1
|
Mahajan D, Kumar T, Rath PK, Sahoo AK, Mishra BP, Kumar S, Nayak NR, Jena MK. Dendritic Cells and the Establishment of Fetomaternal Tolerance for Successful Human Pregnancy. Arch Immunol Ther Exp (Warsz) 2024; 72:aite-2024-0010. [PMID: 38782369 DOI: 10.2478/aite-2024-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 02/26/2024] [Indexed: 05/25/2024]
Abstract
Pregnancy is a remarkable event where the semi-allogeneic fetus develops in the mother's uterus, despite genetic and immunological differences. The antigen handling and processing at the maternal-fetal interface during pregnancy appear to be crucial for the adaptation of the maternal immune system and for tolerance to the developing fetus and placenta. Maternal antigen-presenting cells (APCs), such as macrophages (Mφs) and dendritic cells (DCs), are present at the maternal-fetal interface throughout pregnancy and are believed to play a crucial role in this process. Despite numerous studies focusing on the significance of Mφs, there is limited knowledge regarding the contribution of DCs in fetomaternal tolerance during pregnancy, making it a relatively new and growing field of research. This review focuses on how the behavior of DCs at the maternal-fetal interface adapts to pregnancy's unique demands. Moreover, it discusses how DCs interact with other cells in the decidual leukocyte network to regulate uterine and placental homeostasis and the local maternal immune responses to the fetus. The review particularly examines the different cell lineages of DCs with specific surface markers, which have not been critically reviewed in previous publications. Additionally, it emphasizes the impact that even minor disruptions in DC functions can have on pregnancy-related complications and proposes further research into the potential therapeutic benefits of targeting DCs to manage these complications.
Collapse
Affiliation(s)
- Deviyani Mahajan
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Tarun Kumar
- Department of Veterinary Clinical Complex, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana 125001, India
| | - Prasana Kumar Rath
- Department of Veterinary Pathology, College of Veterinary Science and AH, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha 751003, India
| | - Anjan Kumar Sahoo
- Department of Veterinary Pathology, College of Veterinary Science and AH, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha 751003, India
- Department of Veterinary Surgery and Radiology, College of Veterinary Science and AH, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha 751003, India
| | - Bidyut Prava Mishra
- Department of Veterinary Pathology, College of Veterinary Science and AH, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha 751003, India
- Department of Livestock Products Technology, College of Veterinary Science and AH, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha 751003, India
| | - Sudarshan Kumar
- Proteomics and Structural Biology Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana 132001, India
| | - Nihar Ranjan Nayak
- Department of Obstetrics and Gynecology, UMKC School of Medicine, Kansas City, MO 64108, USA
| | - Manoj Kumar Jena
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| |
Collapse
|
2
|
Weng J, Couture C, Girard S. Innate and Adaptive Immune Systems in Physiological and Pathological Pregnancy. BIOLOGY 2023; 12:402. [PMID: 36979094 PMCID: PMC10045867 DOI: 10.3390/biology12030402] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023]
Abstract
The dynamic immunological changes occurring throughout pregnancy are well-orchestrated and important for the success of the pregnancy. One of the key immune adaptations is the maternal immune tolerance towards the semi-allogeneic fetus. In this review, we provide a comprehensive overview of what is known about the innate and adaptive immunological changes in pregnancy and the role(s) of specific immune cells during physiological and pathological pregnancy. Alongside this, we provided details of remaining questions and challenges, as well as future perspectives for this growing field of research. Understanding the immunological changes that occur can inform potential strategies on treatments for the optimal health of the neonate and pregnant individual both during and after pregnancy.
Collapse
Affiliation(s)
- Jessica Weng
- Mayo Clinic Medical Scientist Training Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic Alix School of Medicine, Rochester, MN 55905, USA
| | - Camille Couture
- Department of Microbiology, Infectiology and Immunology, Universite de Montreal, Ste-Justine Hospital Research Center, Montreal, QC H3T 1C5, Canada
| | - Sylvie Girard
- Department of Obstetrics & Gynecology, Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
3
|
Check JH, Check DL. The role of progesterone and the progesterone receptor in cancer: progress in the last 5 years. Expert Rev Endocrinol Metab 2023; 18:5-18. [PMID: 36647582 DOI: 10.1080/17446651.2023.2166487] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 01/05/2023] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Patients with various advanced cancers devoid of nuclear progesterone receptors (nPR) have demonstrated increased quality and length of life when treated with the PR modulator mifepristone, which likely works by interacting with membrane PRs (mPR). AREAS COVERED Two immunomodulatory proteins are discussed that seem to play a role in cancers that proliferate whether the malignant tumor is positive or negative for the nPR. These two proteins are the progesterone receptor membrane component-1 (PGRMC-1) and the progesterone-induced blocking factor (PIBF). Both PGRMC-1 and the parent form of PIBF foster increased tumor aggressiveness, whereas splice variants of the 90 kDa form of PIBF inhibit immune response against cancer cells. EXPERT OPINION The marked clinical improvement following 200-300 mg of mifepristone is likely related to blocking PIBF. In the low dosage used, mifepristone likely acts as an agonist for PGRMC-1 protein. Mifepristone may be less effective for cancers positive for the nPR because the nPR may be protective and blocking it may have detrimental effects. Based on this hypothetical model, the development of other potential treatment options to provide even greater efficacy for treating cancer are discussed.
Collapse
Affiliation(s)
- Jerome H Check
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Cooper Medical School of Rowan University, Camden, New Jersey, USA
- Cooper Institute for Reproductive Hormonal Disorders P.C, Mt. Laurel, New Jersey, USA
| | - Diane L Check
- Cooper Institute for Reproductive Hormonal Disorders P.C, Mt. Laurel, New Jersey, USA
| |
Collapse
|
4
|
Sarkesh A, Sorkhabi AD, Ahmadi H, Abdolmohammadi-Vahid S, Parhizkar F, Yousefi M, Aghebati-Maleki L. Allogeneic lymphocytes immunotherapy in female infertility: Lessons learned and the road ahead. Life Sci 2022; 299:120503. [PMID: 35381221 DOI: 10.1016/j.lfs.2022.120503] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/12/2022] [Accepted: 03/22/2022] [Indexed: 02/07/2023]
Abstract
The endometrium is an essential tissue in the normal immunologic dialogue between the mother and the conceptus, which is necessary for the proper establishment and maintenance of a successful pregnancy. It's become evident that the maternal immune system plays a key role in the normal pregnancy's initiation, maintenance, and termination. In this perspective, the immune system contributes to regulating all stages of pregnancy, thus immunological dysregulation is thought to be one of the major etiologies of implantation failures. Many researchers believe that immune therapies are useful tactics for improving the live births rate in certain situations. Lymphocyte immunotherapy (LIT) is an active form of immunotherapy that, when used on the relevant subgroups of patients, has been shown in multiple trials to dramatically enhance maternal immunological balance and pregnancy outcome. The primary goal of LIT is to regulate the immune system in order to create a favorable tolerogenic immune milieu and tolerance for embryo implantation. However, there are a plethora of influential factors influencing its therapeutic benefits that merit to be addressed. The objective of our study is to discuss the mechanisms and challenges of allogeneic LIT.
Collapse
Affiliation(s)
- Aila Sarkesh
- Student's Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Daei Sorkhabi
- Student's Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Ahmadi
- Department of Medical Biology and Central Electron Microscope Laboratory, Medical School, Pécs University, Pécs, Hungary
| | | | - Forough Parhizkar
- Student's Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Science, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leili Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
5
|
Yu L, Zhang Y, Xiong J, Liu J, Zha Y, Kang Q, Zhi P, Wang Q, Wang H, Zeng W, Huang Y. Activated γδ T Cells With Higher CD107a Expression and Inflammatory Potential During Early Pregnancy in Patients With Recurrent Spontaneous Abortion. Front Immunol 2021; 12:724662. [PMID: 34484234 PMCID: PMC8416064 DOI: 10.3389/fimmu.2021.724662] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/29/2021] [Indexed: 12/28/2022] Open
Abstract
Previous studies have reported the involvement of γδ T cells in recurrent spontaneous abortion (RSA); however, both pathogenic and protective effects were suggested. To interrogate the role of γδ T cells in RSA, peripheral blood from RSA patients and healthy women with or without pregnancy were analyzed for γδ T cells by flow cytometry (n = 9–11 for each group). Moreover, the decidua from pregnant RSA patients and healthy controls (RSA-P and HC-P group, respectively) was simultaneously stained for γδ T cells by immunohistochemistry (IHC) and bulk sequenced for gene expression. Our results demonstrated that the frequencies of peripheral γδ T cells and their subpopulations in RSA patients were comparable to that in healthy subjects, but the PD1 expression on Vδ2+ cells was increased in pregnant patients. Furthermore, peripheral Vδ2+ cells in RSA-P patients demonstrated significantly increased expression of CD107a, as compared to that in pregnant healthy controls. In addition, RSA-P patients had higher proportion of IL-17A-secreting but not IL-4-secreting Vδ2+ cells compared to the control groups. In decidua, an inflammatory microenvironment was also evident in RSA-P patients, in which CCL8 expression and the infiltration of certain immune cells were higher than that in the HC-P group, as revealed by transcriptional analysis. Finally, although the presence of γδ T cells in decidua could be detected during pregnancy in both RSA patients and healthy subjects by multicolor IHC analysis, the expression of CD107a on γδ T cells was markedly higher in the RSA-P group. Collectively, our results indicated that the increased activation, cytotoxicity, and inflammatory potential of peripheral and/or local γδ T cells might be responsible for the pathogenesis of RSA. These findings could provide a better understanding of the role of γδ T cells in RSA and shed light on novel treatment strategies by targeting γδ T cells for RSA patients.
Collapse
Affiliation(s)
- Long Yu
- Department of Immunology, Medical College, Wuhan University of Science and Technology, Wuhan, China.,Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Obstetrics and Gynecology, The Second Hospital of Chaoyang City, Chaoyang, China
| | - Jinfeng Xiong
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianjun Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Zha
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Kang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pan Zhi
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Wang
- Department of Immunology, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Hui Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wanjiang Zeng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yafei Huang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Xu QH, Liu H, Wang LL, Zhu Q, Zhang YJ, Muyayalo KP, Liao AH. Roles of γδT cells in pregnancy and pregnancy-related complications. Am J Reprod Immunol 2021; 86:e13487. [PMID: 34331364 DOI: 10.1111/aji.13487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 12/27/2022] Open
Abstract
A successful pregnancy is a complex and unique process comprised of discrete events, including embryo implantation, placentation, and parturition. To maintain the balance between maternal-fetal immune tolerance and resistance to infections, the maternal immune system must have a high degree of stage-dependent plasticity throughout the period of pregnancy. Innate immunity is the frontline force for the establishment of early anti-infection and tolerance mechanisms in mammals. Belonging to the innate immune system, a subset of T cells called γδT cells (based on γδT cell receptors) are the main participants in immune surveillance and immune defense. Unlike traditional αβT cells, γδT cells are regarded as a bridge between innate immunity and acquired immunity. In this review, we summarize current knowledge on the functional plasticity of γδT cells during pregnancy. Furthermore, we discuss the roles of γδT cells in pathological pregnancies.
Collapse
Affiliation(s)
- Qian-Han Xu
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Liu
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li-Ling Wang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Zhu
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu-Jing Zhang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kahindo P Muyayalo
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ai-Hua Liao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Klossner R, Groessl M, Schumacher N, Fux M, Escher G, Verouti S, Jamin H, Vogt B, Mohaupt MG, Gennari-Moser C. Steroid hormone bioavailability is controlled by the lymphatic system. Sci Rep 2021; 11:9666. [PMID: 33958648 PMCID: PMC8102502 DOI: 10.1038/s41598-021-88508-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 04/13/2021] [Indexed: 11/09/2022] Open
Abstract
The steroid hormone progesterone accounts for immune tolerance in pregnancy. Enhanced progesterone metabolism to 6α-OH-pregnanolone occurs in complicated pregnancies such as in preeclampsia with preterm delivery or intrauterine growth restriction, and in cancer. As lymphatic endothelial cells (LECs) promote tumor immunity, we hypothesized that human LECs modify progesterone bioavailability. Primary human LECs and mice lymph nodes were incubated with progesterone and progesterone metabolism was analyzed by thin layer chromatography and liquid chromatography-mass spectrometry. Expression of steroidogenic enzymes, down-stream signal and steroid hormone receptors was assessed by Real-time PCR. The placental cell line HTR-8/SV neo was used as reference. The impact of the progesterone metabolites of interest was investigated on the immune system by fluorescence-activated cell sorting analysis. LECs metabolize progesterone to 6α-OH-pregnanolone and reactivate progesterone from a precursor. LECs highly express 17β-hydroxysteroid dehydrogenase 2 and are therefore antiandrogenic and antiestrogenic. LECs express several steroid hormone receptors and PIBF1. Progesterone and its metabolites reduced TNF-α and IFN-γ production in CD4+ and CD8+ T cells. LECs modify progesterone bioavailability and are a target of steroid hormones. Given the global area represented by LECs, they might have a critical immunomodulatory control in pregnancy and cancer.
Collapse
Affiliation(s)
- Rahel Klossner
- Department of Nephrology and Hypertension, University of Bern, 3010, Bern, Switzerland.,Department of Medicine, Lindenhofgruppe, 3006, Bern, Switzerland.,Department for BioMedical Research, University of Bern, 3010, Bern, Switzerland
| | - Michael Groessl
- Department of Nephrology and Hypertension, University of Bern, 3010, Bern, Switzerland.,Department for BioMedical Research, University of Bern, 3010, Bern, Switzerland
| | - Nadine Schumacher
- Department of Nephrology and Hypertension, University of Bern, 3010, Bern, Switzerland
| | - Michaela Fux
- Department for Clinical Chemistry, Inselspital, 3010, Bern, Switzerland
| | - Geneviève Escher
- Department of Nephrology and Hypertension, University of Bern, 3010, Bern, Switzerland.,Department for BioMedical Research, University of Bern, 3010, Bern, Switzerland
| | - Sophia Verouti
- Department of Nephrology and Hypertension, University of Bern, 3010, Bern, Switzerland.,Department for BioMedical Research, University of Bern, 3010, Bern, Switzerland
| | - Heidi Jamin
- Department of Nephrology and Hypertension, University of Bern, 3010, Bern, Switzerland.,Department for BioMedical Research, University of Bern, 3010, Bern, Switzerland
| | - Bruno Vogt
- Department of Nephrology and Hypertension, University of Bern, 3010, Bern, Switzerland.,Department for BioMedical Research, University of Bern, 3010, Bern, Switzerland
| | - Markus G Mohaupt
- Department of Medicine, Lindenhofgruppe, 3006, Bern, Switzerland.,Campus SLB, Sitem, 3010, Bern, Switzerland.,Division of Child Health, Obstetrics and Gynecology, University of Nottingham, Nottingham, NG5 1PB, UK
| | - Carine Gennari-Moser
- Department of Nephrology and Hypertension, University of Bern, 3010, Bern, Switzerland. .,Department for BioMedical Research, University of Bern, 3010, Bern, Switzerland.
| |
Collapse
|
8
|
Liang Q, Tong L, Xiang L, Shen S, Pan C, Liu C, Zhang H. Correlations of the expression of γδ T cells and their co-stimulatory molecules TIGIT, PD-1, ICOS and BTLA with PR and PIBF in the peripheral blood and decidual tissues of women with unexplained recurrent spontaneous abortion. Clin Exp Immunol 2020; 203:55-65. [PMID: 33017473 DOI: 10.1111/cei.13534] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/26/2020] [Accepted: 09/17/2020] [Indexed: 12/13/2022] Open
Abstract
Semi-allogeneic embryos are not rejected by the maternal immune system due to maternal-fetal immune tolerance. Progesterone (P) receptor (PR)-expressing γδ T cells are present in healthy pregnant women. In the presence of P, these cells secrete an immunomodulatory protein called progesterone-induced blocking factor (PIBF), which can facilitate immune escape and is important in preventing embryonic rejection. This work investigated the correlations of the expression of γδ T cells and their co-stimulatory molecules T cell immunoglobulin and ITIM domain (TIGIT), programmed cell death 1 (PD-1), inducible co-stimulator (ICOS) and B and T lymphocyte attenuator (BTLA) with progesterone receptor (PR) and progesterone-induced blocking factor (PIBF) in peripheral blood and decidual tissue in women with unexplained recurrent spontaneous abortion (URSA) and normal pregnant (NP) women. We confirmed that γδ T cell proportions and PIBF expression in the peripheral blood and decidua of URSA women decreased significantly, while PR expression in decidua decreased. However, TIGIT, PD-1, ICOS and BTLA expression in γδ T cells in peripheral blood did not change, while TIGIT and PD-1 expression in γδ T cells in decidua increased significantly. Under the action of PHA-P (10 µg/ml), co-blocking of TIGIT (15 µg/ml) and PD-1 (10 µg/ml) antibodies further induced γδ T cell proliferation, but PIBF levels in the culture medium supernatant did not change. At 10-10 M P, γδ T cells proliferated significantly, and PIBF concentrations in the culture medium supernatant increased. γδ T cells co-cultured with P, TIGIT and PD-1 blocking antibodies showed the most significant proliferation, and PIBF concentrations in the culture medium supernatant were the highest. These results confirm that P is necessary for PIBF production. The TIGIT and PD-1 pathways participate in γδ T cell proliferation and activation and PIBF expression and play important roles in maintaining pregnancy.
Collapse
Affiliation(s)
- Q Liang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - L Tong
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - L Xiang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - S Shen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - C Pan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - C Liu
- Jiangsu Institute of Clinical Immunology and Jiangsu Key Laboratory of Clinical Immunology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - H Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
9
|
Fonseca S, Pereira V, Lau C, Teixeira MDA, Bini-Antunes M, Lima M. Human Peripheral Blood Gamma Delta T Cells: Report on a Series of Healthy Caucasian Portuguese Adults and Comprehensive Review of the Literature. Cells 2020; 9:cells9030729. [PMID: 32188103 PMCID: PMC7140678 DOI: 10.3390/cells9030729] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/06/2020] [Accepted: 03/13/2020] [Indexed: 12/20/2022] Open
Abstract
Gamma delta T cells (Tc) are divided according to the type of Vδ and Vγ chains they express, with two major γδ Tc subsets being recognized in humans: Vδ2Vγ9 and Vδ1. Despite many studies in pathological conditions, only a few have quantified the γδ Tc subsets in healthy adults, and a comprehensive review of the factors influencing its representation in the blood is missing. Here we quantified the total γδ Tc and the Vδ2/Vγ9 and Vδ1 Tc subsets in the blood from 30 healthy, Caucasian, Portuguese adults, we characterized their immunophenotype by 8-color flow cytometry, focusing in a few relevant Tc markers (CD3/TCR-γδ, CD5, CD8), and costimulatory (CD28), cytotoxic (CD16) and adhesion (CD56) molecules, and we examined the impacts of age and gender. Additionally, we reviewed the literature on the influences of race/ethnicity, age, gender, special periods of life, past infections, diet, medications and concomitant diseases on γδ Tc and their subsets. Given the multitude of factors influencing the γδ Tc repertoire and immunophenotype and the high variation observed, caution should be taken in interpreting “abnormal” γδ Tc values and repertoire deviations, and the clinical significance of small populations of “phenotypically abnormal” γδ Tc in the blood.
Collapse
Affiliation(s)
- Sónia Fonseca
- Laboratory of Cytometry, Unit for Hematology Diagnosis, Department of Hematology, Hospital de Santo António (HSA), Centro Hospitalar Universitário do Porto (CHUP), Unidade Multidisciplinar de Investigação Biomédica, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (UMIB/ICBAS/UP); 4099-001 Porto Porto, Portugal; (S.F.); (C.L.); (M.d.A.T.)
| | - Vanessa Pereira
- Department of Clinical Pathology, Centro Hospitalar de Vila Nova de Gaia/Espinho (CHVNG/E); 4434-502 Vila Nova de Gaia, Portugal;
| | - Catarina Lau
- Laboratory of Cytometry, Unit for Hematology Diagnosis, Department of Hematology, Hospital de Santo António (HSA), Centro Hospitalar Universitário do Porto (CHUP), Unidade Multidisciplinar de Investigação Biomédica, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (UMIB/ICBAS/UP); 4099-001 Porto Porto, Portugal; (S.F.); (C.L.); (M.d.A.T.)
| | - Maria dos Anjos Teixeira
- Laboratory of Cytometry, Unit for Hematology Diagnosis, Department of Hematology, Hospital de Santo António (HSA), Centro Hospitalar Universitário do Porto (CHUP), Unidade Multidisciplinar de Investigação Biomédica, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (UMIB/ICBAS/UP); 4099-001 Porto Porto, Portugal; (S.F.); (C.L.); (M.d.A.T.)
| | - Marika Bini-Antunes
- Laboratory of Immunohematology and Blood Donors Unit, Department of Hematology, Hospital de Santo António (HSA), Centro Hospitalar Universitário do Porto (CHUP), Unidade Multidisciplinar de Investigação Biomédica, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (UMIB/ICBAS/UP); 4099-001Porto, Portugal;
| | - Margarida Lima
- Laboratory of Cytometry, Unit for Hematology Diagnosis, Department of Hematology, Hospital de Santo António (HSA), Centro Hospitalar Universitário do Porto (CHUP), Unidade Multidisciplinar de Investigação Biomédica, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (UMIB/ICBAS/UP); 4099-001 Porto Porto, Portugal; (S.F.); (C.L.); (M.d.A.T.)
- Correspondence: ; Tel.: + 351-22-20-77-500
| |
Collapse
|
10
|
Solano ME, Arck PC. Steroids, Pregnancy and Fetal Development. Front Immunol 2020; 10:3017. [PMID: 32038609 PMCID: PMC6987319 DOI: 10.3389/fimmu.2019.03017] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 12/09/2019] [Indexed: 12/21/2022] Open
Abstract
Maternal glucocorticoids critically rise during pregnancy reaching up to a 20-fold increase of mid-pregnancy concentrations. Concurrently, another steroid hormone, progesterone, increases. Progesterone, which shows structural similarities to glucocorticoids, can bind the intracellular glucocorticoid receptor, although with lower affinity. Progesterone is essential for the establishment and continuation of pregnancy and it is generally acknowledged to promote maternal immune tolerance to fetal alloantigens through a wealth of immunomodulatory mechanisms. Despite the potent immunomodulatory capacity of glucocorticoids, little is known about their role during pregnancy. Here we aim to compare general aspects of glucocorticoids and progesterone during pregnancy, including shared common steroidogenic pathways, plasma transporters, regulatory pathways, expression of receptors, and mechanisms of action in immune cells. It was recently acknowledged that progesterone receptors are not ubiquitously expressed on immune cells and that pivotal features of progesterone induced- maternal immune adaptations to pregnancy are mediated via the glucocorticoid receptor, including e.g., T regulatory cells expansion. We hypothesize that a tight equilibrium between progesterone and glucocorticoids is critically required and recapitulate evidence supporting that their disequilibrium underlie pregnancy complications. Such a disequilibrium can occur, e.g., after maternal stress perception, which triggers the release of glucocorticoids and impair progesterone secretion, resulting in intrauterine inflammation. These endocrine misbalance might be interconnected, as increase in glucocorticoid synthesis, e.g., upon stress, may occur in detriment of progesterone steroidogenesis, by depleting the common precursor pregnenolone. Abundant literature supports that progesterone deficiency underlies pregnancy complications in which immune tolerance is challenged. In these settings, it is largely yet undefined if and how glucocorticoids are affected. However, although progesterone immunomodulation during pregnancy appear to be chiefly mediated glucocorticoid receptors, excess glucocorticoids cannot compensate by progesterone deficiency, indicating that additional und still undercover mechanisms are at play.
Collapse
Affiliation(s)
- Maria Emilia Solano
- Department for Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Petra Clara Arck
- Department for Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
11
|
Shah NM, Lai PF, Imami N, Johnson MR. Progesterone-Related Immune Modulation of Pregnancy and Labor. Front Endocrinol (Lausanne) 2019; 10:198. [PMID: 30984115 PMCID: PMC6449726 DOI: 10.3389/fendo.2019.00198] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/11/2019] [Indexed: 12/17/2022] Open
Abstract
Pregnancy involves a complex interplay between maternal neuroendocrine and immunological systems in order to establish and sustain a growing fetus. It is thought that the uterus at pregnancy transitions from quiescent to laboring state in response to interactions between maternal and fetal systems at least partly via altered neuroendocrine signaling. Progesterone (P4) is a vital hormone in maternal reproductive tissues and immune cells during pregnancy. As such, P4 is widely used in clinical interventions to improve the chance of embryo implantation, as well as reduce the risk of miscarriage and premature labor. Here we review research to date that focus on the pathways through which P4 mediates its actions on both the maternal reproductive and immune system. We will dissect the role of P4 as a modulator of inflammation, both systemic and intrinsic to the uterus, during human pregnancy and labor.
Collapse
Affiliation(s)
- Nishel M. Shah
- Department of Surgery and Cancer, Chelsea and Westminster Hospital, Imperial College London, London, United Kingdom
| | - Pei F. Lai
- Department of Surgery and Cancer, Chelsea and Westminster Hospital, Imperial College London, London, United Kingdom
| | - Nesrina Imami
- Department of Medicine, Chelsea and Westminster Hospital, Imperial College London, London, United Kingdom
| | - Mark R. Johnson
- Department of Surgery and Cancer, Chelsea and Westminster Hospital, Imperial College London, London, United Kingdom
| |
Collapse
|
12
|
Terzieva A, Dimitrova V, Djerov L, Dimitrova P, Zapryanova S, Hristova I, Vangelov I, Dimova T. Early Pregnancy Human Decidua is Enriched with Activated, Fully Differentiated and Pro-Inflammatory Gamma/Delta T Cells with Diverse TCR Repertoires. Int J Mol Sci 2019; 20:ijms20030687. [PMID: 30764544 PMCID: PMC6387174 DOI: 10.3390/ijms20030687] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 02/07/2023] Open
Abstract
Pregnancy is a state where high and stage-dependent plasticity of the maternal immune system is necessary in order to equilibrate between immunosuppression of harmful responses towards the fetus and ability to fight infections. TCR γδ cells have been implicated in the responses in infectious diseases, in the regulation of immune responses, and in tissue homeostasis and repair. The variety of functions makes γδ T cells a particularly interesting population during pregnancy. In this study, we investigated the proportion, phenotype and TCR γ and δ repertoires of γδ T cells at the maternal–fetal interface and in the blood of pregnant women using FACS, immunohistochemistry and spectratyping. We found an enrichment of activated and terminally differentiated pro-inflammatory γδ T-cell effectors with specific location in the human decidua during early pregnancy, while no significant changes in their counterparts in the blood of pregnant women were observed. Our spectratyping data revealed polyclonal CDR3 repertoires of the δ1, δ2 and δ3 chains and γ2, γ3, γ4 and γ5 chains and oligoclonal and highly restricted CDR3γ9 repertoire of γδ T cells in the decidua and blood of pregnant women. Early pregnancy induces recruitment of differentiated pro-inflammatory γδ T-cell effectors with diverse TCR repertoires at the maternal–fetal interface.
Collapse
Affiliation(s)
- Antonia Terzieva
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.
| | - Violeta Dimitrova
- Medical University, University Obstetrics and Gynecology Hospital "Maichin Dom", 1431 Sofia, Bulgaria.
| | - Lyubomir Djerov
- Medical University, University Obstetrics and Gynecology Hospital "Maichin Dom", 1431 Sofia, Bulgaria.
| | - Petya Dimitrova
- Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.
| | - Silvina Zapryanova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.
| | - Iana Hristova
- Medical University, University Obstetrics and Gynecology Hospital "Maichin Dom", 1431 Sofia, Bulgaria.
| | - Ivaylo Vangelov
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.
| | - Tanya Dimova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.
| |
Collapse
|
13
|
Wang XX, Luo Q, Bai WP. Efficacy of progesterone on threatened miscarriage: Difference in drug types. J Obstet Gynaecol Res 2019; 45:794-802. [PMID: 30632226 DOI: 10.1111/jog.13909] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 12/08/2018] [Indexed: 11/28/2022]
Abstract
AIM To investigate whether treatment with progesterone would decrease the incidence of miscarriage in women who faced threatened miscarriage. METHODS Randomized controlled trials (RCT) were identified by searching PubMed, Embase, Cochrane Library and Web of Science. Trials were included if they compared progesterone with placebo, no treatment or any other treatment given in an effort to treat threatened miscarriage. Pregnant prophylaxis drugs were not included without strict progesterone type, language and progesterone management. The primary outcome was the incidence of miscarriage. The summary measures were reported as relative risk (RR) with 95% confidence interval (CI). RESULTS Eight RCT including 845 women who faced threatened miscarriage were analyzed. Pooled data from the eight trials showed that women with threatened miscarriage who were randomized to the progesterone group had a lower risk of threatened miscarriage (RR = 0.64, 95% CI 0.48-0.85). Dydrogesterone was shown to have a lower risk of miscarriage (RR = 0.49, 95% CI 0.33-0.75) than natural progesterone (RR = 0.69, 95% CI 0.40-1.19). Oral management was demonstrated to have a lower risk of miscarriage (RR = 0.55, 95% CI 0.38-0.79) compared with vaginal administration (RR = 0.58, 95% CI 0.28-1.21). CONCLUSION Our findings show that progesterone agents are effective in reducing the incidence of miscarriage in threatened miscarriage. Dydrogesterone, but not natural progesterone, was associated with a lower risk of miscarriage. Given the limitations of the studies included in our meta-analysis, it is difficult to recommend route and dose of progesterone therapy. Further head-to-head trials of gestational weeks and long-time follow-up are required.
Collapse
Affiliation(s)
- Xiao-Xue Wang
- Department of Gynecology and Obstetrics, Capital Medical University Affiliated Shijitan Hospital, Beijing, China
| | - Qing Luo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Wen-Pei Bai
- Department of Gynecology and Obstetrics, Capital Medical University Affiliated Shijitan Hospital, Beijing, China
| |
Collapse
|
14
|
Szekeres-Bartho J, Šućurović S, Mulac-Jeričević B. The Role of Extracellular Vesicles and PIBF in Embryo-Maternal Immune-Interactions. Front Immunol 2018; 9:2890. [PMID: 30619262 PMCID: PMC6300489 DOI: 10.3389/fimmu.2018.02890] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/26/2018] [Indexed: 02/01/2023] Open
Abstract
Pregnancy represents a unique immunological situation. Though paternal antigens expressed by the conceptus are recognized by the immune system of the mother, the immune response does not harm the fetus. Progesterone and a progesterone induced protein; PIBF are important players in re-adjusting the functioning of the maternal immune system during pregnancy. PIBF expressed by peripheral pregnancy lymphocytes, and other cell types, participates in the feto-maternal communication, partly, by mediating the immunological actions of progesterone. Several splice variants of PIBF were identified with different physiological activity. The full length 90 kD PIBF protein plays a role in cell cycle regulation, while shorter splice variants are secreted and act as cytokines. Aberrant production of PIBF isoforms lead to the loss of immune-regulatory functions, resulting in and pregnancy failure. By up regulating Th2 type cytokine production and by down-regulating NK activity, PIBF contributes to the altered attitude of the maternal immune system. Normal pregnancy is characterized by a Th2-dominant cytokine balance, which is partly due to the action of the smaller PIBF isoforms. These bind to a novel form of the IL-4 receptor, and induce increased production of IL-3, IL-4, and IL-10. The communication between the conceptus and the mother is established via extracellular vesicles (EVs). Pre-implantation embryos produce EVs both in vitro, and in vivo. PIBF transported by the EVs from the embryo to maternal lymphocytes induces increased IL-10 production by the latter, this way contributing to the Th2 dominant immune responses described during pregnancy.
Collapse
Affiliation(s)
- Julia Szekeres-Bartho
- Department of Medical Biology and Central Electron Microscope Laboratory, Medical School, Pécs University, Pécs, Hungary.,János Szentágothai Research Centre, Pécs University, Pécs, Hungary.,Endocrine Studies, Centre of Excellence, Pécs University, Pécs, Hungary.,MTA-PTE Human Reproduction Research Group, Pécs, Hungary
| | - Sandra Šućurović
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Biserka Mulac-Jeričević
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| |
Collapse
|
15
|
Ku CW, Allen JC, Lek SM, Chia ML, Tan NS, Tan TC. Serum progesterone distribution in normal pregnancies compared to pregnancies complicated by threatened miscarriage from 5 to 13 weeks gestation: a prospective cohort study. BMC Pregnancy Childbirth 2018; 18:360. [PMID: 30185145 PMCID: PMC6126027 DOI: 10.1186/s12884-018-2002-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 08/28/2018] [Indexed: 11/20/2022] Open
Abstract
Background Progesterone is a critical hormone in early pregnancy. A low level of serum progesterone is associated with threatened miscarriage. We aim to establish the distribution of maternal serum progesterone in normal pregnancies compared to pregnancies complicated by threatened miscarriage from 5 to 13 weeks gestation. Methods This is a single centre, prospective cohort study of 929 patients. Women from the Normal Pregnancy [NP] cohort were recruited from antenatal clinics, and those in the Threatened Miscarriage [TM] cohort were recruited from emergency walk-in clinics. Women with multiple gestations, missed, incomplete or inevitable miscarriage were excluded from the study. Quantile regression was used to characterize serum progesterone levels in the NP and TM cohorts by estimating the 10th, 50th and 90th percentiles from 5 to 13 weeks gestation. Pregnancy outcome was determined at 16 weeks of gestation. Subgroup analysis within the TM group compared progesterone levels of women who subsequently miscarried with those who had ongoing pregnancies at 16 weeks of gestation. Results Median serum progesterone concentration demonstrated a linearly increasing trend from 57.5 nmol/L to 80.8 nmol/L from 5 to 13 weeks gestation in the NP cohort. In the TM cohort, median serum progesterone concentration increased from 41.7 nmol/L to 78.1 nmol/L. However, median progesterone levels were uniformly lower in the TM cohort by approximately 10 nmol/L at every gestation week. In the subgroup analysis, median serum progesterone concentration in women with ongoing pregnancy at 16 weeks gestation demonstrated a linearly increasing trend from 5 to 13 weeks gestation. There was a marginal and non-significant increase in serum progesterone from 19.0 to 30.3 nmol/L from 5 to 13 weeks gestation in women who eventually had a spontaneous miscarriage. Conclusions Serum progesterone concentration increased linearly with gestational age from 5 to 13 weeks in women with normal pregnancies. Women with spontaneous miscarriage showed a marginal and non-significant increase in serum progesterone. This study highlights the pivotal role of progesterone in supporting an early pregnancy, with lower serum progesterone associated with threatened miscarriage and a subsequent complete miscarriage at 16 weeks gestation. Electronic supplementary material The online version of this article (10.1186/s12884-018-2002-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chee Wai Ku
- Department of Obstetrics and Gynecology, KK Women's and Children's Hospital, Singapore, 100 Bukit Timah Road, Singapore, 229899, Singapore.
| | - John C Allen
- Duke-National University of Singapore Graduate Medical School, Singapore, Singapore
| | - Sze Min Lek
- Department of Obstetrics and Gynecology, KK Women's and Children's Hospital, Singapore, 100 Bukit Timah Road, Singapore, 229899, Singapore
| | - Ming Li Chia
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Nguan Soon Tan
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.,Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
| | - Thiam Chye Tan
- Department of Obstetrics and Gynecology, KK Women's and Children's Hospital, Singapore, 100 Bukit Timah Road, Singapore, 229899, Singapore.,Duke-National University of Singapore Graduate Medical School, Singapore, Singapore
| |
Collapse
|
16
|
Abstract
Progestational agents are often prescribed to prevent pregnancy loss. Progestogens affect implantation, cytokine balance, natural killer cell activity, arachidonic acid release and myometrial contractility. Progestogens have therefore been used at all stages of pregnancy including luteal-phase support prior to pregnancy, threatened miscarriage, recurrent miscarriage, and to prevent preterm labor. In luteal support, a Cochrane review reported that progestogens were associated with a higher rate of live births or ongoing pregnancy in the progesterone group (odds ratio 1.77, 95% confidence interval (CI) 1.09-2.86). Evidence suggests that progestogens are also effective for treating threatened miscarriage. Again, in a Cochrane Database review, progestogens were associated with a reduced odds ratio of 0.53 (95% CI 0.35-0.79) when progestogens were used. In recurrent miscarriage, progestogens also seem to have a beneficial effect. A meta-analysis of progestational agents showed a 28% increase in the live birth rate (relative risk 0.72, 95% CI 0.53-0.97). For the last 30 years, progestogens have been used to prevent preterm labor. Recent meta-analyses also report beneficial effects. This review summarizes the literature and the author's experience using progestogens to prevent pregnancy loss.
Collapse
Affiliation(s)
- H J A Carp
- a Department of Obstetrics & Gynecology , Sheba Medical Center , Tel Hashomer , Israel
| |
Collapse
|
17
|
Talukdar A, Rai R, Aparna Sharma K, Rao D, Sharma A. Peripheral Gamma Delta T cells secrete inflammatory cytokines in women with idiopathic recurrent pregnancy loss. Cytokine 2018; 102:117-122. [DOI: 10.1016/j.cyto.2017.07.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 06/19/2017] [Accepted: 07/24/2017] [Indexed: 12/18/2022]
|
18
|
Szekeres-Bartho J. The Role of Progesterone in Feto-Maternal Immunological Cross Talk. Med Princ Pract 2018; 27:301-307. [PMID: 29949797 PMCID: PMC6167700 DOI: 10.1159/000491576] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/27/2018] [Indexed: 12/14/2022] Open
Abstract
This review aims to provide a brief historical overview of the feto-maternal immunological relationship, which profoundly influences the outcome of pregnancy. The initial question posed in the 1950s by Medawar [Symp Soc Exp Biol. 1953; 7: 320-338] was based on the assumption that the maternal immune system recognizes the fetus as an allograft. Indeed, based on the association between HLA-matching and spontaneous miscarriage, it became obvious that immunological recognition of pregnancy is required for a successful gestation. The restricted expression of polymorphic HLA antigens on the trophoblast, together with the presence of nonpolymorphic MHC products, excludes recognition by both T and NK cells of trophoblast-presented antigens; however, γδ T cells, which constitute the majority of decidual T cells, are likely candidates. Indeed, a high number of activated, progesterone receptor-expressing γδ T cells are present in the peripheral blood of healthy pregnant women and, in the presence of progesterone, these cells secrete an immunomodulatory protein called progesterone-induced blocking factor (PIBF). As early as in the peri-implantation period, the embryo communicates with the maternal immune system via PIBF containing extracellular vesicles. PIBF contributes to the dominance of Th2-type reactivity which characterizes normal pregnancy by inducing increased production of Th2 cytokines. The high expression of this molecule in the decidua might be one of the reasons for the low cytotoxic activity of decidual NK cells.
Collapse
Affiliation(s)
- Julia Szekeres-Bartho
- *Julia Szekeres-Bartho, Department of Medical Biology and Central Electron Microscope Laboratory, Medical School, Pecs University, 12 Szigeti Street, HU-7624 Pecs (Hungary), E-Mail
| |
Collapse
|
19
|
Ku CW, Tan ZW, Lim MK, Tam ZY, Lin CH, Ng SP, Allen JC, Lek SM, Tan TC, Tan NS. Spontaneous miscarriage in first trimester pregnancy is associated with altered urinary metabolite profile. BBA CLINICAL 2017; 8:48-55. [PMID: 28879096 PMCID: PMC5574812 DOI: 10.1016/j.bbacli.2017.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 07/25/2017] [Accepted: 07/31/2017] [Indexed: 12/30/2022]
Abstract
Threatened miscarriage is the most common gynecological emergency, occurring in about 20% of pregnant women. Approximately one in four of these patients go on to have spontaneous miscarriage and the etiology of miscarriage still remains elusive. In a bid to identify possible biomarkers and novel treatment targets, many studies have been undertaken to elucidate the pathways that lead to a miscarriage. Luteal phase deficiency has been shown to contribute to miscarriages, and the measurement of serum progesterone as a prognostic marker and the prescription of progesterone supplementation has been proposed as possible diagnostic and treatment methods. However, luteal phase deficiency only accounts for 35% of miscarriages. In order to understand the other causes of spontaneous miscarriage and possible novel urine biomarkers for miscarriage, we looked at the changes in urinary metabolites in women with threatened miscarriage. To this end, we performed a case-control study of eighty patients who presented with threatened miscarriage between 6 and 10 weeks gestation. Urine metabolomics analyses of forty patients with spontaneous miscarriages and forty patients with ongoing pregnancies at 16 weeks gestation point to an impaired placental mitochondrial β-oxidation of fatty acids as the possible cause of spontaneous miscarriage. This study also highlighted the potential of urine metabolites as a non-invasive screening tool for the risk stratification of women presenting with threatened miscarriage.
Collapse
Affiliation(s)
- Chee Wai Ku
- KK Women's and Children's Hospital, 100 Bukit Timah Road, 229899, Singapore
| | - Zhen Wei Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Mark Kit Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, 636921, Singapore
| | - Zhi Yang Tam
- Singapore Phenome Center, Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, 636921, Singapore
| | - Chih-Hsien Lin
- Singapore Phenome Center, Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, 636921, Singapore
| | - Sean Pin Ng
- Singapore Phenome Center, Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, 636921, Singapore
| | - John Carson Allen
- Centre for Quantitative Medicine, Duke-NUS Medical School, 20 College Road, Academia, 169856, Singapore
| | - Sze Min Lek
- KK Women's and Children's Hospital, 100 Bukit Timah Road, 229899, Singapore
| | - Thiam Chye Tan
- KK Women's and Children's Hospital, 100 Bukit Timah Road, 229899, Singapore
| | - Nguan Soon Tan
- KK Women's and Children's Hospital, 100 Bukit Timah Road, 229899, Singapore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, 636921, Singapore
- Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Drive, Proteos, 138673, Singapore
| |
Collapse
|
20
|
Shah NM, Herasimtschuk AA, Boasso A, Benlahrech A, Fuchs D, Imami N, Johnson MR. Changes in T Cell and Dendritic Cell Phenotype from Mid to Late Pregnancy Are Indicative of a Shift from Immune Tolerance to Immune Activation. Front Immunol 2017; 8:1138. [PMID: 28966619 PMCID: PMC5605754 DOI: 10.3389/fimmu.2017.01138] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 08/29/2017] [Indexed: 12/12/2022] Open
Abstract
During pregnancy, the mother allows the immunologically distinct fetoplacental unit to develop and grow. Opinions are divided as to whether this represents a state of fetal-specific tolerance or of a generalized suppression of the maternal immune system. We hypothesized that antigen-specific T cell responses are modulated by an inhibitory T cell phenotype and modified dendritic cell (DC) phenotype in a gestation-dependent manner. We analyzed changes in surface markers of peripheral blood T cells, ex vivo antigen-specific T cell responses, indoleamine 2,3-dioxygenase (IDO) activity (kynurenine/tryptophan ratio, KTR), plasma neopterin concentration, and the in vitro expression of progesterone-induced blocking factor (PIBF) in response to peripheral blood mononuclear cell culture with progesterone. We found that mid gestation is characterized by reduced antigen-specific T cell responses associated with (1) predominance of effector memory over other T cell subsets; (2) upregulation of inhibitory markers (programmed death ligand 1); (3) heightened response to progesterone (PIBF); and (4) reduced proportions of myeloid DC and concurrent IDO activity (KTR). Conversely, antigen-specific T cell responses normalized in late pregnancy and were associated with increased markers of T cell activation (CD38, neopterin). However, these changes occur with a simultaneous upregulation of immune suppressive mechanisms including apoptosis (CD95), coinhibition (TIM-3), and immune regulation (IL-10) through the course of pregnancy. Together, our data suggest that immune tolerance dominates in the second trimester and that it is gradually reversed in the third trimester in association with immune activation as the end of pregnancy approaches.
Collapse
Affiliation(s)
- Nishel Mohan Shah
- Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
| | - Anna A Herasimtschuk
- Department of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
| | - Adriano Boasso
- Department of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
| | - Adel Benlahrech
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine and Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Dietmar Fuchs
- Division of Biological Chemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Nesrina Imami
- Department of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
| | - Mark R Johnson
- Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
| |
Collapse
|
21
|
Human Zika infection induces a reduction of IFN-γ producing CD4 T-cells and a parallel expansion of effector Vδ2 T-cells. Sci Rep 2017; 7:6313. [PMID: 28740159 PMCID: PMC5524759 DOI: 10.1038/s41598-017-06536-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 06/13/2017] [Indexed: 12/25/2022] Open
Abstract
The definition of the immunological response to Zika (ZIKV) infection in humans represents a key issue to identify protective profile useful for vaccine development and for pathogenesis studies. No data are available on the cellular immune response in the acute phase of human ZIKV infection, and its role in the protection and/or pathogenesis needs to be clarified. We studied and compared the phenotype and functionality of T-cells in patients with acute ZIKV and Dengue viral (DENV) infections. A significant activation of T-cells was observed during both ZIKV and DENV infections. ZIKV infection was characterized by a CD4 T cell differentiation toward effector cells and by a lower frequency of IFN-γ producing CD4 T cells. Moreover, a substantial expansion of CD3+CD4−CD8− T-cell subset expressing Vδ2 TCR was specifically observed in ZIKV patients. Vδ2 T cells presented a terminally differentiated profile, expressed granzyme B and maintained their ability to produce IFN-γ. These findings provide new knowledge on the immune response profile during self-limited infection that may help in vaccine efficacy definition, and in identifying possible immuno-pathogenetic mechanisms of severe infection.
Collapse
|
22
|
Hudic I, Schindler AE, Szekeres-Bartho J, Stray-Pedersen B. Dydrogesterone and pre-term birth. Horm Mol Biol Clin Investig 2017; 27:81-3. [PMID: 26812800 DOI: 10.1515/hmbci-2015-0064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 12/15/2015] [Indexed: 11/15/2022]
Abstract
Progestin supplementation appears to be a promising approach to both preventing initiation of pre-term labor and treating it once it is already established. Successful pregnancy depends on maternal tolerance of the fetal "semi-allograft". A protein called progesterone-induced blocking factor (PIBF), by inducing a Th2 dominant cytokine production mediates the immunological effects of progesterone. Over time, various attempts have been made to clarify the question, whether progestogens can contribute positively to either prevention or treatment of pre-term labor and birth. Dydrogesterone treatment of women at risk of pre-term delivery results in increased PIBF production and IL-10 concentrations, and lower concentrations of IFNγ and could be effective for prevention or treatment of pre-term labor. Further randomized studies are needed.
Collapse
|
23
|
Ghaebi M, Nouri M, Ghasemzadeh A, Farzadi L, Jadidi-Niaragh F, Ahmadi M, Yousefi M. Immune regulatory network in successful pregnancy and reproductive failures. Biomed Pharmacother 2017; 88:61-73. [PMID: 28095355 DOI: 10.1016/j.biopha.2017.01.016] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 12/27/2016] [Accepted: 01/02/2017] [Indexed: 12/23/2022] Open
Abstract
Maternal immune system must tolerate semiallogenic fetus to establish and maintain a successful pregnancy. Despite the existence of several strategies of trophoblast to avoid recognition by maternal leukocytes, maternal immune system may react against paternal alloantigenes. Leukocytes are important components in decidua. Not only T helper (Th)1/Th2 balance, but also regulatory T (Treg) cells play an important role in pregnancy. Although the frequency of Tregs is elevated during normal pregnancies, their frequency and function are reduced in reproductive defects such as recurrent miscarriage and preeclampsia. Tregs are not the sole population of suppressive cells in the decidua. It has recently been shown that regulatory B10 (Breg) cells participate in pregnancy through secretion of IL-10 cytokine. Myeloid derived suppressor cells (MDSCs) are immature developing precursors of innate myeloid cells that are increased in pregnant women, implying their possible function in pregnancy. Natural killer T (NKT) cells are also detected in mouse and human decidua. They can also affect the fetomaternal tolerance. In this review, we will discuss on the role of different immune regulatory cells including Treg, γd T cell, Breg, MDSC, and NKT cells in pregnancy outcome.
Collapse
Affiliation(s)
- Mahnaz Ghaebi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Department of Biochemistry and Clinical Laboratories, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aliyeh Ghasemzadeh
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Laya Farzadi
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Jadidi-Niaragh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Ahmadi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
24
|
Kurz C, Tempfer CB, Boecskoer S, Unfried G, Nagele F, Hefler LA. The PROGINS Progesterone Receptor Gene Polymorphism and Idiopathic Recurrent Miscarriage. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/107155760100800507] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Christine Kurz
- Departments of Endocrinology and Reproductive Medicine and Obstetrics and Gynecology, University of Vienna School of Medicine, Vienna, Austria
| | - Clemens B. Tempfer
- Departments of Endocrinology and Reproductive Medicine and Obstetrics and Gynecology, University of Vienna School of Medicine, Vienna, Austria; Deprtment of Obstetrics and Gynecology, University of Vienna School of Medicine, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | | | | | | | - Lukas A. Hefler
- Departments of Endocrinology and Reproductive Medicine and Obstetrics and Gynecology, University of Vienna School of Medicine, Vienna, Austria
| |
Collapse
|
25
|
Carp HJA. Progestogens in the prevention of miscarriage. Horm Mol Biol Clin Investig 2016; 27:55-62. [PMID: 26677905 DOI: 10.1515/hmbci-2015-0058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 11/09/2015] [Indexed: 11/15/2022]
Abstract
Progestational agents are often prescribed to prevent threatened miscarriage progressing to miscarriage, and subsequent miscarriages in recurrent pregnancy loss. Progestogens affect implantation, cytokine balance, natural killer cell activity, arachidonic acid release and myometrial contractility. A recent Cochrane review reported that progestogens were effective for treating threatened miscarriage with no harmful effects on mother or fetus. The results were not statistically different when vaginal progesterone was compared to placebo, (RR=0.47, 95% CI 0.17-1.30), whereas oral progestogen (dydrogesterone) was effective (RR=0.54, CI 0.35-0.84). The review concluded, that the small number of eligible studies, and the small number of the participants, limited the power of the metaanalysis. A later metaanalysis of five randomised controlled trials of threatened miscarriage comprised 660 patients. The results of 335 women who received dydrogesterone were compared to 325 women receiveing either placebo or bed rest. There was a 47% reduction in the odds ratio for miscarriage, (OR=0.47, CI 0.31-0.7). There was a 13% (44/335) miscarriage rate after dydrogesterone administration compared to 24% in control women. Recurrent miscarriage affects approximately 1% of women of child bearing age. A metaanalysis of progestational agents shows a 26% increase in the live birth rate. Again, dydrogesterone was associated with a more significant increase in the live birth rate than the other progestogens included in the metaanalysis.
Collapse
|
26
|
Hudić I, Szekeres-Bartho J, Stray-Pedersen B, Fatušić Z, Polgar B, Ećim-Zlojutro V. Lower Urinary and Serum Progesterone-Induced Blocking Factor in Women with Preterm Birth. J Reprod Immunol 2016; 117:66-9. [PMID: 27479613 DOI: 10.1016/j.jri.2016.07.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 07/01/2016] [Accepted: 07/14/2016] [Indexed: 11/30/2022]
Abstract
The aim of the study was to compare urine and serum concentrations of PIBF at 24-28 gestational weeks in women with preterm birth, with those of women who delivered at term and to evaluate the impact of PIBF on the outcome of pregnancy. Case-control study was performed in period from 1.6.2010-31.7.2013. Biological samples (urine and serum) were collected from 126 pregnant women. All biological samples were obtained at 24-28 gestation weeks. We measured PIBF concentration and compared women who delivered preterm and those who delivered at term. Thirteen of 126 pregnant women (10.3%) who were included in the study delivered preterm. Among women that actually delivered preterm, median concentrations of PIBF were significantly lower (12.3ng/ml; 101.3ng/ml) than in women who delivered at term (77.0ng/ml; 412.7ng/ml). The serum and urine 24-28 gestational weeks PIBF in those who delivered preterm were generally low from 24 to 37 gestational weeks, while the serum and urine PIBF concentration reached a peak in those delivering between 37-38 gestational weeks, even significantly different from those delivering at 39 to 40 and after 40 gestational weeks. Preterm birth may be predictable at 24-28 gestational week by lower than normal pregnancy PIBF values and measurement of PIBF concentration in biological fluids at that time may be of importance in clinical practice.
Collapse
Affiliation(s)
- Igor Hudić
- Clinic of Gynecology and Obstetrics, University Clinical Center, Tuzla, Bosnia and Herzegovina; Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Julia Szekeres-Bartho
- Department of Medical Biology, Medical School, Pecs University, MTA-PTE Human Reproduction Scientific Research Group, Janos Szentagothai Research Centre, University of Pecs, Hungary
| | - Babill Stray-Pedersen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Division of Obstetrics and Gynecology, Rikshospitalet, Oslo University Hospital, Oslo, Norway
| | - Zlatan Fatušić
- Clinic of Gynecology and Obstetrics, University Clinical Center, Tuzla, Bosnia and Herzegovina
| | - Beata Polgar
- Department of Medical Biology, Medical School, Pecs University, MTA-PTE Human Reproduction Scientific Research Group, Janos Szentagothai Research Centre, University of Pecs, Hungary
| | - Vesna Ećim-Zlojutro
- Clinic of Gynecology and Obstetrics, University Clinical Center of Republic of Srpska, Banja Luka, Bosnia and Herzegovina
| |
Collapse
|
27
|
Abstract
A special interaction is established during pregnancy between the maternal immune system and fetal cells to allow the survival and the normal growth of the fetus. Fetal cells expressing paternal alloantigens are not recognized as foreign by the mother because of an efficient anatomic barrier and a local immunosuppression determined by the interplay of locally produced cytokines, biologically active molecules and hormones. A special balance between TH1 and TH2 lymphocytes has also been observed at the feto-maternal barrier that contribute to control the immune response at this level. An important role is played by trophoblast cells that act as a physical barrier forming a continuous layer and exert immunomodulatory function. Trophoblast cells have also been shown to express regulators of the complement system and to downregulate the expression of HLA antigens. Dysfunction of these cells leads to morphological and functional alterations of the feto-maternal barrier as well as to hormonal and immune imbalance and may contribute to the development of pathologic conditions of pregnancy, such as recurrent spontaneous abortions. Efforts are still needed to better understand the physiology of the feto-maternal interaction and the pathogenetic mechanisms responsible for tissue damage in pathologic conditions of pregrancy.
Collapse
Affiliation(s)
- R Bulla
- Department of Physiology and Pathology, University of Trieste, Trieste, Italy
| | | | | | | |
Collapse
|
28
|
Cohen RA, Check JH, Dougherty MP. Evidence that exposure to progesterone alone is a sufficient stimulus to cause a precipitous rise in the immunomodulatory protein the progesterone induced blocking factor (PIBF). J Assist Reprod Genet 2016; 33:221-9. [PMID: 26634256 PMCID: PMC4759003 DOI: 10.1007/s10815-015-0619-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 11/12/2015] [Indexed: 10/22/2022] Open
Abstract
PURPOSE To determine if exposure to progesterone alone is sufficient to increase the production of the immunomodulatory protein known as the progesterone induced blocking factor (PIBF). Also to determine what method of progesterone delivery or form of P best stimulates PIBF secretion. METHODS Serum samples from patients with infertility and paid volunteers were evaluated for both PIBF and progesterone at various times during the follicular phase and the luteal phase in both natural cycles and cycles involving embryo transfer after endogenous and exogenous progesterone exposure and after various synthetic progestins. PIBF was measured by a non-commercial research ELISA assay. Comparisons were made of serum PIBF before and after exposure to progesterone, 17-hydroxyprogesterone, and oral contraceptives. PIBF was also measured before and after transfer of embryos. RESULTS Progesterone alone without exposure to the fetal allogeneic stimulus was able to produce a marked increase in serum PIBF. Neither a synthetic progestin (19-nortestosterone derivative) nor 17-hydroxyprogesterone caused an increase in PIBF. Some PIBF is generally detected even in the follicular phase. CONCLUSIONS A previous concept considered that an allogeneic stimulus, e.g., from the fetal semi-allograft, was necessary to induce de novo progesterone receptors in gamma delta T cells, which, in turn, when exposed to a high concentration of progesterone, would secrete high levels of PIBF. These data show that exposure to an allogeneic stimulus is not needed to cause a marked rise in PIBF, merely progesterone alone is sufficient.
Collapse
Affiliation(s)
- Rachael A Cohen
- Department of Obstetrics and Gynecology, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, USA
| | - Jerome H Check
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Cooper Medical School of Rowan University, Camden, NJ, USA.
- , 7447 Old York Road, Melrose Park, PA, 19027, USA.
| | - Michael P Dougherty
- Department of Obstetrics, Gynecology and Reproductive Sciences, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| |
Collapse
|
29
|
Chapman JC, Chapman FM, Michael SD. The production of alpha/beta and gamma/delta double negative (DN) T-cells and their role in the maintenance of pregnancy. Reprod Biol Endocrinol 2015; 13:73. [PMID: 26164866 PMCID: PMC4499209 DOI: 10.1186/s12958-015-0073-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 07/08/2015] [Indexed: 01/19/2023] Open
Abstract
The ability of the thymus gland to convert bone marrow-derived progenitor cells into single positive (SP) T-cells is well known. In this review we present evidence that the thymus, in addition to producing SP T-cells, also has a pathway for the production of double negative (DN) T-cells. The existence of this pathway was noted during our examination of relevant literature to determine the cause of sex steroid-induced thymocyte loss. In conducting this search our objective was to answer the question of whether thymocyte loss is the end product of a typical interaction between the reproductive and immune systems, or evidence that the two systems are incompatible. We can now report that "thymocyte loss" is a normal process that occurs during the production of DN T-cells. The DN T-cell pathway is unique in that it is mediated by thymic mast cells, and becomes functional following puberty. Sex steroids initiate the development of the pathway by binding to an estrogen receptor alpha located in the outer membrane of the mast cells, causing their activation. This results in their uptake of extracellular calcium, and the production and subsequent release of histamine and serotonin. Lymphatic vessels, located in the subcapsular region of the thymus, respond to the two vasodilators by undergoing a substantial and preferential uptake of gamma/delta and alpha/beta DN T- cells. These T- cells exit the thymus via efferent lymphatic vessels and enter the lymphatic system.The DN pathway is responsible for the production of three subsets of gamma/delta DN T-cells and one subset of alpha/beta DN T-cells. In postpubertal animals approximately 35 % of total thymocytes exit the thymus as DN T-cells, regardless of sex. In pregnant females, their levels undergo a dramatic increase. Gamma/delta DN T-cells produce cytokines that are essential for the maintenance of pregnancy.
Collapse
Affiliation(s)
- John C Chapman
- Department of Biological Sciences, Binghamton University, Binghamton, New York, 13902-6000, USA.
| | - Fae M Chapman
- Department of Biological Sciences, Binghamton University, Binghamton, New York, 13902-6000, USA.
| | - Sandra D Michael
- Department of Biological Sciences, Binghamton University, Binghamton, New York, 13902-6000, USA.
| |
Collapse
|
30
|
Abstract
The objective of this systematic review was to assesses whether the orally acting progestagen, dydrogesterone lowers the incidence of subsequent miscarriage in women with recurrent miscarriage. A computerized search was performed in Medline, Embase and Ovid Medline for original reports with the product name "Duphaston" or "dydrogesterone" and limited to clinical human data. Thirteen reports of dydrogesterone treatment were identified. Two randomized trials and one non-randomized comparative trial were identified, including 509 women who fulfilled the criteria for meta-analysis. The number of subsequent miscarriages or continuing pregnancies per woman was compared in women receiving dydrogesterone compared to standard bed rest or placebo intervention. There was a 10.5% (29/275) miscarriage rate after dydrogesterone administration compared to 23.5% in control women (odds ratio for miscarriage 0.29 [confidence interval 0.13-0.65] and 13% absolute reduction in the miscarriage rate). The adverse and side effects were summarised in all 13 reports, and seemed to be minimal. Although all the predictive and confounding factors could not be controlled for, the results of this systematic review show a significant reduction of 29% in the odds for miscarriage when dydrogesterone is compared to standard care indicating a real treatment effect.
Collapse
Affiliation(s)
- Howard Carp
- Department of Obstetrics and Gynecology, Sheba Medical Center , Tel Hashomer , Israel and
| |
Collapse
|
31
|
Pregnancy Associated with Systemic Lupus Erythematosus: Immune Tolerance in Pregnancy and Its Deficiency in Systemic Lupus Erythematosus--An Immunological Dilemma. J Immunol Res 2015; 2015:241547. [PMID: 26090485 PMCID: PMC4451247 DOI: 10.1155/2015/241547] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 02/05/2015] [Accepted: 02/06/2015] [Indexed: 01/04/2023] Open
Abstract
Pregnancy is a physiological condition that requires immune tolerance to the product of conception. Systemic lupus erythematosus (SLE) is a disease with well-represented immune mechanisms that disturb immune tolerance. The association of pregnancy with systemic lupus erythematosus creates a particular immune environment in which the immune tolerance specific of pregnancy is required to coexist with alterations of the immune system caused by SLE. The main role is played by T regulatory (Treg) cells, which attempt to regulate and adapt the immune system of the mother to the new conditions of pregnancy. Other components of the immune system also participate to maintain maternal-fetal immune tolerance. If the immune system of pregnant women with SLE is not able to maintain maternal immune tolerance to the fetus, pregnancy complications (miscarriage, fetal hypotrophy, and preterm birth) or maternal complications (preeclampsia or activation of SLE, especially in conditions of lupus nephritis) may occur. In certain situations this can be responsible for neonatal lupus. At the same time, it must be noted that during pregnancy, the immune system is able to achieve immune tolerance while maintaining the anti-infectious immune capacity of the mother. Immunological monitoring of pregnancy during SLE, as well as of the mother's disease, is required. It is important to understand immune tolerance to grafts in transplant pathology.
Collapse
|
32
|
Ku CW, Allen JC, Malhotra R, Chong HC, Tan NS, Østbye T, Lek SM, Lie D, Tan TC. How can we better predict the risk of spontaneous miscarriage among women experiencing threatened miscarriage? Gynecol Endocrinol 2015; 31:647-51. [PMID: 26036717 DOI: 10.3109/09513590.2015.1031103] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study seeks to establish progesterone and progesterone-induced blocking factor (PIBF) levels as predictors of subsequent completed miscarriage among women presenting with threatened miscarriage between 6 and 10 weeks of gestation. Our secondary objective was to assess the known maternal risk factors, toward development of a parsimonious and clinician-friendly risk assessment model for predicting completed miscarriage. In this article, we present a prospective cohort study of 119 patients presenting with threatened miscarriage from gestation weeks 6 to 10 at a tertiary women's hospital emergency unit in Singapore. Thirty (25.2%) women had a spontaneous miscarriage. Low progesterone and PIBF levels are similarly predictive of subsequent completed miscarriage. Study results (OR, 95% CI) showed that higher levels of progesterone (0.91, 95% CI 0.88-0.94) and PIBF (0.99, 95% CI 0.98-0.99) were associated with lower risk of miscarriage. Low progesterone level was a very strong predictor of miscarriage risk in our study despite previous concerns about its pulsatile secretion. Low serum progesterone and PIBF levels predicted spontaneous miscarriage among women presenting with threatened miscarriage between gestation weeks 6 to 10. Predictive models to calculate probability of spontaneous miscarriage based on serum progesterone, together with maternal BMI and fetal heart are proposed.
Collapse
Affiliation(s)
- Chee Wai Ku
- a Duke-National University of Singapore Graduate Medical School , Singapore
- b Department of Obstetrics and Gynecology , KK Women's and Children's Hospital , Singapore
| | - John C Allen
- a Duke-National University of Singapore Graduate Medical School , Singapore
| | - Rahul Malhotra
- a Duke-National University of Singapore Graduate Medical School , Singapore
| | - Han Chung Chong
- c School of Biological Sciences, Nanyang Technological University , Singapore , and
| | - Nguan Soon Tan
- c School of Biological Sciences, Nanyang Technological University , Singapore , and
- d Institute of Molecular and Cell Biology, A*STAR , Singapore
| | - Truls Østbye
- a Duke-National University of Singapore Graduate Medical School , Singapore
| | - Sze Min Lek
- a Duke-National University of Singapore Graduate Medical School , Singapore
| | - Desiree Lie
- a Duke-National University of Singapore Graduate Medical School , Singapore
| | - Thiam Chye Tan
- a Duke-National University of Singapore Graduate Medical School , Singapore
- b Department of Obstetrics and Gynecology , KK Women's and Children's Hospital , Singapore
| |
Collapse
|
33
|
Schumacher A, Costa SD, Zenclussen AC. Endocrine factors modulating immune responses in pregnancy. Front Immunol 2014; 5:196. [PMID: 24847324 PMCID: PMC4021116 DOI: 10.3389/fimmu.2014.00196] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 04/22/2014] [Indexed: 12/16/2022] Open
Abstract
How the semi-allogeneic fetus is tolerated by the maternal immune system remains a fascinating phenomenon. Despite extensive research activity in this field, the mechanisms underlying fetal tolerance are still not well understood. However, there are growing evidences that immune–immune interactions as well as immune–endocrine interactions build up a complex network of immune regulation that ensures fetal survival within the maternal uterus. In the present review, we aim to summarize emerging research data from our and other laboratories on immune modulating properties of pregnancy hormones with a special focus on progesterone, estradiol, and human chorionic gonadotropin. These pregnancy hormones are critically involved in the successful establishment, maintenance, and termination of pregnancy. They suppress detrimental maternal alloresponses while promoting tolerance pathways. This includes the reduction of the antigen-presenting capacity of dendritic cells (DCs), monocytes, and macrophages as well as the blockage of natural killer cells, T and B cells. Pregnancy hormones also support the proliferation of pregnancy supporting uterine killer cells, retain tolerogenic DCs, and efficiently induce regulatory T (Treg) cells. Furthermore, they are involved in the recruitment of mast cells and Treg cells into the fetal–maternal interface contributing to a local accumulation of pregnancy-protective cells. These findings highlight the importance of endocrine factors for the tolerance induction during pregnancy and encourage further research in the field.
Collapse
Affiliation(s)
- Anne Schumacher
- Department of Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University , Magdeburg , Germany
| | - Serban-Dan Costa
- University Women's Clinic, Otto-von-Guericke University , Magdeburg , Germany
| | - Ana Claudia Zenclussen
- Department of Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University , Magdeburg , Germany
| |
Collapse
|
34
|
Enninga EAL, Holtan SG, Creedon DJ, Dronca RS, Nevala WK, Ognjanovic S, Markovic SN. Immunomodulatory effects of sex hormones: requirements for pregnancy and relevance in melanoma. Mayo Clin Proc 2014; 89:520-35. [PMID: 24684874 PMCID: PMC4286150 DOI: 10.1016/j.mayocp.2014.01.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 12/18/2013] [Accepted: 01/02/2014] [Indexed: 12/20/2022]
Abstract
Similarities between the pathologic progression of cancer and the physiologic process of placentation (eg, proliferation, invasion, and local/systemic tolerance) have been recognized for many years. Sex hormones such as human chorionic gonadotropin, estrogens, progesterone, and others contribute to induction of immunologic tolerance at the beginning of gestation. Sex hormones have been shown to play contributory roles in the growth of cancers such as breast cancer, prostrate cancer, endometrial cancer, and ovarian cancer, but their involvement as putative mediators of the immunologic escape of cancer is still being elucidated. Herein, we compare the emerging mechanism by which sex hormones modulate systemic immunity in pregnancy and their potentially similar role in cancer. To do this, we conducted a PubMed search using combinations of the following keywords: "immune regulation," "sex hormones," "pregnancy," "melanoma," and "cancer." We did not limit our search to specific publication dates. Mimicking the maternal immune response to pregnancy, especially in late gestation, might aid in design of better therapies to reconstitute endogenous antitumor immunity and improve survival.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Svetomir N Markovic
- Department of Oncology, Mayo Clinic, Rochester, MN; Department of Medicine, Division of Hematology, Mayo Clinic, Rochester, MN.
| |
Collapse
|
35
|
Check JH, Cohen R. The role of progesterone and the progesterone receptor in human reproduction and cancer. Expert Rev Endocrinol Metab 2013; 8:469-484. [PMID: 30754194 DOI: 10.1586/17446651.2013.827380] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Insufficient progesterone, effect possibly more on immune factors rather than adequate endometrial development, can be an easy remedial cause of infertility by simply supplementing the luteal phase with either vaginal or intramuscular or oral (dydrogesterone) progesterone. Progesterone will also help to reduce miscarriage rates when follicle maturing drugs are used for those with regular menses but follicular maturation defects, or women with recurrent miscarriages. One mechanism of action seems to be related to production of an immunomodulatory protein, the progesterone-induced blocking factor either in the cytoplasm or in the circulation. PIBF inhibits cytotoxicity of natural killer cells. Cancer cells may 'borrow' the same mechanism to escape NK cell immunosurveillance.
Collapse
Affiliation(s)
- Jerome H Check
- a Department of Obstetrics and Gynecology, Cooper Medical School of Rowan University, Division of Reproductive Endocrinology & Infertility, Camden, NJ, USA
| | - Rachael Cohen
- b Department of Obstetrics and Gynecology, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, USA
| |
Collapse
|
36
|
de la Haba C, Palacio JR, Palkovics T, Szekeres-Barthó J, Morros A, Martínez P. Oxidative stress effect on progesterone-induced blocking factor (PIBF) binding to PIBF-receptor in lymphocytes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:148-57. [PMID: 23954806 DOI: 10.1016/j.bbamem.2013.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 07/23/2013] [Accepted: 08/08/2013] [Indexed: 10/26/2022]
Abstract
Receptor-ligand binding is an essential interaction for biological function. Oxidative stress can modify receptors and/or membrane lipid dynamics, thus altering cell physiological functions. The aim of this study is to analyze how oxidative stress may alter receptor-ligand binding and lipid domain distribution in the case of progesterone-induced blocking factor/progesterone-induced blocking factor-receptor. For membrane fluidity regionalization analysis of MEC-1 lymphocytes, two-photon microscopy was used in individual living cells. Lymphocytes were also double stained with AlexaFluor647/progesterone-induced blocking factor and Laurdan to evaluate -induced blocking factor/progesterone-induced blocking factor-receptor distribution in the different membrane domains, under oxidative stress. A new procedure has been developed which quantitatively analyzes the regionalization of a membrane receptor among the lipid domains of different fluidity in the plasma membrane. We have been able to establish a new tool which detects and evaluates lipid raft clustering from two-photon microscopy images of individual living cells. We show that binding of progesterone-induced blocking factor to progesterone-induced blocking factor-receptor causes a rigidification of plasma membrane which is related to an increase of lipid raft clustering. However, this clustering is inhibited under oxidative stress conditions. In conclusion, oxidative stress decreases membrane fluidity, impairs receptor-ligand binding and reduces lipid raft clustering.
Collapse
Affiliation(s)
- Carlos de la Haba
- Unitat de Biofísica, Departament de Bioquímica i de Biologia Molecular, Centre d'Estudis en Biofísica (CEB), Facultat de Medicina, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Spain; Unitat d'Immunologia, Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
37
|
Cortina ME, Litwin S, Roux ME, Miranda S. Impact of mouse pregnancy on thymic T lymphocyte subsets. Reprod Fertil Dev 2012; 24:1123-33. [DOI: 10.1071/rd11252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 02/28/2012] [Indexed: 11/23/2022] Open
Abstract
It has been reported that fetal lymphoid progenitor cells are acquired during gestation and are able to develop in the maternal mouse thymus into functional T cells. Moreover, previous pregnancies increase the number of fetal cells in the mother. In the present study, we investigated whether mouse pregnancy induces changes in T lymphocyte subsets in the maternal thymus. We determined the T lymphocyte subsets in two allogeneic cross-breedings, namely CBA/J × BALB/c (normal) and CBA/J × DBA/2 (abortion prone), and investigated the effects of the age and parity of the female, as well as pregnancy outcome, on thymocyte populations. In addition, hormonal effects were evaluated in a syngeneic combination (CBA/J × CBA/J). We found that during pregnancy both hormonal and allogeneic stimuli induced a reduction in the CD4+CD8+ subset with an increase in the CD4+CD8– population. Only young females of the normal combination exhibited an increase in the CD4–CD8+ population. All young mice showed an increase in CD4+CD25+FoxP3+ T cells. Interestingly, the γδT thymus pool was increased in all females of the normal allogeneic pregnancy only, suggesting the participation of this pool in the observed beneficial effect of multiparity in this cross-breeding. Our results demonstrate that allogeneic pregnancies induce important variations in maternal thymocyte subpopulations depending on the age of the female and the male component of the cross-breeding.
Collapse
|
38
|
Abstract
PROBLEM The role of progesterone-dependent immunomodulation in the maintenance of normal pregnancy. METHODS In vitro and in vivo data on the effect that progesterone and its mediator progesterone-induced blocking factor (PIBF) exert on the immune functions of pregnant women are reviewed, together with clinical findings. RESULTS Activated pregnancy lymphocytes express progesterone receptors, which enable progesterone to induce a protein called PIBF. PIBF increases Th2 type cytokine production by signaling via a novel type of IL-4 receptor and activating the Jak/STAT pathway. PIBF inhibits phosholipase A2, thus reduces prostaglandin synthesis. PIBF inhibits perforin release in human decidual lymphocytes and reduces the deleterious effect of high NK activity on murine pregnancy. PIBF production is a characteristic feature of normal human pregnancy, and its concentration is reduced in threatened pregnancies. PIBF mRNA and protein are expressed in a variety of malignant tumors. Inhibition of PIBF synthesis increases survival rates of leukemic mice. CONCLUSION Progesterone-induced blocking factor is produced by pregnancy lymphocytes and also by malignant tumors. The PIBF-induced Th2-dominant immune response is favorable during pregnancy but might facilitate tumor growth by suppressing local antitumor immune responses.
Collapse
Affiliation(s)
- Julia Szekeres-Bartho
- Department of Medical Microbiology and Immunology, Medical School, Pecs University, H-7643 Pecs, Hungary.
| | | |
Collapse
|
39
|
Pandian RU. Dydrogesterone in threatened miscarriage: a Malaysian experience. Maturitas 2009; 65 Suppl 1:S47-50. [PMID: 20005647 DOI: 10.1016/j.maturitas.2009.11.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 11/20/2009] [Accepted: 11/20/2009] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Threatened miscarriage is a common problem during pregnancy. METHODS The aim of this prospective, open, randomised study was to determine whether dydrogesterone was more effective than conservative management alone in preventing miscarriage in women with vaginal bleeding up to week 16 of pregnancy. Women were excluded if they had a history of recurrent miscarriage. A total of 191 women were randomised to dydrogesterone (40 mg stat followed by 10mg twice daily) or conservative management (control group). The treatment was considered successful if the pregnancy continued beyond 20 weeks of gestation. RESULTS The success rate in the dydrogesterone group was statistically significantly higher than that in the control group (87.5% vs. 71.6%; p<0.05). Miscarriage occurred in 12.5% of women in the dydrogesterone group compared with 28.4% in the control group (p<0.05). There were no differences between the groups with regard to the incidence of Caesarean section, placenta praevia, antepartum haemorrhage, preterm labour (weeks 28-36), pregnancy-induced hypertension or low birth weight (<2500 g) babies. There were no intrauterine deaths or congenital abnormalities in either group. CONCLUSION Compared with conservative management, dydrogesterone had beneficial effects on maintaining pregnancy in women with threatened miscarriage.
Collapse
|
40
|
Walch K, Hefler L, Nagele F. Oral dydrogesterone treatment during the first trimester of pregnancy: The prevention of miscarriage study (PROMIS). A double-blind, prospectively randomized, placebo-controlled, parallel group trial. J Matern Fetal Neonatal Med 2009; 18:265-9. [PMID: 16318978 DOI: 10.1080/14767050500246243] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
OBJECTIVE A planned study to test the hypothesis that dydrogesterone given during the first trimester of pregnancy can positively influence the immune system of women suffering from recurrent miscarriages and thereby lead to successful pregnancies. The primary objective is to show whether the administration of dydrogesterone during the first trimester of pregnancy increases the release of progesterone-induced blocking factor (PIBF) and causes a shift from Th-1 cytokines to Th-2 cytokines. Further objectives are an analysis of pregnancy outcome and to investigate the tolerability and safety of dydrogesterone use during pregnancy. METHODS A prospectively randomized, placebo-controlled study of 20 mg dydrogesterone per day during the first trimester of pregnancy in women aged between 18 and 38 and with a history of idiopathic recurrent miscarriage. Start of treatment will be after ovulation. The study will be conducted in a two-stage adaptive design, starting with a sample size of 20 patients per treatment group. The concentrations of Th-1 and Th-2 cytokines in the serum and PIBF in the urine will be measured. Efficacy will be measured primarily by the ratio IFNgamma/IL-10. CONCLUSION The results of this study will contribute to the discussion of a current concept of immunomodulation in pregnancy and potentially provide a treatment option for patients suffering from recurrent miscarriage.
Collapse
Affiliation(s)
- Katharina Walch
- Department of Obstetrics and Gynecology, Division of Gynecological Endocrinology and Reproductive Medicine, University of Vienna School of Medicine, Vienna, Austria.
| | | | | |
Collapse
|
41
|
Check JH. Luteal Phase Support in assisted reproductive technology treatment: focus on Endometrin(R) (progesterone) vaginal insert. Ther Clin Risk Manag 2009; 5:403-7. [PMID: 19753133 PMCID: PMC2695240 DOI: 10.2147/tcrm.s4192] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Supplementation of progesterone in the luteal phase and continuance of progesterone therapy during the first trimester has been found in several studies to have benefits in promoting fertility, preventing miscarriages and even preventing pre-term labor. Though it can be administered orally, intramuscularly or even sublingually, a very effective route with fewer side effects can be achieved by an intravaginal route. The first vaginal preparations were not made commercially but were compounded by pharmacies. This had the disadvantage of lack of control by the Food and Drug Administration (FDA) ensuring efficacy of the preparations. Furthermore there was a lack of precise dosing leading to batch to batch variation. The first commercially approved vaginal progesterone preparation in the United States was a vaginal gel which has proven very effective. The main side effect was accumulation of a buildup of the vaginal gel sometimes leading to irritation. Natural micronized progesterone for vaginal administration with the brand name of Utrogestan A® had been approved even before the gel in certain European countries. Endometrin® vaginal tablets are the newest natural progesterone approved by the FDA. Comparisons to the vaginal gel and to intramuscular progesterone have shown similar efficacy especially in studies following controlled ovarian hyperstimulation and oocyte egg retrieval and embryo transfer. Larger studies are needed to compare side effects.
Collapse
Affiliation(s)
- Jerome H Check
- The University of Medicine and Dentistry of New Jersey, Robert wood Johnson Medical School at Camden, Cooper Hospital/University Medical Center, Department of Obstetrics and Gynecology, Division of Reproductive endocrinology and infertility, Camden, New Jersey, USA
| |
Collapse
|
42
|
Check J, Dix E, Sansoucie L. Support for the hypothesis that successful immunotherapy of various cancers can be achieved by inhibiting a progesterone associated immunomodulatory protein. Med Hypotheses 2009; 72:87-90. [DOI: 10.1016/j.mehy.2008.05.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Revised: 05/28/2008] [Accepted: 05/30/2008] [Indexed: 10/21/2022]
|
43
|
Abstract
Effective ovarian and uterine function relies on a complex interplay between the endocrine and immune systems. It is generally accepted that in reproductive tissues, oestradiol and progesterone have pro- and anti-inflammatory activities respectively and, in this regard, the paracrine effects of the sex steroids on the ovary are similar to the endocrine effects on the uterus. Ovarian leukocyte recruitment and cytokine release are central to follicle development, ovulation and corpus luteum function. At the uterine level, the cyclical changes in sex steroids regulate the number and distribution of endometrial and decidual immune cells as well as other immune signalling and surveillance factors. The uterine mucosa is unique, in that it must tolerate sperm and the allogeneic blastocyst in a way that does not compromise uterine immune surveillance against bacteria, yeast and viruses. Crosstalk between the sex steroids and immune mediators (systemic and local) are central to these functions, and this article will review these mechanisms and their importance for successful reproductive function and pregnancy success.
Collapse
Affiliation(s)
- Richard G Lea
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, College Road, Sutton Bonington, Leicestershire LE12 5RD, UK.
| | | |
Collapse
|
44
|
Dimova T, Mihaylova A, Spassova P, Georgieva R. Establishment of the Porcine Epitheliochorial Placenta Is Associated with Endometrial T-Cell Recruitment. Am J Reprod Immunol 2007; 57:250-61. [PMID: 17362386 DOI: 10.1111/j.1600-0897.2007.00472.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
PROBLEM We assessed implantation-associated quantitative changes in peripheral blood and endometrial T lymphocytes throughout epitheliochorial placenta formation. METHOD OF STUDY T-cell subsets were investigated in 10-, 15-, 20-, 30-, and 40-day pregnant and non-pregnant sows by flow cytometry and immunohistochemistry. RESULTS Endometrial total T, T cytotoxic (Tc), and T helper (Th) cells were in peak numbers at the attachment phase of implantation and Tc cells persisted in high proportions up to placental establishment. The number of gammadelta T lymphocytes was relatively small and implantation-independent. In situ, T cells increased in number with the advancement of implantation and formed T-cell clusters with implantation phase-dependent location. Percentages of peripheral blood T cells were not significantly changed throughout the implantation. CONCLUSION Superficial and adeciduate implantation of pigs has a profound effect on the number of total T, Tc, and Th cells and pattern of distribution of endometrial T cells in situ.
Collapse
Affiliation(s)
- Tanya Dimova
- Department of Immunobiology of Reproduction, Institute of Biology and Immunology of Reproduction, Acad.K.Bratanov, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| | | | | | | |
Collapse
|
45
|
Miranda S, Litwin S, Barrientos G, Szereday L, Chuluyan E, Bartho JS, Arck PC, Blois SM. Dendritic Cells Therapy Confers a Protective Microenvironment in Murine Pregnancy. Scand J Immunol 2006; 64:493-9. [PMID: 17032241 DOI: 10.1111/j.1365-3083.2006.01841.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The fetal-placental unit is a semi-allograft and immunological recognition of pregnancy, together with the subsequent response of the maternal immune system, is necessary for a successful pregnancy. Dendritic cells (DC) show a biological plasticity that confers them special characteristics regulating both immunity and tolerance. Therapy employing DC proved to diminish the abortion in the DBA/2J-mated CBA/J females; however, the underlying mechanisms remain unknown. Here, we evaluated whether DC therapy influences the presence of immunoregulatory populations of cells at the fetal-maternal interface. To address this hypothesis, we analysed the pregnancy-protective CD8, gammadelta cell populations as well as transforming growth factor (TGF)-beta1 and progesterone-induced blocking factor (PIBF) expression at the fetal-maternal interface from abortion-prone female mice that had previously received adoptive transfer of syngeneic DC. Syngeneic DC therapy induced an increase in the number of CD8 and gammadelta cells. Additionally, an upregulation of TGF-beta1 and PIBF expression could be detected after DC transfer. We suggest that DC therapy differentially upregulates a regulatory/protective population of cells at the fetal-maternal interface. It is reasonable to assure that this mechanism would be responsible for the lower abortion rate.
Collapse
Affiliation(s)
- S Miranda
- Department of Microbiology, Biotechnology and Immunology, IDEHU (CONICET-University of Buenos Aires), Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Yie SM, Xiao R, Librach CL. Progesterone regulates HLA-G gene expression through a novel progesterone response element. Hum Reprod 2006; 21:2538-44. [PMID: 16684846 DOI: 10.1093/humrep/del126] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND We have previously demonstrated that progesterone has a stimulatory effect on HLA-G gene expression. Because this effect was abolished by the anti-progestin, RU486, we hypothesize that this effect is through receptor-mediated up-regulation of the HLA-G gene. The objective of this study was to explore the molecular mechanisms of this effect. METHODS The transient transfection of a chloramphenicol acetyltransferase (CAT) construct containing a fragment of the HLA-G gene promoter into the JEG-3 choriocarcinoma cell line was performed. An electrophoretic mobility shift assay (EMSA) and a DNA fragment-binding enzyme-linked immunosorbent assay (ELISA) were carried out to locate a specific progesterone response element (PRE) in the HLA-G gene promoter region. RESULTS Progesterone treatment of JEG-3 cells transfected with the HLA-G gene promoter-CAT construct resulted in an increase of CAT synthesis, whereas RU486 blocked this transcriptional activation. A novel PRE-binding site sequence, with 60% homology to that of wild-type mouse mammary tumour virus (MMTV) PRE, was discovered in this region. CONCLUSION The effect of progesterone on HLA-G gene expression is through progesterone receptor (PR) activation, followed by binding to a novel PRE in the HLA-G promoter region. Therefore, one of the mechanisms of immunomodulation by progesterone during pregnancy may be through the regulation of HLA-G gene expression via this novel PRE.
Collapse
Affiliation(s)
- Shang-mian Yie
- Department of Gynecology and Obstetrics, Sunnybrook and Women's College Health Sciences Center, Toronto, Ontario, Canada
| | | | | |
Collapse
|
47
|
Wilczyński JR. Immunological analogy between allograft rejection, recurrent abortion and pre-eclampsia - the same basic mechanism? Hum Immunol 2006; 67:492-511. [PMID: 16829304 DOI: 10.1016/j.humimm.2006.04.007] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2006] [Indexed: 12/30/2022]
Abstract
There are still controversies concerning the role of immunological mechanisms engaged both in recurrent abortions (RA) and pre-eclampsia (PE). According to some opinions, recurrent miscarriage is comparable to organ-specific autoimmune disease. Analysis of immune reactions shows that graft rejection shares many similar mechanisms with RA and PE. This fact allows us to conclude that rejection of transplanted alloantigenic organs and pregnancy loss have probably the same evolutionary origin. Subsets and functions of immunocompetent cells (T CD4, suppressor gammadeltaT, cytotoxic T CD8, Treg, Tr1, uterine NK cells), over-activation of innate immunity (activation of NK cytotoxic cells, macrophages, neutrophils and complement), changes of Th1/Th2 cytokine balance (IL-2, IL-12, IL-15, IL-18, IFNgamma, TNFalpha vs. IL-4, IL-10, TGFbeta), importance of HLA-G molecule, CD200/CD200R interaction, over-expression of adhesion molecules, fgl2 prothrombinase activation and stimulation of IDO and HO expression, all suggest that RA and PE are syndromes of fetal allograft rejection, and not organ-specific autoimmune diseases. According to that supposition, an analogy might exist between acute graft rejection and recurrent abortion, and between chronic graft rejection and pre-eclampsia.
Collapse
Affiliation(s)
- Jacek R Wilczyński
- Department of Gynecological Surgery, Polish Mother's Health Center Research Institute, Lodz, Poland.
| |
Collapse
|
48
|
Kotlan B, Padanyi A, Batorfi J, Fulop V, Szigetvari I, Rajczy K, Penzes M, Gyodi E, Reti M, Petranyi G. Alloimmune and Autoimmune Background in Recurrent Pregnancy Loss - Successful Immunotherapy by Intravenous Immunoglobulin. Am J Reprod Immunol 2006; 55:331-40. [PMID: 16635207 DOI: 10.1111/j.1600-0897.2006.00368.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
PROBLEM Immunotherapies [leukocyte immunization, intravenous immunoglobulin (IVIG)] introduced to treat women with recurrent spontaneous abortions (RSA) have still controversial results in most clinical trials. A selection of these patients would be advantageous for higher efficacy. METHOD OF STUDY A complex immunological panel assay was offered to patients with reproductive failure without any other known cause. We focused here on the cellular immunological parameters. RESULTS High cytotoxic T lymphocyte precursor frequency and cell-mediated cytotoxic activity and a rather high natural killer cell activity were found in alloimmune RSA patients. Thirty-two patients were investigated by immunological assays and in 78% of the women an alloimmune background could be defined. The efficacy of IVIG treatment was 96% in this group. CONCLUSIONS The novel cellular immunological assays proved to be favourable for the indication of RSA patients and showed the usefulness of this selection process for effective immunotherapy.
Collapse
Affiliation(s)
- Beatrix Kotlan
- National Medical Center, Institute of Haematology and Immunology, Budapest, Hungary.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Tamási L, Bohács A, Pállinger E, Falus A, Rigó J, Müller V, Komlósi Z, Magyar P, Losonczy G. Increased interferon-gamma- and interleukin-4-synthesizing subsets of circulating T lymphocytes in pregnant asthmatics. Clin Exp Allergy 2006; 35:1197-203. [PMID: 16164448 DOI: 10.1111/j.1365-2222.2005.02322.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Pregnancy frequently interferes with the course of bronchial asthma, and asthmatic pregnant women experience less successful pregnancies. T lymphocytes synthesizing IL-4 or IFN-gamma are important in allergic mechanisms of the airways as well as in materno-fetal immunity. OBJECTIVE We hypothesized that pregnancy (a T helper-2 polarized state) of asthmatics will enhance the number of circulating T2 lymphocytes, but decrease the subset-producing IFN-gamma (T1 lymphocytes) and thereby cause a culminating T2 dominance with possible clinical consequences. METHODS IL-4- or IFN-gamma-producing T lymphocytes were determined by flow cytometry in healthy (n=8) and asthmatic (n=13) non-pregnant women and healthy (n=18) and asthmatic (n=48) pregnant women of similar chronological and gestational (2nd-3rd trimester) age and asthma severity (Global Initiative for Asthma II-III). RESULTS In the blood of non-pregnant women--healthy or asthmatic--the numbers of IL-4- and IFN-gamma+ T cells were very low (<10/microL blood). In contrast, in asthmatic pregnant women, the cell counts were 182+/-27 and 39+/-6 for IFN-gamma+ and IL-4+ T cells/microL blood, respectively (both P<0.05 vs. respective control values of non-pregnant asthmatics). Within the asthmatic pregnant group, significant negative correlations were revealed between the numbers of IFN-gamma+ or IL-4+ T cells and maternal peak expiratory flow as well as birth weight of newborns (both P<0.05). CONCLUSION These data show a previously unknown immunological interference between asthma and pregnancy. The culminating proliferation of IFN-gamma+ and IL-4+ T lymphocytes may potentially impair maternal airway symptoms as well as fetal development.
Collapse
Affiliation(s)
- L Tamási
- Department of Pulmonology, Semmelweis University, Diós árok 1/C, 1125 Budapest, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
One hundred and eighty women with a history of recurrent, unexplained spontaneous abortion (mean 3.5 abortions) were randomised to receive oral dydrogesterone (10 mg b.i.d.), intramuscular human chorionic gonadotrophin (hCG; 5000 IU every 4 days) or no additional treatment (controls). Treatment was started as soon as possible after confirmation of pregnancy and continued until the 12th gestational week. All women received standard supportive care. Abortions were significantly (p < or = 0.05) less common in the dydrogesterone group (13.4%) than in the control group (29%); there were no statistically significant differences between the hCG group and the control group. There were no differences between the groups with respect to pregnancy complications or congenital abnormalities. In conclusion, hormonal support with dydrogesterone can increase the chances of a successful pregnancy in women with a history of recurrent spontaneous abortion.
Collapse
Affiliation(s)
- M Y El-Zibdeh
- Department of Obstetrics and Gynaecology, Islamic Hospital, Amman, P.O. Box 910201, Jordan.
| |
Collapse
|