1
|
Idouz K, Belhaj A, Rondelet B, Dewachter L, Flamion B, Kirschvink N, Dogné S. Cascading renal injury after brain death: Unveiling glycocalyx alteration and the potential protective role of tacrolimus. Front Cell Dev Biol 2024; 12:1449209. [PMID: 39165663 PMCID: PMC11333349 DOI: 10.3389/fcell.2024.1449209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/25/2024] [Indexed: 08/22/2024] Open
Abstract
Brain death (BD) is a complex medical state that triggers systemic disturbances and a cascade of pathophysiological processes. This condition significantly impairs both kidney function and structural integrity, thereby presenting considerable challenges to graft viability and the long-term success of transplantation endeavors. Tacrolimus (FK506), an immunosuppressive drug, was used in this study to assess its impact as a pretreatment on brain death-induced renal injury. This study aimed to investigate changes associated with brain death-induced renal injury in a 4-month-old female porcine model. The experimental groups included brain death placebo-pretreated (BD; n = 9), brain death tacrolimus-pretreated using the clinical dose of 0.25 mg/kg the day before surgery, followed by 0.05 mg/kg/day 1 hour before the procedure (BD + FK506; n = 8), and control (ctrl, n = 7) piglets, which did not undergo brain death induction. Furthermore, we aimed to assess the effect of FK506 on these renal alterations through graft preconditioning. We hypothesized that immunosuppressive properties of FK506 reduce tissue inflammation and preserve the glycocalyx. Our findings revealed a series of interconnected events triggered by BD, leading to a deterioration of renal function and increased proteinuria, increased apoptosis in the vessels, glomeruli and tubules, significant leukocyte infiltration into renal tissue, and degradation of the glycocalyx in comparison with ctrl group. Importantly, treatment with FK506 demonstrated significant efficacy in attenuating these adverse effects. FK506 helped reduce apoptosis, maintain glycocalyx integrity, regulate neutrophil infiltration, and mitigate renal injury following BD. This study offers new insights into the pathophysiology of BD-induced renal injury, emphasizing the potential of FK506 pretreatment as a promising therapeutic intervention for organ preservation, through maintaining endothelial function with the additional benefit of limiting the risk of rejection.
Collapse
Affiliation(s)
- Kaoutar Idouz
- Molecular Physiology Research Unit (URPhyM), Namur Research Institute for Life Sciences (NARILIS), University of Namur (Unamur), Namur, Belgium
| | - Asmae Belhaj
- Department of Cardio-Vascular, Thoracic Surgery and Lung Transplantation, CHU UCL Namur, UCLouvain, Yvoir, Belgium
| | - Benoit Rondelet
- Department of Cardio-Vascular, Thoracic Surgery and Lung Transplantation, CHU UCL Namur, UCLouvain, Yvoir, Belgium
| | - Laurence Dewachter
- Laboratory of Physiology and Pharmacology, Université Libre de Bruxelles, Brussels, Belgium
| | - Bruno Flamion
- Molecular Physiology Research Unit (URPhyM), Namur Research Institute for Life Sciences (NARILIS), University of Namur (Unamur), Namur, Belgium
- Clinical Development, Idorsia Pharmaceuticals Ltd., Allschwil, Switzerland
| | - Nathalie Kirschvink
- Molecular Physiology Research Unit (URPhyM), Namur Research Institute for Life Sciences (NARILIS), University of Namur (Unamur), Namur, Belgium
| | - Sophie Dogné
- Molecular Physiology Research Unit (URPhyM), Namur Research Institute for Life Sciences (NARILIS), University of Namur (Unamur), Namur, Belgium
| |
Collapse
|
2
|
Li G, Yang H, Zhang D, Zhang Y, Liu B, Wang Y, Zhou H, Xu ZX, Wang Y. The role of macrophages in fibrosis of chronic kidney disease. Biomed Pharmacother 2024; 177:117079. [PMID: 38968801 DOI: 10.1016/j.biopha.2024.117079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/23/2024] [Accepted: 06/29/2024] [Indexed: 07/07/2024] Open
Abstract
Macrophages are widely distributed throughout various tissues of the body, and mounting evidence suggests their involvement in regulating the tissue microenvironment, thereby influencing disease onset and progression through direct or indirect actions. In chronic kidney disease (CKD), disturbances in renal functional homeostasis lead to inflammatory cell infiltration, tubular expansion, glomerular atrophy, and subsequent renal fibrosis. Macrophages play a pivotal role in this pathological process. Therefore, understanding their role is imperative for investigating CKD progression, mitigating its advancement, and offering novel research perspectives for fibrosis treatment from an immunological standpoint. This review primarily delves into the intrinsic characteristics of macrophages, their origins, diverse subtypes, and their associations with renal fibrosis. Particular emphasis is placed on the transition between M1 and M2 phenotypes. In late-stage CKD, there is a shift from the M1 to the M2 phenotype, accompanied by an increased prevalence of M2 macrophages. This transition is governed by the activation of the TGF-β1/SMAD3 and JAK/STAT pathways, which facilitate macrophage-to-myofibroblast transition (MMT). The tyrosine kinase Src is involved in both signaling cascades. By thoroughly elucidating macrophage functions and comprehending the modes and molecular mechanisms of macrophage-fibroblast interaction in the kidney, novel, tailored therapeutic strategies for preventing or attenuating the progression of CKD can be developed.
Collapse
Affiliation(s)
- Guangtao Li
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Hongxia Yang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Dan Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Yanghe Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Bin Liu
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yuxiong Wang
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Honglan Zhou
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China.
| | - Zhi-Xiang Xu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China.
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China.
| |
Collapse
|
3
|
Armstrong-Jr R, Ricardo-da-Silva FY, Vidal-Dos-Santos M, da Anunciação LF, Ottens PJ, Correia CJ, Moreira LFP, Leuvenink HGD, Breithaupt-Faloppa AC. Comparison of acute kidney injury following brain death between male and female rats. Clinics (Sao Paulo) 2023; 78:100222. [PMID: 37257364 DOI: 10.1016/j.clinsp.2023.100222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/27/2023] [Accepted: 05/16/2023] [Indexed: 06/02/2023] Open
Abstract
BACKGROUND Clinical reports associate kidneys from female donors with worse prognostic in male recipients. Brain Death (BD) produces immunological and hemodynamic disorders that affect organ viability. Following BD, female rats are associated with increased renal inflammation interrelated with female sex hormone reduction. Here, the aim was to investigate the effects of sex on BD-induced Acute Kidney Injury (AKI) using an Isolated Perfused rat Kidney (IPK) model. METHODS Wistar rats, females, and males (8 weeks old), were maintained for 4h after BD. A left nephrectomy was performed and the kidney was preserved in a cold saline solution (30 min). IPK was performed under normothermic temperature (37°C) for 90 min using WME as perfusion solution. AKI was assessed by morphological analyses, staining of complement system components and inflammatory cell markers, perfusion flow, and creatinine clearance. RESULTS BD-male kidneys had decreased perfusion flow on IPK, a phenomenon that was not observed in the kidneys of BD-females (p < 0.0001). BD-male kidneys presented greater proximal (p = 0.0311) and distal tubule (p = 0.0029) necrosis. However, BD-female kidneys presented higher expression of eNOS (p = 0.0060) and greater upregulation of inflammatory mediators, iNOS (p = 0.0051), and Caspase-3 (p = 0.0099). In addition, both sexes had increased complement system formation (C5b-9) (p=0.0005), glomerular edema (p = 0.0003), and nNOS (p = 0.0051). CONCLUSION The present data revealed an important sex difference in renal perfusion in the IPK model, evidenced by a pronounced reduction in perfusate flow and low eNOS expression in the BD-male group. Nonetheless, the upregulation of genes related to the proinflammatory cascade suggests a progressive inflammatory process in BD-female kidneys.
Collapse
Affiliation(s)
- Roberto Armstrong-Jr
- Department of Surgery, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| | - Fernanda Yamamoto Ricardo-da-Silva
- Laboratório de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brasil
| | - Marina Vidal-Dos-Santos
- Department of Surgery, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands; Laboratório de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brasil
| | - Lucas Ferreira da Anunciação
- Laboratório de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brasil
| | - Petra J Ottens
- Department of Surgery, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| | - Cristiano Jesus Correia
- Laboratório de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brasil
| | - Luiz Felipe Pinho Moreira
- Laboratório de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brasil
| | | | - Ana Cristina Breithaupt-Faloppa
- Laboratório de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brasil.
| |
Collapse
|
4
|
Maassen H, Venema LH, Weiss MG, Huijink TM, Hofker HS, Keller AK, Mollnes TE, Eijken M, Pischke SE, Jespersen B, van Goor H, Leuvenink HGD. H2S-Enriched Flush out Does Not Increase Donor Organ Quality in a Porcine Kidney Perfusion Model. Antioxidants (Basel) 2023; 12:antiox12030749. [PMID: 36978997 PMCID: PMC10044751 DOI: 10.3390/antiox12030749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 03/29/2023] Open
Abstract
Kidney extraction time has a detrimental effect on post-transplantation outcome. This study aims to improve the flush-out and potentially decrease ischemic injury by the addition of hydrogen sulphide (H2S) to the flush medium. Porcine kidneys (n = 22) were extracted during organ recovery surgery. Pigs underwent brain death induction or a Sham operation, resulting in four groups: donation after brain death (DBD) control, DBD H2S, non-DBD control, and non-DBD H2S. Directly after the abdominal flush, kidneys were extracted and flushed with or without H2S and stored for 13 h via static cold storage (SCS) +/− H2S before reperfusion on normothermic machine perfusion. Pro-inflammatory cytokines IL-1b and IL-8 were significantly lower in H2S treated DBD kidneys during NMP (p = 0.03). The non-DBD kidneys show superiority in renal function (creatinine clearance and FENa) compared to the DBD control group (p = 0.03 and p = 0.004). No differences were seen in perfusion parameters, injury markers and histological appearance. We found an overall trend of better renal function in the non-DBD kidneys compared to the DBD kidneys. The addition of H2S during the flush out and SCS resulted in a reduction in pro-inflammatory cytokines without affecting renal function or injury markers.
Collapse
|
5
|
Wang RR, He M, Gui X, Kang Y. A nomogram based on serum cystatin C for predicting acute kidney injury in patients with traumatic brain injury. Ren Fail 2021; 43:206-215. [PMID: 33478333 PMCID: PMC7833079 DOI: 10.1080/0886022x.2021.1871919] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/26/2020] [Accepted: 12/26/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Acute kidney injury (AKI) is a common complication in traumatic brain injury (TBI) patients and is associated with unfavorable outcome of these patients. We designed this study to explore the value of serum cystatin C, an indicator of renal function, on predicting AKI after suffering TBI. METHODS Patients confirmed with TBI and hospitalized in the West China Hospital of Sichuan University between January 2015 and December 2019 were included. Patients were divided into two groups according to occurrence of AKI. Univariate and multivariate logistic regression analyses were sequentially utilized to find risk factors of AKI in included TBI patients. Nomogram composed of discovered risk factors for predicting AKI was constructed. Receiver operating characteristics (ROC) curves were drawn and area under the ROC curve (AUC) were calculated to evaluate the predictive value of cystatin C alone and the constructed nomogram. RESULTS Among 234 included TBI patients, 55 were divided into AKI group. AKI group had shorter length of stay (p < 0.001) and higher in-hospital mortality (p < 0.001). Multivariate logistic regression analysis showed absolute lymphocyte count (p = 0.034), serum creatinine (p < 0.001), serum cystatin C (p = 0.017) and transfusion of red blood cell (p = 0.005) were independently associated with development of AKI after TBI. While hypertonic saline use was not associated with the development of AKI (p = 0.067). The AUC of single cystatin C and predictive nomogram were 0.804 and 0.925, respectively. CONCLUSION Higher serum cystatin C is associated with development of AKI in TBI patients. Predictive nomogram incorporating cystatin C is beneficial for physicians to evaluate possibilities of AKI and consequently adjust treatment strategies to avoid occurrence of AKI.
Collapse
Affiliation(s)
- Ruo Ran Wang
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Min He
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xiying Gui
- Department of Critical Care Medicine, Tibet Autonomous Region People’s Hospital, Lhasa, China
| | - Yan Kang
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Armstrong-Jr R, Ricardo-da-Silva FY, Vidal-Dos-Santos M, Correia CDJ, Anunciação LF, Coutinho E Silva RDS, Moreira LFP, Leuvenink HGD, Breithaupt-Faloppa AC. Protective role of 17β-estradiol treatment in renal injury on female rats submitted to brain death. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1125. [PMID: 34430566 PMCID: PMC8350685 DOI: 10.21037/atm-21-1408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/03/2021] [Indexed: 12/04/2022]
Abstract
Background Clinical and experimental data highlight the consequences of brain death on the quality of organs and demonstrate the importance of donor state to the results of transplantation. Female rats show higher cardio-pulmonary injury linked to decreased concentrations of female sex hormones after brain-dead (BD). This study evaluated the effect of 17β-estradiol on brain death induced renal injury in female rats. Methods Female Wistar rats were randomically allocated into 4 groups: false-operation (Sham), BD, treatment with 17β-estradiol (50 µg/mL, 2 mL/h) 3 h after brain death (E2-T3), or immediately after brain death confirmation (E2-T0). Creatinine, urea, cytokines, and complement system components were quantified. Renal injury markers, such as KIM-1, Caspase-3, BCL-2 and MMP2/9 were evaluated. Results Brain death leads to increased kidney KIM-1 expression and longer 17β-estradiol treatment resulted in downregulation (P<0.0001). There was increase of neutrophil numbers in kidney from BD rats and E2 treatment was able to reduce it (P=0.018). Regarding complement elements, E2-T3 group evidenced E2 therapeutic effects, reducing C5b-9 (P=0.0004), C3aR (P=0.054) and C5aR (P=0.019). In parallel, there were 17β-estradiol effects in reducing MMP2 (P=0.0043), MMP9 (P=0.011), and IL-6 (P=0.024). Moreover, E2-T3 group improved renal function in comparison to BD group (P=0.0938). Conclusions 17β-estradiol treatment was able to reduce acute kidney damage in BD female rats owing to its ability to prevent tissue damage, formation of C5b-9, and local synthesis of inflammatory mediators.
Collapse
Affiliation(s)
- Roberto Armstrong-Jr
- Laboratorio de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Fernanda Yamamoto Ricardo-da-Silva
- Laboratorio de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Marina Vidal-Dos-Santos
- Laboratorio de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Cristiano de Jesus Correia
- Laboratorio de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Lucas Ferreira Anunciação
- Laboratorio de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Raphael Dos Santos Coutinho E Silva
- Laboratorio de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Luiz Felipe Pinho Moreira
- Laboratorio de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Henri Gerrit Derk Leuvenink
- Department of Surgery, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Ana Cristina Breithaupt-Faloppa
- Laboratorio de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Doreille A, Azzi F, Larivière-Beaudoin S, Karakeussian-Rimbaud A, Trudel D, Hébert MJ, Dieudé M, Patey N, Cardinal H. Acute Kidney Injury, Microvascular Rarefaction, and Estimated Glomerular Filtration Rate in Kidney Transplant Recipients. Clin J Am Soc Nephrol 2021; 16:415-426. [PMID: 33648972 PMCID: PMC8011007 DOI: 10.2215/cjn.07270520] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 01/14/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND OBJECTIVES Animal studies suggest that microvascular rarefaction is a key factor in the acute kidney disease to CKD transition. Hence, delayed graft function appears as a unique human model of AKI to further explore the role of microvascular rarefaction in kidney transplant recipients. Here, we assessed whether delayed graft function is associated with peritubular capillary loss and evaluated the association between this loss and long-term kidney graft function. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS This observational, retrospective cohort study included 61 participants who experienced delayed graft function and 130 who had immediate graft function. We used linear regression models to evaluate associations between delayed graft function and peritubular capillary density expressed as the percentage of efficient cortical area occupied by peritubular capillaries in pre- and post-transplant graft biopsies. eGFRs 1 and 3 years post-transplant were secondary outcomes. RESULTS Post-transplant biopsies were performed at a median of 113 days (interquartile range, 101-128) after transplantation. Peritubular capillary density went from 15.4% to 11.5% in patients with delayed graft function (median change, -3.7%; interquartile range, -6.6% to -0.8%) and from 19.7% to 15.1% in those with immediate graft function (median change, -4.5%; interquartile range, -8.0% to -0.8%). Although the unadjusted change in peritubular capillary density was similar between patients with and without delayed graft function, delayed graft function was associated with more peritubular capillary loss in the multivariable analysis (adjusted difference in change, -2.9%; 95% confidence interval, -4.0 to -1.8). Pretransplant peritubular capillary density and change in peritubular capillary density were associated with eGFR 1 and 3 years post-transplantation. CONCLUSIONS Perioperative AKI is associated with lower density in peritubular capillaries before transplantation and with loss of peritubular capillaries following transplantation. Lower peritubular capillary density is linked to lower long-term eGFR.
Collapse
Affiliation(s)
- Alice Doreille
- Centre de recherche du Centre hospitalier de l’Université de Montréal, Immunopathology axis, Montreal, Quebec, Canada,Faculté de Médecine, Université Paris-Sud, Paris, France
| | - Féryel Azzi
- Institut du cancer de Montréal, Montreal, Quebec, Canada
| | - Stéphanie Larivière-Beaudoin
- Centre de recherche du Centre hospitalier de l’Université de Montréal, Immunopathology axis, Montreal, Quebec, Canada,Canadian Donation and Transplantation Research Program, Edmonton, Alberta, Canada
| | - Annie Karakeussian-Rimbaud
- Centre de recherche du Centre hospitalier de l’Université de Montréal, Immunopathology axis, Montreal, Quebec, Canada,Canadian Donation and Transplantation Research Program, Edmonton, Alberta, Canada
| | - Dominique Trudel
- Institut du cancer de Montréal, Montreal, Quebec, Canada,Pathology Department, Centre hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
| | - Marie-Josée Hébert
- Centre de recherche du Centre hospitalier de l’Université de Montréal, Immunopathology axis, Montreal, Quebec, Canada,Canadian Donation and Transplantation Research Program, Edmonton, Alberta, Canada,Nephrology Department, Centre hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
| | - Mélanie Dieudé
- Centre de recherche du Centre hospitalier de l’Université de Montréal, Immunopathology axis, Montreal, Quebec, Canada,Canadian Donation and Transplantation Research Program, Edmonton, Alberta, Canada
| | - Natacha Patey
- Centre de recherche du Centre hospitalier de l’Université de Montréal, Immunopathology axis, Montreal, Quebec, Canada,Pathology Department, Sainte-Justine Hospital, Montreal, Quebec, Canada
| | - Héloïse Cardinal
- Centre de recherche du Centre hospitalier de l’Université de Montréal, Immunopathology axis, Montreal, Quebec, Canada,Canadian Donation and Transplantation Research Program, Edmonton, Alberta, Canada,Nephrology Department, Centre hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
8
|
The Neglectable Impact of Delayed Graft Function on Long-term Graft Survival in Kidneys Donated After Circulatory Death Associates With Superior Organ Resilience. Ann Surg 2019; 270:877-883. [DOI: 10.1097/sla.0000000000003515] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
9
|
Lemos NE, Dieter C, Carlessi R, Rheinheimer J, Brondani LDA, Leitão CB, Bauer AC, Crispim D. Renal effects of exendin-4 in an animal model of brain death. Mol Biol Rep 2019; 46:2197-2207. [PMID: 30759298 DOI: 10.1007/s11033-019-04674-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/05/2019] [Indexed: 12/14/2022]
Abstract
Organ transplantation is the gold standard therapy for the majority of patients with terminal organ failure. However, it is still a limited treatment especially due to the low number of brain death (BD) donors in relation to the number of waiting list recipients. Strategies to increase the quantity and quality of donor organs have been studied, and the administration of exendin-4 (Ex-4) to the donor may be a promising approach. Male Wistar rats were randomized into 3 groups: (1) control, without central nervous system injury; (2) BD induced experimentally, and (3) BD induced experimentally + Ex-4 administered immediately after BD induction. After BD induction, animals were monitored for 6 h before blood collection and kidney biopsy. Kidney function was assessed by biochemical quantification of plasma kidney markers. Gene and protein expressions of inflammation- and stress-related genes were evaluated by RT-qPCR and immunoblot analysis. Animals treated with Ex-4 had lower creatinine and urea levels compared with controls. BD induced oxidative stress in kidney tissue through increased expression of Ucp2, Sod2 and Inos, and Ex-4 administration reduced the expression of these genes. Ex-4 also induced increased expression of the anti-apoptotic Bcl2 gene. Nlrp3 and Tnf expressions were up-regulated in the BD group compared with controls, but Ex-4 treatment had no effect on these genes. Our findings suggest that Ex-4 administration in BD rats reduces BD-induced kidney damage by decreasing the expression of oxidative stress genes and increasing the expression of Bcl2.
Collapse
Affiliation(s)
- Natália Emerim Lemos
- Laboratory of Human Pancreatic Islet Biology, Endocrine Division, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, prédio 12, 4° andar, Porto Alegre, Rio Grande Do Sul, 90035-003, Brazil.,Postgraduation Program in Medical Sciences: Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande Do Sul, Brazil
| | - Cristine Dieter
- Laboratory of Human Pancreatic Islet Biology, Endocrine Division, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, prédio 12, 4° andar, Porto Alegre, Rio Grande Do Sul, 90035-003, Brazil.,Postgraduation Program in Medical Sciences: Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande Do Sul, Brazil
| | - Rodrigo Carlessi
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Kent St., Bentley, Perth, WA, 6102, Australia
| | - Jakeline Rheinheimer
- Laboratory of Human Pancreatic Islet Biology, Endocrine Division, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, prédio 12, 4° andar, Porto Alegre, Rio Grande Do Sul, 90035-003, Brazil.,Postgraduation Program in Medical Sciences: Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande Do Sul, Brazil
| | - Letícia de Almeida Brondani
- Laboratory of Human Pancreatic Islet Biology, Endocrine Division, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, prédio 12, 4° andar, Porto Alegre, Rio Grande Do Sul, 90035-003, Brazil.,Postgraduation Program in Medical Sciences: Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande Do Sul, Brazil
| | - Cristiane Bauermann Leitão
- Laboratory of Human Pancreatic Islet Biology, Endocrine Division, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, prédio 12, 4° andar, Porto Alegre, Rio Grande Do Sul, 90035-003, Brazil.,Postgraduation Program in Medical Sciences: Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande Do Sul, Brazil
| | - Andrea Carla Bauer
- Laboratory of Human Pancreatic Islet Biology, Endocrine Division, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, prédio 12, 4° andar, Porto Alegre, Rio Grande Do Sul, 90035-003, Brazil.,Postgraduation Program in Medical Sciences: Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande Do Sul, Brazil.,Nephrology Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande Do Sul, Brazil
| | - Daisy Crispim
- Laboratory of Human Pancreatic Islet Biology, Endocrine Division, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, prédio 12, 4° andar, Porto Alegre, Rio Grande Do Sul, 90035-003, Brazil. .,Postgraduation Program in Medical Sciences: Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande Do Sul, Brazil.
| |
Collapse
|
10
|
A porcine model to study the effect of brain death on kidney genomic responses. J Clin Transl Sci 2018; 2:208-216. [PMID: 30800478 PMCID: PMC6374499 DOI: 10.1017/cts.2018.312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/17/2018] [Accepted: 05/26/2018] [Indexed: 11/16/2022] Open
Abstract
Introduction A majority of transplanted organs come from donors after brain death (BD). Renal grafts from these donors have higher delayed graft function and lower long-term survival rates compared to living donors. We designed a novel porcine BD model to better delineate the incompletely understood inflammatory response to BD, hypothesizing that adhesion molecule pathways would be upregulated in BD. Methods Animals were anesthetized and instrumented with monitors and a balloon catheter, then randomized to control and BD groups. BD was induced by inflating the balloon catheter and animals were maintained for 6 hours. RNA was extracted from kidneys, and gene expression pattern was determined. Results In total, 902 gene pairs were differently expressed between groups. Eleven selected pathways were upregulated after BD, including cell adhesion molecules. Conclusions These results should be confirmed in human organ donors. Treatment strategies should target involved pathways and lessen the negative effects of BD on transplantable organs.
Collapse
|
11
|
Abstract
BACKGROUND Kidneys derived from brain-dead (BD) donors have lower graft survival rates compared with kidneys from living donors. Complement activation plays an important role in brain death. The aim of our study was therefore to investigate the effect of C1-inhibitor (C1-INH) on BD-induced renal injury. METHODS Brain death was induced in rats by inflating a subdurally placed balloon catheter. Thirty minutes after BD, rats were treated with saline, low-dose or high-dose C1-INH. Sham-operated rats served as controls. After 4 hours of brain death, renal function, injury, inflammation, and complement activation were assessed. RESULTS High-dose C1-INH treatment of BD donors resulted in significantly lower renal gene expression and serum levels of IL-6. Treatment with C1-INH also improved renal function and reduced renal injury, reflected by the significantly lower kidney injury marker 1 gene expression and lower serum levels of lactate dehydrogenase and creatinine. Furthermore, C1-INH effectively reduced complement activation by brain death and significantly increased functional levels. However, C1-INH treatment did not prevent renal cellular influx. CONCLUSIONS Targeting complement activation after the induction of brain death reduced renal inflammation and improved renal function before transplantation. Therefore, strategies targeting complement activation in human BD donors might clinically improve donor organ viability and renal allograft survival.
Collapse
|
12
|
Lozano-Ramos SI, Bancu I, Carreras-Planella L, Monguió-Tortajada M, Cañas L, Juega J, Bonet J, Armengol MP, Lauzurica R, Borràs FE. Molecular profile of urine extracellular vesicles from normo-functional kidneys reveal minimal differences between living and deceased donors. BMC Nephrol 2018; 19:189. [PMID: 30064375 PMCID: PMC6069839 DOI: 10.1186/s12882-018-0985-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 07/19/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Kidney transplantation (KTx) is the best therapeutic approach for chronic kidney diseases leading to irreversible kidney failure. Considering the origin of the graft, several studies have reported differences between living (LD) and deceased donors (DD) in graft and patient survival. These differences seem to be related to multiple factors including, donor age and time of cold ischemia among others. Many of transplanted organs come from old-aged DDs, in which pre-transplant biopsy is recommended. However, kidney biopsy has several limitations, and there is a need to develop alternatives to assess the status of a kidney before transplantation. As the analysis of urinary extracellular vesicles (uEVs) rendered promising results as non-invasive biomarkers of kidney-related pathologies, this pilot study aimed to investigate whether profiling uEVs of LDs and DDs may be of help to assess the quality of the kidney before nephrectomy. METHODS uEVs from 5 living donors and 7 deceased donors were isolated by size-exclusion chromatography, and their protein and miRNA content were analysed by liquid chromatography followed by mass spectrometry and next generation sequencing, respectively. Then, hierarchical clustering and venn diagrams were done with Perseus software and InteractiVenn tool. Specific EVs data bases were also used for Gene Ontology analysis. RESULTS Next generation sequencing revealed that uEVs from DDs contained less miRNAs than LDs, but most of the DD-expressed miRNAs were shared with LDs (96%). Only miR-326 (targeting the apoptotic-related Bcl2) was found significantly over-represented in LD. Focusing on the protein content, we detected a low intra-group correlation in both types of donors. Despite these differences, hierarchical clustering of either miRNA or protein data could not identify a differential profile between LDs and DDs. Of note, 90% of transplanted patients had a functional graft after a year from KTx. CONCLUSIONS In this pilot study we found that, in normo-functional grafts, minor differences in uEVs profile could not discriminate between LDs and DDs.
Collapse
Affiliation(s)
- S. Inés Lozano-Ramos
- REMAR-IVECAT Group, Health Science Research Institute Germans Trias i Pujol, Can Ruti Campus, Ctra. de Canyet s/n, Edifici “Escoles”, 08916 Badalona, Barcelona Spain
- Department of Cell Biology, Physiology and Immunology, Universitat Autónoma de Barcelona, 08193 Bellaterra, Cerdanyola del Vallès Spain
| | - Ioana Bancu
- Universitat Autónoma de Barcelona, 08193 Bellaterra, Cerdanyola del Vallès Spain
- Nephrology Service, Germans Trias i Pujol University Hospital, Carretera de Canyet s/n, 08916 Badalona, Spain
| | - Laura Carreras-Planella
- REMAR-IVECAT Group, Health Science Research Institute Germans Trias i Pujol, Can Ruti Campus, Ctra. de Canyet s/n, Edifici “Escoles”, 08916 Badalona, Barcelona Spain
- Department of Cell Biology, Physiology and Immunology, Universitat Autónoma de Barcelona, 08193 Bellaterra, Cerdanyola del Vallès Spain
| | - Marta Monguió-Tortajada
- REMAR-IVECAT Group, Health Science Research Institute Germans Trias i Pujol, Can Ruti Campus, Ctra. de Canyet s/n, Edifici “Escoles”, 08916 Badalona, Barcelona Spain
- Department of Cell Biology, Physiology and Immunology, Universitat Autónoma de Barcelona, 08193 Bellaterra, Cerdanyola del Vallès Spain
| | - Laura Cañas
- Universitat Autónoma de Barcelona, 08193 Bellaterra, Cerdanyola del Vallès Spain
- Nephrology Service, Germans Trias i Pujol University Hospital, Carretera de Canyet s/n, 08916 Badalona, Spain
| | - Javier Juega
- Universitat Autónoma de Barcelona, 08193 Bellaterra, Cerdanyola del Vallès Spain
- Nephrology Service, Germans Trias i Pujol University Hospital, Carretera de Canyet s/n, 08916 Badalona, Spain
| | - Josep Bonet
- Universitat Autónoma de Barcelona, 08193 Bellaterra, Cerdanyola del Vallès Spain
- Nephrology Service, Germans Trias i Pujol University Hospital, Carretera de Canyet s/n, 08916 Badalona, Spain
| | - M. Pilar Armengol
- Genomic Platform, Health Science Research Institute Germans Trias i Pujol, Can Ruti Campus, Badalona, Ctra. de Canyet s/n, Edifici “Escoles”, 08916 Badalona, Barcelona Spain
| | - Ricardo Lauzurica
- Nephrology Service, Germans Trias i Pujol University Hospital, Carretera de Canyet s/n, 08916 Badalona, Spain
| | - Francesc E. Borràs
- REMAR-IVECAT Group, Health Science Research Institute Germans Trias i Pujol, Can Ruti Campus, Ctra. de Canyet s/n, Edifici “Escoles”, 08916 Badalona, Barcelona Spain
- Department of Cell Biology, Physiology and Immunology, Universitat Autónoma de Barcelona, 08193 Bellaterra, Cerdanyola del Vallès Spain
- Nephrology Service, Germans Trias i Pujol University Hospital, Carretera de Canyet s/n, 08916 Badalona, Spain
| |
Collapse
|
13
|
Wei J, Chen S, Xue S, Zhu Q, Liu S, Cui L, Hua X, Wang Y. Blockade of Inflammation and Apoptosis Pathways by siRNA Prolongs Cold Preservation Time and Protects Donor Hearts in a Porcine Model. MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 9:428-439. [PMID: 29246321 PMCID: PMC5701800 DOI: 10.1016/j.omtn.2017.10.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 10/28/2017] [Accepted: 10/28/2017] [Indexed: 02/08/2023]
Abstract
In donor hearts from mini pigs, overtime cold preservation and ischemia-reperfusion injury cause poor graft quality and impaired heart function. Blockage of complement, apoptosis, and inflammation is considered a strategy for attenuating ischemia-reperfusion injury and protecting cardiac function. Minipig donor hearts were perfused and preserved in Celsior solution or transfection reagent containing Celsior solution with scramble siRNA or siRNAs targeting complement 3, caspase-8, caspase-3, and nuclear factor κB-p65 genes at 4°C and subsequently hemo-reperfused ex vivo (38°C) or transplanted into recipients. The protective effect of the siRNA solution was evaluated by measuring cell apoptosis, structural alteration, protein markers for tissue damage and oxidative stress, and cardiac function. We found a reduction in cell apoptosis, myocardial damage, and tissue inflammation by reduced biochemistry and markers and protein expression of proinflammatory cytokines and improvement in cardiac function, as shown by the improved hemodynamic indices in 12-hr-preserved siRNA-treated hearts of both ex vivo and orthotopic transplantation models. These findings demonstrate that blockade of inflammation and apoptosis pathways using siRNA can prolong cold preservation time and better protect donor heart function in cardiac transplantation of large animals, which may be beneficial for human heart preservation.
Collapse
Affiliation(s)
- Jia Wei
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai 200240, China
| | - Shiyou Chen
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602, USA
| | - Song Xue
- Department of Cardiac Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Qiangru Zhu
- CCI Facility, Covidien (Shanghai) Management Consulting Co. Ltd., Shanghai 200233, China
| | - Sha Liu
- CCI Facility, Covidien (Shanghai) Management Consulting Co. Ltd., Shanghai 200233, China
| | - Li Cui
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai 200240, China
| | - Xiuguo Hua
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai 200240, China.
| | - Yongyi Wang
- Department of Cardiac Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China.
| |
Collapse
|
14
|
Ginkgo biloba extract EGb761 attenuates brain death-induced renal injury by inhibiting pro-inflammatory cytokines and the SAPK and JAK-STAT signalings. Sci Rep 2017; 7:45192. [PMID: 28332628 PMCID: PMC5362910 DOI: 10.1038/srep45192] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 02/20/2017] [Indexed: 12/16/2022] Open
Abstract
This study aimed to investigate the protective effects of EGb761, a Ginkgo Biloba extract, against brain death-induced kidney injury. Sixty male Sprague Dawley rats were randomly divided into six groups: sham, brain-death (BD), BD + EGb b48h (48 hours before BD), BD + EGb 2 h (2 hours after BD), BD + EGb 1 h, and BD + EGb 0.5 h. Six hours after BD, serum sample and kidney tissues were collected for analyses. The levels of blood urea nitrogen (BUN) and serum creatinine significantly elevated in the BD group than in sham group. In all the EGb761-treated BD animals except for the BD + Gb 2 h group, the levels of BUN and serum creatinine significantly reduced (all P < 0.01). EGb761 attenuated tubular injury and lowered the histological score. In addition, the longer duration of drug treatment was, the better protective efficacy could be observed. EGb761 significantly reduced IL-1β, IL-6, TNF-α, MCP-1, IP-10 mRNA expression and macrophage infiltration in the kidney. EGb761 treatment at 48 hour before brain death significantly attenuate the levels of p-JNK-MAPK, p-p38-MAPK, and p-STAT3 proteins (all P < 0.05, compared to BD group). In summary, our data showed that EGb761 treatment protected donor kidney from BD-induced damages by blocking SAPK and JAK-STAT signalings. Early administration of EGb761 can provide better protective efficacy.
Collapse
|
15
|
Poppelaars F, Seelen MA. Complement-mediated inflammation and injury in brain dead organ donors. Mol Immunol 2016; 84:77-83. [PMID: 27989433 DOI: 10.1016/j.molimm.2016.11.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 11/08/2016] [Accepted: 11/08/2016] [Indexed: 01/16/2023]
Abstract
The importance of the complement system in renal ischemia-reperfusion injury and acute rejection is widely recognized, however its contribution to the pathogenesis of tissue damage in the donor remains underexposed. Brain-dead (BD) organ donors are still the primary source of organs for transplantation. Brain death is characterized by hemodynamic changes, hormonal dysregulation, and immunological activation. Recently, the complement system has been shown to be involved. In BD organ donors, complement is activated systemically and locally and is an important mediator of inflammation and graft injury. Furthermore, complement activation can be used as a clinical marker for the prediction of graft function after transplantation. Experimental models of BD have shown that inhibition of the complement cascade is a successful method to reduce inflammation and injury of donor grafts, thereby improving graft function and survival after transplantation. Consequently, complement-targeted therapeutics in BD organ donors form a new opportunity to improve organ quality for transplantation. Future studies should further elucidate the mechanism responsible for complement activation in BD organ donors.
Collapse
Affiliation(s)
- Felix Poppelaars
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
| | - Marc A Seelen
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands.
| |
Collapse
|
16
|
Fung A, Zhao H, Yang B, Lian Q, Ma D. Ischaemic and inflammatory injury in renal graft from brain death donation: an update review. J Anesth 2016; 30:307-16. [DOI: 10.1007/s00540-015-2120-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 12/08/2015] [Indexed: 12/20/2022]
|
17
|
A comparison of inflammatory, cytoprotective and injury gene expression profiles in kidneys from brain death and cardiac death donors. Transplantation 2014; 98:15-21. [PMID: 24901651 DOI: 10.1097/tp.0000000000000136] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND The superior long-term survival of kidneys from living donors (LDs) compared with kidneys from donation-after-brain-death (DBD) and donation-after-cardiac-death (DCD) donors is now well established. However, comparative studies on transcriptional changes that occur at organ retrieval and during and after cold ischemia (CI) are sparse. METHODS Using a rat model, we used qRT-PCR to examine expression levels of inflammatory, cytoprotective, and injury genes at different time points after organ retrieval. Cleaved caspase-3 was used to evaluate early apoptosis in DCD and DBD kidneys. RESULTS Immediately after retrieval, we found massive up-regulation of proinflammatory genes interleukin-1β, interleukin-6, tumor necrosis factor-α, monocyte chemotactic protein-1, P-selectin, and E-selectin in DBD compared with LD and DCD kidneys. A significant increase in the expression of injury markers Kim-1, p21, and the cytoprotective gene heme oxygenase-1 accompanied this. Bax was increased in DCD kidneys, and Bcl-2 was decreased in DBD kidneys. After 2 hr of CI in the LD group and 18 hr in the DBD and DCD groups, gene expression levels were similar to those found after retrieval. During 18 hr of cold storage, expression levels of these genes did not change. In DCD and DBD kidneys, early apoptosis increased after CI. DISCUSSION/CONCLUSION The gene expression profile in DBD kidneys represents an inflammatory and injury response to brain death. In contrast, DCD kidneys show only mild up-regulation of inflammatory and injury genes. These results may imply why delayed graft function in DCD kidneys does not have the deleterious effect it has on DBD kidneys.
Collapse
|
18
|
Gao X, Wu J, Qian Y, Fu L, Wu G, Xu C, Mei C. Oxidized high-density lipoprotein impairs the function of human renal proximal tubule epithelial cells through CD36. Int J Mol Med 2014; 34:564-72. [PMID: 24919723 DOI: 10.3892/ijmm.2014.1799] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 05/29/2014] [Indexed: 11/06/2022] Open
Abstract
Unlike native high-density lipoprotein (HDL), oxidized HDL exerts adverse effects in a number of diseases, including chronic kidney disease (CKD); however, the mechanisms involved in this process remain unclear. In the present study, we investigated the effects of oxidized HDL on renal tubular cells, which play an important role in the progression of CKD. Human renal proximal tubule epithelial cells (HK-2) were cultured and stimulated with various concentrations of oxidized HDL in the absence or presence of CD36 siRNA. The results revealed that oxidized HDL enhanced the production of reactive oxygen species (ROS) and upregulated the expression of pro-inflammatory factors in the HK-2 cells in a dose-dependent manner. Incubation with oxidized HDL also increased the apoptosis of the HK-2 cells and reduced their migration ability in a dose‑dependent manner. Src family kinase, mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) were activated following stimulation with oxidized HDL. All these effects mediated by oxidized HDL on HK-2 cells were markedly attenuated by transfection with with CD36 siRNA pior to stimulation with oxidized HDL. These findings suggest that oxidized HDL enhances the pro-inflammatory properties and impairs the function of HK-2 cells, mainly through the scavenger receptor, CD36, as well as through the Src, MAPK and NF-κB pathways.
Collapse
Affiliation(s)
- Xiang Gao
- Kidney Institute of PLA, Department of Medicine, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Jianxiang Wu
- Carder's Ward, No. 411 Hospital of PLA, Shanghai 200081, P.R. China
| | - Yixin Qian
- Kidney Institute of PLA, Department of Medicine, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Lili Fu
- Kidney Institute of PLA, Department of Medicine, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Guiqun Wu
- Kidney Institute of PLA, Department of Medicine, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Chenggang Xu
- Kidney Institute of PLA, Department of Medicine, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Changlin Mei
- Kidney Institute of PLA, Department of Medicine, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| |
Collapse
|
19
|
Rebolledo R, Liu B, Akhtar MZ, Ottens PJ, Zhang JN, Ploeg RJ, Leuvenink HGD. Prednisolone has a positive effect on the kidney but not on the liver of brain dead rats: a potencial role in complement activation. J Transl Med 2014; 12:111. [PMID: 24884924 PMCID: PMC4018938 DOI: 10.1186/1479-5876-12-111] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 04/25/2014] [Indexed: 12/29/2022] Open
Abstract
Background Contradictory evidence has been published on the effects of steroid treatments on the outcomes of kidney and liver transplantation from brain dead (BD) donors. Our study aimed to evaluate this disparity by investigating the effect of prednisolone administration on BD rats. Methods BD induction was performed in ventilated rats by inflating a Fogarty catheter placed in the epidural space. Prednisolone (22.5 mg/kg) was administered 30 min prior to BD induction. After four hours of determination of BD: serum, kidney and liver tissues samples were collected and stored. RT-qPCR, routine biochemistry and immunohistochemistry were performed. Results Prednisolone treatment reduced circulating IL-6 and creatinine plasma levels but not serum AST, ALT or LDH. Polymorphonuclear influx assessed by histology, and inflammatory gene expression were reduced in the kidney and liver. However, complement component 3 (C3) expression was decreased in kidney but not in liver. Gene expression of HSP-70, a cytoprotective protein, was down-regulated in the liver after treatment. Conclusions This study shows that prednisolone decreases inflammation and improves renal function, whilst not reducing liver injury. The persistence of complement activation and the negative effect on protective cellular mechanisms in the liver may explain the disparity between the effects of prednisolone on the kidney and liver of BD rats. The difference in the molecular and cellular responses to prednisolone administration may explain the contradictory evidence of the effects of prednisolone on different organ types from brain dead organ donors.
Collapse
Affiliation(s)
- Rolando Rebolledo
- Department of Surgery, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
20
|
Erpicum P, Detry O, Weekers L, Bonvoisin C, Lechanteur C, Briquet A, Beguin Y, Krzesinski JM, Jouret F. Mesenchymal stromal cell therapy in conditions of renal ischaemia/reperfusion. Nephrol Dial Transplant 2014; 29:1487-93. [PMID: 24516234 DOI: 10.1093/ndt/gft538] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Acute kidney injury (AKI) represents a worldwide public health issue of increasing incidence, with a significant morbi-mortality. AKI treatment mostly relies on supportive manoeuvres in the absence of specific target-oriented therapy. The pathophysiology of AKI commonly involves ischaemia/reperfusion (I/R) events, which cause both immune and metabolic consequences in renal tissue. Similarly, at the time of kidney transplantation (KT), I/R is an unavoidable event which contributes to early graft dysfunction and enhanced graft immunogenicity. Mesenchymal stromal cells (MSCs) represent a heterogeneous population of adult, fibroblast-like multi-potent cells characterized by their ability to differentiate into tissues of mesodermal lineages. Because MSC have demonstrated immunomodulatory, anti-inflammatory and tissue repair properties, MSC administration at the time of I/R and/or at later times has been hypothesized to attenuate AKI severity and to accelerate the regeneration process. Furthermore, MSC in KT could help prevent both I/R injury and acute rejection, thereby increasing graft function and survival. In this review, summarizing the encouraging observations in animal models and in pilot clinical trials, we outline the benefit of MSC therapy in AKI and KT, and envisage their putative role in renal ischaemic conditioning.
Collapse
Affiliation(s)
- Pauline Erpicum
- Divisions of Nephrology and Transplantation, University of Liege CHU (ULg CHU), Liege, Belgium
| | - Olivier Detry
- Abdominal Surgery and Transplantation, University of Liege CHU (ULg CHU), Liege, Belgium Laboratories of Cardiovascular Sciences, University of Liege, Liege, Belgium
| | - Laurent Weekers
- Divisions of Nephrology and Transplantation, University of Liege CHU (ULg CHU), Liege, Belgium
| | - Catherine Bonvoisin
- Divisions of Nephrology and Transplantation, University of Liege CHU (ULg CHU), Liege, Belgium
| | - Chantal Lechanteur
- Laboratory of Cell and Gene Therapy, University of Liege CHU (ULg CHU), Liege, Belgium
| | - Alexandra Briquet
- Laboratory of Cell and Gene Therapy, University of Liege CHU (ULg CHU), Liege, Belgium Hematology, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), University of Liege, Liege, Belgium
| | - Yves Beguin
- Laboratory of Cell and Gene Therapy, University of Liege CHU (ULg CHU), Liege, Belgium Hematology, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), University of Liege, Liege, Belgium
| | - Jean-Marie Krzesinski
- Divisions of Nephrology and Transplantation, University of Liege CHU (ULg CHU), Liege, Belgium Laboratories of Cardiovascular Sciences, University of Liege, Liege, Belgium
| | - François Jouret
- Divisions of Nephrology and Transplantation, University of Liege CHU (ULg CHU), Liege, Belgium Laboratories of Cardiovascular Sciences, University of Liege, Liege, Belgium
| |
Collapse
|
21
|
Erpicum P, Krzesinski JM, Jouret F. [Role of AMP-activated protein kinase in renal ischemic preconditioning]. Nephrol Ther 2013; 10:17-24. [PMID: 24387947 DOI: 10.1016/j.nephro.2013.10.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 08/06/2013] [Accepted: 10/15/2013] [Indexed: 12/29/2022]
Abstract
Kidney transplantation represents the best treatment of end-stage renal disease. In addition to the degree of human leukocyte antigen matching, long-term graft survival is influenced by the quality of the graft before its transplantation. Quality criteria include the level of ischemic damage caused by the transplantation per se. Renal ischemic preconditioning (IP) consists of different approaches to prevent ischemia/reperfusion (I/R) damage induced by the interruption and recovery of renal circulation, as observed during transplantation. Distinct animal models show promising results regarding the efficiency of PCI to preserve kidney structure and function in I/R conditions. Characterizing the cellular cascades involved in I/R led to the identification of putative targets of renal IP, including the adenosine monophosphate-activated protein kinase (AMPK). AMPK is a ubiquitous energy sensor, which has been implicated in the maintenance of epithelial cell polarization under energy deprivation. Among others, the anti-diabetic drug, metformin, is a potent activator of AMPK. Here, we summarize the in vitro and in vivo data about the role of AMPK in renal IP. Defining the pharmacological conditions of IP would help to improve the quality of the renal graft before its transplantation, thereby increasing its long-term survival.
Collapse
Affiliation(s)
- Pauline Erpicum
- Service de néphrologie, université de Liège CHU (ULg CHU), CHU de Liège, tour 1, 6(e) étage, avenue de l'Hôpital, 1 B-4000 Liège, Belgique
| | - Jean-Marie Krzesinski
- Service de néphrologie, université de Liège CHU (ULg CHU), CHU de Liège, tour 1, 6(e) étage, avenue de l'Hôpital, 1 B-4000 Liège, Belgique; GIGA Cardiovascular Sciences, université de Liège, tour 3, 5(e) étage, avenue de l'Hôpital, 1 B-4000 Liège, Belgique
| | - François Jouret
- Service de néphrologie, université de Liège CHU (ULg CHU), CHU de Liège, tour 1, 6(e) étage, avenue de l'Hôpital, 1 B-4000 Liège, Belgique; GIGA Cardiovascular Sciences, université de Liège, tour 3, 5(e) étage, avenue de l'Hôpital, 1 B-4000 Liège, Belgique.
| |
Collapse
|
22
|
Reinhold SW, Straub RH, Bergler T, Hoffmann U, Krüger B, Banas MC, Kammerl MC, Kollins D, Krämer BK, Banas B. Urine of patients with acute kidney transplant rejection show high normetanephrine and decreased 2-hydroxyestrogens concentrations. Transplant Proc 2013; 45:1503-7. [PMID: 23726606 DOI: 10.1016/j.transproceed.2013.01.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 01/15/2013] [Indexed: 11/17/2022]
Abstract
BACKGROUND A shift from anti- to proinflammatory steroid hormones has been observed in chronic inflammation. We tested the hypothesis that this shift occurs also in kidney transplant rejection together with a rise of urinary catecholamine degradation product concentrations as a consequence of locally produced cytokines, thus further promoting rejection. METHODS We examined 8 patients with an early rejection episode in the protocol biopsy ∼2 weeks, 9 with biopsy-proven rejection at 2-3 months, and 18 without rejection, both at 2 weeks and 3 months after transplantation. Metanephrine, normetanephrine, and 2- and 16-hydroxyestrogens concentrations were measured by EIA. RESULTS The median urinary concentrations of normetanephrine, but not metanephrine, were significantly higher in acute kidney transplant rejection in the first 2 weeks after transplantation (P < .05). During acute kidney transplant rejection at 2-3 months, but not in the first 2 weeks, after transplantation, 2-, but not 16-hydroxyestrogens, concentrations were significantly decreased (P < .05). CONCLUSIONS We demonstrated that the downstream product of noradrenaline conversion normetanephrine was elevated in kidney transplant rejection in the first weeks after transplantation. This change may promote rejection together with an important proinflammatory and mitogenic steroid hormone shift, which becomes increasingly relevant over time.
Collapse
Affiliation(s)
- S W Reinhold
- Klinik und Poliklinik für Innere Medizin II, Department of Internal Medicine I, University of Regensburg, Regensburg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Yi X, Zhang G, Yuan J. Renoprotective Role of Fenoldopam Pretreatment Through Hypoxia-Inducible Factor-1alpha and Heme Oxygenase-1 Expressions in Rat Kidney Transplantation. Transplant Proc 2013; 45:517-22. [DOI: 10.1016/j.transproceed.2012.02.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 01/30/2012] [Accepted: 02/14/2012] [Indexed: 12/27/2022]
|
24
|
TLR4 mRNA Levels as Tools to Estimate Risk for Early Posttransplantation Kidney Graft Dysfunction. Transplantation 2012; 94:589-95. [DOI: 10.1097/tp.0b013e31825db680] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
25
|
Floerchinger B, Oberhuber R, Tullius SG. Effects of brain death on organ quality and transplant outcome. Transplant Rev (Orlando) 2012; 26:54-9. [PMID: 22459036 DOI: 10.1016/j.trre.2011.10.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2011] [Accepted: 10/18/2011] [Indexed: 12/27/2022]
Abstract
The inferiority of organs from brain dead donors is reflected by impaired graft survival and patient outcome. Brain death effects hemodynamic stability, hormonal changes, and neuroimmunologic effects and unleashes a cascade of inflammatory events. Despite considerable efforts in experimental and clinical research, most of the mechanisms linked to brain death are only appreciated on a descriptive level. This overview presents our current understanding of the pathophysiology and consequences of brain death on organ injury and summarizes available therapeutic interventions.
Collapse
Affiliation(s)
- Bernhard Floerchinger
- Transplant Surgery Laboratory, Brigham and Women's Hospital, Harvard Medical, School, Boston, MA 02115, USA
| | | | | |
Collapse
|
26
|
Asif S, Sedigh A, Nordström J, Brandhorst H, Jorns C, Lorant T, Larsson E, Magnusson PU, Nowak G, Theisinger S, Hoeger S, Wennberg L, Korsgren O, Brandhorst D. Oxygen-charged HTK-F6H8 emulsion reduces ischemia-reperfusion injury in kidneys from brain-dead pigs. J Surg Res 2012; 178:959-67. [PMID: 22795349 DOI: 10.1016/j.jss.2012.06.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 06/14/2012] [Accepted: 06/15/2012] [Indexed: 01/02/2023]
Abstract
BACKGROUND Prolonged cold ischemia is frequently associated with a greater risk of delayed graft function and enhanced graft failure. We hypothesized that media, combining a high oxygen-dissolving capacity with specific qualities of organ preservation solutions, would be more efficient in reducing immediate ischemia-reperfusion injury from organs stored long term compared with standard preservation media. METHODS Kidneys retrieved from brain-dead pigs were flushed using either cold histidine-tryptophan-ketoglutarate (HTK) or oxygen-precharged emulsion composed of 75% HTK and 25% perfluorohexyloctane. After 18 h of cold ischemia the kidneys were transplanted into allogeneic recipients and assessed for adenosine triphosphate content, morphology, and expression of genes related to hypoxia, environmental stress, inflammation, and apoptosis. RESULTS Compared with HTK-flushed kidneys, organs preserved using oxygen-precharged HTK-perfluorohexyloctane emulsion had increased elevated adenosine triphosphate content and a significantly lower gene expression of hypoxia inducible factor-1α, vascular endothelial growth factor, interleukin-1α, tumor necrosis factor-α, interferon-α, JNK-1, p38, cytochrome-c, Bax, caspase-8, and caspase-3 at all time points assessed. In contrast, the mRNA expression of Bcl-2 was significantly increased. CONCLUSIONS The present study has demonstrated that in brain-dead pigs the perfusion of kidneys with oxygen-precharged HTK-perfluorohexyloctane emulsion results in significantly reduced inflammation, hypoxic injury, and apoptosis and cellular integrity and energy content are well maintained. Histologic examination revealed less tubular, vascular, and glomerular changes in the emulsion-perfused tissue compared with the HTK-perfused counterparts. The concept of perfusing organs with oxygen-precharged emulsion based on organ preservation media represents an efficient alternative for improved organ preservation.
Collapse
Affiliation(s)
- Sana Asif
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Bon D, Chatauret N, Giraud S, Thuillier R, Favreau F, Hauet T. New strategies to optimize kidney recovery and preservation in transplantation. Nat Rev Nephrol 2012; 8:339-47. [DOI: 10.1038/nrneph.2012.83] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
28
|
Zhang ZX, Min WP, Jevnikar AM. Use of RNA interference to minimize ischemia reperfusion injury. Transplant Rev (Orlando) 2012; 26:140-155. [PMID: 22000663 DOI: 10.1016/j.trre.2011.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 03/22/2011] [Indexed: 12/21/2022]
Abstract
RNA interference (RNAi) is an endogenous mechanism of cellular RNA control through degradation of specific messenger RNA sequences. This process of gene silencing may be exploited by the use of small interfering RNA (siRNA) to mediate precise control of targeted cellular functions. The nature of transplantation leads invariably to tissue injury, as organs are damaged by the loss of blood supply and resultant ischemia associated with the procurement procedure. Upon reperfusion, an inflammatory program is activated, and subsequent injury results in delayed graft function and, potentially, organ failure. Many of the molecular components in ischemia-reperfusion injury (IRI) have been identified, but effective therapeutics are not currently available. Accumulating evidence supports a role for siRNA in controlling IRI, as siRNA is specific, relatively low in toxicity, and limited in duration of effect. The capacity of siRNA to control IRI-related transcription factors, cell death and apoptosis, complement factors, and oxidative stress molecules supports the concept that RNAi-based therapeutics represent a novel and promising strategy for the control of IRI. However, there are issues of RNAi strategies, including siRNA design, "off-target" effects, and delivery that merit consideration in approaching IRI with gene silencing. This review will provide an overview of current concepts in RNAi and the potential application to IRI in solid organ transplantation.
Collapse
Affiliation(s)
- Zhu-Xu Zhang
- The Multi-Organ Transplant Program, University of Western Ontario, London, Ontario, Canada.
| | | | | |
Collapse
|
29
|
Ding Z, Liu J, Lin R, Hou XH. Experimental pancreatitis results in increased blood-brain barrier permeability in rats: a potential role of MCP-1. J Dig Dis 2012; 13:179-185. [PMID: 22356313 DOI: 10.1111/j.1751-2980.2011.00568.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To measure the changes of blood-brain barrier (BBB) permeability in rats with acute pancreatitis (AP) and to investigate the role of monocyte chemoattractant protein (MCP)-1 expression in this alteration. METHODS Rat model of severe acute pancreatitis (SAP) and mild acute pancreatitis (MAP) was induced by pancreatic duct infusion of 5% and 0.5% sodium choleate, respectively, and a saline infusion was used in the control. The severity of AP was evaluated by a pathological score system. BBB permeability was detected by Evan's blue tracer and BBB tight junction was assessed by brain occludin expression. Immunohistochemistry and real-time polymerase chain reaction were used to detect MCP-1 expression in the brain. Nifedipine was used as the antagonist of MCP-1. RESULTS Compared to the control group, change of BBB permeability was more significant in SAP groups, but not in MAP groups. Occludin level decreased 12 h after SAP induction. Pathological score of SAP group was higher than that in MAP group. BBB opening was associated with pancreatic injury. Brain MCP-1 expression was detected in all the SAP groups, which was correlated with increased BBB permeability, but was not found in the control group or the MAP group. After treatment with nifedipine, brain MCP-1 level decreased and BBB function improved synchronously in SAP groups. CONCLUSIONS BBB permeability increased in SAP significantly and time-dependently, and was correlated with brain MCP-1 expression. Nifedipine may improve BBB function by inhibiting MCP-1 expression.
Collapse
Affiliation(s)
- Zhen Ding
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jun Liu
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Rong Lin
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiao Hua Hou
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
30
|
Reinhold SW, Straub RH, Krüger B, Kaess B, Bergler T, Weingart C, Banas MC, Krämer BK, Banas B. Elevated urinary sVCAM-1, IL6, sIL6R and TNFR1 concentrations indicate acute kidney transplant rejection in the first 2weeks after transplantation. Cytokine 2012; 57:379-88. [DOI: 10.1016/j.cyto.2011.12.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 11/21/2011] [Accepted: 12/09/2011] [Indexed: 01/07/2023]
|
31
|
Abstract
PURPOSE OF REVIEW The considerable demand in kidney transplantation against a persisting organ donor shortage has forced most centers to nowadays accept of suboptimal donor kidneys. RECENT FINDINGS Despite the substantial increase in the past decade in kidney transplantation with grafts retrieved from living donors and after donation from deceased brain dead (DBD) and extended criteria donation (ECD) donors, the supply of donor kidneys still does not meet the actual numbers needed. Moreover, older and more marginal kidney donors following the physiologically abnormal state of brain death do function less well and have a shorter graft survival. SUMMARY In this review, we present an overview of the current knowledge of renal injury induced by pathophysiological effects of brain death and its relevance for renal transplant outcome.The better insight in the role of brain death induced renal injury has clearly demonstrated its detrimental effect on outcome but, also, offers new opportunities for donor management and evaluation of new biomarkers to assess kidney graft quality in the brain dead donor. The option to intervene and selectively block or enhance a pathway as well as identify specific parameters for graft quality at time of organ retrieval in the deceased brain dead donor will ultimately benefit early function and long-term survival.
Collapse
|
32
|
The role of innate immunity in donor organ procurement. Semin Immunopathol 2011; 33:169-84. [DOI: 10.1007/s00281-011-0254-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2010] [Accepted: 01/13/2011] [Indexed: 12/18/2022]
|
33
|
Stevens RB, Lane JT, Boerner BP, Miles CD, Rigley TH, Sandoz JP, Nielsen KJ, Skorupa JY, Skorupa AJ, Kaplan B, Wrenshall LE. Single-dose rATG induction at renal transplantation: superior renal function and glucoregulation with less hypomagnesemia. Clin Transplant 2011; 26:123-32. [PMID: 21401720 DOI: 10.1111/j.1399-0012.2011.01425.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
UNLABELLED BACKGROUND Rabbit anti-thymocyte globulin (rATG) induction reduces reperfusion injury and improves renal function in kidney recipients by means of properties unrelated to T-cell lysis. Here, we analyze intensive rATG induction (single dose, rATG(S) , vs. divided dose, rATG(D) ) for improved renal function and protection against hyperglycemia. METHODS Patients without diabetes (n = 98 of 180) in a prospective randomized trial of intensive rATG induction were followed for six months for the major secondary composite end point of impaired glucose regulation (hyperglycemia and new-onset diabetes after transplantation, NODAT). Prospectively collected data included fasting blood glucose and HbA(1c). Serum Mg(++) was routinely collected and retrospectively analyzed. RESULTS Induction with rATG(S) produced less impaired glucose regulation (p = 0.05), delayed NODAT development (p = 0.02), less hyperglycemia (p = 0.02), better renal function (p = 0.04), and less hypomagnesemia (p = 0.02), a factor associated with a lower incidence of NODAT. Generalized linear modeling confirmed that rATG(S) protects against a synergistic interaction between tacrolimus and sirolimus that otherwise increased hypomagnesemia (p = 0.008) and hyperglycemia (p = 0.03). CONCLUSIONS rATG(S) initiated before renal reperfusion improved early renal function and reduced impaired glucose regulation, an injury by diabetogenic maintenance agents (tacrolimus and sirolimus).
Collapse
Affiliation(s)
- R Brian Stevens
- Departments of Surgery, University of Nebraska Medical Center, Omaha, NE 68198-3285, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
This mini-review on European experiences with tackling the problem of organ shortage for transplantation was based on a literature review of predominantly European publications dealing with the issue of organ donation from deceased donors. The authors tried to identify the most significant factors that have demonstrated to impact on donation rates from deceased donors and subsequent transplant successes. These factors include legislative measures (national laws and European Directives), optimization of the donation process, use of expanded criteria donors, innovative preservation and surgical techniques, organizational efforts, and improved allocation algorithms.
Collapse
Affiliation(s)
- Leo Roels
- Donor Action Foundation, Linden, Belgium
| | | |
Collapse
|
35
|
AMP-activated protein kinase as a target for preconditioning in transplantation medicine. Transplantation 2010; 90:353-8. [PMID: 20571465 DOI: 10.1097/tp.0b013e3181e7a3aa] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Graft quality before transplantation is a major factor influencing chronic rejection. Organ preservation and ischemia/reperfusion play an important role in the induction of organ injury. Although both suppression of metabolism by hypothermic preservation and preconditioning before ischemia limit injury, understanding the biochemical signaling pathways will allow us to optimize graft preservation further. Adenosine monophosphate-activated protein kinase (AMPK) is an important enzyme sensing cellular energy balance and regulating downstream signaling pathways, signaling toward an energy-conserving state. In this review, we summarize available literature regarding the protective signaling pathways activated by (hypothermic) ischemia and preconditioning and how they can be activated pharmacologically. Optimizing the graft quality before transplantation improves long-term graft survival. The major factor influencing organ quality is organ preservation, cold storage, currently, being a common practice. Loss of cellular homeostasis, inflammation, and endothelial dysfunction are the major factors inducing injury after cold storage. Adenosine triphosphate depletion and anaerobic metabolism during the cold ischemic period lead to mitochondrial dysfunction, disturbed osmoregulation, and cell death inducing inflammation. Ischemic preconditioning consists of brief periods of ischemia preceding preservation and protects organs against injury because of subsequent ischemia/reperfusion, in which endothelial nitric oxide synthase, nuclear factor-kB, and adenosine play a major role. After conversion of adenosine to AMP, AMPK can be activated, a central kinase involved in sensing cellular [AMP]:[adenosine triphosphate] levels and signaling toward an energy-conserving state. Pharmacologic activation of AMPK demonstrated its ability to activate endothelial nitric oxide synthase and inhibit nuclear factor-kB, thereby limiting endothelial dysfunction and inflammation. Further, studies in knock-out mice lacking ENTDP1 and NT5E (enzymes catalyzing formation and degradation of AMP, respectively) demonstrated a clear protective role for AMP in ischemia/reperfusion. AMPK activation before or during organ preservation might be a promising pharmacologic approach to limit organ injury and maintain graft quality before transplantation.
Collapse
|
36
|
Park WD, Griffin MD, Cornell LD, Cosio FG, Stegall MD. Fibrosis with inflammation at one year predicts transplant functional decline. J Am Soc Nephrol 2010; 21:1987-97. [PMID: 20813870 DOI: 10.1681/asn.2010010049] [Citation(s) in RCA: 175] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Lack of knowledge regarding specific causes for late loss of kidney transplants hampers improvements in long-term allograft survival. Kidney transplants with both interstitial fibrosis and subclinical inflammation but not fibrosis alone after 1 year have reduced survival. This study tested whether fibrosis with inflammation at 1 year associates with decline of renal function in a low-risk cohort and characterized the nature of the inflammation. We studied 151 living-donor, tacrolimus/mycophenolate-treated recipients without overt risk factors for reduced graft survival. Transplants with normal histology (n = 86) or fibrosis alone (n = 45) on 1-year protocol biopsy had stable renal function between 1 and 5 years, whereas those with both fibrosis and inflammation (n = 20) exhibited a decline in GFR and reduced graft survival. Immunohistochemistry confirmed increased interstitial T cells and macrophages/dendritic cells in the group with both fibrosis and inflammation, and there was increased expression of transcripts related to innate and cognate immunity. Pathway- and pathologic process-specific analyses of microarray profiles revealed that potentially damaging immunologic activities were enriched among the overexpressed transcripts (e.g., Toll-like receptor signaling, antigen presentation/dendritic cell maturation, IFN-γ-inducible response, cytotoxic T lymphocyte-associated and acute rejection-associated genes). Therefore, the combination of fibrosis and inflammation in 1-year protocol biopsies associates with reduced graft function and survival as well as a rejection-like gene expression signature, even among recipients with no clinical risk factors for poor outcomes. Early interventions aimed at altering rejection-like inflammation may improve long-term survival of kidney allografts.
Collapse
Affiliation(s)
- Walter D Park
- Department of Surgery, Division of Transplantation Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | | | | |
Collapse
|
37
|
Zhang M, Gao X, Wu J, Liu D, Cai H, Fu L, Mei C. Oxidized high-density lipoprotein enhances inflammatory activity in rat mesangial cells. Diabetes Metab Res Rev 2010; 26:455-63. [PMID: 20623482 DOI: 10.1002/dmrr.1102] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
AIMS Inflammation is a mechanism of glomerular damage in chronic glomerulopathies, in which dyslipidaemia plays an important role. Unlike native high-density lipoprotein (HDL), oxidized HDL is thought to be an adverse factor in chronic ischaemic disease and may increase the production of inflammatory cytokines in atheromatous plaques and plasma, but the effect of oxidized HDL on mesangial cells remains unclear. METHODS Intracellular reactive oxygen species level was measured. The inflammatory and proapoptotic effects of oxidized HDL were detected in rat mesangial cells by measuring levels of tumour necrosis factor-alpha, regulated upon activation, normal T-cell expressed and secreted, monocyte chemoattractant protein-1, CXC chemokine ligand-1 and early apoptosis. The expression of mitogen-activated protein kinase (MAPK) (p38/MAPK, extracellular-regulated kinase/MAPK and c-Jun N-terminal kinase/MAPK), nuclear factor-kappaB activity and lipoprotein scavenger receptors (CD36, low-density lipoprotein receptor-1 and scavenger receptor BI) were also detected. RESULTS Oxidized HDL enhanced reactive oxygen species production and upregulated expression of proinflammatory factors, including tumour necrosis factor-alpha, regulated upon activation, normal T-cell expressed and secreted (RANTES), monocyte chemoattractant protein-1 and CXC chemokine ligand-1 by rat mesangial cells dose in a dependent fashion. Incubation with oxidized HDL also increased rat mesangial cells apoptosis in a dose-dependent manner. These effects partly depended on scavenger receptors CD36 and low-density lipoprotein receptor-1, but not scavenger receptor BI. In addition, co-culture with oxidized HDL activated P38/MAPK, extracellular-regulated kinase (ERK)/MAPK and nuclear factor-kappaB (NF-kappaB). CONCLUSIONS The results of the present study suggest that oxidized HDL enhanced proinflammatory properties in mesangial cells partly via CD36 and low-density lipoprotein receptor-1. MAPK and nuclear factor-kappaB pathways were involved in the process. The ability of oxidized HDL to negatively influence mesangial cell biology may represent an important mechanism of chronic kidney disease.
Collapse
Affiliation(s)
- Miao Zhang
- Department of Medicine, Drum Tower Hospital, Nanjing University Medical School, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
38
|
Cifuentes RA, Cruz-Tapias P, Rojas-Villarraga A, Anaya JM. ZC3H12A (MCPIP1): molecular characteristics and clinical implications. Clin Chim Acta 2010; 411:1862-8. [PMID: 20807520 DOI: 10.1016/j.cca.2010.08.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2010] [Revised: 08/22/2010] [Accepted: 08/24/2010] [Indexed: 12/15/2022]
Abstract
BACKGROUND ZC3H12A is a gene whose absence is related to autoimmune disorders and to other phenotypical alterations. METHODS A comprehensive review of the structure, molecular functions and regulation of ZC3H12A gene and its protein MCPIP1 is done in order to understand their clinical implications. RESULTS ZC3H12A, at 1p34.3, has 9860bp, six exons and 61 described SNPs. Eleven are non-synonymous thus leading to changes in MCPIP1, the protein encoded by ZC3H12A. MCPIP1 is induced by MCP-1 and IL-1 whose signals are transduced through the NF-kβ and MAPkinase pathways. This protein acts as an RNAse by degrading chemokine transcripts such as IL-1 as well as its own mRNA and as a transcription factor by reducing the expression of other chemokines induced by NF-kβ such as MCP-1. It also up-regulates genes involved in several differentiation processes and apoptosis. Therefore, ZC3H12A is an equilibrium gatekeeper that not only regulates its own inducers but also controls the regulation by degrading its own mRNA. CONCLUSION Understanding ZC3H12A gives a comprehensive panorama that promises to improve our understanding of processes in which this gene is involved including autoimmune, infectious and cardiovascular diseases.
Collapse
Affiliation(s)
- Ricardo A Cifuentes
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | | | | | | |
Collapse
|
39
|
Feng S. Donor intervention and organ preservation: where is the science and what are the obstacles? Am J Transplant 2010; 10:1155-62. [PMID: 20420628 DOI: 10.1111/j.1600-6143.2010.03100.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The organ shortage is widely acknowledged as the most critical factor hindering the full realization of success for solid organ transplantation. Innovation in the areas of donor management and organ preservation offers the most realistic hope to improve both the quality and size of the current organ supply. Although the basic science dissecting the complex processes of brain death and ischemia/reperfusion injury is replete with exciting discoveries, the clinical science investigating donor management and organ preservation is sparse in contrast. This review will survey the current landscape of trials to mitigate organ injury through interventions administered to donors in vivo or organs ex vivo. Consideration will then be given to the scientific, logistical and ethical obstacles that impede the transformation of laboratory breakthroughs into innovative treatments that simultaneously improve organ quality and supply.
Collapse
Affiliation(s)
- S Feng
- University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
40
|
Klein AS, Messersmith EE, Ratner LE, Kochik R, Baliga PK, Ojo AO. Organ donation and utilization in the United States, 1999-2008. Am J Transplant 2010; 10:973-86. [PMID: 20420647 DOI: 10.1111/j.1600-6143.2009.03008.x] [Citation(s) in RCA: 235] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Despite the Organ Donation Breakthrough Collaborative's work to engage the transplant community and the suggested positive impact from these efforts, availability of transplanted organs over the past 5 years has declined. Living kidney, liver and lung donations declined from 2004 to 2008. Living liver donors in 2008 dropped to less than 50% of the peak (524) in 2001. There were more living donors that were older and who were unrelated to the recipient. Percentages of living donors from racial minorities remained unchanged over the past 5 years, but percentages of Hispanic/Latino and Asian donors increased, and African American donors decreased. The OPTN/UNOS Living Donor Transplant Committee restructured to enfranchise organ donors and recipients, and to seek their perspectives on living donor transplantation. In 2008, for the first time in OPTN history, deceased donor organs decreased compared to the prior year. Except for lung donors, deceased organ donation fell from 2007 to 2008. Donation after cardiac death (DCD) has accounted for a nearly 10-fold increase in kidney donors from 1999 to 2008. Use of livers from DCD donors declined in 2008 to 2005 levels. Understanding health risks associated with the transplantation of organs from 'high-risk' donors has received increased scrutiny.
Collapse
Affiliation(s)
- A S Klein
- Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Koetting M, Frotscher C, Minor T. Hypothermic reconditioning after cold storage improves postischemic graft function in isolated porcine kidneys. Transpl Int 2009; 23:538-42. [PMID: 19951372 DOI: 10.1111/j.1432-2277.2009.01014.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Delayed graft function still represents a major complication in clinical kidney transplantation. Here we tested the possibility to improve functional outcome of cold stored kidneys a posteriori by short-term hypothermic machine perfusion immediately prior to reperfusion. A total of 18 kidneys from female German Landrace pigs was flushed with Histidine-Tryptophan-Ketoglutarate solution and cold-stored for 18 h (control). Some grafts were subsequently subjected to 90 min of hypothermic reconditioning by hypothermic machine perfusion with (HR+O(2)) or without (HR-O(2)) oxygenation of the perfusate. Early graft function of all kidneys was assessed thereafter by warm reperfusion in vitro (n = 6, respectively). Renal function upon reperfusion was significantly enhanced by HR+O(2) with more than threefold increase in renal clearances of creatinine and urea. HR+O(2) also led to significantly higher urinary flow rates and abrogated the activation of caspase 3. By contrast, HR-O(2) was far less effective and only resulted in minor differences compared to control. It is derived from the present data that initial graft function can be significantly improved by 2 h of oxygenated machine perfusion after arrival of the preserved organ in the transplantation clinic.
Collapse
Affiliation(s)
- Martina Koetting
- Department for General, Visceral and Transplantation Surgery, University Hospital of 1 Essen, Essen, Germany
| | | | | |
Collapse
|