1
|
Namachivayam K, Blanco CL, Frost BL, Reeves AA, Jagadeeswaran R, MohanKumar K, Safarulla A, Mandal P, Garzon SA, Raj JU, Maheshwari A. Preterm human milk contains a large pool of latent TGF-β, which can be activated by exogenous neuraminidase. Am J Physiol Gastrointest Liver Physiol 2013; 304:G1055-65. [PMID: 23558011 PMCID: PMC3680715 DOI: 10.1152/ajpgi.00039.2013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Human milk contains substantial amounts of transforming growth factor (TGF)-β, particularly the isoform TGF-β2. We previously showed in preclinical models that enterally administered TGF-β2 can protect against necrotizing enterocolitis (NEC), an inflammatory bowel necrosis of premature infants. In this study we hypothesized that premature infants remain at higher risk of NEC than full-term infants, even when they receive their own mother's milk, because preterm human milk contains less bioactive TGF-β than full-term milk. Our objective was to compare TGF-β bioactivity in preterm vs. full-term milk and identify factors that activate milk-borne TGF-β. Mothers who delivered between 23 0/7 and 31 6/7 wk or at ≥37 wk of gestation provided milk samples at serial time points. TGF-β bioactivity and NF-κB signaling were measured using specific reporter cells and in murine intestinal tissue explants. TGF-β1, TGF-β2, TGF-β3, and various TGF-β activators were measured by real-time PCR, enzyme immunoassays, or established enzymatic activity assays. Preterm human milk showed minimal TGF-β bioactivity in the native state but contained a large pool of latent TGF-β. TGF-β2 was the predominant isoform of TGF-β in preterm milk. Using a combination of several in vitro and ex vivo models, we show that neuraminidase is a key regulator of TGF-β bioactivity in human milk. Finally, we show that addition of bacterial neuraminidase to preterm human milk increased TGF-β bioactivity. Preterm milk contains large quantities of TGF-β, but most of it is in an inactive state. Addition of neuraminidase can increase TGF-β bioactivity in preterm milk and enhance its anti-inflammatory effects.
Collapse
Affiliation(s)
- Kopperuncholan Namachivayam
- 1Division of Neonatology, Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois; ,2Center for Neonatal and Pediatric Gastrointestinal Disease, Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois;
| | - Cynthia L. Blanco
- 3Division of Neonatology, Department of Pediatrics, University of Texas Health Science Center at San Antonio, San Antonio, Texas;
| | - Brandy L. Frost
- 4Department of Pathology, University of Illinois at Chicago, Chicago, Illinois; ,5Department of Pediatrics, NorthShore University Health System, Evanston, Illinois;
| | - Aaron A. Reeves
- 3Division of Neonatology, Department of Pediatrics, University of Texas Health Science Center at San Antonio, San Antonio, Texas;
| | - Ramasamy Jagadeeswaran
- 1Division of Neonatology, Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois; ,2Center for Neonatal and Pediatric Gastrointestinal Disease, Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois;
| | - Krishnan MohanKumar
- 1Division of Neonatology, Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois; ,2Center for Neonatal and Pediatric Gastrointestinal Disease, Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois;
| | - Azif Safarulla
- 1Division of Neonatology, Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois; ,2Center for Neonatal and Pediatric Gastrointestinal Disease, Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois;
| | - Partha Mandal
- 1Division of Neonatology, Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois; ,2Center for Neonatal and Pediatric Gastrointestinal Disease, Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois;
| | - Steven A. Garzon
- 2Center for Neonatal and Pediatric Gastrointestinal Disease, Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois; ,6University of Chicago Pritzker School of Medicine, Chicago, Illinois; and
| | - J. Usha Raj
- 1Division of Neonatology, Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois; ,2Center for Neonatal and Pediatric Gastrointestinal Disease, Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois;
| | - Akhil Maheshwari
- 1Division of Neonatology, Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois; ,2Center for Neonatal and Pediatric Gastrointestinal Disease, Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois; ,7Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
2
|
Evaluation of breed-dependent differences in the innate immune responses of Holstein and Jersey cows toStaphylococcus aureusintramammary infection. J DAIRY RES 2008; 75:291-301. [DOI: 10.1017/s0022029908003427] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Mastitis is one of the most prevalent diseases of cattle. Various studies have reported breed-dependent differences in the risk for developing this disease. Among two major breeds, Jersey cows have been identified as having a lower prevalence of mastitis than Holstein cows. It is well established that the nature of the initial innate immune response to infection influences the ability of the host to clear harmful bacterial pathogens. Whether differences in the innate immune response to intramammary infections explain, in part, the differential prevalence of mastitis in Holstein and Jersey cows remains unknown. The objective of the current study was to evaluate several parameters of the innate immune response of Holstein and Jersey cows to intramammary infection withStaphylococcus aureus, a common mastitis-inducing pathogen. To control for non-breed related factors that could influence these parameters, all cows were of the same parity, in similar stages of milk production, housed and managed under identical conditions, and experimentally infected and sampled in parallel. The following parameters of the innate immune response were evaluated: acute phase protein synthesis of serum amyloid A and lipopolysaccharide-binding protein; total and differential circulating white blood cell counts; milk somatic cell counts; mammary vascular permeability; milk N-acetyl-beta-d-glucosaminidase (NAGase) activity; and production of the cytokines, interferon (IFN)-γ, interleukin (IL)-12, tumour growth factor(TGF)-α, and TGF-β1. The temporal response of all of these parameters following infection was similar between Holstein and Jersey cows. Further, with the exception of changes in circulating neutrophils and NAGase activity, the overall magnitude of these parameters were also comparable. Together, these data demonstrate that the innate immune response of Holstein and Jersey cows toStaph. aureusintramammary infection remains highly conserved despite previously reported differences in mastitis prevalence, as well as genotypic and phenotypic traits, that exist between the two breeds.
Collapse
|
3
|
Bannerman DD, Paape MJ, Chockalingam A. Staphylococcus aureus intramammary infection elicits increased production of transforming growth factor-α, β1, and β2. Vet Immunol Immunopathol 2006; 112:309-15. [PMID: 16750272 DOI: 10.1016/j.vetimm.2006.03.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2006] [Accepted: 03/29/2006] [Indexed: 02/04/2023]
Abstract
In contrast to other mastitis pathogens, the host response evoked during Staphylococcus aureus intramammary infection is marked by the absence of the induction of critical cytokines, including IL-8 and TNF-alpha, which have established roles in mediating host innate immunity. The elucidation of changes in the expression of other mediators with the potential to regulate mammary inflammatory responses to S. aureus remains lacking. Transforming growth factor (TGF)-alpha, TGF-beta1, and TGF-beta2 are cytokines that regulate mammary gland development. Because these cytokines also have a demonstrated role in mediating inflammation, the objective of the current study was to determine whether S. aureus intramammary infection influences their expression. Ten cows were challenged with S. aureus and milk samples collected. Increases in milk levels of TGF-alpha were evident within 32h of infection and persisted for 16h. Increases in TGF-beta1 and TGF-beta2 levels were detected within 40h of S. aureus infection and persisted through the end of the study. Thus, in contrast to IL-8 and TNF-alpha, S. aureus elicits host production of TGF-alpha, TGF-beta1, and TGF-beta2. This finding may suggest a role for these cytokines in mediating mammary gland host innate immune responses to S. aureus.
Collapse
Affiliation(s)
- Douglas D Bannerman
- Bovine Functional Genomics Laboratory, U.S. Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA.
| | | | | |
Collapse
|
4
|
Bannerman DD, Chockalingam A, Paape MJ, Hope JC. The bovine innate immune response during experimentally-induced Pseudomonas aeruginosa mastitis. Vet Immunol Immunopathol 2005; 107:201-15. [PMID: 15970335 DOI: 10.1016/j.vetimm.2005.04.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2005] [Revised: 04/15/2005] [Accepted: 04/27/2005] [Indexed: 01/15/2023]
Abstract
Almost half of all clinical cases of mastitis are caused by Gram-negative bacteria. Among these bacteria, intramammary infection by Pseudomonas aeruginosa remains one of the most refractory to antibiotic therapy. The ability to recognize potentially harmful pathogens whether previously encountered or not, as well as the induction of an initial pro-inflammatory response to these pathogens, are critical components of host innate immunity. Although the innate immune response to another Gram-negative mastitis-causing pathogen, Escherichia coli, has been well-characterized, little is known about the response to other Gram-negative bacteria, including P. aeruginosa. The objective of the current study was to characterize the systemic and localized bovine innate immune response to intramammary infection with P. aeruginosa. The contralateral quarters of ten mid-lactating Holstein cows were challenged with either saline or P. aeruginosa. Following the establishment of infection, milk samples were collected and assayed for changes in cytokine and growth factor concentrations, complement activation, and changes in the levels of soluble CD14 (sCD14) and lipopolysaccharide (LPS)-binding protein (LBP), two accessory molecules involved in host recognition of Gram-negative bacteria. Initial increases in milk somatic cell counts were evident within 12h of experimental challenge and remained elevated for >or=3 weeks. Increased permeability of the mammary gland vasculature, as evidenced by elevated milk levels of BSA, was initially observed 20 h post-infection and persisted for 2 weeks. Within 32 h of challenge, increased levels of IL-8, TNF-alpha, IL-10, and IL-12 were detected, however, the elevated levels of these cytokines were not sustained for longer than a 24h period. In contrast, elevations in IL-1beta, IFN-gamma, TGF-alpha, TGF-beta1, TGF-beta2, sCD14, LBP, and activated complement factor 5 (C5a) were sustained for periods of >48 h. Systemic changes were characterized by elevated body temperature, induction of the acute phase protein synthesis of serum amyloid A and LBP, and a transient decrease in circulating neutrophils and lymphocytes. Together, these data demonstrate the capability of the mammary gland to mount a robust innate immune response to P. aeruginosa that is characterized by the induction of pro-inflammatory cytokines, complement activation, and increased levels of accessory molecules involved in Gram-negative bacterial recognition.
Collapse
Affiliation(s)
- Douglas D Bannerman
- Bovine Functional Genomics Laboratory, USDA-Agricultural Research Service, ANRI, BARC-East, Bldg. 1040, Room #2, Beltsville, MD 20705-2350, USA.
| | | | | | | |
Collapse
|
5
|
Chockalingam A, Paape MJ, Bannerman DD. Increased Milk Levels of Transforming Growth Factor-α, β1, and β2 During Escherichia coli-Induced Mastitis. J Dairy Sci 2005; 88:1986-93. [PMID: 15905428 DOI: 10.3168/jds.s0022-0302(05)72874-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Among the gram-negative bacteria that cause mastitis, Escherichia coli are the most prevalent. The innate immune system provides initial protection against E. coli infection by detecting the presence of the foreign pathogens and by mounting an inflammatory response, the latter of which is mediated by cytokines such as IL-1beta, IL-8, and tumor necrosis factor (TNF)-alpha. Although changes in these cytokines during mastitis have been well-described, it is believed that other mediators moderate mammary gland inflammatory responses as well. The growth factors/cytokines transforming growth factor (TGF)-alpha, TGF-beta1, and TGF-beta2 are all expressed in the mammary gland and have been implicated in regulating mammary gland development. In other tissues, these growth factors/cytokines have been shown to moderate inflammation. The objective of the current study was to determine whether TGF-alpha, TGF-beta1, and TGF-beta2 milk concentrations were altered during the course of E. coli-induced mastitis. The contralateral quarters of 11 midlactating Holstein cows were challenged with either saline or 72 cfu of E. coli, and milk samples were collected. Basal milk levels of TGF-alpha, TGF-beta1, and TGF-beta2 were 98.81 +/- 22.69 pg/mL, 3.35 +/- 0.49 ng/mL, and 22.36 +/- 3.78 ng/mL, respectively. Analysis of whey samples derived from E. coli-infected quarters revealed an increase in milk levels of TGF-alpha within 16 h of challenge, and these increases persisted for an additional 56 h. Elevated TGF-beta1 and TGF-beta2 milk concentrations were detected in E. coli-infected quarters 32 h after challenge, and these elevations were sustained throughout the study. Because TGF-alpha, TGF-beta1, and TGF-beta2 have been implicated in mediating inflammatory processes, their induction during mastitis is consistent with a role for these molecules in mediating mammary gland host innate immune responses to infection.
Collapse
Affiliation(s)
- A Chockalingam
- Department of Dairy and Animal Science, The Pennsylvania State University, University Park, 16802, USA
| | | | | |
Collapse
|
6
|
Tatarczuch L, Bischof RJ, Philip CJ, Lee CS. Phagocytic capacity of leucocytes in sheep mammary secretions following weaning. J Anat 2002; 201:351-61. [PMID: 12448770 PMCID: PMC1570966 DOI: 10.1046/j.0021-8782.2002.00104.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lactating animals are particularly susceptible to mastitis during the early stages of mammary gland involution following weaning. In this study we compared the phagocytic capacity of cells collected from sheep mammary secretions at different stages of involution. The ability of neutrophils and macrophages to ingest latex beads in an in vitro phagocytosis assay was found to be dependent on how heavily the phagocytes were loaded with milk constituents. There was a decline in the phagocytic capacity of neutrophils from 1 to 2 days after weaning, while macrophages collected from fully involuted glands were more effective phagocytes compared with earlier stages (7-15 days) of involution. In addition, dendritic cells present in fully involuted mammary gland secretions (30 days after weaning) were highly phagocytic. These studies demonstrate that neutrophils and macrophages in sheep mammary secretions at early stages of involution are incapacitated, and as such may compromise the immune status of the mammary gland.
Collapse
Affiliation(s)
- Liliana Tatarczuch
- Department of Veterinary Science, The University of Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
7
|
TATARCZUCH L, PHILIP C, BISCHOF R, LEE CS. Leucocyte phenotypes in involuting and fully involuted mammary glandular tissues and secretions of sheep. J Anat 2000; 196 ( Pt 3):313-26. [PMID: 10853954 PMCID: PMC1468068 DOI: 10.1046/j.1469-7580.2000.19630313.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mammary glandular tissues and mammary secretions were obtained from sheep at 2-60 d after weaning to study the leucocyte phenotypes associated with mammary involution. From 2-4 d after weaning, neutrophils were the predominant leucocytes in the alveolar and ductal lumina. Lymphocytes were present in the alveolar and ductal epithelium, interalveolar and periductal areas. Most of the lymphocytes in the alveolar and ductal epithelium (IEL) were CD8+, some were CD45R+ and few were CD4+. In the periductal clusters and in the interalveolar areas most of the lymphocytes were CD4+. There was a significant increase (P < 0.05) in the percentages of CD45R+ granulated IEL from 2 to 7 d after weaning, and this paralleled the increase in the percentages of apoptotic cells in the glandular epithelium. By 7-60 d after weaning, most cells within the alveolar and ductal lumina were macrophages followed by predominantly CD8+ lymphocytes. CD8+ lymphocytes were still predominant in the alveolar and ductal epithelium while CD4+ cells were predominant in the interalveolar areas. Very few gammadelta+ T cells were observed at all the stages examined. The cells in the mammary secretions correlated with those observed in the alveolar and ductal lumina. At the early stages of involution, the neutrophils and macrophages were heavily laden with lipid droplets, casein and cellular debris. The most interesting feature was the presence of cells either with extensive cytoplasmic processes (LCA+MHC class II+) or cytoplasmic veils (LCA+MHC class II+CD1+), probably dendritic cells. It is concluded that the cellular constituents of the mammary gland at the latter part of involution may afford the mammary gland more resistance to infection than the lactating gland and the gland at early stages of involution. The CD45R+IEL may trigger apoptotic cell death in the mammary glandular epithelium during mammary involution.
Collapse
Affiliation(s)
- L.
TATARCZUCH
- Department of Veterinary Science, The University of Melbourne, Victoria, Australia
| | - C.
PHILIP
- Department of Veterinary Science, The University of Melbourne, Victoria, Australia
| | - R.
BISCHOF
- Department of Veterinary Science, The University of Melbourne, Victoria, Australia
| | - C. S.
LEE
- Department of Veterinary Science, The University of Melbourne, Victoria, Australia
- Correspondence to Dr C. S. Lee, Department of Veterinary Science, The University of Melbourne, 3010, Victoria, Australia. Fax: +61 3 9344 7374; e-mail:
| |
Collapse
|
8
|
Barcellos-Hoff MH, Ewan KB. Transforming growth factor-beta and breast cancer: Mammary gland development. Breast Cancer Res 2000; 2:92-9. [PMID: 11250698 PMCID: PMC139430 DOI: 10.1186/bcr40] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/1999] [Revised: 01/31/2000] [Accepted: 02/01/2000] [Indexed: 11/13/2022] Open
Abstract
Transforming growth factor (TGF)-beta1 is a pluripotent cytokine that profoundly inhibits epithelial proliferation, induces apoptosis, and influences morphogenesis by mediating extracellular matrix deposition and remodeling. The physiologic roles of the action of TGF-beta in mammary gland, indeed in most tissues, are poorly understood. In order to understand the actions of TGF-beta, we need to take into account the complexity of its effects on different cell types and the influence of context on cellular responses. This task is further compounded by multiple mechanisms for regulating TGF-beta transcription, translation, and activity. One of the most significant factors that obscures the action of TGF-beta is that it is secreted as a stable latent complex, which consists of the 24-kDa cytokine and the 80-kDa dimer of its prepro region, called latency-associated peptide. Latency imposes a critical restraint on TGF-beta activity that is often overlooked. The extracellular process known as activation, in which TGF-beta is released from the latent complex, is emphasized in the present discussion of the role of TGF-beta in mammary gland development. Definition of the spatial and temporal patterns of latent TGF-beta activation in situ is essential for understanding the specific roles that TGF-beta plays during mammary gland development, proliferation, and morphogenesis.
Collapse
Affiliation(s)
- M H Barcellos-Hoff
- Life Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720, USA.
| | | |
Collapse
|