe several developmental processes where Notch is crucial for coordinating differentiation. These examples include processes that are largely based on lateral inhibition mechanisms giving rise to alternating patterns (e.g. SOP selection, hair cell in the inner ear and neural stem cell maintenance), as well as processes where Notch activity is oscillatory (e.g. somitogenesis and neurogenesis in mammals).
Collapse
Affiliation(s)
- Oren Gozlan
- School of Neurobiology, Biochemistry, and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - David Sprinzak
- School of Neurobiology, Biochemistry, and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
3
|
Sharma D, Bisen S, Kaur G, Van Buren EC, Rao GN, Singh NK. IL-33 enhances Jagged1 mediated NOTCH1 intracellular domain (NICD) deubiquitination and pathological angiogenesis in proliferative retinopathy. Commun Biol 2022; 5:479. [PMID: 35589941 PMCID: PMC9120174 DOI: 10.1038/s42003-022-03432-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/29/2022] [Indexed: 01/10/2023] Open
Abstract
Pathological retinal neovascularization (NV) is a clinical manifestation of various proliferative retinopathies, and treatment of NV using anti-VEGF therapies is not selective, as it also impairs normal retinal vascular growth and function. Here, we show that genetic deletion or siRNA-mediated downregulation of IL-33 reduces pathological NV in a murine model of oxygen-induced retinopathy (OIR) with no effect on the normal retinal repair. Furthermore, our fluorescent activated cell sorting (FACS) data reveals that the increase in IL-33 expression is in endothelial cells (ECs) of the hypoxic retina and conditional genetic deletion of IL-33 in retinal ECs reduces pathological NV. In vitro studies using human retinal microvascular endothelial cells (HRMVECs) show that IL-33 induces sprouting angiogenesis and requires NFkappaB-mediated Jagged1 expression and Notch1 activation. Our data also suggest that IL-33 enhances de-ubiquitination and stabilization of Notch1 intracellular domain via its interaction with BRCA1-associated protein 1 (BAP1) and Numb in HRMVECs and a murine model of OIR.
Collapse
Affiliation(s)
- Deepti Sharma
- Integrative Biosciences Center, Wayne State University, Detroit, MI, 48202, USA
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, 48202, USA
| | - Shivantika Bisen
- Integrative Biosciences Center, Wayne State University, Detroit, MI, 48202, USA
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, 48202, USA
| | - Geetika Kaur
- Integrative Biosciences Center, Wayne State University, Detroit, MI, 48202, USA
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, 48202, USA
| | - Eric C Van Buren
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Gadiparthi N Rao
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Nikhlesh K Singh
- Integrative Biosciences Center, Wayne State University, Detroit, MI, 48202, USA.
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, 48202, USA.
| |
Collapse
|
4
|
Zhang F, Chen Y, Shen J, Zhang J. The Ubiquitin Conjugating Enzyme UbcD1 is Required for Notch Signaling Activation During Drosophila Wing Development. Front Genet 2021; 12:770853. [PMID: 34712275 PMCID: PMC8546230 DOI: 10.3389/fgene.2021.770853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 09/30/2021] [Indexed: 11/13/2022] Open
Abstract
Notch signaling pathway plays crucial roles in animal development. Protein ubiquitination contributes to Notch signaling regulation by governing the stability and activity of major signaling components. Studies in Drosophila have identified multiple ubiquitin ligases and deubiquitinating enzymes that modify Notch ligand and receptor proteins. The fate of ubiquitinated substrates depend on topologies of the attached ubiquitin chains, which are determined by the ubiquitin conjugating enzymes (E2 enzymes). However, which E2 enzymes participate in Notch signal transduction remain elusive. Here, we report that the E2 enzyme UbcD1 is required for Notch signaling activation during Drosophila wing development. Mutations of UbcD1 lead to marginal nicks in the adult wing and reduction of Notch signaling targets expression in the wing imaginal disc. Genetic analysis reveal that UbcD1 functions in the signaling receiving cells prior to cleavage of the Notch protein. We provide further evidence suggesting that UbcD1 is likely involved in endocytic trafficking of Notch protein. Our results demonstrate that UbcD1 positively regulates Notch signaling and thus reveal a novel role of UbcD1 in development.
Collapse
Affiliation(s)
- Fengchao Zhang
- MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yao Chen
- MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jie Shen
- MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Junzheng Zhang
- MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
Martinez Lyons A, Boulter L. The developmental origins of Notch-driven intrahepatic bile duct disorders. Dis Model Mech 2021; 14:dmm048413. [PMID: 34549776 PMCID: PMC8480193 DOI: 10.1242/dmm.048413] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The Notch signaling pathway is an evolutionarily conserved mechanism of cell-cell communication that mediates cellular proliferation, cell fate specification, and maintenance of stem and progenitor cell populations. In the vertebrate liver, an absence of Notch signaling results in failure to form bile ducts, a complex tubular network that radiates throughout the liver, which, in healthy individuals, transports bile from the liver into the bowel. Loss of a functional biliary network through congenital malformations during development results in cholestasis and necessitates liver transplantation. Here, we examine to what extent Notch signaling is necessary throughout embryonic life to initiate the proliferation and specification of biliary cells and concentrate on the animal and human models that have been used to define how perturbations in this signaling pathway result in developmental liver disorders.
Collapse
Affiliation(s)
| | - Luke Boulter
- MRC Human Genetics Unit, Institute of Genetics and Cancer, Edinburgh EH4 2XU, UK
| |
Collapse
|
6
|
Ubiquitination and Deubiquitination in Oral Disease. Int J Mol Sci 2021; 22:ijms22115488. [PMID: 34070986 PMCID: PMC8197098 DOI: 10.3390/ijms22115488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/15/2021] [Accepted: 05/18/2021] [Indexed: 01/07/2023] Open
Abstract
Oral health is an integral part of the general health and well-being of individuals. The presence of oral disease is potentially indicative of a number of systemic diseases and may contribute to their early diagnosis and treatment. The ubiquitin (Ub) system has been shown to play a role in cellular immune response, cellular development, and programmed cell death. Ubiquitination is a post-translational modification that occurs in eukaryotes. Its mechanism involves a number of factors, including Ub-activating enzymes, Ub-conjugating enzymes, and Ub protein ligases. Deubiquitinating enzymes, which are proteases that reversely modify proteins by removing Ub or Ub-like molecules or remodeling Ub chains on target proteins, have recently been regarded as crucial regulators of ubiquitination-mediated degradation and are known to significantly affect cellular pathways, a number of biological processes, DNA damage response, and DNA repair pathways. Research has increasingly shown evidence of the relationship between ubiquitination, deubiquitination, and oral disease. This review investigates recent progress in discoveries in diseased oral sites and discusses the roles of ubiquitination and deubiquitination in oral disease.
Collapse
|
7
|
Dutta D, Sharma V, Mutsuddi M, Mukherjee A. Regulation of Notch signaling by E3 ubiquitin ligases. FEBS J 2021; 289:937-954. [PMID: 33644958 DOI: 10.1111/febs.15792] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/07/2021] [Accepted: 02/25/2021] [Indexed: 12/11/2022]
Abstract
Notch signaling is an evolutionarily conserved pathway that is widely used for multiple cellular events during development. Activation of the Notch pathway occurs when the ligand from a neighboring cell binds to the Notch receptor and induces cleavage of the intracellular domain of Notch, which further translocates into the nucleus to activate its downstream genes. The involvement of the Notch pathway in diverse biological events is possible due to the complexity in its regulation. In order to maintain tight spatiotemporal regulation, the Notch receptor, as well as its ligand, undergoes a series of physical and biochemical modifications that, in turn, helps in proper maintenance and fine-tuning of the signaling outcome. Ubiquitination is the post-translational addition of a ubiquitin molecule to a substrate protein, and the process is regulated by E3 ubiquitin ligases. The present review describes the involvement of different E3 ubiquitin ligases that play an important role in the regulation and maintenance of proper Notch signaling and how perturbation in ubiquitination results in abnormal Notch signaling leading to a number of human diseases.
Collapse
Affiliation(s)
- Debdeep Dutta
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Vartika Sharma
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Mousumi Mutsuddi
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Ashim Mukherjee
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
8
|
Basar MA, Beck DB, Werner A. Deubiquitylases in developmental ubiquitin signaling and congenital diseases. Cell Death Differ 2021; 28:538-556. [PMID: 33335288 PMCID: PMC7862630 DOI: 10.1038/s41418-020-00697-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023] Open
Abstract
Metazoan development from a one-cell zygote to a fully formed organism requires complex cellular differentiation and communication pathways. To coordinate these processes, embryos frequently encode signaling information with the small protein modifier ubiquitin, which is typically attached to lysine residues within substrates. During ubiquitin signaling, a three-step enzymatic cascade modifies specific substrates with topologically unique ubiquitin modifications, which mediate changes in the substrate's stability, activity, localization, or interacting proteins. Ubiquitin signaling is critically regulated by deubiquitylases (DUBs), a class of ~100 human enzymes that oppose the conjugation of ubiquitin. DUBs control many essential cellular functions and various aspects of human physiology and development. Recent genetic studies have identified mutations in several DUBs that cause developmental disorders. Here we review principles controlling DUB activity and substrate recruitment that allow these enzymes to regulate ubiquitin signaling during development. We summarize key mechanisms of how DUBs control embryonic and postnatal differentiation processes, highlight developmental disorders that are caused by mutations in particular DUB members, and describe our current understanding of how these mutations disrupt development. Finally, we discuss how emerging tools from human disease genetics will enable the identification and study of novel congenital disease-causing DUBs.
Collapse
Affiliation(s)
- Mohammed A Basar
- Stem Cell Biochemistry Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - David B Beck
- Stem Cell Biochemistry Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
- Metabolic, Cardiovascular and Inflammatory Disease Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Achim Werner
- Stem Cell Biochemistry Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
9
|
Increased Notch2/NF-κB Signaling May Mediate the Depression Susceptibility: Evidence from Chronic Social Defeat Stress Mice and WKY Rats. Physiol Behav 2020; 228:113197. [PMID: 33017602 DOI: 10.1016/j.physbeh.2020.113197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 01/22/2023]
Abstract
The susceptibility to depression has been attributed to the chronic stress and genetic factors but still fails to identify definite biomarkers. The present study aimed to investigate the role of disrupted Notch signaling in the medial prefrontal cortex of the chronic social defeat stress (CSDS) mice and Wistar Kyoto (WKY) rats. RNA-sequencing and quantitative real-time PCR analyses evidenced the involvement of Notch signaling pathway in depression. Western blotting reported an increased level of Notch2 and NF-κB and a decreased level of Hes1 and Bcl2/Bax ratio both in the susceptible mice when compared with the control or resilient ones and in the depression WKY rats when compared with the Wistar or non-depression WKY groups. Further analysis showed that the above-mentioned changes were significantly correlated with the depression-like behaviors and that the elicited Notch2 strongly correlated with the upregulated NF-κB, not with the downregulated Hes1 or Bcl2/Bax ratio. In conclusion, the increased Notch2/NF-κB signaling in the medial prefrontal cortex may mediate depression susceptibility, providing a potential diagnostic biomarker or therapeutic target for treating major depressive disorder.
Collapse
|
10
|
Rauff B, Malik A, Bhatti YA, Chudhary SA, Qadri I, Rafiq S. Notch signalling pathway in development of cholangiocarcinoma. World J Gastrointest Oncol 2020; 12:957-974. [PMID: 33005291 PMCID: PMC7509998 DOI: 10.4251/wjgo.v12.i9.957] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/03/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023] Open
Abstract
Cholangiocarcinoma (CCA) comprises of extra-hepatic cholangiocarcinoma and intrahepatic cholangiocarcinoma cancers as a result of inflammation of epithelium cell lining of the bile duct. The incidence rate is increasing dramatically worldwide with highest rates in Eastern and South Asian regions. Major risk factors involve chronic damage and inflammation of bile duct epithelium from primary sclerosing cholangitis, chronic hepatitis virus infection, gallstones and liver fluke infection. Various genetic variants have also been identified and as CCA develops on the background of biliary inflammation, diverse range of molecular mechanisms are involved in its progression. Among these, the Notch signalling pathway acts as a major driver of cholangiocarcinogenesis and its components (receptors, ligands and downstream signalling molecules) represent a promising therapeutic targets. Gamma-Secretase Inhibitors have been recognized in inhibiting the Notch pathway efficiently. A comprehensive knowledge of the molecular pathways activated by the Notch signalling cascade as well as its functional crosstalk with other signalling pathways provide better approach in developing innovative therapies against CCA.
Collapse
Affiliation(s)
- Bisma Rauff
- Institute of Molecular Biology and Biotechnology, University of Lahore, Lahore 54000, Pakistan
| | - Arif Malik
- Institute of Molecular Biology and Biotechnology, University of Lahore, Lahore 54000, Pakistan
| | - Yasir Ali Bhatti
- Institute of Molecular Biology and Biotechnology, University of Lahore, Lahore 54000, Pakistan
| | - Shafiq Ahmad Chudhary
- Institute of Biomedical and Allied Health Sciences, University of Health Sciences, Lahore 54000, Pakistan
| | - Ishtiaq Qadri
- Department of Biology, Faculty of Science, King Abdulaziz University Jeddah Kingdom of Saudi Arabia
| | - Shafquat Rafiq
- Department of Gastrointestinal medicine, Croydon University Hospital, Croydon CR7 7YE, United Kingdom
| |
Collapse
|
11
|
Febrile temperature change modulates CD4 T cell differentiation via a TRPV channel-regulated Notch-dependent pathway. Proc Natl Acad Sci U S A 2020; 117:22357-22366. [PMID: 32839313 DOI: 10.1073/pnas.1922683117] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Fever is a conserved and prominent response to infection. Yet, the issue of how CD4 T cell responses are modulated if they occur at fever temperatures remains poorly addressed. We have examined the priming of naive CD4 T cells in vitro at fever temperatures, and we report notable fever-mediated modulation of their cytokine commitment. When naive CD4 T cells were primed by plate-bound anti-CD3 and anti-CD28 monoclonal antibodies at moderate fever temperature (39 °C), they enhanced commitment to IL4/5/13 (Th2) and away from IFNg (Th1). This was accompanied by up-regulation of the Th2-relevant transcription factor GATA3 and reduction in the Th1-relevant transcription factor Tbet. Fever sensing by CD4 T cells involved transient receptor potential vanilloid cation channels (TRPVs) since TRPV1/TRPV4 antagonism blocked the febrile Th2 switch, while TRPV1 agonists mediated a Th2 switch at 37 °C. The febrile Th2 switch was IL4 independent, but a γ-secretase inhibitor abrogated it, and it was not found in Notch1-null CD4 T cells, identifying the Notch pathway as a major mediator. However, when naive CD4 T cells were primed via antigen and dendritic cells (DCs) at fever temperatures, the Th2 switch was abrogated via increased production of IL12 from DCs at fever temperatures. Thus, immune cells directly sense fever temperatures with likely complex physiological consequences.
Collapse
|
12
|
Luo Z, Mu L, Zheng Y, Shen W, Li J, Xu L, Zhong B, Liu Y, Zhou Y. NUMB enhances Notch signaling by repressing ubiquitination of NOTCH1 intracellular domain. J Mol Cell Biol 2020; 12:345-358. [PMID: 31504682 PMCID: PMC7288735 DOI: 10.1093/jmcb/mjz088] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/05/2019] [Accepted: 07/31/2019] [Indexed: 01/02/2023] Open
Abstract
The release and nuclear translocation of the intracellular domain of Notch receptor (NICD) is the prerequisite for Notch signaling-mediated transcriptional activation. NICD is subjected to various posttranslational modifications including ubiquitination. Here, we surprisingly found that NUMB proteins stabilize the intracellular domain of NOTCH1 receptor (N1ICD) by regulating the ubiquitin-proteasome machinery, which is independent of NUMB's role in modulating endocytosis. BAP1, a deubiquitinating enzyme (DUB), was further identified as a positive N1ICD regulator, and NUMB facilitates the association between N1ICD and BAP1 to stabilize N1ICD. Intriguingly, BAP1 stabilizes N1ICD independent of its DUB activity but relying on the BRCA1-inhibiting function. BAP1 strengthens Notch signaling and maintains stem-like properties of cortical neural progenitor cells. Thus, NUMB enhances Notch signaling by regulating the ubiquitinating activity of the BAP1-BRCA1 complex.
Collapse
Affiliation(s)
- Zhiyuan Luo
- College of Life Sciences, Renmin Hospital of Wuhan University, Medical Research Institute at School of Medicine, Wuhan University, Wuhan 430072, China
| | - Lili Mu
- College of Life Sciences, Renmin Hospital of Wuhan University, Medical Research Institute at School of Medicine, Wuhan University, Wuhan 430072, China
| | - Yue Zheng
- College of Life Sciences, Renmin Hospital of Wuhan University, Medical Research Institute at School of Medicine, Wuhan University, Wuhan 430072, China
| | - Wenchen Shen
- College of Life Sciences, Renmin Hospital of Wuhan University, Medical Research Institute at School of Medicine, Wuhan University, Wuhan 430072, China
| | - Jiali Li
- College of Life Sciences, Renmin Hospital of Wuhan University, Medical Research Institute at School of Medicine, Wuhan University, Wuhan 430072, China
| | - Lichao Xu
- College of Life Sciences, Renmin Hospital of Wuhan University, Medical Research Institute at School of Medicine, Wuhan University, Wuhan 430072, China
| | - Bo Zhong
- College of Life Sciences, Renmin Hospital of Wuhan University, Medical Research Institute at School of Medicine, Wuhan University, Wuhan 430072, China
| | - Ying Liu
- College of Life Sciences, Renmin Hospital of Wuhan University, Medical Research Institute at School of Medicine, Wuhan University, Wuhan 430072, China
| | - Yan Zhou
- College of Life Sciences, Renmin Hospital of Wuhan University, Medical Research Institute at School of Medicine, Wuhan University, Wuhan 430072, China
| |
Collapse
|
13
|
Shu Y, Wang Y, Lv WQ, Peng DY, Li J, Zhang H, Jiang GJ, Yang BJ, Liu S, Zhang J, Chen YH, Tang S, Wan KX, Yuan JT, Guo W, Fu G, Qi XK, Liu ZD, Liu HY, Yang C, Zhang LH, Liu FJ, Yu J, Zhang PH, Qu B, Zhao H, He TC, Zou L. ARRB1-Promoted NOTCH1 Degradation Is Suppressed by OncomiR miR-223 in T-cell Acute Lymphoblastic Leukemia. Cancer Res 2020; 80:988-998. [PMID: 31822496 PMCID: PMC7056567 DOI: 10.1158/0008-5472.can-19-1471] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/24/2019] [Accepted: 12/04/2019] [Indexed: 12/17/2022]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a type of aggressive leukemia with inferior prognosis. Although activating mutations of NOTCH1 are observed in most T-ALL cases, these mutations alone are not sufficient to drive the full development of T-ALL. β-Arrestins (ARRB) are versatile and multifunctional adapter proteins that regulate diverse cellular functions, including promoting the development of cancer. However, the role of ARRBs in T-ALL has largely remained elusive. In this study, we showed that ARRB1 is expressed at low levels in assayed T-ALL clinical samples and cell lines. Exogenous ARRB1 expression inhibited T-ALL proliferation and improved the survival of T-ALL xenograft animals. ARRB1 facilitated NOTCH1 ubiquitination and degradation through interactions with NOTCH1 and DTX1. Mechanistically, the oncogenic miRNA (oncomiR) miR-223 targets the 3'-UTR of ARRB1 (BUTR) and inhibits its expression in T-ALL. Furthermore, overexpression of the ARRB1-derived miR-223 sponge suppressed T-ALL cell proliferation and induced apoptosis. Collectively, these results demonstrate that ARRB1 acts as a tumor suppressor in T-ALL by promoting NOTCH1 degradation, which is inhibited by elevated miR-223, suggesting that ARRB1 may serve as a valid drug target in the development of novel T-ALL therapeutics.Significance: These findings highlight a novel tumor suppressive function of the adaptor protein β-arrestin1 in T-ALL.
Collapse
Affiliation(s)
- Yi Shu
- Center for Clinical Molecular Medicine, The Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
- Key Laboratory of Pediatrics in Chongqing, Chongqing Stem Cell Therapy Engineering Center, Chongqing, China
- Molecular Oncology Laboratory, Departments of Surgery and Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, Illinois
| | - Yi Wang
- Center for Clinical Molecular Medicine, The Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
- Key Laboratory of Pediatrics in Chongqing, Chongqing Stem Cell Therapy Engineering Center, Chongqing, China
| | - Wen-Qiong Lv
- Center for Clinical Molecular Medicine, The Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
- Key Laboratory of Pediatrics in Chongqing, Chongqing Stem Cell Therapy Engineering Center, Chongqing, China
| | - Dan-Yi Peng
- Center for Clinical Molecular Medicine, The Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
- Key Laboratory of Pediatrics in Chongqing, Chongqing Stem Cell Therapy Engineering Center, Chongqing, China
| | - Juan Li
- Institute of Biochemistry and Cell Biochemistry, Shanghai Institute of Biomedical Sciences, Shanghai, China
| | - Hang Zhang
- Center for Clinical Molecular Medicine, The Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
- Key Laboratory of Pediatrics in Chongqing, Chongqing Stem Cell Therapy Engineering Center, Chongqing, China
| | - Guang-Jie Jiang
- Center for Clinical Molecular Medicine, The Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
- Key Laboratory of Pediatrics in Chongqing, Chongqing Stem Cell Therapy Engineering Center, Chongqing, China
| | - Bi-Jie Yang
- Center for Clinical Molecular Medicine, The Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
- Key Laboratory of Pediatrics in Chongqing, Chongqing Stem Cell Therapy Engineering Center, Chongqing, China
| | - Shan Liu
- Center for Clinical Molecular Medicine, The Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
- Key Laboratory of Pediatrics in Chongqing, Chongqing Stem Cell Therapy Engineering Center, Chongqing, China
| | - Jia Zhang
- Center for Clinical Molecular Medicine, The Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
- Key Laboratory of Pediatrics in Chongqing, Chongqing Stem Cell Therapy Engineering Center, Chongqing, China
| | - Yan-Hua Chen
- Center for Clinical Molecular Medicine, The Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
- Key Laboratory of Pediatrics in Chongqing, Chongqing Stem Cell Therapy Engineering Center, Chongqing, China
| | - Shi Tang
- Center for Clinical Molecular Medicine, The Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
- Key Laboratory of Pediatrics in Chongqing, Chongqing Stem Cell Therapy Engineering Center, Chongqing, China
| | - Ke-Xing Wan
- Center for Clinical Molecular Medicine, The Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
- Key Laboratory of Pediatrics in Chongqing, Chongqing Stem Cell Therapy Engineering Center, Chongqing, China
| | - Jun-Tao Yuan
- Center for Clinical Molecular Medicine, The Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
- Key Laboratory of Pediatrics in Chongqing, Chongqing Stem Cell Therapy Engineering Center, Chongqing, China
| | - Wei Guo
- Center for Clinical Molecular Medicine, The Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
- Key Laboratory of Pediatrics in Chongqing, Chongqing Stem Cell Therapy Engineering Center, Chongqing, China
| | - Guo Fu
- Center for Clinical Molecular Medicine, The Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
- Key Laboratory of Pediatrics in Chongqing, Chongqing Stem Cell Therapy Engineering Center, Chongqing, China
| | - Xin-Kun Qi
- Center for Clinical Molecular Medicine, The Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
- Key Laboratory of Pediatrics in Chongqing, Chongqing Stem Cell Therapy Engineering Center, Chongqing, China
| | - Zhi-Dai Liu
- Center for Clinical Molecular Medicine, The Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
- Key Laboratory of Pediatrics in Chongqing, Chongqing Stem Cell Therapy Engineering Center, Chongqing, China
| | - Hai-Yan Liu
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
- Key Laboratory of Pediatrics in Chongqing, Chongqing Stem Cell Therapy Engineering Center, Chongqing, China
- Department of Hematology, The Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Chao Yang
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
- Key Laboratory of Pediatrics in Chongqing, Chongqing Stem Cell Therapy Engineering Center, Chongqing, China
- Molecular Oncology Laboratory, Departments of Surgery and Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, Illinois
| | - Ling-Huan Zhang
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
- Key Laboratory of Pediatrics in Chongqing, Chongqing Stem Cell Therapy Engineering Center, Chongqing, China
- Molecular Oncology Laboratory, Departments of Surgery and Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, Illinois
| | - Fang-Jie Liu
- Center for Clinical Molecular Medicine, The Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
- Key Laboratory of Pediatrics in Chongqing, Chongqing Stem Cell Therapy Engineering Center, Chongqing, China
| | - Jie Yu
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
- Key Laboratory of Pediatrics in Chongqing, Chongqing Stem Cell Therapy Engineering Center, Chongqing, China
- Department of Hematology, The Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Peng-Hui Zhang
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
- Key Laboratory of Pediatrics in Chongqing, Chongqing Stem Cell Therapy Engineering Center, Chongqing, China
- Clinical Laboratory Center, The Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Bin Qu
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Germany
| | - Hui Zhao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Departments of Surgery and Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, Illinois.
| | - Lin Zou
- Center for Clinical Molecular Medicine, The Children's Hospital of Chongqing Medical University, Chongqing, China.
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
- Key Laboratory of Pediatrics in Chongqing, Chongqing Stem Cell Therapy Engineering Center, Chongqing, China
| |
Collapse
|
14
|
Antfolk D, Antila C, Kemppainen K, Landor SKJ, Sahlgren C. Decoding the PTM-switchboard of Notch. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:118507. [PMID: 31301363 PMCID: PMC7116576 DOI: 10.1016/j.bbamcr.2019.07.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/03/2019] [Accepted: 07/06/2019] [Indexed: 01/08/2023]
Abstract
The developmentally indispensable Notch pathway exhibits a high grade of pleiotropism in its biological output. Emerging evidence supports the notion of post-translational modifications (PTMs) as a modus operandi controlling dynamic fine-tuning of Notch activity. Although, the intricacy of Notch post-translational regulation, as well as how these modifications lead to multiples of divergent Notch phenotypes is still largely unknown, numerous studies show a correlation between the site of modification and the output. These include glycosylation of the extracellular domain of Notch modulating ligand binding, and phosphorylation of the PEST domain controlling half-life of the intracellular domain of Notch. Furthermore, several reports show that multiple PTMs can act in concert, or compete for the same sites to drive opposite outputs. However, further investigation of the complex PTM crosstalk is required for a complete understanding of the PTM-mediated Notch switchboard. In this review, we aim to provide a consistent and up-to-date summary of the currently known PTMs acting on the Notch signaling pathway, their functions in different contexts, as well as explore their implications in physiology and disease. Furthermore, we give an overview of the present state of PTM research methodology, and allude to a future with PTM-targeted Notch therapeutics.
Collapse
Affiliation(s)
- Daniel Antfolk
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
| | - Christian Antila
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
| | - Kati Kemppainen
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
| | - Sebastian K-J Landor
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland.
| | - Cecilia Sahlgren
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland; Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands.
| |
Collapse
|
15
|
Kindermann B, Valkova C, Krämer A, Perner B, Engelmann C, Behrendt L, Kritsch D, Jungnickel B, Kehlenbach RH, Oswald F, Englert C, Kaether C. The nuclear pore proteins Nup88/214 and T-cell acute lymphatic leukemia-associated NUP214 fusion proteins regulate Notch signaling. J Biol Chem 2019; 294:11741-11750. [PMID: 31186352 DOI: 10.1074/jbc.ra118.006357] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 05/20/2019] [Indexed: 01/14/2023] Open
Abstract
The Notch receptor is a key mediator of developmental programs and cell-fate decisions. Imbalanced Notch signaling leads to developmental disorders and cancer. To fully characterize the Notch signaling pathway and exploit it in novel therapeutic interventions, a comprehensive view on the regulation and requirements of Notch signaling is needed. Notch is regulated at different levels, ranging from ligand binding, stability to endocytosis. Using an array of different techniques, including reporter gene assays, immunocytochemistry, and ChIP-qPCR we show here, to the best of our knowledge for the first time, regulation of Notch signaling at the level of the nuclear pore. We found that the nuclear pore protein Nup214 (nucleoporin 214) and its interaction partner Nup88 negatively regulate Notch signaling in vitro and in vivo in zebrafish. In mammalian cells, loss of Nup88/214 inhibited nuclear export of recombination signal-binding protein for immunoglobulin κJ region (RBP-J), the DNA-binding component of the Notch pathway. This inhibition increased binding of RBP-J to its cognate promoter regions, resulting in increased downstream Notch signaling. Interestingly, we also found that NUP214 fusion proteins, causative for certain cases of T-cell acute lymphatic leukemia, potentially contribute to tumorigenesis via a Notch-dependent mechanism. In summary, the nuclear pore components Nup88/214 suppress Notch signaling in vitro, and in zebrafish, nuclear RBP-J levels are rate-limiting factors for Notch signaling in mammalian cells, and regulation of nucleocytoplasmic transport of RBP-J may contribute to fine-tuning Notch activity in cells.
Collapse
Affiliation(s)
- Bastian Kindermann
- Leibniz Institut für Alternsforschung-Fritz Lipmann Institut, 07745 Jena, Germany
| | - Christina Valkova
- Leibniz Institut für Alternsforschung-Fritz Lipmann Institut, 07745 Jena, Germany
| | - Andreas Krämer
- Leibniz Institut für Alternsforschung-Fritz Lipmann Institut, 07745 Jena, Germany
| | - Birgit Perner
- Leibniz Institut für Alternsforschung-Fritz Lipmann Institut, 07745 Jena, Germany
| | - Christian Engelmann
- Leibniz Institut für Alternsforschung-Fritz Lipmann Institut, 07745 Jena, Germany
| | - Laura Behrendt
- Leibniz Institut für Alternsforschung-Fritz Lipmann Institut, 07745 Jena, Germany
| | - Daniel Kritsch
- Institut für Biochemie und Biophysik, Friedrich Schiller Universität Jena, 07745 Jena, Germany
| | - Berit Jungnickel
- Institut für Biochemie und Biophysik, Friedrich Schiller Universität Jena, 07745 Jena, Germany
| | - Ralph H Kehlenbach
- Department of Molecular Biology, Universitätsmedizin Göttingen, 37073 Göttingen, Germany
| | - Franz Oswald
- Universitätsklinikum Ulm, Zentrum für Innere Medizin, Abteilung für Innere Medizin I, 89081 Ulm, Germany
| | - Christoph Englert
- Leibniz Institut für Alternsforschung-Fritz Lipmann Institut, 07745 Jena, Germany.,Institut für Biochemie und Biophysik, Friedrich Schiller Universität Jena, 07745 Jena, Germany
| | - Christoph Kaether
- Leibniz Institut für Alternsforschung-Fritz Lipmann Institut, 07745 Jena, Germany
| |
Collapse
|
16
|
Li Y, Liu T, Zhang J. The ATPase TER94 regulates Notch signaling during Drosophila wing development. Biol Open 2019; 8:bio.038984. [PMID: 30530809 PMCID: PMC6361195 DOI: 10.1242/bio.038984] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The evolutionarily conserved Notch signaling pathway plays crucial roles in various developmental contexts. Multiple mechanisms are involved in the regulation of Notch pathway activity. Identified through a genetic mosaic screen, we show that the ATPase TER94 acts as a positive regulator of Notch signaling during Drosophila wing development. Depletion of TER94 causes marginal notches in the adult wing and the reduction of Notch target genes wingless and cut during wing margin formation. We provide evidence that TER94 is likely required for proper Notch protein localization and activation. Furthermore, we show that knockdown of the TER94 adaptor p47 leads to similar Notch signaling defects. Although the TER94 complex is implicated in various cellular processes, its role in the regulation of Notch pathways was previously uncharacterized. Our study demonstrates that TER94 positively regulates Notch signaling and thus reveals a novel role of TER94 in development. This article has an associated First Person interview with the first author of the paper. Summary: Our study demonstrates that the ATPase TER94 and the p47 adaptor positively regulate Notch signaling during Drosophila wing development, thus establishing a functional interaction between TER94 and Notch signaling activity.
Collapse
Affiliation(s)
- Yunlong Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100094 Beijing, China
| | - Tong Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100094 Beijing, China
| | - Junzheng Zhang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100094 Beijing, China
| |
Collapse
|
17
|
Nakano T, Katsuki S, Chen M, Decano JL, Halu A, Lee LH, Pestana DVS, Kum AST, Kuromoto RK, Golden WS, Boff MS, Guimaraes GC, Higashi H, Kauffman KJ, Maejima T, Suzuki T, Iwata H, Barabási AL, Aster JC, Anderson DG, Sharma A, Singh SA, Aikawa E, Aikawa M. Uremic Toxin Indoxyl Sulfate Promotes Proinflammatory Macrophage Activation Via the Interplay of OATP2B1 and Dll4-Notch Signaling. Circulation 2019; 139:78-96. [PMID: 30586693 PMCID: PMC6311723 DOI: 10.1161/circulationaha.118.034588] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Chronic kidney disease (CKD) increases cardiovascular risk. Underlying mechanisms, however, remain obscure. The uremic toxin indoxyl sulfate is an independent cardiovascular risk factor in CKD. We explored the potential impact of indoxyl sulfate on proinflammatory activation of macrophages and its underlying mechanisms. METHODS We examined in vitro the effects of clinically relevant concentrations of indoxyl sulfate on proinflammatory responses of macrophages and the roles of organic anion transporters and organic anion transporting polypeptides (OATPs). A systems approach, involving unbiased global proteomics, bioinformatics, and network analysis, then explored potential key pathways. To address the role of Delta-like 4 (Dll4) in indoxyl sulfate-induced macrophage activation and atherogenesis in CKD in vivo, we used 5/6 nephrectomy and Dll4 antibody in low-density lipoprotein receptor-deficient (Ldlr-/-) mice. To further determine the relative contribution of OATP2B1 or Dll4 to proinflammatory activation of macrophages and atherogenesis in vivo, we used siRNA delivered by macrophage-targeted lipid nanoparticles in mice. RESULTS We found that indoxyl sulfate-induced proinflammatory macrophage activation is mediated by its uptake through transporters, including OATP2B1, encoded by the SLCO2B1 gene. The global proteomics identified potential mechanisms, including Notch signaling and the ubiquitin-proteasome pathway, that mediate indoxyl sulfate-triggered proinflammatory macrophage activation. We chose the Notch pathway as an example of key candidates for validation of our target discovery platform and for further mechanistic studies. As predicted computationally, indoxyl sulfate triggered Notch signaling, which was preceded by the rapid induction of Dll4 protein. Dll4 induction may result from inhibition of the ubiquitin-proteasome pathway, via the deubiquitinating enzyme USP5. In mice, macrophage-targeted OATP2B1/Slco2b1 silencing and Dll4 antibody inhibited proinflammatory activation of peritoneal macrophages induced by indoxyl sulfate. In low-density lipoprotein receptor-deficient mice, Dll4 antibody abolished atherosclerotic lesion development accelerated in Ldlr-/- mice. Moreover, coadministration of indoxyl sulfate and OATP2B1/Slco2b1 or Dll4 siRNA encapsulated in macrophage-targeted lipid nanoparticles in Ldlr-/- mice suppressed lesion development. CONCLUSIONS These results suggest that novel crosstalk between OATP2B1 and Dll4-Notch signaling in macrophages mediates indoxyl sulfate-induced vascular inflammation in CKD.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Animals
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Atherosclerosis/prevention & control
- Calcium-Binding Proteins
- Disease Models, Animal
- Humans
- Indican/toxicity
- Inflammation Mediators/metabolism
- Intercellular Signaling Peptides and Proteins/genetics
- Intercellular Signaling Peptides and Proteins/metabolism
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/metabolism
- Macrophage Activation/drug effects
- Macrophages/drug effects
- Macrophages/metabolism
- Macrophages/pathology
- Male
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice
- Mice, Knockout
- Organic Anion Transporters/genetics
- Organic Anion Transporters/metabolism
- Phenotype
- Plaque, Atherosclerotic
- RAW 264.7 Cells
- Receptors, LDL/deficiency
- Receptors, LDL/genetics
- Receptors, Notch/genetics
- Receptors, Notch/metabolism
- Renal Insufficiency, Chronic/genetics
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/pathology
- Signal Transduction/drug effects
- Vascular Calcification/metabolism
- Vascular Calcification/pathology
Collapse
Affiliation(s)
- Toshiaki Nakano
- Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Shunsuke Katsuki
- Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Mingxian Chen
- Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Julius L. Decano
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Arda Halu
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Lang Ho Lee
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Diego V. S. Pestana
- Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Angelo S. T. Kum
- Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Rodrigo K. Kuromoto
- Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Whitney S. Golden
- Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Mario S. Boff
- Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Gabriel C. Guimaraes
- Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Hideyuki Higashi
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Kevin J. Kauffman
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA
| | - Takashi Maejima
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Takehiro Suzuki
- Division of Medical Science, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan
| | - Hiroshi Iwata
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Albert-László Barabási
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Center for Complex Network Research, Northeastern University, Boston, MA
| | - Jon C. Aster
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Daniel G. Anderson
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA
| | - Amitabh Sharma
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Sasha A. Singh
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Elena Aikawa
- Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Masanori Aikawa
- Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
18
|
IL-4-dependent Jagged1 expression/processing is associated with survival of chronic lymphocytic leukemia cells but not with Notch activation. Cell Death Dis 2018; 9:1160. [PMID: 30478302 PMCID: PMC6255763 DOI: 10.1038/s41419-018-1185-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 12/15/2022]
Abstract
As previously reported, chronic lymphocytic leukemia (CLL) cells show constitutive Notch1/2 activation and express the Notchligand Jagged1. Despite increasing knowledge of the impact of Notch alterations on CLL biology and pathogenesis, the role of Jagged1 expressed in CLL cells remains undefined. In other cell types, it has been shown that after Notch engagement, Jagged1 not only activates Notch in signal-receiving cell, but also undergoes proteolytic activation in signal-sending cell, triggering a signaling with biological effects. We investigated whether Jagged1 expressed in CLL cells undergoes proteolytic processing and/or is able to induce Notch activation through autocrine/paracrine loops, focusing on the effect that CLL prosurvival factor IL-4 could exert on the Notch-Jagged1 system in these cells. We found that Jagged1 was constitutively processed in CLL cells and generated an intracellular fragment that translocated into the nucleus, and an extracellular fragment released into the culture supernatant. IL-4 enhanced expression of Jagged1 and its intracellular fragments, as well as Notch1/2 activation. The IL-4-induced increase in Notch1/2 activation was independent of the concomitant upregulated Jagged1 levels. Indeed, blocking Notch-Jagged1 interactions among CLL cells with Jagged1 neutralizing antibodies did not affect the expression of the Notch target Hes1. Notably, anti-Jagged1 antibodies partially prevented the IL-4-induced increase in Jagged1 processing and cell viability, suggesting that Jagged1 processing is one of the events contributing to IL-4-induced CLL cell survival. Consistent with this, Jagged1 silencing by small interfering RNA partially counteracted the capacity of IL-4 to promote CLL cell survival. Investigating the pathways whereby IL-4 promoted Notch1/2 activation in CLL cells independent of Jagged1, we found that PI3Kδ/AKT and PKCδ were involved in upregulating Notch1 and Notch2 proteins, respectively. Overall, this study provides new insights into the Notch-ligand system in CLL cells and suggests that targeting this system may be exploited as a novel/additional therapy approach for CLL.
Collapse
|
19
|
Li B, Wong C, Gao SM, Zhang R, Sun R, Li Y, Song Y. The retromer complex safeguards against neural progenitor-derived tumorigenesis by regulating Notch receptor trafficking. eLife 2018; 7:38181. [PMID: 30176986 PMCID: PMC6140715 DOI: 10.7554/elife.38181] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/17/2018] [Indexed: 12/14/2022] Open
Abstract
The correct establishment and maintenance of unidirectional Notch signaling are critical for the homeostasis of various stem cell lineages. However, the molecular mechanisms that prevent cell-autonomous ectopic Notch signaling activation and deleterious cell fate decisions remain unclear. Here we show that the retromer complex directly and specifically regulates Notch receptor retrograde trafficking in Drosophila neuroblast lineages to ensure the unidirectional Notch signaling from neural progenitors to neuroblasts. Notch polyubiquitination mediated by E3 ubiquitin ligase Itch/Su(dx) is inherently inefficient within neural progenitors, relying on retromer-mediated trafficking to avoid aberrant endosomal accumulation of Notch and cell-autonomous signaling activation. Upon retromer dysfunction, hypo-ubiquitinated Notch accumulates in Rab7+ enlarged endosomes, where it is ectopically processed and activated in a ligand-dependent manner, causing progenitor-originated tumorigenesis. Our results therefore unveil a safeguard mechanism whereby retromer retrieves potentially harmful Notch receptors in a timely manner to prevent aberrant Notch activation-induced neural progenitor dedifferentiation and brain tumor formation. Most cells in the animal body are tailored to perform particular tasks, but stem cells have not yet made their choice. Instead, they have unlimited capacity to divide and, with the right signals, they can start to specialize to become a given type of cells. In the brain, this process starts with a stem cell dividing. One of the daughters will remain a stem cell, while the other, the neural progenitor, will differentiate to form a mature cell such as a neuron. Keeping this tight balance is crucial for the health of the organ: if the progenitor reverts back to being a stem cell, there will be a surplus of undifferentiated cells that can lead to a tumor. A one-way signal driven by the protein Notch partly controls the distinct fates of the two daughter cells. While the neural progenitor carries Notch at its surface, its neural stem cell sister has a Notch receptor on its membrane instead. This ensures that the Notch signaling goes in one direction, from the cell with Notch to the one sporting the receptor. When a stem cell divides, one daughter gets more of a protein called Numb than the other. Numb pulls Notch receptors away from the external membrane and into internal capsules called endosomes. This guarantees that only one of the siblings will be carrying the receptors at its surface. Yet, sometimes the Notch receptors can get activated in the endosomes, which may make neural progenitors revert to being stem cells. It is still unclear what tools the cells have to stop this abnormal activation. Here, Li et al. screened brain cells from fruit fly larvae to find out the genes that might play a role in suppressing the inappropriate Notch signaling. This highlighted a protein complex known as the retromer, which normally helps to transport proteins in the cell. Experiments showed that, in progenitors, the retromer physically interacts with Notch receptors and retrieves them from the endosomes back to the cell surface. If the retromer is inactive, the Notch receptors accumulate in the endosomes, where they can be switched on. It seems that, in fruit flies, the retromer acts as a bomb squad that recognizes and retrieves potentially harmful Notch receptors, thereby preventing brain tumor formation. Several retromer components are less present in patients with various cancers, including glioblastoma, an aggressive form of brain cancer. The results by Li et al. may therefore shed light on the link between the protein complex and the emergence of the disease in humans.
Collapse
Affiliation(s)
- Bo Li
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Chouin Wong
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Shihong Max Gao
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Rulan Zhang
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Rongbo Sun
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China.,PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China.,PKU-IDG/McGovern Institute for Brain Research, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yan Song
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| |
Collapse
|
20
|
Nonneman A, Criem N, Lewandowski SA, Nuyts R, Thal DR, Pfrieger FW, Ravits J, Van Damme P, Zwijsen A, Van Den Bosch L, Robberecht W. Astrocyte-derived Jagged-1 mitigates deleterious Notch signaling in amyotrophic lateral sclerosis. Neurobiol Dis 2018; 119:26-40. [PMID: 30010003 DOI: 10.1016/j.nbd.2018.07.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 06/21/2018] [Accepted: 07/11/2018] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a late-onset devastating degenerative disease mainly affecting motor neurons. Motor neuron degeneration is accompanied and aggravated by oligodendroglial pathology and the presence of reactive astrocytes and microglia. We studied the role of the Notch signaling pathway in ALS, as it is implicated in several processes that may contribute to this disease, including axonal retraction, microgliosis, astrocytosis, oligodendrocyte precursor cell proliferation and differentiation, and cell death. We observed abnormal activation of the Notch signaling pathway in the spinal cord of SOD1G93A mice, a well-established model for ALS, as well as in the spinal cord of patients with sporadic ALS (sALS). This increased activation was particularly evident in reactive GFAP-positive astrocytes. In addition, one of the main Notch ligands, Jagged-1, was ectopically expressed in reactive astrocytes in spinal cord from ALS mice and patients, but absent in resting astrocytes. Astrocyte-specific inactivation of Jagged-1 in presymptomatic SOD1G93A mice further exacerbated the activation of the Notch signaling pathway and aggravated the course of the disease in these animals without affecting disease onset. These data suggest that aberrant Notch signaling activation contributes to the pathogenesis of ALS, both in sALS patients and SOD1G93A mice, and that it is mitigated in part by the upregulation of astrocytic Jagged-1.
Collapse
Affiliation(s)
- Annelies Nonneman
- KU Leuven - University of Leuven, Department of Neurosciences, Laboratory of Neurobiology and Experimental Neurology, and Leuven Brain Institute (LBI), Herestraat 49, B-3000 Leuven, Belgium; VIB, Center for Brain & Disease Research, Herestraat 49, B-3000 Leuven, Belgium
| | - Nathan Criem
- VIB, Center for Brain & Disease Research, Herestraat 49, B-3000 Leuven, Belgium; KU Leuven - University of Leuven, Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, Herestraat 49, B-3000 Leuven, Belgium; KU Leuven - University of Leuven, Department of Human Genetics, Herestraat 49, B-3000 Leuven, Belgium
| | - Sebastian A Lewandowski
- KTH-Royal Institute of Technology, Affinity Proteomics, SciLifeLab, 171 77 Stockholm, Sweden; Karolinska Institute, Department of Clinical Neuroscience, 171 77 Stockholm, Sweden
| | - Rik Nuyts
- KU Leuven - University of Leuven, Department of Neurosciences, Laboratory of Neurobiology and Experimental Neurology, and Leuven Brain Institute (LBI), Herestraat 49, B-3000 Leuven, Belgium; VIB, Center for Brain & Disease Research, Herestraat 49, B-3000 Leuven, Belgium
| | - Dietmar R Thal
- KU Leuven - University of Leuven, Department of Neurosciences, Laboratory for Neuropathology, Herestraat 49, B-3000 Leuven, Belgium; University Hospitals Leuven, Department of Neurology, Herestraat 49, B-3000 Leuven, Belgium
| | - Frank W Pfrieger
- Institute of Cellular and Integrative Neurosciences, CNRS UPR 3212, University of Strasbourg, 67084 Strasbourg, France
| | - John Ravits
- University of California, Department of Neurosciences, 9500 Gilman Drive, La Jolla, San Diego, CA 92093-0624, USA
| | - Philip Van Damme
- KU Leuven - University of Leuven, Department of Neurosciences, Laboratory of Neurobiology and Experimental Neurology, and Leuven Brain Institute (LBI), Herestraat 49, B-3000 Leuven, Belgium; VIB, Center for Brain & Disease Research, Herestraat 49, B-3000 Leuven, Belgium; University Hospitals Leuven, Department of Neurology, Herestraat 49, B-3000 Leuven, Belgium
| | - An Zwijsen
- VIB, Center for Brain & Disease Research, Herestraat 49, B-3000 Leuven, Belgium; KU Leuven - University of Leuven, Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, Herestraat 49, B-3000 Leuven, Belgium; KU Leuven - University of Leuven, Department of Human Genetics, Herestraat 49, B-3000 Leuven, Belgium
| | - Ludo Van Den Bosch
- KU Leuven - University of Leuven, Department of Neurosciences, Laboratory of Neurobiology and Experimental Neurology, and Leuven Brain Institute (LBI), Herestraat 49, B-3000 Leuven, Belgium; VIB, Center for Brain & Disease Research, Herestraat 49, B-3000 Leuven, Belgium
| | - Wim Robberecht
- KU Leuven - University of Leuven, Department of Neurosciences, Laboratory of Neurobiology and Experimental Neurology, and Leuven Brain Institute (LBI), Herestraat 49, B-3000 Leuven, Belgium; VIB, Center for Brain & Disease Research, Herestraat 49, B-3000 Leuven, Belgium; University Hospitals Leuven, Department of Neurology, Herestraat 49, B-3000 Leuven, Belgium.
| |
Collapse
|
21
|
Jiang T, Huang M, Jiang T, Gu Y, Wang Y, Wu Y, Ma H, Jin G, Dai J, Hu Z. Genome-wide compound heterozygosity analysis highlighted 4 novel susceptibility loci for congenital heart disease in Chinese population. Clin Genet 2018; 94:296-302. [PMID: 29774522 DOI: 10.1111/cge.13384] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/25/2018] [Accepted: 05/15/2018] [Indexed: 01/25/2023]
Abstract
Genome-wide association studies (GWASs) have achieved great success in deciphering the genetic cause of congenital heart disease (CHD). However, the heritability of CHD remains to be clarified, and numerous genetic factors responsible for occurrence of CHD are yet unclear. In this study, we performed a genome-wide search for relaxed forms of compound heterozygosity (CH) in association with CHD using our existing GWAS data including 2265 individuals (957 CHD cases and 1308 controls). CollapsABEL was used to iteratively test the association between the CH genotype and the CHD phenotype in a sliding window manner. We highlighted 17 genetic loci showing suggestive CH-like associations with CHD (P < 5 × 10-8 ), among which 4 genetic loci had expression quantitative trait loci (eQTL) effects in blood (PeQTL < 0.01). After conditional association analysis, each loci had only 1 independently effective signal reaching the significance threshold (rs2071477/rs3129299 at 6p21.32, P = 2.47 × 10-10 ; rs10773097/rs2880921 at 12q24.31, P = 3.30 × 10-8 ; rs73032040/rs7259476 at 19q13.11, P = 1.14 × 10-8 ; rs10416386/rs4239517 at 19q13.31, P = 1.15 × 10-9 ), together explained 7.83% of the CHD variance. Among these 4 associated loci, outstanding candidates for CHD-associated genes included UBC, CFM2, ZNF302, LYPD3 and CADM4. Although replication studies with larger sample size are warranted, the first CH GWAS of CHD may extend our current knowledge of the genetic contributions to CHD in the Han Chinese population.
Collapse
Affiliation(s)
- T Jiang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - M Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - T Jiang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Y Gu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Y Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Y Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - H Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - G Jin
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - J Dai
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Z Hu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
22
|
Rosati E, Baldoni S, De Falco F, Del Papa B, Dorillo E, Rompietti C, Albi E, Falzetti F, Di Ianni M, Sportoletti P. NOTCH1 Aberrations in Chronic Lymphocytic Leukemia. Front Oncol 2018; 8:229. [PMID: 29998084 PMCID: PMC6030253 DOI: 10.3389/fonc.2018.00229] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 06/05/2018] [Indexed: 01/13/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is an incurable B-cell neoplasm characterized by highly variable clinical outcomes. In recent years, genomic and molecular studies revealed a remarkable heterogeneity in CLL, which mirrored the clinical diversity of this disease. These studies profoundly enhanced our understanding of leukemia cell biology and led to the identification of new biomarkers with potential prognostic and therapeutic significance. Accumulating evidence indicates a key role of deregulated NOTCH1 signaling and NOTCH1 mutations in CLL. This review highlights recent discoveries that improve our understanding of the pathophysiological NOTCH1 signaling in CLL and the clinical impact of NOTCH1 mutations in retrospective and prospective trials. In addition, we discuss the rationale for a therapeutic strategy aiming at inhibiting NOTCH1 signaling in CLL, along with an overview on the currently available NOTCH1-directed approaches.
Collapse
Affiliation(s)
- Emanuela Rosati
- Department of Experimental Medicine, Biosciences and Medical Embryology Section, University of Perugia, Perugia, Italy
| | - Stefano Baldoni
- Department of Life, Hematology Section, Health and Environmental Sciences, University of L'Aquila, Perugia, Italy
| | - Filomena De Falco
- Institute of Hematology-Centro di Ricerche Emato-Oncologiche (CREO), University of Perugia, Perugia, Italy
| | - Beatrice Del Papa
- Institute of Hematology-Centro di Ricerche Emato-Oncologiche (CREO), University of Perugia, Perugia, Italy
| | - Erica Dorillo
- Institute of Hematology-Centro di Ricerche Emato-Oncologiche (CREO), University of Perugia, Perugia, Italy
| | - Chiara Rompietti
- Institute of Hematology-Centro di Ricerche Emato-Oncologiche (CREO), University of Perugia, Perugia, Italy
| | - Elisa Albi
- Institute of Hematology-Centro di Ricerche Emato-Oncologiche (CREO), University of Perugia, Perugia, Italy
| | - Franca Falzetti
- Institute of Hematology-Centro di Ricerche Emato-Oncologiche (CREO), University of Perugia, Perugia, Italy
| | - Mauro Di Ianni
- Department of Medicine and Aging Sciences, University of Chieti Pescara, Chieti, Italy.,Department of Hematology, Transfusion Medicine and Biotechnologies, Ospedale Civile, Pescara, Italy
| | - Paolo Sportoletti
- Institute of Hematology-Centro di Ricerche Emato-Oncologiche (CREO), University of Perugia, Perugia, Italy
| |
Collapse
|
23
|
Insight into Notch Signaling Steps That Involve pecanex from Dominant-Modifier Screens in Drosophila. Genetics 2018; 209:1099-1119. [PMID: 29853475 DOI: 10.1534/genetics.118.300935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 05/22/2018] [Indexed: 12/14/2022] Open
Abstract
Notch signaling plays crucial roles in intercellular communications. In Drosophila, the pecanex (pcx) gene, which encodes an evolutionarily conserved multi-pass transmembrane protein, appears to be required to activate Notch signaling in some contexts, especially during neuroblast segregation in the neuroectoderm. Although Pcx has been suggested to contribute to endoplasmic reticulum homeostasis, its functions remain unknown. Here, to elucidate these roles, we performed genetic modifier screens of pcx We found that pcx heterozygotes lacking its maternal contribution exhibit cold-sensitive lethality, which is attributed to a reduction in Notch signaling at decreased temperatures. Using sets of deletions that uncover most of the second and third chromosomes, we identified four enhancers and two suppressors of the pcx cold-sensitive lethality. Among these, five genes encode known Notch-signaling components: big brain, Delta (Dl), neuralized (neur), Brother of Bearded A (BobA), a member of the Bearded (Brd) family, and N-ethylmaleimide-sensitive factor 2 (Nsf2). We showed that BobA suppresses Dl endocytosis during neuroblast segregation in the neuroectoderm, as Brd family genes reportedly do in the mesoderm for mesectoderm specification. Analyses of Nsf2, a key regulator of vesicular fusion, suggested a novel role in neuroblast segregation, which is distinct from Nsf2's previously reported role in imaginal tissues. Finally, jim lovell, which encodes a potential transcription factor, may play a role in Notch signaling during neuroblast segregation. These results reveal new research avenues for Pcx functions and Notch signaling.
Collapse
|
24
|
Di Ianni M, Baldoni S, Del Papa B, Aureli P, Dorillo E, De Falco F, Albi E, Varasano E, Di Tommaso A, Giancola R, Accorsi P, Rotta G, Rompietti C, Silva Barcelos EC, Campese AF, Di Bartolomeo P, Screpanti I, Rosati E, Falzetti F, Sportoletti P. NOTCH1 Is Aberrantly Activated in Chronic Lymphocytic Leukemia Hematopoietic Stem Cells. Front Oncol 2018; 8:105. [PMID: 29732315 PMCID: PMC5919960 DOI: 10.3389/fonc.2018.00105] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 03/23/2018] [Indexed: 11/13/2022] Open
Abstract
To investigate chronic lymphocytic leukemia (CLL)-initiating cells, we assessed NOTCH1 mutation/expression in hematopoietic stem cells (HSCs). In NOTCH1-mutated CLL, we detected subclonal mutations in 57% CD34+/CD38− HSCs. NOTCH1 mutation was present in 66% CD34+/CD38+ progenitor cells displaying an increased mutational burden compared to HSCs. Flow cytometric analysis revealed significantly higher NOTCH1 activation in CD34+/CD38− and CD34+/CD38+ cells from CLL patients, regardless NOTCH1 mutation compared to healthy donors. Activated NOTCH1 resulted in overexpression of the NOTCH1 target c-MYC. We conclude that activated NOTCH1 is an early event in CLL that may contribute to aberrant HSCs in this disease.
Collapse
Affiliation(s)
- Mauro Di Ianni
- Department of Medicine and Aging Sciences, University of Chieti Pescara, Chieti, Italy.,Department of Hematology, Transfusion Medicine and Biotechnologies, Ospedale Civile, Pescara, Italy
| | - Stefano Baldoni
- Department of Life, Health and Environmental Sciences, Hematology Section, University of L'Aquila, L'Aquila, Italy
| | - Beatrice Del Papa
- Institute of Hematology-Centro di Ricerche Emato-Oncologiche (CREO), University of Perugia, Perugia, Italy
| | - Patrizia Aureli
- Institute of Hematology-Centro di Ricerche Emato-Oncologiche (CREO), University of Perugia, Perugia, Italy
| | - Erica Dorillo
- Institute of Hematology-Centro di Ricerche Emato-Oncologiche (CREO), University of Perugia, Perugia, Italy
| | - Filomena De Falco
- Institute of Hematology-Centro di Ricerche Emato-Oncologiche (CREO), University of Perugia, Perugia, Italy
| | - Elisa Albi
- Institute of Hematology-Centro di Ricerche Emato-Oncologiche (CREO), University of Perugia, Perugia, Italy
| | - Emanuela Varasano
- Institute of Hematology-Centro di Ricerche Emato-Oncologiche (CREO), University of Perugia, Perugia, Italy
| | - Ambra Di Tommaso
- Department of Life, Health and Environmental Sciences, Hematology Section, University of L'Aquila, L'Aquila, Italy
| | - Raffaella Giancola
- Department of Hematology, Transfusion Medicine and Biotechnologies, Ospedale Civile, Pescara, Italy
| | - Patrizia Accorsi
- Department of Hematology, Transfusion Medicine and Biotechnologies, Ospedale Civile, Pescara, Italy
| | | | - Chiara Rompietti
- Institute of Hematology-Centro di Ricerche Emato-Oncologiche (CREO), University of Perugia, Perugia, Italy
| | - Estevão Carlos Silva Barcelos
- Institute of Hematology-Centro di Ricerche Emato-Oncologiche (CREO), University of Perugia, Perugia, Italy.,Universidade Federal do Espírito Santo, Vitória, Brazil
| | | | - Paolo Di Bartolomeo
- Department of Hematology, Transfusion Medicine and Biotechnologies, Ospedale Civile, Pescara, Italy
| | - Isabella Screpanti
- Department of Molecular Medicine, Sapienza, University of Rome, Rome, Italy
| | - Emanuela Rosati
- Department of Experimental Medicine, Biosciences and Medical Embriology Section, University of Perugia, Perugia, Italy
| | - Franca Falzetti
- Institute of Hematology-Centro di Ricerche Emato-Oncologiche (CREO), University of Perugia, Perugia, Italy
| | - Paolo Sportoletti
- Institute of Hematology-Centro di Ricerche Emato-Oncologiche (CREO), University of Perugia, Perugia, Italy
| |
Collapse
|
25
|
Bala Tannan N, Collu G, Humphries AC, Serysheva E, Weber U, Mlodzik M. AKAP200 promotes Notch stability by protecting it from Cbl/lysosome-mediated degradation in Drosophila melanogaster. PLoS Genet 2018; 14:e1007153. [PMID: 29309414 PMCID: PMC5785023 DOI: 10.1371/journal.pgen.1007153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 01/25/2018] [Accepted: 12/13/2017] [Indexed: 12/30/2022] Open
Abstract
AKAP200 is a Drosophila melanogaster member of the “A Kinase Associated Protein” family of scaffolding proteins, known for their role in the spatial and temporal regulation of Protein Kinase A (PKA) in multiple signaling contexts. Here, we demonstrate an unexpected function of AKAP200 in promoting Notch protein stability. In Drosophila, AKAP200 loss-of-function (LOF) mutants show phenotypes that resemble Notch LOF defects, including eye patterning and sensory organ specification defects. Through genetic interactions, we demonstrate that AKAP200 interacts positively with Notch in both the eye and the thorax. We further show that AKAP200 is part of a physical complex with Notch. Biochemical studies reveal that AKAP200 stabilizes endogenous Notch protein, and that it limits ubiquitination of Notch. Specifically, our genetic and biochemical evidence indicates that AKAP200 protects Notch from the E3-ubiquitin ligase Cbl, which targets Notch to the lysosomal pathway. Indeed, we demonstrate that the effect of AKAP200 on Notch levels depends on the lysosome. Interestingly, this function of AKAP200 is fully independent of its role in PKA signaling and independent of its ability to bind PKA. Taken together, our data indicate that AKAP200 is a novel tissue specific posttranslational regulator of Notch, maintaining high Notch protein levels and thus promoting Notch signaling. AKAP200 belongs to a family of scaffolding proteins best known for their regulation of PKA localization. In this study, we have identified a novel role of AKAP200 in Notch protein stability and signaling. In Drosophila melanogaster, AKAP200’s loss and gain-of-function (LOF/GOF) phenotypes are characteristic of Notch signaling defects. Furthermore, we demonstrated genetic interactions between AKAP200 and Notch. Consistent with this, AKAP200 stabilizes the endogenous Notch protein and limits its ubiquitination. AKAP200 exerts its effects on Notch by antagonizing Cbl-mediated ubiquitination and thus lysosome targeting of Notch. Based on these data, we postulate a novel PKA independent mechanism of AKAP200 to achieve optimal Notch protein levels, with AKAP200 preventing Cbl-mediated lysosomal degradation of Notch.
Collapse
Affiliation(s)
- Neeta Bala Tannan
- Dept. of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Giovanna Collu
- Dept. of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Ashley C. Humphries
- Dept. of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Ekatherina Serysheva
- Dept. of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Ursula Weber
- Dept. of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Marek Mlodzik
- Dept. of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
26
|
Salazar JL, Yamamoto S. Integration of Drosophila and Human Genetics to Understand Notch Signaling Related Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1066:141-185. [PMID: 30030826 PMCID: PMC6233323 DOI: 10.1007/978-3-319-89512-3_8] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Notch signaling research dates back to more than one hundred years, beginning with the identification of the Notch mutant in the fruit fly Drosophila melanogaster. Since then, research on Notch and related genes in flies has laid the foundation of what we now know as the Notch signaling pathway. In the 1990s, basic biological and biochemical studies of Notch signaling components in mammalian systems, as well as identification of rare mutations in Notch signaling pathway genes in human patients with rare Mendelian diseases or cancer, increased the significance of this pathway in human biology and medicine. In the 21st century, Drosophila and other genetic model organisms continue to play a leading role in understanding basic Notch biology. Furthermore, these model organisms can be used in a translational manner to study underlying mechanisms of Notch-related human diseases and to investigate the function of novel disease associated genes and variants. In this chapter, we first briefly review the major contributions of Drosophila to Notch signaling research, discussing the similarities and differences between the fly and human pathways. Next, we introduce several biological contexts in Drosophila in which Notch signaling has been extensively characterized. Finally, we discuss a number of genetic diseases caused by mutations in genes in the Notch signaling pathway in humans and we expand on how Drosophila can be used to study rare genetic variants associated with these and novel disorders. By combining modern genomics and state-of-the art technologies, Drosophila research is continuing to reveal exciting biology that sheds light onto mechanisms of disease.
Collapse
Affiliation(s)
- Jose L Salazar
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX, USA
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX, USA.
- Program in Developmental Biology, BCM, Houston, TX, USA.
- Department of Neuroscience, BCM, Houston, TX, USA.
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.
| |
Collapse
|
27
|
Ajima R, Suzuki E, Saga Y. Pofut1 point-mutations that disrupt O-fucosyltransferase activity destabilize the protein and abolish Notch1 signaling during mouse somitogenesis. PLoS One 2017; 12:e0187248. [PMID: 29095923 PMCID: PMC5667770 DOI: 10.1371/journal.pone.0187248] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 10/17/2017] [Indexed: 01/20/2023] Open
Abstract
The segmental pattern of the vertebrate body is established via the periodic formation of somites from the presomitic mesoderm (PSM). This periodical process is controlled by the cyclic and synchronized activation of Notch signaling in the PSM. Protein O-fucosyltransferase1 (Pofut1), which transfers O-fucose to the EGF domains of the Notch1 receptor, is indispensable for Notch signaling activation. The Drosophila homologue Ofut1 was reported to control Notch localization via two different mechanisms, working as a chaperone for Notch or as a regulator of Notch endocytosis. However, these were found to be independent of O-fucosyltransferase activity because the phenotypes were rescued by Ofut1 mutants lacking O-fucosyltransferase activity. Pofut1 may also be involved in the Notch receptor localization in mice. However, the contribution of enzymatic activity of Pofut1 to the Notch receptor dynamics remains to be elucidated. In order to clarify the importance of the O-fucosyltransferase activity of Pofut1 for Notch signaling activation and the protein localization in the PSM, we established mice carrying point mutations at the 245th a.a. or 370-372th a.a., highly conserved amino-acid sequences whose mutations disrupt the O-fucosyltransferase activity of both Drosophila Ofut1 and mammalian Pofut1, with the CRISPR/Cas9 mediated genome-engineering technique. Both mutants displayed the same severely perturbed somite formation and Notch1 subcellular localization defects as the Pofut1 null mutants. In the mutants, Pofut1 protein, but not RNA, became undetectable by E9.5. Furthermore, both wild-type and mutant Pofut1 proteins were degraded through lysosome dependent machinery. Pofut1 protein loss in the point mutant embryos caused the same phenotypes as those observed in Pofut1 null embryos.
Collapse
Affiliation(s)
- Rieko Ajima
- Mammalian Development Laboratory, Genetic Strains Research Center, National Institute of Genetics, Mishima, Shizuoka, Japan
- Mouse Research Supporting Unit, National Institute of Genetics, Mishima, Shizuoka, Japan
- Department of Genetics, SOKENDAI, Mishima, Shizuoka, Japan
- * E-mail: (RA); (YS)
| | - Emiko Suzuki
- Department of Genetics, SOKENDAI, Mishima, Shizuoka, Japan
- Gene Network Laboratory, Structural Biology Center, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Yumiko Saga
- Mammalian Development Laboratory, Genetic Strains Research Center, National Institute of Genetics, Mishima, Shizuoka, Japan
- Mouse Research Supporting Unit, National Institute of Genetics, Mishima, Shizuoka, Japan
- Department of Genetics, SOKENDAI, Mishima, Shizuoka, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- * E-mail: (RA); (YS)
| |
Collapse
|
28
|
Londino JD, Gulick DL, Lear TB, Suber TL, Weathington NM, Masa LS, Chen BB, Mallampalli RK. Post-translational modification of the interferon-gamma receptor alters its stability and signaling. Biochem J 2017; 474:3543-3557. [PMID: 28883123 PMCID: PMC5967388 DOI: 10.1042/bcj20170548] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/28/2017] [Accepted: 09/05/2017] [Indexed: 12/28/2022]
Abstract
The IFN gamma receptor 1 (IFNGR1) binds IFN-γ and activates gene transcription pathways crucial for controlling bacterial and viral infections. Although decreases in IFNGR1 surface levels have been demonstrated to inhibit IFN-γ signaling, little is known regarding the molecular mechanisms controlling receptor stability. Here, we show in epithelial and monocytic cell lines that IFNGR1 displays K48 polyubiquitination, is proteasomally degraded, and harbors three ubiquitin acceptor sites at K277, K279, and K285. Inhibition of glycogen synthase kinase 3 beta (GSK3β) destabilized IFNGR1 while overexpression of GSK3β increased receptor stability. We identified critical serine and threonine residues juxtaposed to ubiquitin acceptor sites that impacted IFNGR1 stability. In CRISPR-Cas9 IFNGR1 generated knockout cell lines, cellular expression of IFNGR1 plasmids encoding ubiquitin acceptor site mutations demonstrated significantly impaired STAT1 phosphorylation and decreased STAT1-dependent gene induction. Thus, IFNGR1 undergoes rapid site-specific polyubiquitination, a process modulated by GSK3β. Ubiquitination appears to be necessary for efficient IFNGR1-dependent gamma gene induction and represents a relatively uncharacterized regulatory mechanism for this receptor.
Collapse
Affiliation(s)
- James D Londino
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Dexter L Gulick
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Travis B Lear
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Tomeka L Suber
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Nathaniel M Weathington
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Luke S Masa
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Bill B Chen
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Rama K Mallampalli
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, U.S.A.
- Medical Specialty Service Line, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, U.S.A
- Department of Cell Biology and Physiology and Bioengineering, University of Pittsburgh, Pittsburgh, PA, U.S.A
| |
Collapse
|
29
|
Sapir T, Levy T, Kozer N, Shin I, Zamor V, Haffner-Krausz R, McGlade JC, Reiner O. Notch Activation by Shootin1 Opposing Activities on 2 Ubiquitin Ligases. Cereb Cortex 2017; 28:3115-3128. [DOI: 10.1093/cercor/bhx180] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 06/23/2017] [Indexed: 12/22/2022] Open
Affiliation(s)
- Tamar Sapir
- Department of Molecular Genetics, Weizmann Institute of Science, 234 Herzl St., Rehovot, Israel
| | - Talia Levy
- Department of Molecular Genetics, Weizmann Institute of Science, 234 Herzl St., Rehovot, Israel
| | - Noga Kozer
- Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, 234 Herzl St., Rehovot, Israel
| | - Irina Shin
- Biological Services Unit, Weizmann Institute of Science, 234 Herzl St., Rehovot, Israel
| | - Vanessa Zamor
- Department of Molecular Genetics, Weizmann Institute of Science, 234 Herzl St., Rehovot, Israel
| | - Rebecca Haffner-Krausz
- Department of Veterinary Resources, Weizmann Institute of Science, 234 Herzl St., Rehovot, Israel
| | - Jane C McGlade
- The Arthur and Sonia Labatt Brain Tumour Research Centre and Program in Cell Biology, The Hospital for Sick Children, 555 University Avenue, Toronto, ON,Canada
- Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, ON, Canada
| | - Orly Reiner
- Department of Molecular Genetics, Weizmann Institute of Science, 234 Herzl St., Rehovot, Israel
| |
Collapse
|
30
|
Ha T, Moon KH, Dai L, Hatakeyama J, Yoon K, Park HS, Kong YY, Shimamura K, Kim JW. The Retinal Pigment Epithelium Is a Notch Signaling Niche in the Mouse Retina. Cell Rep 2017; 19:351-363. [PMID: 28402857 DOI: 10.1016/j.celrep.2017.03.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 01/29/2017] [Accepted: 03/13/2017] [Indexed: 01/24/2023] Open
Abstract
Notch signaling in neural progenitor cell is triggered by ligands expressed in adjacent cells. To identify the sources of active Notch ligands in the mouse retina, we negatively regulated Notch ligand activity in various neighbors of retinal progenitor cells (RPCs) by eliminating mindbomb E3 ubiquitin protein ligase 1 (Mib1). Mib1-deficient retinal cells failed to induce Notch activation in intra-lineage RPCs, which prematurely differentiated into neurons; however, Mib1 in post-mitotic retinal ganglion cells was not important. Interestingly, Mib1 in the retinal pigment epithelium (RPE) also contributed to Notch activation in adjacent RPCs by supporting the localization of active Notch ligands at RPE-RPC contacts. Combining this RPE-driven Notch signaling and intra-retinal Notch signaling, we propose a model in which one RPC daughter receives extra Notch signals from the RPE to become an RPC, whereas its sister cell receives only a subthreshold level of intra-retinal Notch signal and differentiates into a neuron.
Collapse
Affiliation(s)
- Taejeong Ha
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Kyeong Hwan Moon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Le Dai
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Jun Hatakeyama
- Department of Brain Morphogenesis, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Keejung Yoon
- School of Life Science and Biotechnology, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, South Korea
| | - Hee-Sae Park
- Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, South Korea
| | - Young-Yoon Kong
- Department of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Kenji Shimamura
- Department of Brain Morphogenesis, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Jin Woo Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea.
| |
Collapse
|
31
|
Feng Y, Zheng M, Gan S, Zhang L, Wan Z, Zhang Y, Qian Q, Tang J. Identification of potential gene targets in systemic vasculitis using DNA microarray analysis. Mol Med Rep 2017; 15:3665-3673. [PMID: 28440408 PMCID: PMC5436278 DOI: 10.3892/mmr.2017.6455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 01/27/2017] [Indexed: 01/02/2023] Open
Abstract
The present study aimed to identify the involvement of critical genes in systemic vasculitis, to gain an improved understanding of the molecular circuity and to investigate novel potential gene targets for systemic vasculitis treatment. The dual-color cDNA microarray data of GSE16945, consisting of peripheral mononuclear blood cell specimens from 13 patients with systemic vasculitis and 16 healthy controls, was downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were screened in systemic vasculitis compared with controls using BRB ArrayTools, followed by the construction of a protein-protein interaction (PPI) network using the clusterProfiler package, and significant functional interaction (FI) module selection. Furthermore, transcriptional factors (TFs) among the identified DEGs were predicted and a transcriptional regulation network was constructed. A total of 173 up- and 93 downregulated genes were identified, which were mainly associated with immune response pathways. FBJ murine osteosarcoma viral oncogene homolog (FOS), ubiquitin B (UBB), signal transducer and activator of transcription 1 (STAT1) and MX dynamin-like GTPase 1 (MX1) were identified as hub proteins in the PPI network. Furthermore, UBB, FOS, and STAT1 were hub proteins in the three identified FI modules, respectively. In total, nine TFs were predicted among the DEGs. Of the DEGs that were predicted to be TFs, STAT1, v-maf avian musculoaponeurotic fibrosarcoma oncogene homolog B (MAFB) and tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein Z (YWHAZ), which interacted with each other, were identified to regulate further DEGs as target genes. Various genes, including FOS, UBB, MX1, STAT1, MAFB, and YWHAZ may be potential targets useful for the treatment of systemic vasculitis.
Collapse
Affiliation(s)
- Yiwen Feng
- Vascular Surgery Department, Shanghai General Hospital of Nanjing Medical University, Shanghai 200080, P.R. China
| | - Miao Zheng
- Vascular Surgery Department, Shanghai General Hospital of Nanjing Medical University, Shanghai 200080, P.R. China
| | - Shujie Gan
- Vascular Surgery Department, Shanghai General Hospital of Nanjing Medical University, Shanghai 200080, P.R. China
| | - Lei Zhang
- Vascular Surgery Department, Shanghai General Hospital of Nanjing Medical University, Shanghai 200080, P.R. China
| | - Zhong Wan
- Vascular Surgery Department, Shanghai General Hospital of Nanjing Medical University, Shanghai 200080, P.R. China
| | - Yanping Zhang
- Vascular Surgery Department, Shanghai General Hospital of Nanjing Medical University, Shanghai 200080, P.R. China
| | - Qin Qian
- Vascular Surgery Department, Shanghai General Hospital of Nanjing Medical University, Shanghai 200080, P.R. China
| | - Jingdong Tang
- Vascular Surgery Department, Shanghai General Hospital of Nanjing Medical University, Shanghai 200080, P.R. China
| |
Collapse
|
32
|
Cigliano A, Wang J, Chen X, Calvisi DF. Role of the Notch signaling in cholangiocarcinoma. Expert Opin Ther Targets 2017; 21:471-483. [PMID: 28326864 DOI: 10.1080/14728222.2017.1310842] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Cholangiocarcinoma (CCA) is an emerging cancer entity of the liver, associated with poor outcome and characterized by resistance to conventional chemotherapeutic treatments. In the last decade, many signaling pathways associated with CCA development and progression have been identified and are currently under intense investigation. Cumulating evidence indicates that the Notch cascade, a highly-conserved pathway in most multicellular organisms, is a critical player both in liver malignant transformation and tumor aggressiveness, thus representing a potential therapeutic target in this pernicious disease. Areas covered: In the present review article, we comprehensively summarize and critically discuss the current knowledge on the Notch pathway, its specific and key roles in cholangiocarcinogenesis, the treatment strategies aimed at suppressing this signaling cascade in cancer, and the encouraging results coming from preclinical trials. Expert opinion: The Notch pathway represents a major driver of carcinogenesis and a promising therapeutic target in human CCA. A better understanding of the molecular mechanisms triggered by the Notch pathway as well as its functional crosstalk with other signaling cascade will be highly helpful for the design of innovative therapies against human CCA.
Collapse
Affiliation(s)
- Antonio Cigliano
- a Institut für Pathologie , Universitätsmedizin Greifswald , Greifswald , Germany
| | - Jingxiao Wang
- b Second Clinical Medical School , Beijing University of Chinese Medicine , Beijing , China.,c Department of Bioengineering and Therapeutic Sciences and Liver Center , University of California , San Francisco , CA , USA
| | - Xin Chen
- c Department of Bioengineering and Therapeutic Sciences and Liver Center , University of California , San Francisco , CA , USA
| | - Diego F Calvisi
- a Institut für Pathologie , Universitätsmedizin Greifswald , Greifswald , Germany
| |
Collapse
|
33
|
Abstract
In the developing vertebrate embryo, segmentation initiates through the formation of repeated segments, or somites, on either side of the posterior neural tube along the anterior to posterior axis. The periodicity of somitogenesis is regulated by a molecular oscillator, the segmentation clock, driving cyclic gene expression in the unsegmented paraxial mesoderm, from which somites derive. Three signaling pathways underlie the molecular mechanism of the oscillator: Wnt, FGF, and Notch. In particular, Notch has been demonstrated to be an essential piece in the intricate somitogenesis regulation puzzle. Notch is required to synchronize oscillations between neighboring cells, and is moreover necessary for somite formation and clock gene oscillations. Following ligand activation, the Notch receptor is cleaved to liberate the active intracellular domain (NICD) and during somitogenesis NICD itself is produced and degraded in a cyclical manner, requiring tightly regulated, and coordinated turnover. It was recently shown that the pace of the segmentation clock is exquisitely sensitive to levels/stability of NICD. In this review, we focus on what is known about the mechanisms regulating NICD turnover, crucial to the activity of the pathway in all developmental contexts. To date, the regulation of NICD stability has been attributed to phosphorylation of the PEST domain which serves to recruit the SCF/Sel10/FBXW7 E3 ubiquitin ligase complex involved in NICD turnover. We will describe the pathophysiological relevance of NICD-FBXW7 interaction, whose defects have been linked to leukemia and a variety of solid cancers.
Collapse
Affiliation(s)
- Francesca A Carrieri
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee Dundee, UK
| | - Jacqueline Kim Dale
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee Dundee, UK
| |
Collapse
|
34
|
Wang Y, Yu S, Huang D, Cui M, Hu H, Zhang L, Wang W, Parameswaran N, Jackson M, Osborne B, Bedogni B, Li C, Sy MS, Xin W, Zhou L. Cellular Prion Protein Mediates Pancreatic Cancer Cell Survival and Invasion through Association with and Enhanced Signaling of Notch1. THE AMERICAN JOURNAL OF PATHOLOGY 2016. [PMID: 27639164 DOI: 10.1016/j.ajpath.2016.07.010]available] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Up-regulation of human prion protein (PrP) in patients with pancreatic ductal adenocarcinoma (PDAC) is associated with a poor prognosis. However, the underlying molecular mechanism of PrP-mediated tumorigenesis is not completely understood. In this study, we found that PDAC cell lines can be divided into either PrP high expresser or PrP low expresser. In addition to filamin A (FLNA), PrP interacts with Notch1, forming a PrP/FLNA/Notch1 complex. Silencing PrP in high-expresser cells decreases Notch1 expression and Notch1 signaling. These cells exhibited decreased proliferation, xenograft growth, and tumor invasion but show increased tumor apoptosis. These phenotypes were rescued by ectopically expressed and activated Notch1. By contrast, overexpression of PrP in low expressers increases Notch1 expression and signaling, enhances proliferation, and increases tumor invasion and xenograft growth that can be blocked by a Notch inhibitor. Our data further suggest that PrP increases Notch1 stability likely through suppression of Notch proteosome degradation. Additionally, we found that targeting PrP combined with anti-Notch is much more effective than singularly targeted therapy in retarding PDAC growth. Finally, we show that coexpression of PrP and Notch1 confers an even poorer prognosis than PrP expression alone. Taken together, our results have unraveled a novel molecular pathway driven by interactions between PrP and Notch1 in the progression of PDAC, supporting a critical tumor-promoting role of Notch1 in PrP-expressing PDAC tumors.
Collapse
Affiliation(s)
- Yiwei Wang
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Shuiliang Yu
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Dan Huang
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Min Cui
- Department of Pathology, University Hospitals Case Medical Center, Cleveland, Ohio
| | - Huankai Hu
- Department of Pathology, University Hospitals Case Medical Center, Cleveland, Ohio
| | - Lihua Zhang
- Department of Pathology, Affiliated Zhongda Hospital, Southeast University, Nanjing, China
| | - Weihuan Wang
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | | | - Mark Jackson
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Barbara Osborne
- Molecular & Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts
| | - Barbara Bedogni
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio
| | - Chaoyang Li
- State Key Laboratory of Virology and Department of Molecular Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Man-Sun Sy
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Wei Xin
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio; Department of Pathology, University Hospitals Case Medical Center, Cleveland, Ohio
| | - Lan Zhou
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio; Department of Pathology, University Hospitals Case Medical Center, Cleveland, Ohio.
| |
Collapse
|
35
|
Wang Y, Yu S, Huang D, Cui M, Hu H, Zhang L, Wang W, Parameswaran N, Jackson M, Osborne B, Bedogni B, Li C, Sy MS, Xin W, Zhou L. Cellular Prion Protein Mediates Pancreatic Cancer Cell Survival and Invasion through Association with and Enhanced Signaling of Notch1. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2945-2956. [PMID: 27639164 DOI: 10.1016/j.ajpath.2016.07.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/15/2016] [Accepted: 07/19/2016] [Indexed: 01/06/2023]
Abstract
Up-regulation of human prion protein (PrP) in patients with pancreatic ductal adenocarcinoma (PDAC) is associated with a poor prognosis. However, the underlying molecular mechanism of PrP-mediated tumorigenesis is not completely understood. In this study, we found that PDAC cell lines can be divided into either PrP high expresser or PrP low expresser. In addition to filamin A (FLNA), PrP interacts with Notch1, forming a PrP/FLNA/Notch1 complex. Silencing PrP in high-expresser cells decreases Notch1 expression and Notch1 signaling. These cells exhibited decreased proliferation, xenograft growth, and tumor invasion but show increased tumor apoptosis. These phenotypes were rescued by ectopically expressed and activated Notch1. By contrast, overexpression of PrP in low expressers increases Notch1 expression and signaling, enhances proliferation, and increases tumor invasion and xenograft growth that can be blocked by a Notch inhibitor. Our data further suggest that PrP increases Notch1 stability likely through suppression of Notch proteosome degradation. Additionally, we found that targeting PrP combined with anti-Notch is much more effective than singularly targeted therapy in retarding PDAC growth. Finally, we show that coexpression of PrP and Notch1 confers an even poorer prognosis than PrP expression alone. Taken together, our results have unraveled a novel molecular pathway driven by interactions between PrP and Notch1 in the progression of PDAC, supporting a critical tumor-promoting role of Notch1 in PrP-expressing PDAC tumors.
Collapse
Affiliation(s)
- Yiwei Wang
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Shuiliang Yu
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Dan Huang
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Min Cui
- Department of Pathology, University Hospitals Case Medical Center, Cleveland, Ohio
| | - Huankai Hu
- Department of Pathology, University Hospitals Case Medical Center, Cleveland, Ohio
| | - Lihua Zhang
- Department of Pathology, Affiliated Zhongda Hospital, Southeast University, Nanjing, China
| | - Weihuan Wang
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | | | - Mark Jackson
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Barbara Osborne
- Molecular & Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts
| | - Barbara Bedogni
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio
| | - Chaoyang Li
- State Key Laboratory of Virology and Department of Molecular Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Man-Sun Sy
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Wei Xin
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio; Department of Pathology, University Hospitals Case Medical Center, Cleveland, Ohio
| | - Lan Zhou
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio; Department of Pathology, University Hospitals Case Medical Center, Cleveland, Ohio.
| |
Collapse
|
36
|
Callahan R, Chestnut BA, Raafat A. Original Research: Featured Article: Imatinib mesylate (Gleevec) inhibits Notch and c-Myc signaling: Five-day treatment permanently rescues mammary development. Exp Biol Med (Maywood) 2016; 242:53-67. [PMID: 27550925 DOI: 10.1177/1535370216665175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 07/28/2016] [Indexed: 12/31/2022] Open
Abstract
Wap-Int3 transgenic females expressing the Notch4 intracellular domain (designated Int3) from the whey acidic protein promoter exhibit two phenotypes in the mammary gland: blockage of lobuloalveolar development and lactation, and tumor development with 100% penetrance. Previously, we have shown that treatment of Wap-Int3 tumor bearing mice with Imatinib mesylate (Gleevec) is associated with complete regression of the tumor. In the present study, we show that treatment of Wap-Int3 mice during day 1 through day 6 of pregnancy with Gleevec leads to the restoration of their lobuloalveolar development and ability to lactate in subsequent pregnancies in absence of Gleevec treatment. In addition, these mice do not develop mammary tumors. We investigated the mechanism for Gleevec regulation of Notch signaling and found that Gleevec treatment results in a loss of Int3 protein but not of Int3 mRNA in HC11 mouse mammary epithelial cells expressing Int3. The addition of MG-132, a proteasome inhibitor, shows increased ubiquitination of Int3 in the presence of Gleevec. Thus, Gleevec affects the stability of Int3 by promoting the degradation of Int3 via E3 ubiquitin ligases targeting it for the proteasome degradation. Gleevec is a tyrosine kinase inhibitor that acts on c-Kit and PDGFR. Therefore, we investigated the downstream substrate kinase GSK3β to ascertain the possible role that this kinase might play in the stability of Int3. Data show that Gleevec degradation of Int3 is GSK3β dependent. We have expanded our study of the effects Gleevec has on tumorigenesis of other oncogenes. We have found that anchorage-independent growth of HC11-c-Myc cells as well as tumor growth in nude mice is inhibited by Gleevec treatment. As with Int3, Gleevec treatment appears to destabilize the c-Myc protein but not mRNA. These results indicate that Gleevec could be a potential therapeutic drug for patients bearing Notch4 and/or c-Myc positive breast carcinomas.
Collapse
Affiliation(s)
- Robert Callahan
- Basic Research Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | - Barry A Chestnut
- Basic Research Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | - Ahmed Raafat
- Basic Research Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA
| |
Collapse
|
37
|
Liu J, Shen JX, Wen XF, Guo YX, Zhang GJ. Targeting Notch degradation system provides promise for breast cancer therapeutics. Crit Rev Oncol Hematol 2016; 104:21-29. [PMID: 27263934 DOI: 10.1016/j.critrevonc.2016.05.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 04/18/2016] [Accepted: 05/19/2016] [Indexed: 02/05/2023] Open
Abstract
Notch receptor signaling pathways play an important role, not only in normal breast development but also in breast cancer development and progression. As a group of ligand-induced proteins, different subtypes of mammalian Notch (Notch1-4) are sensitive to subtle changes in protein levels. Thus, a clear understanding of mechanisms of Notch protein turnover is essential for understanding normal and pathological mechanisms of Notch functions. It has been suggested that there is a close relationship between the carcinogenesis and the dysregulation of Notch degradation. However, this relationship remains mostly undefined in the context of breast cancer, as protein degradation is mediated by numerous signaling pathways as well as certain molecule modulators (activators/inhibitors). In this review, we summarize the published data regarding the regulation of Notch family member degradation in breast cancer, while emphasizing areas that are likely to provide new therapeutic modalities for mechanism-based anti-cancer drugs.
Collapse
Affiliation(s)
- Jing Liu
- Chang Jiang Scholar's Laboratory, Shantou University Medical College, Shantou, Guangdong Province, PR China; Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong Province, PR China.
| | - Jia-Xin Shen
- Chang Jiang Scholar's Laboratory, Shantou University Medical College, Shantou, Guangdong Province, PR China; Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong Province, PR China; The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong Province, PR China.
| | - Xiao-Fen Wen
- Chang Jiang Scholar's Laboratory, Shantou University Medical College, Shantou, Guangdong Province, PR China; Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong Province, PR China; The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong Province, PR China.
| | - Yu-Xian Guo
- Chang Jiang Scholar's Laboratory, Shantou University Medical College, Shantou, Guangdong Province, PR China; Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong Province, PR China; The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong Province, PR China.
| | - Guo-Jun Zhang
- Chang Jiang Scholar's Laboratory, Shantou University Medical College, Shantou, Guangdong Province, PR China; Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong Province, PR China; The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong Province, PR China.
| |
Collapse
|
38
|
Safdar K, Gu A, Xu X, Au V, Taylor J, Flibotte S, Moerman DG, Maine EM. UBR-5, a Conserved HECT-Type E3 Ubiquitin Ligase, Negatively Regulates Notch-Type Signaling in Caenorhabditis elegans. G3 (BETHESDA, MD.) 2016; 6:2125-34. [PMID: 27185398 PMCID: PMC4938665 DOI: 10.1534/g3.116.027805] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/09/2016] [Indexed: 12/17/2022]
Abstract
Notch-type signaling mediates cell-cell interactions important for animal development. In humans, reduced or inappropriate Notch signaling activity is associated with various developmental defects and disease states, including cancers. Caenorhabditis elegans expresses two Notch-type receptors, GLP-1 and LIN-12. GLP-1 mediates several cell-signaling events in the embryo and promotes germline proliferation in the developing and adult gonad. LIN-12 acts redundantly with GLP-1 in certain inductive events in the embryo and mediates several cell-cell interactions during larval development. Recovery of genetic suppressors and enhancers of glp-1 or lin-12 loss- or gain-of-function mutations has identified numerous regulators of GLP-1 and LIN-12 signaling activity. Here, we report the molecular identification of sog-1, a gene identified in screens for recessive suppressors of conditional glp-1 loss-of-function mutations. The sog-1 gene encodes UBR-5, the sole C. elegans member of the UBR5/Hyd family of HECT-type E3 ubiquitin ligases. Molecular and genetic analyses indicate that the loss of ubr-5 function suppresses defects caused by reduced signaling via GLP-1 or LIN-12. In contrast, ubr-5 mutations do not suppress embryonic or larval lethality associated with mutations in a downstream transcription factor, LAG-1. In the gonad, ubr-5 acts in the receiving cells (germ cells) to limit GLP-1 signaling activity. SEL-10 is the F-box component of SCF(SEL-10) E3 ubiquitin-ligase complex that promotes turnover of Notch intracellular domain. UBR-5 acts redundantly with SEL-10 to limit Notch signaling in certain tissues. We hypothesize that UBR-5 activity limits Notch-type signaling by promoting turnover of receptor or limiting its interaction with pathway components.
Collapse
Affiliation(s)
- Komal Safdar
- Department of Biology, Syracuse University, New York 13244
| | - Anniya Gu
- Department of Biology, Syracuse University, New York 13244
| | - Xia Xu
- Department of Biology, Syracuse University, New York 13244
| | - Vinci Au
- Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Jon Taylor
- Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Stephane Flibotte
- Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Donald G Moerman
- Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | | |
Collapse
|
39
|
Okano M, Matsuo H, Nishimura Y, Hozumi K, Yoshioka S, Tonoki A, Itoh M. Mib1 modulates dynamin 2 recruitment via Snx18 to promote Dll1 endocytosis for efficient Notch signaling. Genes Cells 2016; 21:425-41. [DOI: 10.1111/gtc.12350] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 01/28/2016] [Indexed: 11/26/2022]
Affiliation(s)
- Makoto Okano
- Graduate School of Science; Nagoya University; Nagoya Aichi 464-8602 Japan
| | - Hiromi Matsuo
- Graduate School of Science; Nagoya University; Nagoya Aichi 464-8602 Japan
| | - Yuya Nishimura
- Graduate School of Pharmaceutical Sciences; Chiba University; Chiba 260-8675 Japan
| | - Katsuto Hozumi
- Department of Immunology; Tokai University School of Medicine; Isehara Kanagawa 259-1193 Japan
| | - Saho Yoshioka
- Graduate School of Pharmaceutical Sciences; Chiba University; Chiba 260-8675 Japan
| | - Ayako Tonoki
- Graduate School of Pharmaceutical Sciences; Chiba University; Chiba 260-8675 Japan
| | - Motoyuki Itoh
- Graduate School of Science; Nagoya University; Nagoya Aichi 464-8602 Japan
- Graduate School of Pharmaceutical Sciences; Chiba University; Chiba 260-8675 Japan
| |
Collapse
|
40
|
Regulation of Notch Signaling Through Intracellular Transport. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 323:107-27. [PMID: 26944620 DOI: 10.1016/bs.ircmb.2015.12.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The highly conserved Notch-signaling pathway performs a central role in cell differentiation, survival, and proliferation. A major mechanism by which cells modulate signaling is by controlling the intracellular transport itinerary of Notch. Indeed, Notch removal from the cell surface and its targeting to the lysosome for degradation is one way in which Notch activity is downregulated since it limits receptor exposure to ligand. In contrast, Notch-signaling capacity is maintained through repeated rounds of receptor recycling and redelivery of Notch to the cell surface from endosomal stores. This review discusses the molecular mechanisms by which Notch transit through the endosome is controlled and how various intracellular sorting decisions are thought to impact signaling activity.
Collapse
|
41
|
A Role for Notch Signalling in Breast Cancer and Endocrine Resistance. Stem Cells Int 2016; 2016:2498764. [PMID: 26880941 PMCID: PMC4736972 DOI: 10.1155/2016/2498764] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 12/20/2015] [Indexed: 12/16/2022] Open
Abstract
Over the past decade, there has been growing interest in the Notch signalling pathway within the breast cancer field. This interest stemmed initially from the observation that Notch signalling is aberrantly activated in breast cancer and its effects on various cellular processes including proliferation, apoptosis, and cancer stem cell activity. However more recently, elevated Notch signalling has been correlated with therapy resistance in oestrogen receptor-positive breast cancer. As a result, inhibiting Notch signalling with therapeutic agents is being explored as a promising treatment option for breast cancer patients.
Collapse
|
42
|
Pang S, Shen J, Liu Y, Chen F, Zheng Z, James AW, Hsu CY, Zhang H, Lee KS, Wang C, Li C, Chen X, Jia H, Zhang X, Soo C, Ting K. Proliferation and osteogenic differentiation of mesenchymal stem cells induced by a short isoform of NELL-1. Stem Cells 2015; 33:904-15. [PMID: 25376942 DOI: 10.1002/stem.1884] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 09/19/2014] [Accepted: 09/27/2014] [Indexed: 01/11/2023]
Abstract
Neural epidermal growth factor-like (NEL)-like protein 1 (NELL-1) has been identified as an osteoinductive differentiation factor that promotes mesenchymal stem cell (MSC) osteogenic differentiation. In addition to full-length NELL-1, there are several NELL-1-related transcripts reported. We used rapid amplification of cDNA ends to recover potential cDNA of NELL-1 isoforms. A NELL-1 isoform with the N-terminal 240 amino acid (aa) residues truncated was identified. While full-length NELL-1 that contains 810 aa residues (NELL-1810 ) plays an important role in embryologic skeletal development, the N-terminal-truncated NELL-1 isoform (NELL-1570 ) was expressed postnatally. Similar to NELL-1810 , NELL-1570 induced MSC osteogenic differentiation. In addition, NELL-1570 significantly stimulated MSC proliferation in multiple MSC-like populations such as murine C3H10T1/2 MSC cell line, mouse primary MSCs, and perivascular stem cells, which is a type of stem cells proposed as the perivascular origin of MSCs. In contrast, NELL-1810 demonstrated only limited stimulation of MSC proliferation. Similar to NELL-1810 , NELL-1570 was found to be secreted from host cells. Both NELL-1570 expression lentiviral vector and column-purified recombinant protein NELL-1570 demonstrated almost identical effects in MSC proliferation and osteogenic differentiation, suggesting that NELL-1570 may function as a pro-osteogenic growth factor. In vivo, NELL-1570 induced significant calvarial defect regeneration accompanied by increased cell proliferation. Thus, NELL-1570 has the potential to be used for cell-based or hormone-based therapy of bone regeneration.
Collapse
Affiliation(s)
- Shen Pang
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, University of California, Los Angeles, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Maes H, Olmeda D, Soengas MS, Agostinis P. Vesicular trafficking mechanisms in endothelial cells as modulators of the tumor vasculature and targets of antiangiogenic therapies. FEBS J 2015; 283:25-38. [PMID: 26443003 DOI: 10.1111/febs.13545] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 09/21/2015] [Accepted: 10/02/2015] [Indexed: 11/25/2022]
Abstract
A common feature of solid tumors is their ability to incite the formation of new blood and lymph vessels trough the processes of angiogenesis and lymphangiogenesis, respectively, to support tumor growth and favor metastatic dissemination. As a result of the lack of feedback regulatory control mechanisms or due to the exacerbated presence of pro-angiogenic signals within the tumor microenvironment, the tumor endothelium receives continuous signals to sprout and develop, generating vessels that are structurally and functionally abnormal. An emerging mechanism playing a central role in shaping the tumor vasculature is the endothelial-vesicular network that regulates trafficking/export and degradation of key signaling proteins and membrane receptors, including the vascular endothelial growth-factor receptor-2/3 and members of the Notch pathway. Here we will discuss recent evidence highlighting how vesicular trafficking mechanisms in endothelial cells contribute to pathological angiogenesis/lymphangiogenesis and can provide novel and exploitable targets in antiangiogenic therapies.
Collapse
Affiliation(s)
- Hannelore Maes
- Cell Death Research & Therapy (CDRT) Unit, Department of Cellular and Molecular Medicine, KU Leuven University of Leuven, Belgium
| | - David Olmeda
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - María S Soengas
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Patrizia Agostinis
- Cell Death Research & Therapy (CDRT) Unit, Department of Cellular and Molecular Medicine, KU Leuven University of Leuven, Belgium
| |
Collapse
|
44
|
Lee WY, Goh G, Chia J, Boey A, Gunko NV, Bard F. The Ubiquitin Ligase CBLC Maintains the Network Organization of the Golgi Apparatus. PLoS One 2015; 10:e0138789. [PMID: 26393512 PMCID: PMC4579092 DOI: 10.1371/journal.pone.0138789] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 09/03/2015] [Indexed: 11/21/2022] Open
Abstract
The Golgi apparatus plays a pivotal role in the sorting and post-translational modifications of secreted and membrane proteins. In mammalian cells, the Golgi is organized in stacks of cisternae linked together to form a network with a ribbon shape. Regulation of Golgi ribbon formation is poorly understood. Here we find in an image-based RNAi screen that depletion of the ubiquitin-ligase CBLC induces Golgi fragmentation. Depletions of the close homologues CBL and CBLB do not induce any visible defects. In CBLC-depleted cells, Golgi stacks appear relatively unperturbed at both the light and electron microscopy levels, suggesting that CBLC controls mostly network organization. CBLC partially localizes on Golgi membranes and this localization is enhanced after activation of the SRC kinase. Inhibition of SRC reverts CBLC depletion effects, suggesting interplay between the two. CBLC's regulation of Golgi network requires its ubiquitin ligase activity. However, SRC levels are not significantly affected by CBLC, and CBLC knockdown does not phenocopy SRC activation, suggesting that CBLC's action at the Golgi is not direct downregulation of SRC. Altogether, our results demonstrate a role of CBLC in regulating Golgi ribbon by antagonizing the SRC tyrosine kinase.
Collapse
Affiliation(s)
- Wan Yin Lee
- Institute of Molecular and Cell Biology, Singapore, Singapore
- Department of Biochemistry, National University of Singapore, Singapore, Singapore
| | - Germaine Goh
- Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Joanne Chia
- Institute of Molecular and Cell Biology, Singapore, Singapore
- Department of Biochemistry, National University of Singapore, Singapore, Singapore
| | - Adrian Boey
- Institute of Molecular and Cell Biology, Singapore, Singapore
- Institute of Medical Biology, Singapore, Singapore
- IMB-IMCB Joint Electron Microscopy Suite, Singapore, Singapore
| | - Natalia V. Gunko
- Institute of Molecular and Cell Biology, Singapore, Singapore
- Institute of Medical Biology, Singapore, Singapore
- IMB-IMCB Joint Electron Microscopy Suite, Singapore, Singapore
| | - Frederic Bard
- Institute of Molecular and Cell Biology, Singapore, Singapore
- Department of Biochemistry, National University of Singapore, Singapore, Singapore
| |
Collapse
|
45
|
Platonova N, Manzo T, Mirandola L, Colombo M, Calzavara E, Vigolo E, Cermisoni GC, De Simone D, Garavelli S, Cecchinato V, Lazzari E, Neri A, Chiaramonte R. PI3K/AKT signaling inhibits NOTCH1 lysosome-mediated degradation. Genes Chromosomes Cancer 2015; 54:516-526. [DOI: 10.1002/gcc.22264] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 04/08/2015] [Indexed: 01/27/2023] Open
Affiliation(s)
- Natalia Platonova
- Department of Health Science; Università Degli Studi Di Milano; via A. Di Rudinì 8 20142 Milan Italy
| | - Teresa Manzo
- Department of Health Science; Università Degli Studi Di Milano; via A. Di Rudinì 8 20142 Milan Italy
| | - Leonardo Mirandola
- Department of Health Science; Università Degli Studi Di Milano; via A. Di Rudinì 8 20142 Milan Italy
| | - Michela Colombo
- Department of Health Science; Università Degli Studi Di Milano; via A. Di Rudinì 8 20142 Milan Italy
| | - Elisabetta Calzavara
- Department of Health Science; Università Degli Studi Di Milano; via A. Di Rudinì 8 20142 Milan Italy
| | - Emilia Vigolo
- Department of Health Science; Università Degli Studi Di Milano; via A. Di Rudinì 8 20142 Milan Italy
| | - Greta Chiara Cermisoni
- Department of Health Science; Università Degli Studi Di Milano; via A. Di Rudinì 8 20142 Milan Italy
| | - Daria De Simone
- Department of Health Science; Università Degli Studi Di Milano; via A. Di Rudinì 8 20142 Milan Italy
| | - Silvia Garavelli
- Department of Health Science; Università Degli Studi Di Milano; via A. Di Rudinì 8 20142 Milan Italy
| | - Valentina Cecchinato
- Department of Health Science; Università Degli Studi Di Milano; via A. Di Rudinì 8 20142 Milan Italy
| | - Elisa Lazzari
- Department of Health Science; Università Degli Studi Di Milano; via A. Di Rudinì 8 20142 Milan Italy
| | - Antonino Neri
- Department of Clinical Sciences and Community Health; Università Degli Studi Di Milano; Hematology, Fondazione Cà Granda IRCCS Policlinico; via F. Sforza 35 20122 Milan Italy
| | - Raffaella Chiaramonte
- Department of Health Science; Università Degli Studi Di Milano; via A. Di Rudinì 8 20142 Milan Italy
| |
Collapse
|
46
|
Human Cytomegalovirus Infection Dysregulates the Localization and Stability of NICD1 and Jag1 in Neural Progenitor Cells. J Virol 2015; 89:6792-804. [PMID: 25903338 DOI: 10.1128/jvi.00351-15] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 04/10/2015] [Indexed: 12/16/2022] Open
Abstract
UNLABELLED Human cytomegalovirus (HCMV) infection of the developing fetus frequently results in major neural developmental damage. In previous studies, HCMV was shown to downregulate neural progenitor/stem cell (NPC) markers and induce abnormal differentiation. As Notch signaling plays a vital role in the maintenance of stem cell status and is a switch that governs NPC differentiation, the effect of HCMV infection on the Notch signaling pathway in NPCs was investigated. HCMV downregulated mRNA levels of Notch1 and its ligand, Jag1, and reduced protein levels and altered the intracellular localization of Jag1 and the intracellular effector form of Notch1, NICD1. These effects required HCMV gene expression and appeared to be mediated through enhanced proteasomal degradation. Transient expression of the viral tegument proteins of pp71 and UL26 reduced NICD1 and Jag1 protein levels endogenously and exogenously. Given the critical role of Notch signaling in NPC growth and differentiation, these findings reveal important mechanisms by which HCMV disturbs neural cell development in vitro. Similar events in vivo may be associated with HCMV-mediated neuropathogenesis during congenital infection in the fetal brain. IMPORTANCE Congenital human cytomegalovirus (HCMV) infection is the leading cause of birth defects that primarily manifest as neurological disabilities. Neural progenitor cells (NPCs), key players in fetal brain development, are the most susceptible cell type for HCMV infection in the fetal brain. Studies have shown that NPCs are fully permissive for HCMV infection, which causes neural cell loss and premature differentiation, thereby perturbing NPC fate. Elucidation of virus-host interactions that govern NPC proliferation and differentiation is critical to understanding neuropathogenesis. The Notch signaling pathway is critical for maintaining stem cell status and functions as a switch for differentiation of NPCs. Our investigation into the impact of HCMV infection on this pathway revealed that HCMV dysregulates Notch signaling by altering expression of the Notch ligand Jag1, Notch1, and its active effector in NPCs. These results suggest a mechanism for the neuropathogenesis induced by HCMV infection that includes altered NPC differentiation and proliferation.
Collapse
|
47
|
Rajan N, Elliott RJ, Smith A, Sinclair N, Swift S, Lord CJ, Ashworth A. The cylindromatosis gene product, CYLD, interacts with MIB2 to regulate notch signalling. Oncotarget 2014; 5:12126-40. [PMID: 25565632 PMCID: PMC4322962 DOI: 10.18632/oncotarget.2573] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 10/03/2014] [Indexed: 02/03/2023] Open
Abstract
CYLD, an ubiquitin hydrolase, has an expanding repertoire of regulatory roles in cell signalling and is dysregulated in a number of cancers. To dissect CYLD function we used a proteomics approach to identify CYLD interacting proteins and identified MIB2, an ubiquitin ligase enzyme involved in Notch signalling, as a protein which interacts with CYLD. Coexpression of CYLD and MIB2 resulted in stabilisation of MIB2 protein levels and was associated with reduced levels of JAG2, a ligand implicated in Notch signalling. Conversely, gene silencing of CYLD using siRNA, resulted in increased JAG2 expression and upregulation of Notch signalling. We investigated Notch pathway activity in skin tumours from patients with germline mutations in CYLD and found that JAG2 protein levels and Notch target genes were upregulated. In particular, RUNX1 was overexpressed in CYLD defective tumour cells. Finally, primary cell cultures of CYLD defective tumours demonstrated reduced viability when exposed to γ-secretase inhibitors that pharmacologically target Notch signalling. Taken together these data indicate an oncogenic dependency on Notch signalling and suggest potential novel therapeutic approaches for patients with CYLD defective tumours.
Collapse
Affiliation(s)
- Neil Rajan
- The CRUK Gene Function Laboratory and Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, NE1 3BZ, UK
| | - Richard J.R. Elliott
- The CRUK Gene Function Laboratory and Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Alice Smith
- The CRUK Gene Function Laboratory and Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Naomi Sinclair
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, NE1 3BZ, UK
| | - Sally Swift
- The CRUK Gene Function Laboratory and Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Christopher J. Lord
- The CRUK Gene Function Laboratory and Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Alan Ashworth
- The CRUK Gene Function Laboratory and Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| |
Collapse
|
48
|
Tiedemann HB, Schneltzer E, Zeiser S, Wurst W, Beckers J, Przemeck GKH, Hrabě de Angelis M. Fast synchronization of ultradian oscillators controlled by delta-notch signaling with cis-inhibition. PLoS Comput Biol 2014; 10:e1003843. [PMID: 25275459 PMCID: PMC4196275 DOI: 10.1371/journal.pcbi.1003843] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 08/03/2014] [Indexed: 01/09/2023] Open
Abstract
While it is known that a large fraction of vertebrate genes are under the control of a gene regulatory network (GRN) forming a clock with circadian periodicity, shorter period oscillatory genes like the Hairy-enhancer-of split (Hes) genes are discussed mostly in connection with the embryonic process of somitogenesis. They form the core of the somitogenesis-clock, which orchestrates the periodic separation of somites from the presomitic mesoderm (PSM). The formation of sharp boundaries between the blocks of many cells works only when the oscillators in the cells forming the boundary are synchronized. It has been shown experimentally that Delta-Notch (D/N) signaling is responsible for this synchronization. This process has to happen rather fast as a cell experiences at most five oscillations from its 'birth' to its incorporation into a somite. Computer simulations describing synchronized oscillators with classical modes of D/N-interaction have difficulties to achieve synchronization in an appropriate time. One approach to solving this problem of modeling fast synchronization in the PSM was the consideration of cell movements. Here we show that fast synchronization of Hes-type oscillators can be achieved without cell movements by including D/N cis-inhibition, wherein the mutual interaction of DELTA and NOTCH in the same cell leads to a titration of ligand against receptor so that only one sort of molecule prevails. Consequently, the symmetry between sender and receiver is partially broken and one cell becomes preferentially sender or receiver at a given moment, which leads to faster entrainment of oscillators. Although not yet confirmed by experiment, the proposed mechanism of enhanced synchronization of mesenchymal cells in the PSM would be a new distinct developmental mechanism employing D/N cis-inhibition. Consequently, the way in which Delta-Notch signaling was modeled so far should be carefully reconsidered.
Collapse
Affiliation(s)
- Hendrik B. Tiedemann
- Institute of Experimental Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Elida Schneltzer
- Institute of Experimental Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | | | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Technische Universität München, Center of Life and Food Sciences Weihenstephan, Chair of Developmental Genetics, Freising, Germany
| | - Johannes Beckers
- Institute of Experimental Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Technische Universität München, Center of Life and Food Sciences Weihenstephan, Chair of Experimental Genetics, Freising, Germany
| | - Gerhard K. H. Przemeck
- Institute of Experimental Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Martin Hrabě de Angelis
- Institute of Experimental Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Technische Universität München, Center of Life and Food Sciences Weihenstephan, Chair of Experimental Genetics, Freising, Germany
- * E-mail:
| |
Collapse
|
49
|
XUE TONGCHUN, ZOU JINGHUAI, CHEN RONGXIN, CUI JIEFENG, TANG ZHAOYOU, YE SHENGLONG. Spatial localization of the JAG1/Notch1/osteopontin cascade modulates extrahepatic metastasis in hepatocellular carcinoma. Int J Oncol 2014; 45:1883-90. [DOI: 10.3892/ijo.2014.2630] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Accepted: 02/24/2014] [Indexed: 11/05/2022] Open
|
50
|
Abstract
The Notch signalling pathway is evolutionarily conserved and is crucial for the development and homeostasis of most tissues. Deregulated Notch signalling leads to various diseases, such as T cell leukaemia, Alagille syndrome and a stroke and dementia syndrome known as CADASIL, and so strategies to therapeutically modulate Notch signalling are of interest. Clinical trials of Notch pathway inhibitors in patients with solid tumours have been reported, and several approaches are under preclinical evaluation. In this Review, we focus on aspects of the pathway that are amenable to therapeutic intervention, diseases that could be targeted and the various Notch pathway modulation strategies that are currently being explored.
Collapse
|