1
|
Patel MV, Shen Z, Hopkins DC, Barr FD, Wira CR. Aging Selectively Alters PRR and ISG Expression in Endo- and Ecto-Cervical Stromal Fibroblasts From the Human Female Reproductive Tract. Am J Reprod Immunol 2025; 93:e70031. [PMID: 39777771 DOI: 10.1111/aji.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/11/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
PROBLEM Aging alters immune function in women and can lead increased risk of infections, particularly in the female reproductive tract (FRT). METHOD OF STUDY To determine how aging affects innate immune responses in the cervical stroma of the FRT, we isolated endocervical (CX) and ectocervical (ECX) stromal fibroblasts and determine if their expression of multiple pattern recognition receptors (PRRs) and responses to viral stimulation varied with menopause and age. RESULTS Constitutive expression of most PRRs did not vary with age or menopausal status in either cell type. However, the expression of TLR7, MDA5, and NOD2 by ECX stromal fibroblasts significantly increased in post-menopausal women, while the expression of NOD1 by CX stromal fibroblast also significantly increased in post-menopausal women. When stratified by age, the expression of TLR6 by CX stromal fibroblasts, and MDA5 and NOD2 by ECX stromal fibroblasts increased significantly with increasing age. Stimulation with the dsRNA viral mimic HMW poly (I:C), a ligand for MDA5, resulted in significantly increased expression of the Type I interferons (IFN) IFNβ and IFNε, the Type III interferon IFNλ1, and interferon-stimulated genes (ISGs) MxA, OAS2, and ISG15 in both cell populations. However, upregulation of IFNβ, IFNλ1, MxA, OAS2, and ISG15 in response to poly (I:C) significantly declined with increasing post-menopausal age in ECX stromal fibroblasts. There was no effect of age or menopause on either IFN or ISG expression in CX stromal fibroblasts. CONCLUSION Overall, these studies demonstrate that ECX and CX fibroblasts are phenotypically distinct populations and that increasing post-menopausal age reduces IFN and ISG upregulation in ECX stromal fibroblasts in response to viral stimulation, potentially leading to decreased protection against incoming viral pathogens in older post-menopausal women.
Collapse
Affiliation(s)
- Mickey V Patel
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Zheng Shen
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Daniel C Hopkins
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Fiona D Barr
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Charles R Wira
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| |
Collapse
|
2
|
Collins MK, McCutcheon CR, Petroff MG. Impact of Estrogen and Progesterone on Immune Cells and Host–Pathogen Interactions in the Lower Female Reproductive Tract. THE JOURNAL OF IMMUNOLOGY 2022; 209:1437-1449. [DOI: 10.4049/jimmunol.2200454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/05/2022] [Indexed: 11/05/2022]
|
3
|
Hughes SM, Levy CN, Katz R, Lokken EM, Anahtar MN, Hall MB, Bradley F, Castle PE, Cortez V, Doncel GF, Fichorova R, Fidel PL, Fowke KR, Francis SC, Ghosh M, Hwang LY, Jais M, Jespers V, Joag V, Kaul R, Kyongo J, Lahey T, Li H, Makinde J, McKinnon LR, Moscicki AB, Novak RM, Patel MV, Sriprasert I, Thurman AR, Yegorov S, Mugo NR, Roxby AC, Micks E, Hladik F. Changes in concentrations of cervicovaginal immune mediators across the menstrual cycle: a systematic review and meta-analysis of individual patient data. BMC Med 2022; 20:353. [PMID: 36195867 PMCID: PMC9533580 DOI: 10.1186/s12916-022-02532-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 08/16/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Hormonal changes during the menstrual cycle play a key role in shaping immunity in the cervicovaginal tract. Cervicovaginal fluid contains cytokines, chemokines, immunoglobulins, and other immune mediators. Many studies have shown that the concentrations of these immune mediators change throughout the menstrual cycle, but the studies have often shown inconsistent results. Our understanding of immunological correlates of the menstrual cycle remains limited and could be improved by meta-analysis of the available evidence. METHODS We performed a systematic review and meta-analysis of cervicovaginal immune mediator concentrations throughout the menstrual cycle using individual participant data. Study eligibility included strict definitions of the cycle phase (by progesterone or days since the last menstrual period) and no use of hormonal contraception or intrauterine devices. We performed random-effects meta-analyses using inverse-variance pooling to estimate concentration differences between the follicular and luteal phases. In addition, we performed a new laboratory study, measuring select immune mediators in cervicovaginal lavage samples. RESULTS We screened 1570 abstracts and identified 71 eligible studies. We analyzed data from 31 studies, encompassing 39,589 concentration measurements of 77 immune mediators made on 2112 samples from 871 participants. Meta-analyses were performed on 53 immune mediators. Antibodies, CC-type chemokines, MMPs, IL-6, IL-16, IL-1RA, G-CSF, GNLY, and ICAM1 were lower in the luteal phase than the follicular phase. Only IL-1α, HBD-2, and HBD-3 were elevated in the luteal phase. There was minimal change between the phases for CXCL8, 9, and 10, interferons, TNF, SLPI, elafin, lysozyme, lactoferrin, and interleukins 1β, 2, 10, 12, 13, and 17A. The GRADE strength of evidence was moderate to high for all immune mediators listed here. CONCLUSIONS Despite the variability of cervicovaginal immune mediator measurements, our meta-analyses show clear and consistent changes during the menstrual cycle. Many immune mediators were lower in the luteal phase, including chemokines, antibodies, matrix metalloproteinases, and several interleukins. Only interleukin-1α and beta-defensins were higher in the luteal phase. These cyclical differences may have consequences for immunity, susceptibility to infection, and fertility. Our study emphasizes the need to control for the effect of the menstrual cycle on immune mediators in future studies.
Collapse
Affiliation(s)
- Sean M Hughes
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
| | - Claire N Levy
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
| | - Ronit Katz
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
| | - Erica M Lokken
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Melis N Anahtar
- Ragon Institute of MIT and Harvard, Massachusetts General Hospital, Boston, MA, USA
| | | | - Frideborg Bradley
- Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Philip E Castle
- Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Valerie Cortez
- Department of Molecular, Cell & Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, USA
| | | | - Raina Fichorova
- Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Paul L Fidel
- Louisiana State University Health, New Orleans, LA, USA
| | - Keith R Fowke
- Department of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Suzanna C Francis
- MRC International Statistics and Epidemiology Group, London School of Hygiene and Tropical Medicine, London, UK
| | - Mimi Ghosh
- Department of Epidemiology, The George Washington University, Washington, DC, USA
| | - Loris Y Hwang
- Department of Pediatrics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Mariel Jais
- Office of Laboratory Safety, The George Washington University, Washington, DC, USA
| | | | - Vineet Joag
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Rupert Kaul
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Jordan Kyongo
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Timothy Lahey
- University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Huiying Li
- Department of Molecular and Medical Pharmacology, Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA, USA
| | - Julia Makinde
- IAVI Human Immunology Laboratory, Imperial College, London, England, UK
- IAVI, New York, NY, USA
| | - Lyle R McKinnon
- Department of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
- Department of Medical Microbiology and Immunology, University of Nairobi, Nairobi, Kenya
| | - Anna-Barbara Moscicki
- Department of Pediatrics, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Mickey V Patel
- Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Intira Sriprasert
- Department of OB/GYN, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Sergey Yegorov
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Nelly Rwamba Mugo
- Department of Global Health, University of Washington, Seattle, WA, USA
- Center for Clinical Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Alison C Roxby
- Department of Global Health, University of Washington, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
- Vaccine and Infectious Disease Division, Fred Hutch, Seattle, WA, USA
| | - Elizabeth Micks
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA.
| | - Florian Hladik
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA.
- Department of Medicine, University of Washington, Seattle, WA, USA.
- Vaccine and Infectious Disease Division, Fred Hutch, Seattle, WA, USA.
| |
Collapse
|
4
|
Bafor EE, Valencia JC, Young HA. Double Negative T Regulatory Cells: An Emerging Paradigm Shift in Reproductive Immune Tolerance? Front Immunol 2022; 13:886645. [PMID: 35844500 PMCID: PMC9283768 DOI: 10.3389/fimmu.2022.886645] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Immune regulation of female reproductive function plays a crucial role in fertility, as alterations in the relationship between immune and reproductive processes result in autoimmune subfertility or infertility. The breakdown of immune tolerance leads to ovulation dysfunction, implantation failure, and pregnancy loss. In this regard, immune cells with regulatory activities are essential to restore self-tolerance. Apart from regulatory T cells, double negative T regulatory cells (DNTregs) characterized by TCRαβ+/γδ+CD3+CD4–CD8– (and negative for natural killer cell markers) are emerging as effector cells capable of mediating immune tolerance in the female reproductive system. DNTregs are present in the female reproductive tract of humans and murine models. However, their full potential as immune regulators is evolving, and studies so far indicate that DNTregs exhibit features that can also maintain tolerance in the female reproductive microenvironment. This review describes recent progress on the presence, role and mechanisms of DNTregs in the female reproductive system immune regulation and tolerance. In addition, we address how DNTregs can potentially provide a paradigm shift from the known roles of conventional regulatory T cells and immune tolerance by maintaining and restoring balance in the reproductive microenvironment of female fertility.
Collapse
Affiliation(s)
- Enitome E Bafor
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - Julio C Valencia
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - Howard A Young
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| |
Collapse
|
5
|
MacNeill C, Umstead T, Shearer D, Weisz J, Phelps DS, Floros J. A Pilot Proteomic Study of Vestibular Fluid From Patients With Vulvodynia. J Low Genit Tract Dis 2022; 26:169-175. [PMID: 35249975 PMCID: PMC8936154 DOI: 10.1097/lgt.0000000000000666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Many women are affected by vulvodynia, but medical therapies to date have proven ineffective. We performed a pilot study using gel-based proteomics to develop a map of proteins present in vaginal/vestibular secretions and identify proteins that could be considered for future evaluation as potential therapeutic targets. MATERIALS AND METHODS We collected vestibular fluid from 4 controls and 4 patients with vulvodynia by placing a cotton swab in the vestibule and extracting the absorbed proteins. The proteins underwent 2-dimensional difference gel electrophoresis and mass spectrometry to develop a protein map. Immunohistochemistry was used to validate proteomic findings. RESULTS A map was constructed of 32 of the more abundant proteins in vestibular fluid and their levels compared in control subjects and vulvodynia patients. Among these were annexin A1, interleukin 1 receptor antagonist, protein S100 A9, and a number of antiproteases and proteases. Many of these proteins differed by at least 50% between groups, but only annexin A1, one of the protease inhibitors, and immunoglobulin G κ chain were significantly different. The results with annexin A1 were validated by similar findings with immunohistochemistry. CONCLUSIONS The findings of this pilot study demonstrate a set of vestibule mucosa proteins that differ significantly-either increasing or decreasing-in vulvodynia patients compared with controls, and several others that exhibited greater than 1.5-fold change but did not reach statistical significance. This study constitutes a proof-of-principle that an open, unbiased proteomic approach can identify molecular participants in vulvodynia, some of which had not been identified to date by hypothesis-driven studies.
Collapse
Affiliation(s)
- Colin MacNeill
- Departments of Obstetrics and Gynecology, Pennsylvania State University College of Medicine, Hershey, PA
| | - Todd Umstead
- Penn State Center for Host Defense, Inflammatory, and Lung Disease (CHILD) Research, Pennsylvania State University College of Medicine, Hershey, PA
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA
| | - Debra Shearer
- Departments of Obstetrics and Gynecology, Pennsylvania State University College of Medicine, Hershey, PA
| | - Judith Weisz
- Departments of Obstetrics and Gynecology, Pennsylvania State University College of Medicine, Hershey, PA
- Department of Pathology, Pennsylvania State University College of Medicine, Hershey, PA
| | - David S. Phelps
- Penn State Center for Host Defense, Inflammatory, and Lung Disease (CHILD) Research, Pennsylvania State University College of Medicine, Hershey, PA
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA
| | - Joanna Floros
- Departments of Obstetrics and Gynecology, Pennsylvania State University College of Medicine, Hershey, PA
- Penn State Center for Host Defense, Inflammatory, and Lung Disease (CHILD) Research, Pennsylvania State University College of Medicine, Hershey, PA
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA
| |
Collapse
|
6
|
Serum Levels of Collectins Are Sustained During Pregnancy: Surfactant Protein D Levels Are Dysregulated Prior to Missed Abortion. Reprod Sci 2020; 27:1894-1908. [PMID: 32710236 DOI: 10.1007/s43032-020-00209-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 05/06/2020] [Indexed: 12/31/2022]
Abstract
About 15% of pregnant women undergo missed abortion (MA), wherein women do not experience cramping and vaginal bleeding. Dysregulation of the immune molecules and steroid hormones contribute to early pregnancy loss. Collectins- surfactant protein A (SP-A), surfactant protein D (SP-D), and mannose-binding lectin (MBL) are a group of innate immune molecules regulated by the steroid hormones. Reduced levels of SP-A and SP-D during the early gestation exhibited a significant association with the severe early onset preeclampsia. In order to determine the serum profile of collectins throughout the normal pregnancy and explore their predictive potential during the 8-12 weeks of gestation for MA, we examined a prospective cohort of pregnant women (n = 221). The serum levels of SP-A and SP-D were significantly downregulated in the normal pregnant women in all the three trimesters (n = 30) compared with the non-pregnant women (n = 20) and were not significantly different across the three trimesters. Fourteen of the women from the cohort underwent MA during the 14-20 weeks of gestation and exhibited a significant downregulation in the serum levels of SP-D during 8-12 weeks of gestation. A significant inhibition of the HTR-8/SVneo cell proliferation and migration in the presence of a recombinant fragment of human SP-D suggested the relevance of SP-D in placental development. We report here that the serum levels of SP-A, SP-D, and MBL are consistently maintained during pregnancy in the Indian cohort. Dysregulated serum levels of SP-D and P4/E2 ratio during the early first trimester may predict occurrence of MA.
Collapse
|
7
|
Sriprasert I, Pakrashi T, Shah A, Jacot T, Bernick B, Mirkin S, Archer DF. A pilot study: estradiol/progesterone effect on cervico-vaginal cytokines in premenopause and postmenopause. Climacteric 2020; 23:306-310. [DOI: 10.1080/13697137.2020.1727878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- I. Sriprasert
- Department of Obstetrics and Gynecology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - T. Pakrashi
- Department of Obstetrics and Gynecology, Jones Institute for Reproductive Medicine/Eastern Virginia Medical School, Norfolk, VA, USA
| | - A. Shah
- Department of Obstetrics and Gynecology, Jones Institute for Reproductive Medicine/Eastern Virginia Medical School, Norfolk, VA, USA
| | - T. Jacot
- Department of Obstetrics and Gynecology, Jones Institute for Reproductive Medicine/Eastern Virginia Medical School, Norfolk, VA, USA
| | | | | | - D. F. Archer
- Department of Obstetrics and Gynecology, Jones Institute for Reproductive Medicine/Eastern Virginia Medical School, Norfolk, VA, USA
| |
Collapse
|
8
|
The Effect of Hormonal Contraception and Menstrual Cycle Timing on Genital Herpes Simplex Virus-2 Shedding and Lesions. Sex Transm Dis 2020; 46:58-62. [PMID: 30148758 DOI: 10.1097/olq.0000000000000907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND The effect of female sex hormones on herpes simplex virus (HSV)-2 shedding and lesion frequency is poorly understood. Previous studies suggest that hormonal contraception may increase the frequency of HSV-2 shedding. METHODS We studied HSV-2 seropositive women who performed daily genital swabbing for HSV DNA and completed diaries for genital lesions and menses. We used Poisson mixed effects models to determine if HSV detection varied throughout the menstrual cycle, or in response to hormonal contraception. We used the Wilcoxon signed-rank test and rank-sum test to determine if lesion frequency differed by cycle phase or hormonal contraceptive use. RESULTS In 189 women aged 19 to 46 years who collected swabs on 10,715 days and were not using hormonal contraception, HSV-2 DNA was detected on 20.9% of days in the follicular phase and 17.8% of days in the luteal phase (rate ratio, 1.19; 95% confidence interval, 1.03-1.37, P = 0.02). Genital lesions did not differ in the follicular versus luteal phase (12.8% vs. 10.7%, P = 0.07). In analyses of hormonal contraception, including 244 women, HSV-2 DNA was detected on 19.0% of days for women not using hormonal contraception and 18.3% of days for those using hormonal contraception (P = 0.50). Lesions were present on 11.1% of days for women not using hormonal contraception, and 8.7% of days for those using hormonal contraception (P = 0.66). CONCLUSIONS In women with genital HSV-2 infection who are not using hormonal contraception, the follicular phase of the cycle may be associated with a higher frequency of HSV-2 shedding compared to the luteal phase. Lesion frequency is similar during the 2 menstrual phases. Hormonal contraception use was not observed to affect genital HSV-2 DNA detection or lesions.
Collapse
|
9
|
Kale K, Vishwekar P, Balsarkar G, Jassawalla MJ, Sawant G, Madan T. Differential levels of surfactant protein A, surfactant protein D, and progesterone to estradiol ratio in maternal serum before and after the onset of severe early‐onset preeclampsia. Am J Reprod Immunol 2019; 83:e13208. [DOI: 10.1111/aji.13208] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/23/2019] [Accepted: 11/01/2019] [Indexed: 12/19/2022] Open
Affiliation(s)
- Kavita Kale
- Department of Innate Immunity ICMR‐National Institute for Research in Reproductive Health Mumbai India
| | - Pallavi Vishwekar
- Department of Obstetrics and Gynaecology Dr. DY Patil Medical College, Hospital and Research Centre Navi Mumbai Mumbai India
| | - Geetha Balsarkar
- Department of Obstetrics and Gynaecology Nowrosjee Wadia Maternity Hospital Mumbai India
| | | | - Ganpat Sawant
- Department of Obstetrics and Gynaecology Dr. DY Patil Medical College, Hospital and Research Centre Navi Mumbai Mumbai India
| | - Taruna Madan
- Department of Innate Immunity ICMR‐National Institute for Research in Reproductive Health Mumbai India
| |
Collapse
|
10
|
Barrios De Tomasi J, Opata MM, Mowa CN. Immunity in the Cervix: Interphase between Immune and Cervical Epithelial Cells. J Immunol Res 2019; 2019:7693183. [PMID: 31143785 PMCID: PMC6501150 DOI: 10.1155/2019/7693183] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/08/2019] [Accepted: 02/25/2019] [Indexed: 12/12/2022] Open
Abstract
The cervix is divided into two morphologically and immunologically distinct regions, namely, (1) the microbe-laden ectocervix, which is proximal to the vagina, and (2) the "sterile" endocervix, which is distal to the uterus. The two cervical regions are bordered by the cervical transformation zone (CTZ), an area of changing cells, and are predominantly composed of cervical epithelial cells. Epithelial cells are known to play a crucial role in the initiation, maintenance, and regulation of innate and adaptive response in collaboration with immune cells in several tissue types, including the cervix, and their dysfunction can lead to a spectrum of clinical syndromes. For instance, epithelial cells block progression and neutralize or kill microorganisms through multiple ways. These (ways) include mounting physical (intercellular junctions, secretion of mucus) and immune barriers (pathogen-recognition receptor-mediated pathways), which collectively and ultimately lead to the release of specific chemokines and or cytokines. The cytokines subsequently recruit subsets of immune cells appropriate to a particular immune context and response, such as dendritic cells (DCs), T, B, and natural killer (NK) cells. The immune response, as most biological processes in the female reproductive tract (FRT), is mainly regulated by estrogen and progesterone and their (immune cells) responses vary during different physiological phases of reproduction, such as menstrual cycle, pregnancy, and post menopause. The purpose of the present review is to compare the immunological profile of the mucosae and immune cells in the ecto- and endocervix and their interphase during the different phases of female reproduction.
Collapse
Affiliation(s)
- Jorgelina Barrios De Tomasi
- Department of Biology, Appalachian State University, Boone 28608, USA
- Departamento de Ciencias de la Medicina, Division de Ciencias de la Salud, Chetumal, Quintana Roo, Mexico
| | | | - Chishimba Nathan Mowa
- Department of Biology, Appalachian State University, Boone 28608, USA
- Rusangu University, Monze, Zambia
| |
Collapse
|
11
|
Pandit H, Kale K, Yamamoto H, Thakur G, Rokade S, Chakraborty P, Vasudevan M, Kishore U, Madan T, Fichorova RN. Surfactant Protein D Reverses the Gene Signature of Transepithelial HIV-1 Passage and Restricts the Viral Transfer Across the Vaginal Barrier. Front Immunol 2019; 10:264. [PMID: 30984160 PMCID: PMC6447669 DOI: 10.3389/fimmu.2019.00264] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/31/2019] [Indexed: 01/02/2023] Open
Abstract
Effective prophylactic strategy against the current epidemic of sexually transmitted HIV-1 infection requires understanding of the innate gatekeeping mechanisms at the genital mucosa. Surfactant protein D (SP-D), a member of the collectin family of proteins naturally present in the vaginal tract, is a potential HIV-1 entry inhibitor at the cellular level. Human EpiVaginal tissues compartmentalized in culture inserts were apically exposed to HIV-1 and/or a recombinant fragment of human SP-D (rfhSP-D) and viral passage was assessed in the basal chamber containing mononuclear leukocytes. To map the gene signature facilitating or resisting the transepithelial viral transfer, microarray analysis of the HIV-1 challenged EpiVaginal tissues was performed in the absence or presence of rfhSP-D. Mucosal biocompatibility of rfhSP-D was assessed ex vivo and in the standard rabbit vaginal irritation model. The passage of virus through the EpiVaginal tissues toward the underlying target cells was associated with a global epithelial gene signature including differential regulation of genes primarily involved in inflammation, tight junctions and cytoskeletal framework. RfhSP-D significantly inhibited HIV-1 transfer across the vaginal tissues and was associated with a significant reversal of virus induced epithelial gene signature. Pro-inflammatory NF-κB and mTOR transcripts were significantly downregulated, while expression of the tight junctions and cytoskeletal genes was upheld. In the absence of virus, rfhSP-D directly interacted with the EpiVaginal tissues and upregulated expression of genes related to structural stability of the cell and epithelial integrity. There was no increment in the viral acquisition by the PBMCs present in basal chambers wherein, the EpiVaginal tissues in apical chambers were treated with rfhSP-D. The effective concentrations of rfhSP-D had no effect on lactobacilli, epithelial barrier integrity and were safe on repeated applications onto the rabbit vaginal mucosa. This pre-clinical safety data, coupled with its efficacy of restricting viral passage via reversal of virus-induced gene expression of the vaginal barrier, make a strong argument for clinical trials of rfhSP-D as a topical anti-HIV microbicide.
Collapse
Affiliation(s)
- Hrishikesh Pandit
- Department of Innate Immunity, ICMR National Institute for Research in Reproductive Health, Mumbai, India.,Laboratory of Genital Tract Biology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, United States
| | - Kavita Kale
- Department of Innate Immunity, ICMR National Institute for Research in Reproductive Health, Mumbai, India
| | - Hidemi Yamamoto
- Laboratory of Genital Tract Biology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, United States
| | - Gargi Thakur
- Department of Innate Immunity, ICMR National Institute for Research in Reproductive Health, Mumbai, India
| | - Sushama Rokade
- Department of Innate Immunity, ICMR National Institute for Research in Reproductive Health, Mumbai, India
| | - Payal Chakraborty
- Genome Informatics Research Group, Bionivid Technology Pvt. Ltd., Bengaluru, India
| | - Madavan Vasudevan
- Genome Informatics Research Group, Bionivid Technology Pvt. Ltd., Bengaluru, India
| | - Uday Kishore
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Taruna Madan
- Department of Innate Immunity, ICMR National Institute for Research in Reproductive Health, Mumbai, India
| | - Raina Nakova Fichorova
- Laboratory of Genital Tract Biology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, United States
| |
Collapse
|
12
|
Anti-Inflammatory Effect of Surfactant Lipid in the Vaginal Mucosa: A Pilot Study. J Low Genit Tract Dis 2018; 23:71-74. [PMID: 30489432 DOI: 10.1097/lgt.0000000000000448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The aim of the study was to test the hypothesis that vaginal administration of surfactant lipids, which may counter-balance the proinflammatory effects of vaginal surfactant protein A, will decrease proinflammatory cytokines and increase anti-inflammatory cytokines in vaginal mucosal fluid in healthy women. MATERIALS AND METHODS Three groups of healthy cycling women were randomized to receive vaginally a single dose of the following: (1) low-dose calfactant, a type of surfactant lipids, 0.8 mg/ml; (2) high-dose calfactant 8.0 mg/ml; or (3) placebo, at the time of resolution of menses. Vaginal mucosal fluid was collected before administration and also 1 and 8 days after administration of each treatment. After 1 mo, each group was randomized to each alternative treatment; thus, for a 3-month treatment period, each group received each of the 3 treatments. Vaginal fluid was tested using a Multiplex Immunoassay System. Cytokine concentrations on day 1 and day 8 were compared with day zero and tested for significance with the Student's t test. RESULTS Six healthy subjects completed each treatment. Subjects given high-dose calfactant had, by day 8, a significant reduction in macrophage chemotactic protein-1 and interleukin 15 (IL-15) compared with low-dose calfactant or placebo. High-dose calfactant resulted in an increase in anti-inflammatory cytokines that trended toward significance on day 1 (IL-1RA) or day 8 (IL-10). CONCLUSIONS This pilot study in healthy women demonstrates that calfactant reduces proinflammatory cytokines and increases anti-inflammatory cytokines in the vagina. We propose that calfactant may be an effective vaginal anti-inflammatory therapy for inflammatory vaginitis and similar disorders for which current therapy is ineffective.
Collapse
|
13
|
Bradley F, Birse K, Hasselrot K, Noël-Romas L, Introini A, Wefer H, Seifert M, Engstrand L, Tjernlund A, Broliden K, Burgener AD. The vaginal microbiome amplifies sex hormone-associated cyclic changes in cervicovaginal inflammation and epithelial barrier disruption. Am J Reprod Immunol 2018; 80:e12863. [PMID: 29709092 DOI: 10.1111/aji.12863] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/28/2018] [Indexed: 12/27/2022] Open
Abstract
PROBLEM Susceptibility to HIV is associated with the menstrual cycle and vaginal microbiome, but their collective impact on vaginal inflammation remains unclear. Here, we characterized the cervicovaginal proteome, inflammation, and microbiome community structure and function during the menstrual cycle. METHOD OF STUDY Cervicovaginal secretions were collected from regularly cycling women (n = 16) at median day 10, 16, and 24 of each menstrual cycle and analyzed by mass spectrometry, 16S rRNA gene sequencing, and a multiplex bead array immunoassay. Follicular, ovulatory, and luteal phases were defined by serum sex hormone levels. RESULTS Ovulation showed the largest mucosal proteome changes, where 30% and 19% of the 406 human proteins identified differed compared to the luteal and follicular phases, respectively. Neutrophil/leukocyte migration pathways were lowest during ovulation and peaked in the luteal phase, while antimicrobial and epithelial barrier promoting proteins were highest during ovulation. Vaginal microbial community structure and function did not vary significantly during the menstrual cycle, with the majority consistently Lactobacillus-dominant (63%) or non-Lactobacillus-dominant (25%). Fluctuations in the epithelial barrier protein RPTN between the ovulatory and luteal phase were amplified in women with Gardnerella vaginalis and anaerobic bacteria and reduced when Lactobacillus was dominant. CONCLUSION This small study demonstrates that sex hormones modulate neutrophil/leukocyte inflammation, barrier function, and antimicrobial pathways in the female genital tract with the strongest changes occurring during ovulation. The data further suggest a microbiome context for hormone-driven changes in vaginal immunity which may have implications for HIV susceptibility.
Collapse
Affiliation(s)
- Frideborg Bradley
- Department of Medicine Solna, Unit of Infectious Diseases, Center for Molecular Medicine, Karolinska Institutet Karolinska University Hospital, Stockholm, Sweden
| | - Kenzie Birse
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada.,National HIV and Retrovirology Labs, JC Wilt Infectious Disease Centre, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Klara Hasselrot
- Department of Medicine Solna, Unit of Infectious Diseases, Center for Molecular Medicine, Karolinska Institutet Karolinska University Hospital, Stockholm, Sweden.,Department of Gynaecology, Danderyds Hospital, Stockholm, Sweden
| | - Laura Noël-Romas
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada.,National HIV and Retrovirology Labs, JC Wilt Infectious Disease Centre, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Andrea Introini
- Department of Medicine Solna, Unit of Infectious Diseases, Center for Molecular Medicine, Karolinska Institutet Karolinska University Hospital, Stockholm, Sweden
| | - Hugo Wefer
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Science for Life Laboratory, Clinical Genomics Facility, Solna, Sweden
| | - Maike Seifert
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Science for Life Laboratory, Clinical Genomics Facility, Solna, Sweden
| | - Lars Engstrand
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Science for Life Laboratory, Clinical Genomics Facility, Solna, Sweden
| | - Annelie Tjernlund
- Department of Medicine Solna, Unit of Infectious Diseases, Center for Molecular Medicine, Karolinska Institutet Karolinska University Hospital, Stockholm, Sweden
| | - Kristina Broliden
- Department of Medicine Solna, Unit of Infectious Diseases, Center for Molecular Medicine, Karolinska Institutet Karolinska University Hospital, Stockholm, Sweden
| | - Adam D Burgener
- Department of Medicine Solna, Unit of Infectious Diseases, Center for Molecular Medicine, Karolinska Institutet Karolinska University Hospital, Stockholm, Sweden.,Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada.,National HIV and Retrovirology Labs, JC Wilt Infectious Disease Centre, Public Health Agency of Canada, Winnipeg, MB, Canada
| |
Collapse
|
14
|
Köhn FM. Suspected hypersensitivity to cervicovaginal fluid - what can we learn from the seminal plasma allergy story? J Eur Acad Dermatol Venereol 2018; 32:10. [DOI: 10.1111/jdv.14762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Ujma S, Horsnell WGC, Katz AA, Clark HW, Schäfer G. Non-Pulmonary Immune Functions of Surfactant Proteins A and D. J Innate Immun 2016; 9:3-11. [PMID: 27794581 DOI: 10.1159/000451026] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 09/26/2016] [Indexed: 11/19/2022] Open
Abstract
Surfactant proteins A (SP-A) and D (SP-D) are established as essential components of our innate immune system for protecting the lung from pathogens and allergens. They essentially exert their protective functions by regulating pulmonary homeostasis. Both proteins are however widely expressed throughout the body, including the female reproductive tract, urinary tract, gastrointestinal tract, the eye, ear, nasal compartment, central nervous system, the coronary artery and the skin. The functions of SP-A and SP-D at these sites are a relatively underinvestigated area, but it is emerging that both SP-A and SP-D contribute significantly to the regulation of inflammation and protection from infection at these sites. This review presents our current understanding of the roles of SP-A and SP-D in non-pulmonary sites.
Collapse
Affiliation(s)
- Sylvia Ujma
- UCT Receptor Biology Research Unit, Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | | | | | | | | |
Collapse
|
16
|
Jais M, Younes N, Chapman S, Cu-Uvin S, Ghosh M. Reduced levels of genital tract immune biomarkers in postmenopausal women: implications for HIV acquisition. Am J Obstet Gynecol 2016; 215:324.e1-324.e10. [PMID: 27026477 DOI: 10.1016/j.ajog.2016.03.041] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/16/2016] [Accepted: 03/17/2016] [Indexed: 01/07/2023]
Abstract
BACKGROUND Rates of HIV infections are increasing in older adults. Although it is known that the HIV/AIDS epidemics affects women disproportionately, little is known regarding immune functions in the genital tract of postmenopausal women, as relevant to HIV susceptibility. OBJECTIVE The objective of the study was to compare levels of female reproductive tract immune mediators that are important for HIV-associated immune responses as well as intrinsic anti-HIV activity in the cervical vaginal lavages collected from HIV-negative pre- and postmenopausal women. STUDY DESIGN Cervical vaginal lavage from 20 premenopausal and 20 postmenopausal women were assayed for interleukin-6, interleukin-8, tumor necrosis factor-α, secretory leukocyte protease inhibitor, elafin, human β-defensin-2, and macrophage inflammatory protein-3α using standard enzyme-linked immunosorbent assays. Anti-HIV activity of cervical-vaginal lavage was measured using TZM-bl indicator cells against HIV-1 IIIB and BaL. Whereas each postmenopausal woman provided only 1 sample, each premenopausal woman provided 3 samples, during proliferative, ovulatory, and secretory stages, based on menstrual dates. RESULTS We observed significantly lower levels of tumor necrosis factor-α, MIP-3α, secretory leukocyte protease inhibitor, elafin, and human β-defensin-2 in cervical vaginal lavage from postmenopausal women compared with premenopausal women. Inhibition of HIV-1 infection was observed for both pre- and postmenopausal women, but cervical vaginal lavage from postmenopausal women showed significantly higher inhibition against HIV-1 BaL after adjusting for total protein concentration, genital pH, and reproductive tract infections. No change in mediators or HIV inhibition was observed through the stages of menstrual cycle. In addition, we observed that postmenopausal women with reproductive tract infections had significantly higher levels of tumor necrosis factor-α and significantly lower levels of interleukin-8, which were not observed in premenopausal women. CONCLUSION Our findings suggest that female reproductive tract immune microenvironment is distinct in HIV-negative postmenopausal women. Further studies are needed to assess the risk of HIV acquisition/transmission in this population.
Collapse
Affiliation(s)
- Mariel Jais
- Department of Epidemiology and Biostatistics, The George Washington University, Washington, DC
| | - Naji Younes
- Department of Epidemiology and Biostatistics, The George Washington University, Washington, DC
| | - Stacey Chapman
- Department of Medicine, Alpert School of Medicine, Brown University, Providence, RI
| | - Susan Cu-Uvin
- Department of Obstetrics and Gynecology, Alpert School of Medicine, Brown University, Providence, RI
| | - Mimi Ghosh
- Department of Epidemiology and Biostatistics, The George Washington University, Washington, DC.
| |
Collapse
|
17
|
Yadav AK, Chaudhari H, Shah PK, Madan T. Expression and localization of collectins in feto-maternal tissues of human first trimester spontaneous abortion and abortion prone mouse model. Immunobiology 2015; 221:260-8. [PMID: 26603976 DOI: 10.1016/j.imbio.2015.10.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 10/29/2015] [Accepted: 10/29/2015] [Indexed: 11/16/2022]
Abstract
Dysregulation of immune response at the feto-maternal interface during first trimester of pregnancy is one of the leading causes of spontaneous abortion. Previously, we reported differential expression of collectins, soluble pattern recognition molecules involved in immunoregulation, in placental and decidual tissues during spontaneous labor. In the present pilot study, the expression of collectins was analyzed in the inflamed human gestational tissues of spontaneous abortion ('SA') and in 13.5 dpc placental tissues from resorption survived embryos of murine model (CBA/J X DBA/2J). Transcripts of SP-A were significantly down-regulated and SP-D were significantly up-regulated in placental and decidual tissues of 'SA' group compared to that of 'normal' group. Immunostaining for SP-D and MBL proteins was positive in placental and decidual tissues. However, levels of SP-D and MBL proteins were not significantly altered in placental as well as in decidual tissues of 'SA' group in comparison to the 'normal' group. Placental tissues of viable embryos from the abortion prone mouse model showed significantly enhanced expression of mSP-A and mSP-D transcripts at 13.5 day post coitus (dpc) and 14.5 dpc compared to the control group (CBA/J X Balb/c). Mouse collectins were localized in placental tissues (13.5 dpc), with increased staining in murine model compared to control. Human and murine data together indicate that SP-A, SP-D and MBL are synthesised in early gestational tissues, and may contribute to regulation of immune response at the feto-maternal interface during pregnancy.
Collapse
Affiliation(s)
- A K Yadav
- National Institute for Research in Reproductive Health, Indian Council of Medical Research, Jehangir Merwanji Street, Parel, Mumbai 400012, India
| | - H Chaudhari
- Department of Obstetrics and Gynecology, Seth Gordhandas Sunderdas Medical College and King Edwards Memorial (KEM) Hospital, Parel, Mumbai 400012, India
| | - P K Shah
- Department of Obstetrics and Gynecology, Seth Gordhandas Sunderdas Medical College and King Edwards Memorial (KEM) Hospital, Parel, Mumbai 400012, India
| | - T Madan
- National Institute for Research in Reproductive Health, Indian Council of Medical Research, Jehangir Merwanji Street, Parel, Mumbai 400012, India.
| |
Collapse
|
18
|
Kollmann Z, Bersinger N, von Wolff M, Thurman AR, Archer DF, Stute P. Vaginal cytokines do not correlate with postmenopausal vulvovaginal symptoms. Gynecol Endocrinol 2015; 31:317-21. [PMID: 25559048 DOI: 10.3109/09513590.2014.995080] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVES Exploratory pilot study to determine the correlation between postmenopausal vulvovaginal symptoms and vaginal cytokine levels. METHODS Postmenopausal women (n = 34) not using menopausal hormone therapy and presenting with or without symptoms of vulvovaginal irritation were screened. Each participant underwent a vaginal examination and screening for vaginitis. A cervicovaginal lavage (CVL) with sterile saline and a peripheral blood sample were obtained. Main outcome measures were assessed by Luminex® X-map method on the Bio-Plex® platform. Main outcome measures were cervicovaginal and serum interleukin (IL)-4, IL-5, IL-10, IL-12, IL-13, TNF-α, GM-CSF, MIP-1-alpha and RANTES level. Cervicovaginal cytokines were adjusted to total protein concentration [pg/mcg protein]. RESULTS Twenty-six postmenopausal women were enrolled (symptomatic: n = 15; asymptomatic: n = 11). There were no significant differences between groups: age, age at menopause, vaginal pH and all CVL and serum cytokines (IL-4, IL-5, IL-10, IL-12, IL-13, TNF-α, GM-CSF, MIP-1-alpha and RANTES). GM-CSF was the most abundant vaginal cytokine (symptomatic: 146.5 ± 165.6 pg/mcg protein; asymptomatic: 146.0 ± 173.5 pg/mcg protein; p = 0.99). CONCLUSIONS Postmenopausal vulvovaginal symptoms did not correlate with vaginal inflammatory marker. There was no difference in serum or CVL cytokines between symptomatic and asymptomatic postmenopasual women. Vaginal symptoms after menopause are not related to the vaginal cytokine changes associated with loss of estrogen.
Collapse
Affiliation(s)
- Zahraa Kollmann
- Department of Obstetrics and Gynecology, University of Berne , Bern , Switzerland and
| | | | | | | | | | | |
Collapse
|
19
|
Wira CR, Rodriguez-Garcia M, Patel MV. The role of sex hormones in immune protection of the female reproductive tract. Nat Rev Immunol 2015; 15:217-30. [PMID: 25743222 PMCID: PMC4716657 DOI: 10.1038/nri3819] [Citation(s) in RCA: 274] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Within the human female reproductive tract (FRT), the challenge of protection against sexually transmitted infections (STIs) is coupled with the need to enable successful reproduction. Oestradiol and progesterone, which are secreted during the menstrual cycle, affect epithelial cells, fibroblasts and immune cells in the FRT to modify their functions and hence the individual's susceptibility to STIs in ways that are unique to specific sites in the FRT. The innate and adaptive immune systems are under hormonal control, and immune protection in the FRT varies with the phase of the menstrual cycle. Immune protection is dampened during the secretory phase of the cycle to optimize conditions for fertilization and pregnancy, which creates a 'window of vulnerability' during which potential pathogens can enter and infect the FRT.
Collapse
Affiliation(s)
- Charles R Wira
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire 03756, USA
| | - Marta Rodriguez-Garcia
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire 03756, USA
| | - Mickey V Patel
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire 03756, USA
| |
Collapse
|
20
|
Kay S, Metkari SM, Madan T. Ovarian Hormones Regulate SP-D Expression in the Mouse Uterus During Estrous Cycle and Early Pregnancy. Am J Reprod Immunol 2015; 74:77-88. [DOI: 10.1111/aji.12369] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 01/21/2015] [Indexed: 12/01/2022] Open
Affiliation(s)
- Sharon Kay
- Department of Innate Immunity; National Institute for Research in Reproductive Health (ICMR); Parel Mumbai India
| | - Siddhanath Maruti Metkari
- Experimental Animal Facility; National Institute for Research in Reproductive Health (ICMR); Parel Mumbai India
| | - Taruna Madan
- Department of Innate Immunity; National Institute for Research in Reproductive Health (ICMR); Parel Mumbai India
| |
Collapse
|
21
|
Yarbrough VL, Winkle S, Herbst-Kralovetz MM. Antimicrobial peptides in the female reproductive tract: a critical component of the mucosal immune barrier with physiological and clinical implications. Hum Reprod Update 2014; 21:353-77. [PMID: 25547201 DOI: 10.1093/humupd/dmu065] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 12/10/2014] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND At the interface of the external environment and the mucosal surface of the female reproductive tract (FRT) lies a first-line defense against pathogen invasion that includes antimicrobial peptides (AMP). Comprised of a unique class of multifunctional, amphipathic molecules, AMP employ a wide range of functions to limit microbial invasion and replication within host cells as well as independently modulate the immune system, dampen inflammation and maintain tissue homeostasis. The role of AMP in barrier defense at the level of the skin and gut has received much attention as of late. Given the far reaching implications for women's health, maternal and fetal morbidity and mortality, and sexually transmissible and polymicrobial diseases, we herein review the distribution and function of key AMP throughout the female reproductive mucosa and assess their role as an essential immunological barrier to microbial invasion throughout the reproductive cycle of a woman's lifetime. METHODS A comprehensive search in PubMed/Medline was conducted related to AMP general structure, function, signaling, expression, distribution and barrier function of AMP in the FRT, hormone regulation of AMP, the microbiome of the FRT, and AMP in relation to implantation, pregnancy, fertility, pelvic inflammatory disease, complications of pregnancy and assisted reproductive technology. RESULTS AMP are amphipathic peptides that target microbes for destruction and have been conserved throughout all living organisms. In the FRT, several major classes of AMP are expressed constitutively and others are inducible at the mucosal epithelium and by immune cells. AMP expression is also under the influence of sex hormones, varying throughout the menstrual cycle, and dependent on the vaginal microbiome. AMP can prevent infection with sexually transmissible and opportunistic pathogens of the female reproductive tissues, although emerging understanding of vaginal dysbiosis suggests induction of a unique AMP profile with increased susceptibility to these pathogens. During pregnancy, AMP are key immune effectors of the fetal membranes and placenta and are dysregulated in states of intrauterine infection and other complications of pregnancy. CONCLUSIONS At the level of the FRT, AMP serve to inhibit infection by sexually and vertically transmissible as well as by opportunistic bacteria, fungi, viruses, and protozoa and must do so throughout the hormone flux of menses and pregnancy. Guarding the exclusive site of reproduction, AMP modulate the vaginal microbiome of the lower FRT to aid in preventing ascending microbes into the upper FRT. Evolving in parallel with, and in response to, pathogenic insults, AMP are relatively immune to the resistance mechanisms employed by rapidly evolving pathogens and play a key role in barrier function and host defense throughout the FRT.
Collapse
Affiliation(s)
- Victoria L Yarbrough
- Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, , Phoenix, AZ 85004-2157, USA
| | - Sean Winkle
- Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, , Phoenix, AZ 85004-2157, USA
| | - Melissa M Herbst-Kralovetz
- Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, , Phoenix, AZ 85004-2157, USA
| |
Collapse
|
22
|
Vaginal cytokines do not differ between postmenopausal women with and without symptoms of vulvovaginal irritation. Menopause 2014; 21:840-5. [DOI: 10.1097/gme.0000000000000179] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Patel MV, Ghosh M, Fahey JV, Ochsenbauer C, Rossoll RM, Wira CR. Innate immunity in the vagina (Part II): Anti-HIV activity and antiviral content of human vaginal secretions. Am J Reprod Immunol 2014; 72:22-33. [PMID: 24806967 DOI: 10.1111/aji.12218] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 01/21/2014] [Indexed: 01/23/2023] Open
Abstract
PROBLEM Whether the concentrations of antiviral proteins, and anti-HIV activity, within human vaginal secretions change across the menstrual cycle is unknown. METHOD OF STUDY Using a menstrual cup, vaginal secretions from pre-menopausal women were recovered at the proliferative (d6-8), mid-cycle (d13-15), and secretory (d21-23) stages of the menstrual cycle. Antiviral protein concentration was determined by ELISA, and anti-HIV activity assessed using the TZM-bl reporter cell line. RESULTS CCL20, RANTES, elafin, HBD2, SDF-1α, and IL-8 levels were detectable in the secretions. Vaginal secretions had anti-HIV activity against specific clade B strains of HIV, with significant inhibition of IIIB and increased infectivity of transmitted/founder CH077.t. No significant differences in either antiviral protein concentration or anti-HIV activity with respect to menstrual cycle stage were measured, but marked differences were observed in both parameters over the course of the cycle between different women and in consecutive cycles from the same woman. CONCLUSION The vagina contains a complement of antiviral proteins. The variation in anti-HIV activity demonstrates that immune protection in the vagina is not constant. Intra- and interindividual variations suggest that factors in addition to sex hormones influence antiviral protection. Lastly, the menstrual cup is a new model for recovering undiluted vaginal secretions from women throughout their reproductive life.
Collapse
Affiliation(s)
- Mickey V Patel
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | | | | | | | | | | |
Collapse
|
24
|
Ghosh M. Secreted mucosal antimicrobials in the female reproductive tract that are important to consider for HIV prevention. Am J Reprod Immunol 2014; 71:575-88. [PMID: 24754244 DOI: 10.1111/aji.12250] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 03/14/2014] [Indexed: 01/13/2023] Open
Abstract
The mucosal microenvironment of the female reproductive tract (FRT) is rich in secreted endogenous antimicrobials that provide the first line of defense against pathogens. This review focuses on the spectrum of secreted antimicrobials found in the FRT that have anti-HIV functions and are regulated by the natural hormonal changes in women's life cycle. Understanding the complex nature of FRT, mucosal microenvironment will enable us to better design therapeutic interventions for women against sexually transmitted pathogens.
Collapse
Affiliation(s)
- Mimi Ghosh
- Department of Epidemiology and Biostatistics, Milken Institute School of Public Health, The George Washington University, Washington, DC, USA
| |
Collapse
|
25
|
Cortez V, Odem-Davis K, Lehman DA, Mabuka J, Overbaugh J. Quotidian changes of genital tract cytokines in human immunodeficiency virus-1-infected women during the menstrual cycle. Open Forum Infect Dis 2014; 1:ofu002. [PMID: 25734076 PMCID: PMC4324201 DOI: 10.1093/ofid/ofu002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The role of hormonal changes throughout the menstrual cycle on genital tract inflammation during chronic human immunodeficiency virus (HIV) infection is not well defined, but it has implications for HIV prevention. We assessed daily levels of 26 vaginal cytokines and chemokines from 15 women infected with HIV-1. Taking into account coexisting sexually transmitted infections, behavioral factors, and menstruation, this study illustrates cyclic patterns of granulocyte macrophage colony-stimulating factor, interferon-α2, interleukin (IL)-6, IL-10, macrophage inflammatory protein (MIP)-1α, MIP-1β, and tumor necrosis factor (TNF)-α. Progesterone was associated with levels of granulocyte colony-stimulating factor, IL-1α, and monocyte chemoattractant protein-1. Interferon-α2, IL-6, MIP-1α, MIP-1β, and TNF-α levels predicted HIV shedding, but these associations were heavily influenced by the menstrual cycle.
Collapse
Affiliation(s)
- Valerie Cortez
- Program in Molecular and Cellular Biology, University of Washington
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Katherine Odem-Davis
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Dara A. Lehman
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Jennifer Mabuka
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Julie Overbaugh
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington
| |
Collapse
|
26
|
Whitcomb BW, Mumford SL, Perkins NJ, Wactawski-Wende J, Bertone-Johnson ER, Lynch KE, Schisterman EF. Urinary cytokine and chemokine profiles across the menstrual cycle in healthy reproductive-aged women. Fertil Steril 2014; 101:1383-91. [PMID: 24581581 DOI: 10.1016/j.fertnstert.2014.01.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 01/15/2014] [Accepted: 01/16/2014] [Indexed: 01/23/2023]
Abstract
OBJECTIVE To assess the utility of urinary cytokines for monitoring reproductive function by considering detection, variation across the menstrual cycle, and relations with hormones. DESIGN Longitudinal cohort study. SETTING Academic institution. PATIENT(S) Healthy, reproductive-aged women with self-reported regular menstrual cycles and at least one observed ovulatory cycle (n = 248). INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Urinary cytokines measured by 30-plex immunoassays in 3,550 biospecimens, and nested random-effects analysis of variance (ANOVA) and marginal structural models used to evaluate variability and relations with hormones. RESULT(S) For 24 of 30 evaluated factors, detectable levels were observed in at least 50% of urine samples. Interleukin-6 (IL-6), IL-8, IL-10, IL-15, granulocyte colony stimulating factor (G-CSF), hepatocyte growth factor (HGF), interferon-α (IFN-α), and RANTES (regulated upon activation normal T-cell expressed and secreted) levels varied significantly across the menstrual cycle. The proinflammatory factors IL-1β, IL-6, IL-8, and HGF were 1.5-3 times higher during menses than the late follicular phase. In marginal structural models, IL-1β, IL-6, IL-8 were associated with lower estradiol and progesterone concentrations. CONCLUSION(S) Variability during the menstrual cycle and correlations with reproductive hormone levels support a role of cytokines in the menstrual cycle; however, because of the limited variability for most cytokines considered, the utility of urine as a matrix for assessment of inflammation in menstrual cycle function appears limited for clinical purposes.
Collapse
Affiliation(s)
- Brian W Whitcomb
- Division of Biostatistics and Epidemiology, University of Massachusetts, Amherst, Massachusetts.
| | - Sunni L Mumford
- Division of Epidemiology, Statistics and Prevention Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland
| | - Neil J Perkins
- Division of Epidemiology, Statistics and Prevention Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland
| | - Jean Wactawski-Wende
- Department of Social and Preventive Medicine, State University of New York, Buffalo, New York
| | | | - Kristine E Lynch
- Division of Biostatistics and Epidemiology, University of Massachusetts, Amherst, Massachusetts
| | - Enrique F Schisterman
- Division of Epidemiology, Statistics and Prevention Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland
| |
Collapse
|
27
|
Patras KA, Wang NY, Fletcher EM, Cavaco CK, Jimenez A, Garg M, Fierer J, Sheen TR, Rajagopal L, Doran KS. Group B Streptococcus CovR regulation modulates host immune signalling pathways to promote vaginal colonization. Cell Microbiol 2013; 15:1154-67. [PMID: 23298320 PMCID: PMC3657335 DOI: 10.1111/cmi.12105] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 12/28/2012] [Accepted: 01/02/2013] [Indexed: 12/24/2022]
Abstract
Streptococcus agalactiae (Group B Streptococcus, GBS) is a frequent commensal organism of the vaginal tract of healthy women. However, GBS can transition to a pathogen in susceptible hosts, but host and microbial factors that contribute to this conversion are not well understood. GBS CovR/S (CsrR/S) is a two component regulatory system that regulates key virulence elements including adherence and toxin production. We performed global transcription profiling of human vaginal epithelial cells exposed to WT, CovR deficient, and toxin deficient strains, and observed that insufficient regulation by CovR and subsequent increased toxin production results in a drastic increase in host inflammatory responses, particularly in cytokine signalling pathways promoted by IL-8 and CXCL2. Additionally, we observed that CovR regulation impacts epithelial cell attachment and intracellular invasion. In our mouse model of GBS vaginal colonization, we further demonstrated that CovR regulation promotes vaginal persistence, as infection with a CovR deficient strainresulted in a heightened host immune response as measured by cytokine production and neutrophil activation. Using CXCr2 KO mice, we determined that this immune alteration occurs, at least in part, via signalling through the CXCL2 receptor. Taken together, we conclude that CovR is an important regulator of GBS vaginal colonization and loss of this regulatory function may contribute to the inflammatory havoc seen during the course of infection.
Collapse
Affiliation(s)
- Kathryn A. Patras
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, CA 92182
| | - Nai-Yu Wang
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, CA 92182
| | - Erin M. Fletcher
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, CA 92182
| | - Courtney K. Cavaco
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, CA 92182
| | - Alyssa Jimenez
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, CA 92182
| | - Mansi Garg
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, CA 92182
| | - Joshua Fierer
- Department of Medicine, University of California San Diego School of Medicine, La Jolla, CA 92093
| | - Tamsin R. Sheen
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, CA 92182
| | - Lakshmi Rajagopal
- Department of Pediatric Infectious Diseases, University of 10 Washington School of Medicine and Seattle Children’s Hospital Research Institute, Seattle, WA 98101
| | - Kelly S. Doran
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, CA 92182
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA 92093
| |
Collapse
|