1
|
Puskar A, Saadah B, Rauf A, Kasperek SR, Umair M. A primer on contrast agents for magnetic resonance imaging of post‐procedural and follow‐up imaging of islet cell transplant. NANO SELECT 2023. [DOI: 10.1002/nano.202200147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Affiliation(s)
- Anessa Puskar
- Carle Illinois College of Medicine Urbana‐Champaign Urbana Illinois USA
| | - Bara Saadah
- Carle Illinois College of Medicine Urbana‐Champaign Urbana Illinois USA
| | - Asad Rauf
- Carle Illinois College of Medicine Urbana‐Champaign Urbana Illinois USA
| | | | - Muhammad Umair
- Department of Radiology Johns Hopkins Baltimore Maryland USA
- Department of Biomedical Engineering University of Illinois Urbana‐Champaign Urbana Illinois USA
| |
Collapse
|
2
|
Jin SM, Lee HS, Haque MR, Kim HN, Kim HJ, Oh BJ, Lee KW, Kim G, Kim HS, Lee DY, Park JB, Kim SJ, Byun Y, Kim JH. Multi-layer surface modification of pancreatic islets for magnetic resonance imaging using ferumoxytol. Biomaterials 2019; 214:119224. [PMID: 31153093 DOI: 10.1016/j.biomaterials.2019.119224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 12/18/2022]
Abstract
Ferumoxytol is the only clinically available ultrasmall superparamagnetic iron oxide. However, the labeling efficacy of islet magnetic resonance imaging (MRI) using ferumoxytol is not suitable for use in clinical pancreatic islet transplantation (PIT). We evaluated the feasibility of pancreatic islet MRI using ferumoxytol through multi-layer surface modification. A four-layer nanoshield with poly (ethylene) glycol (PEG, 2 layers), ferumoxytol, and heparin was formed on the pancreatic islets. We compared pancreatic islet function, viability, and labeling efficacy of control, ferumoxytol alone-labeled, heparin-PEGylated, and ferumoxytol-heparin-PEGylated islets. With optimization of the ferumoxytol concentration during the ferumoxytol-heparin-PEGylation process, the labeling contrast in ex vivo MRI of ferumoxytol-heparin-PEGylated pancreatic islets was stronger than that of pancreatic islets labeled with ferumoxytol alone, without decreasing ex vivo islet viability or function. In a syngeneic mouse renal subcapsular PIT model, heparin-PEGylation and ferumoxytol-heparin-PEGylation delayed the revascularization of pancreatic islet grafts but did not impair glucose tolerance or revascularization of pancreatic islet grafts four weeks post-transplantation. Pancreatic islet visibility after labeling was also confirmed in a syngeneic mouse intraportal PIT model and in preliminary analysis of a non-human primate intraportal PIT model. In conclusion, multi-layer islet surface modification is a promising option for pancreatic islet MRI in intraportal PIT.
Collapse
Affiliation(s)
- Sang-Man Jin
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Han Sin Lee
- Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, Republic of Korea; Medical Research Institute, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Muhammad R Haque
- Research Institute of Pharmaceutical Science, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Hun Nyun Kim
- Animal Research and Molecular Imaging Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Hyun Jin Kim
- Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Bae Jun Oh
- Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, Republic of Korea; New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu, Republic of Korea
| | - Kyo Won Lee
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, Republic of Korea
| | - Gyuri Kim
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hyung Shik Kim
- Department of Bioengineering, College of Engineering, and BK21 PLUS Team, and Institute of Nano Science & Technology (INST), Hanyang University, Seoul, 04763, Republic of Korea
| | - Dong Yun Lee
- Department of Bioengineering, College of Engineering, and BK21 PLUS Team, and Institute of Nano Science & Technology (INST), Hanyang University, Seoul, 04763, Republic of Korea
| | - Jae Berm Park
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, Republic of Korea
| | - Sung Joo Kim
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, Republic of Korea
| | - Youngro Byun
- Research Institute of Pharmaceutical Science, College of Pharmacy, Seoul National University, Seoul, Republic of Korea.
| | - Jae Hyeon Kim
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, Republic of Korea; Department of Health Science and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Miceli V, Meli V, Blanchard-Desce M, Bsaibess T, Pampalone M, Conaldi PG, Caltagirone C, Obiols-Rabasa M, Schmidt J, Talmon Y, Casu A, Murgia S. In vitro imaging of β-cells using fluorescent cubic bicontinuous liquid crystalline nanoparticles. RSC Adv 2016; 6:62119-62127. [DOI: 10.1039/c6ra09616f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Imaging of rat pancreatic β-cells using cubic bicontinuous liquid crystalline nanoparticles loaded with the TB139 fluorescent dye.
Collapse
|
4
|
Malosio ML, Esposito A, Brigatti C, Palmisano A, Piemonti L, Nano R, Maffi P, De Cobelli F, Del Maschio A, Secchi A. MR Imaging Monitoring of Iron-Labeled Pancreatic Islets in a Small Series of Patients: Islet Fate in Successful, Unsuccessful, and Autotransplantation. Cell Transplant 2015; 24:2285-96. [DOI: 10.3727/096368914x684060] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Islet transplantation is one of the most promising and effective therapies for restoring normoglycemia in type 1 diabetes (T1D) patients, but islet engraftment is one of the main obstacles hampering long-term success. Monitoring graft loss, caused either by immunological or nonimmunological events, occurring in the first phase after transplantation and at later stages of a patient's life is a very important issue. Among the imaging approaches previously applied, magnetic resonance imaging (MRI) monitoring of islet fate following labeling with superparamagnetic iron oxide agents yielded promising results. The aim of this study was to translate into patients the method of islet labeling and MRI monitoring developed in our preclinical setting and to compare imaging results with graft clinical outcome. Three T1D patients and one nondiabetic patient undergoing autotransplantation following subtotal pancreatectomy received Endorem®-labeled islets. Patients were monitored by MRI and metabolically (HbA1c, exogenous insulin requirement, and C-peptide, TEF) at 1, 3, and 7 days following transplantation and once a month up to 10 months. Labeled transplanted islets appeared as hypointense areas scattered within the liver parenchyma, whose absolute number at 24 h after transplantation reflected the labeling efficiency. In patients #1 and #3 with good midterm graft function, MRI follow-up showed an important early loss of hypointense spots followed by a slow and progressive disappearance at later timepoints. Graft loss of function in patient #2 4 weeks after transplantation was associated with the complete disappearance of all hypointense signals. The autotransplanted patient, stably insulin free, showed no significant signal reduction during the first 3 days, followed by loss of spots similar to a patient with good midterm graft function. These results suggest that MRI monitoring of islet transplantation at early time points could represent a meaningful readout for helping in predicting transplant failure or success, but its relevance for mid/long-term islet function assessment appears evanescent.
Collapse
Affiliation(s)
- Maria Luisa Malosio
- Diabetes Research Institute, San Raffaele Scientific Institute, Milan, Italy
- CNR Institute of Neuroscience, Milan, Italy
- Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Antonio Esposito
- Radiology Department, San Raffaele Scientific Institute, Milan, Italy
- Center of Experimental Imaging, San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Cristina Brigatti
- Diabetes Research Institute, San Raffaele Scientific Institute, Milan, Italy
| | - Anna Palmisano
- Radiology Department, San Raffaele Scientific Institute, Milan, Italy
- Center of Experimental Imaging, San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Lorenzo Piemonti
- Diabetes Research Institute, San Raffaele Scientific Institute, Milan, Italy
- Human Islet Isolation and Transplantation Program, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Rita Nano
- Diabetes Research Institute, San Raffaele Scientific Institute, Milan, Italy
- Human Islet Isolation and Transplantation Program, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Paola Maffi
- Diabetes Research Institute, San Raffaele Scientific Institute, Milan, Italy
- Transplant Medicine Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Francesco De Cobelli
- Humanitas Clinical and Research Center, Rozzano, Milan, Italy
- Radiology Department, San Raffaele Scientific Institute, Milan, Italy
- Center of Experimental Imaging, San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Del Maschio
- Radiology Department, San Raffaele Scientific Institute, Milan, Italy
- Center of Experimental Imaging, San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Antonio Secchi
- Vita-Salute San Raffaele University, Milan, Italy
- Transplant Medicine Unit, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
5
|
Jin SM, Oh SH, Oh BJ, Suh S, Bae JC, Lee JH, Lee MS, Lee MK, Kim KW, Kim JH. Benefits of PEGylation in the early post-transplant period of intraportal islet transplantation as assessed by magnetic resonance imaging of labeled islets. Islets 2014; 6:e27827. [PMID: 25483878 PMCID: PMC4593568 DOI: 10.4161/isl.27827] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
While a few studies have demonstrated the benefit of PEGylation in islet transplantation, most have employed renal subcapsular models and none have performed direct comparisons of islet mass in intraportal islet transplantation using islet magnetic resonance imaging (MRI). In this study, our aim was to demonstrate the benefit of PEGylation in the early post-transplant period of intraportal islet transplantation with a novel algorithm for islet MRI. Islets were PEGylated after ferucarbotran labeling in a rat syngeneic intraportal islet transplantation model followed by comparisons of post-transplant glycemic levels in recipient rats infused with PEGylated (n = 12) and non-PEGylated (n = 13) islets. The total area of hypointense spots and the number of hypointense spots larger than 1.758 mm(2) of PEGylated and non-PEGylated islets were quantitatively compared. The total area of hypointense spots (P < 0.05) and the number of hypointense spots larger than 1.758 mm(2) (P < 0.05) were higher in the PEGylated islet group 7 and 14 days post translation (DPT). These results translated into better post-transplant outcomes in the PEGylated islet group 28 DPT. In validation experiments, MRI parameters obtained 1, 7, and 14 DPT predicted normoglycemia 4 wk post-transplantation. We directly demonstrated the benefit of islet PEGylation in protection against nonspecific islet destruction in the early post-transplant period of intraportal islet transplantation using a novel algorithm for islet MRI. This novel algorithm could serve as a useful tool to demonstrate such benefit in future clinical trials of islet transplantation using PEGylated islets.
Collapse
Affiliation(s)
- Sang-Man Jin
- Division of Endocrinology and Metabolism; Department of Medicine; Samsung Medical Center; Sungkyunkwan University School of Medicine; Seoul, Republic of Korea
| | - Seung-Hoon Oh
- Samsung Biomedical Research Institute; Samsung Medical Center; Seoul, Republic of Korea
| | - Bae Jun Oh
- Samsung Biomedical Research Institute; Samsung Medical Center; Seoul, Republic of Korea
| | - Sunghwan Suh
- Division of Endocrinology and Metabolism; Department of Medicine; Samsung Medical Center; Sungkyunkwan University School of Medicine; Seoul, Republic of Korea
| | - Ji Cheol Bae
- Division of Endocrinology and Metabolism; Department of Medicine; Samsung Medical Center; Sungkyunkwan University School of Medicine; Seoul, Republic of Korea
| | - Jung Hee Lee
- Department of Radiology and Center for Imaging Science; Samsung Medical Center; Sungkyunkwan University School of Medicine; Seoul, Republic of Korea
| | - Myung-Shik Lee
- Division of Endocrinology and Metabolism; Department of Medicine; Samsung Medical Center; Sungkyunkwan University School of Medicine; Seoul, Republic of Korea
| | - Moon-Kyu Lee
- Division of Endocrinology and Metabolism; Department of Medicine; Samsung Medical Center; Sungkyunkwan University School of Medicine; Seoul, Republic of Korea
| | - Kwang-Won Kim
- Division of Endocrinology and Metabolism; Department of Medicine; Samsung Medical Center; Sungkyunkwan University School of Medicine; Seoul, Republic of Korea
- Correspondence to: Kwang-Won Kim, and Jae Hyeon Kim,
| | - Jae Hyeon Kim
- Division of Endocrinology and Metabolism; Department of Medicine; Samsung Medical Center; Sungkyunkwan University School of Medicine; Seoul, Republic of Korea
- Correspondence to: Kwang-Won Kim, and Jae Hyeon Kim,
| |
Collapse
|
6
|
Quantification of Islet Loss and Graft Functionality During Immune Rejection by 3-Tesla MRI in a Rat Model. Transplantation 2013; 96:438-44. [DOI: 10.1097/tp.0b013e31829b080f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Sakata N, Yoshimatsu G, Tsuchiya H, Aoki T, Mizuma M, Motoi F, Katayose Y, Kodama T, Egawa S, Unno M. Imaging of transplanted islets by positron emission tomography, magnetic resonance imaging, and ultrasonography. Islets 2013; 5:179-87. [PMID: 24231367 PMCID: PMC4010569 DOI: 10.4161/isl.26980] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
While islet transplantation is considered a useful therapeutic option for severe diabetes mellitus (DM), the outcome of this treatment remains unsatisfactory. This is largely due to the damage and loss of islets in the early transplant stage. Thus, it is important to monitor the condition of the transplanted islets, so that a treatment can be selected to rescue the islets from damage if needed. Recently, numerous trials have been performed to investigate the efficacy of different imaging modalities for visualizing transplanted islets. Positron emission tomography (PET) and magnetic resonance imaging (MRI) are the most commonly used imaging modalities for this purpose. Some groups, including ours, have also tried to visualize transplanted islets by ultrasonography (US). In this review article, we discuss the recent progress in islet imaging.
Collapse
Affiliation(s)
- Naoaki Sakata
- Division of Hepato-Biliary-Pancreatic Surgery; Department of Surgery; Tohoku University Graduate School of Medicine; Sendai, Japan
- Correspondence to: Naoaki Sakata,
| | - Gumpei Yoshimatsu
- Division of Hepato-Biliary-Pancreatic Surgery; Department of Surgery; Tohoku University Graduate School of Medicine; Sendai, Japan
| | - Haruyuki Tsuchiya
- Division of Hepato-Biliary-Pancreatic Surgery; Department of Surgery; Tohoku University Graduate School of Medicine; Sendai, Japan
| | - Takeshi Aoki
- Division of Hepato-Biliary-Pancreatic Surgery; Department of Surgery; Tohoku University Graduate School of Medicine; Sendai, Japan
| | - Masamichi Mizuma
- Division of Hepato-Biliary-Pancreatic Surgery; Department of Surgery; Tohoku University Graduate School of Medicine; Sendai, Japan
| | - Fuyuhiko Motoi
- Division of Hepato-Biliary-Pancreatic Surgery; Department of Surgery; Tohoku University Graduate School of Medicine; Sendai, Japan
| | - Yu Katayose
- Division of Hepato-Biliary-Pancreatic Surgery; Department of Surgery; Tohoku University Graduate School of Medicine; Sendai, Japan
- Division of Integrated Surgery and Oncology; Tohoku University Graduate School of Medicine; Sendai, Japan
| | - Tetsuya Kodama
- Department of Biomedical Engineering; Graduate School of Biomedical Engineering; Tohoku University; Sendai, Japan
| | - Shinichi Egawa
- Division of International Cooperation for Disaster Medicine; International Research Institute of Disaster Science; Tohoku University; Sendai, Japan
| | - Michiaki Unno
- Division of Hepato-Biliary-Pancreatic Surgery; Department of Surgery; Tohoku University Graduate School of Medicine; Sendai, Japan
| |
Collapse
|
8
|
Zacharovová K, Berková Z, Jirák D, Herynek V, Vancová M, Dovolilová E, Saudek F. Processing of superparamagnetic iron contrast agent ferucarbotran in transplanted pancreatic islets. CONTRAST MEDIA & MOLECULAR IMAGING 2013; 7:485-93. [PMID: 22991314 DOI: 10.1002/cmmi.1477] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Labeling of pancreatic islets with superparamagnetic iron oxide (SPIO) nanoparticles enables their post-transplant monitoring by magnetic resonance imaging (MRI). Although the nanoparticles are incorporated into islet cells in culture, little is known about their fate in vivo. We studied the morphology of labeled islets after transplantation, aiming to identify the MRI contrast particles and their relationship to transplantation outcomes. Rat islets labeled with the ferucarbotran were transplanted into the liver or under the kidney capsule of syngeneic and allogeneic rats. After in vivo MRI, morphology was studied by light, fluorescence and transmission electron microscopy. Morphology of syngeneic islets transplanted beneath the kidney capsule vs into the liver was similar. Iron particles were almost completely eliminated from the endocrine cells and remained located in host-derived macrophages surrounding the vital islets for the entire study period. In the allogeneic model, islets lost their function and were completely rejected within nine days following transplantation in both transplant models. However, intercellular transport of the SPIO particles and subsequent MRI findings was different in the liver and kidney. In the liver, the decreasing number of islet-related MRI spots corresponded with clearance of iron particles in rejected islets; in contrast, with renal transplants extensive iron deposits with a high effect on MRI signal persisted in phagocytic cells beneath the capsule. We conclude that MRI detection of the iron contrast agent correlates with islet survival and function in islet transplantation into the liver, while it does not correlate in the case of transplantation beneath the renal capsule.
Collapse
Affiliation(s)
- Klára Zacharovová
- Laboratory of Langerhans Islets, Centre of Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
9
|
Juang JH, Shen CR, Wang JJ, Kuo CH, Chien YW, Kuo HY, Chen FR, Chen MH, Yen TC, Tsai ZT. Magnetic resonance imaging of mouse islet grafts labeled with novel chitosan-coated superparamagnetic iron oxide nanoparticles. PLoS One 2013; 8:e62626. [PMID: 23658638 PMCID: PMC3639209 DOI: 10.1371/journal.pone.0062626] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 03/23/2013] [Indexed: 11/18/2022] Open
Abstract
OBJECT To better understand the fate of islet isografts and allografts, we utilized a magnetic resonance (MR) imaging technique to monitor mouse islets labeled with a novel MR contrast agent, chitosan-coated superparamagnetic iron oxide (CSPIO) nanoparticles. MATERIALS AND METHODS After being incubated with and without CSPIO (10 µg/ml), C57BL/6 mouse islets were examined under transmission electron microscope (TEM) and their insulin secretion was measured. Cytotoxicity was examined in α (αTC1) and β (NIT-1 and βTC) cell lines as well as islets. C57BL/6 mice were used as donors and inbred C57BL/6 and Balb/c mice were used as recipients of islet transplantation. Three hundred islets were transplanted under the left kidney capsule of each mouse and then MR was performed in the recipients periodically. At the end of study, the islet graft was removed for histology and TEM studies. RESULTS After incubation of mouse islets with CSPIO (10 µg/mL), TEM showed CSPIO in endocytotic vesicles of α- and β-cells at 8 h. Incubation with CSPIO did not affect insulin secretion from islets and death rates of αTC1, NIT-1 and βTC cell lines as well as islets. After syngeneic and allogeneic transplantation, grafts of CSPIO-labeled islets were visualized on MR scans as persistent hypointense areas. At 8 weeks after syngeneic transplantation and 31 days after allogeneic transplantation, histology of CSPIO-labeled islet grafts showed colocalized insulin and iron staining in the same areas but the size of allografts decreased with time. TEM with elementary iron mapping demonstrated CSPIO distributed in the cytoplasm of islet cells, which maintained intact ultrastructure. CONCLUSION Our results indicate that after syngeneic and allogeneic transplantation, islets labeled with CSPIO nanoparticles can be effectively and safely imaged by MR.
Collapse
Affiliation(s)
- Jyuhn-Huarng Juang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chang Gung Memorial Hospital and Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- * E-mail: (JHJ); (ZTT)
| | - Chia-Rui Shen
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Molecular Imaging Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Jiun-Jie Wang
- Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chien-Hung Kuo
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Yu-Wen Chien
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chang Gung Memorial Hospital and Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hsiao-Yunn Kuo
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Fu-Rong Chen
- Center of Transmission Microscopy, National Tsing Hua University, Hsinchu, Taiwan
| | - Ming H. Chen
- Surgical-Medical Research Institute, University of Alberta, Edmonton, Canada
| | - Tzu-Chen Yen
- Molecular Imaging Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
- Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Nuclear Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Zei-Tsan Tsai
- Molecular Imaging Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
- * E-mail: (JHJ); (ZTT)
| |
Collapse
|
10
|
Sakata N, Goto M, Gumpei Y, Mizuma M, Motoi F, Satomi S, Unno M. Intraoperative ultrasound examination is useful for monitoring transplanted islets: a case report. Islets 2012; 4:339-42. [PMID: 23108430 PMCID: PMC3524140 DOI: 10.4161/isl.22384] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A 39-y-old man, who had an episode of pancreatic bleeding due to chronic pancreatitis, received total pancreatectomy with islet autotransplantation (TP with IAT). Intraoperative ultrasound (US) examination was done to detect transplanted islets and evaluate the quality of US imaging. Islet isolation from the resected total pancreas was performed and approximately 230,000 islet equivalents (IEQ) (the tissue volume was 600 µL and the purity was 30%) were acquired. A double lumen catheter, used for transplantation and for monitoring the portal vein pressure, was inserted into the portal vein via the superior mesenteric vein, and the tip of the catheter was positioned at the bifurcation of the anterior and posterior branch of the portal vein to selectively infuse the islets into the right lobe of the liver in order to prevent total liver embolization. Intraoperative US examination (central frequency 7.5 MHz, Nemio™ XG, Toshiba Medical System Co.) was started at the same time as the transplantation. US examination revealed the transplanted islets as hyperechoic clusters that flowed from the tip of the catheter to the periphery of the portal vein. There were no findings of portal thrombosis or bleeding in the US image, and also no increase of the portal vein pressure during transplantation. In conclusion, we succeeded in visualizing human islets using US, which enabled us to perform islet transplantation safely. The hyperechoic images were considered to be viable islets. Intraoperative US examination can be useful for detecting islets at transplantation in a clinical setting.
Collapse
Affiliation(s)
- Naoaki Sakata
- Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.
| | | | | | | | | | | | | |
Collapse
|
11
|
Kim JH, Jin SM, Oh SH, Lee S, Oh BJ, Kim SK, Suh S, Lee JH, Jung HS, Lee MS, Lee MK, Kim KW. Counting small hypointense spots confounds the quantification of functional islet mass based on islet MRI. Am J Transplant 2012; 12:1303-12. [PMID: 22299723 DOI: 10.1111/j.1600-6143.2011.03941.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Iron-containing fragmented islets or free iron released from dying cells could confound the interpretation of MRI of iron nanoparticle-labeled islets. Exclusion of small hypointense spots could be a useful strategy to avoid such artifact. We investigated whether this strategy could improve the estimation of functioning islet mass after islet transplantation. Using a rat syngeneic intraportal islet transplantation model, we quantitatively assessed the relationships between total area, number of hypointense spots on MRI that belong to each size quartile and glycemic control of the recipients. The total area of hypointense spots on MRI was greater in the recipients that achieved diabetes reversal (p = 0.002), whereas the total number of hypointense spots was not different (p = 0.757). Exclusion of small hypointense spots improved the association between the number of hypointense spots and the blood glucose level of the recipients (p < 0.001). Ex-vivo imaging and histologic study confirmed that some small hypointense spots represent the phagocytosed free iron. Exclusion of small hypointense spots improved the quantification of the functional islet mass based on islet MRI. This would be a useful principle in the development of an algorithm to estimate functioning islet mass based on islet MRI.
Collapse
Affiliation(s)
- J H Kim
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Kriz J, Jirak D, Berkova Z, Herynek V, Lodererova A, Girman P, Habart D, Hajek M, Saudek F. Detection of pancreatic islet allograft impairment in advance of functional failure using magnetic resonance imaging. Transpl Int 2011; 25:250-60. [PMID: 22188036 DOI: 10.1111/j.1432-2277.2011.01403.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This study evaluated the ability of magnetic resonance imaging (MRI) to predict failure of pancreatic islets (PI) transplanted into the hepatic portal vein. Brown-Norway (n = 18) and Lewis (n = 6) rats received islets isolated from Lewis donors. The rejection process in Brown-Norway recipients was mitigated by two different immunosuppressive regimens [tacrolimus + hydrocortisone for 3 months (n = 6) or tacrolimus for 12 days (n = 12)]. Longitudinal MRI monitoring of recipients at post-transplantation weeks 1, 2, 3, 4, 6, 8, 10, and 12 confirmed the ability to detect SPIO labeled PI after transplantation into the liver. The relative number of MRI signals related to PI isografts remained stable up to study completion. Recipients of PI allografts were normoglycemic until the end of study; signals declined gradually to 44 ± 17% in these animals. In animals with islets failure during post-transplant week 12, the number of signals decreased to 25 ± 10% of initial values. The difference between groups (islet function/failed) became significant post-transplant week 3. Our data demonstrate that the MRI changes attributable to rejection become apparent within 3 weeks after transplantation, i.e. at least 8 weeks before functional allograft failure.
Collapse
Affiliation(s)
- J Kriz
- Diabetes Center, Institute for Clinical and Experimental Medicine, Prague, Videnska, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Jahansouz C, Jahansouz C, Kumer SC, Brayman KL. Evolution of β-Cell Replacement Therapy in Diabetes Mellitus: Islet Cell Transplantation. J Transplant 2011; 2011:247959. [PMID: 22013505 PMCID: PMC3195999 DOI: 10.1155/2011/247959] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2011] [Accepted: 08/08/2011] [Indexed: 12/12/2022] Open
Abstract
Diabetes mellitus remains one of the leading causes of morbidity and mortality worldwide. According to the Centers for Disease Control and Prevention, approximately 23.6 million people in the United States are affected. Of these individuals, 5 to 10% have been diagnosed with Type 1 diabetes mellitus (T1DM), an autoimmune disease. Although it often appears in childhood, T1DM may manifest at any age, leading to significant morbidity and decreased quality of life. Since the 1960s, the surgical treatment for diabetes mellitus has evolved to become a viable alternative to insulin administration, beginning with pancreatic transplantation. While islet cell transplantation has emerged as another potential alternative, its role in the treatment of T1DM remains to be solidified as research continues to establish it as a truly viable alternative for achieving insulin independence. In this paper, the historical evolution, procurement, current status, benefits, risks, and ongoing research of islet cell transplantation are explored.
Collapse
Affiliation(s)
- Cyrus Jahansouz
- School of Medicine, University of Virginia, Charlottesville, VA 22102, USA
| | | | | | | |
Collapse
|
14
|
Abstract
Since the Edmonton trials, insulin independence can reproducibly be achieved after islet transplantation. However, a majority of patients resume insulin treatment in the first 5 years after transplantation. Several mechanisms have been proposed but are difficult to pinpoint in one particular patient. Current tools for the metabolic monitoring of islet grafts indicate islet dysfunction when it is too late to take action. Noninvasive imaging of transplanted islets could be used to study β-cell mass and β-cell function just after infusion, during vascularization or autoimmune and alloimmune attacks. This review will focus on the most recent advances in various imaging techniques (bioluminescence imaging, fluorescence optical imaging, MRI, and positron emission tomography). Emphasis will be placed on pertinent approaches for translation to human practice.
Collapse
Affiliation(s)
- Sophie Borot
- Cell Isolation and Transplant Center, University of Geneva, Level R, 1 rue Michel Servet, CH-1211, GENEVA 4, Switzerland.
| | | | | | | | | |
Collapse
|
15
|
Abstract
OBJECTIVES We aimed to develop an accurate and reproducible method to quantify transplanted islets and monitor their functional status in vivo. To support this aim, we investigated the cytotoxic effect of Resovist on islet function and survival. METHODS The average pixel number for a single Resovist-labeled islet was measured. To determine Resovist cytotoxicity, DNA fragmentation, adenosine diphosphate-adenosine triphosphate ratio, ion channel activity, and in vivo islet function were evaluated. To quantitatively monitor the fate of islet transplant, we transplanted Resovist-labeled islets into syngeneic C57BL/6 mice for magnetic resonance imaging analysis. RESULTS The average pixel volume for a medium-sized islet (100-150 μm in diameter) was determined from the contrast signal void of magnetic resonance image. Toxicological analysis showed that Resovist did not affect islet at concentrations up to 40 times the labeling dose. In the quantitative analysis, the number of contrast spots did not correlated with the number of transplanted islets, whereas our newly adopted measure showed a significant correlation. CONCLUSIONS Islet transplant survival may be safely and accurately monitored using magnetic resonance imaging with the Resovist. We found in this study that pixel number may correlate more closely than the number of contrast spots with the number of islets transplanted.
Collapse
|
16
|
Magnetic Resonance Imaging of Pancreatic Islets Transplanted Into the Liver in Humans. Transplantation 2010; 90:1602-6. [DOI: 10.1097/tp.0b013e3181ffba5e] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
17
|
Toso C, Pawlick R, Lacotte S, Edgar R, Davis J, McCall M, Morel P, Mentha G, Berney T, Shapiro AMJ. Detecting rejection after mouse Islet transplantation utilizing islet protein-stimulated ELISPOT. Cell Transplant 2010; 20:955-62. [PMID: 21054945 DOI: 10.3727/096368910x539137] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Improved posttransplant monitoring and on-time detection of rejection could improve islet transplantation outcome. The present study explored the possibility of detecting harmful events after mouse islet transplantation measuring the immune responsiveness against islet extracts. Mouse islet transplantations were performed using various donor/recipient combinations, exploring autoimmune (NOD/SCID to NOD, n = 6) and alloimmune events (C57BL/6 to BALB/c, n = 20), a combination of both (C57BL/6 to NOD, n = 8), the absence of both (BALB/c to BALB/c, n = 21), or naive, nontransplanted control mice (n = 14). The immune reactivity was measured by ELISPOT, looking at the ex vivo release of IFN-γ from splenocytes stimulated by islet donor extracts (sonicated islets). The immune reactivity was not altered in the syngeneic and autoimmune models, demonstrating similar levels as nontransplanted controls (p = 0.46 and p = 0.6). Conversely, the occurrence of an allogeneic rejection alone or in combination to autoimmunity was associated to an increase in the level of immune reactivity (p = 0.023 and p = 0.003 vs. respective controls). The observed increase was transient and lost in the postrejection period or after treatment with CTLA4-Ig. Overall, allogeneic rejection was associated to a transient increase in the reactivity of splenocytes against islet proteins. Such a strategy has the potential to improve islet graft monitoring in human and should be further explored.
Collapse
Affiliation(s)
- Christian Toso
- Transplant Unit, Department of Surgery, University of Geneva Hospitals, Switzerland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Ris F, Lepetit-Coiffe M, Meda P, Crowe LA, Toso C, Armanet M, Niclauss N, Parnaud G, Giovannoni L, Bosco D, Morel P, Vallee JP, Berney T. Assessment of human islet labeling with clinical grade iron nanoparticles prior to transplantation for graft monitoring by MRI. Cell Transplant 2010; 19:1573-85. [PMID: 20719068 DOI: 10.3727/096368910x515863] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Ex vivo labeling of islets with superparamagnetic iron oxide (SPIO) nanoparticles allows posttransplant MRI imaging of the graft. In the present study, we compare two clinical grade SPIOs (ferucarbotran and ferumoxide) in terms of toxicity, islet cellular uptake, and MRI imaging. Human islets (80-90% purity) were incubated for 24 h with various concentrations of SPIOs (14-280 μg/ml of iron). Static incubations were performed, comparing insulin response to basal (2.8 mM) or high glucose stimulation (16.7 mM), with or without cAMP stimulation. Insulin and Perl's (assessment of iron content) staining were performed. Electronic microscopy analysis was performed. Labeled islets were used for in vitro or in vivo imaging in MRI 1.5T. Liver section after organ removal was performed in the same plane as MRI imaging to get a correlation between histology and radiology. Postlabeling islet viability (80 ± 10%) and function (in vitro static incubation and in vivo engraftment of human islets in nude mice) were similar in both groups. Iron uptake assessed by electron microscopy showed iron inclusions within the islets with ferucarbotran, but not with ferumoxide. MRI imaging (1.5T) of phantoms and of human islets transplanted in rats, demonstrated a strong signal with ferucarbotran, but only a weak signal with ferumoxide. Signal persisted for >8 weeks in the absence of rejection. An excellent correlation was observed between radiologic images and histology. The hepatic clearance of intraportally injected ferucarbotran was faster than that of ferumoxide, generating less background. A rapid signal decrease was observed in rejecting xenogeneic islets. According to the present data, ferucarbotran is the most appropriate of available clinical grade SPIOs for human islet imaging.
Collapse
Affiliation(s)
- Frederic Ris
- Cell Isolation and Transplantation Center, Geneva University Hospitals and University of Geneva, School of Medicine, 4 rue Gabrielle-Perret-Gentil, Geneva 14, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|