1
|
Kang M, Park HK, Kim KS, Choi D. Animal models for transplant immunology: bridging bench to bedside. CLINICAL TRANSPLANTATION AND RESEARCH 2024; 38:354-376. [PMID: 39233453 PMCID: PMC11732767 DOI: 10.4285/ctr.24.0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/05/2024] [Accepted: 07/07/2024] [Indexed: 09/06/2024]
Abstract
The progress of transplantation has been propelled forward by animal experiments. Animal models have not only provided opportunities to understand complex immune mechanisms in transplantation but also served as a platform to assess therapeutic interventions. While small animals have been instrumental in uncovering new therapeutic concepts related to immunosuppression and immune tolerance, the progression to human trials has largely been driven by studies in large animals. Recent research has begun to explore the potential of porcine organs to address the shortage of available organs. The consistent progress in transplant immunology research can be attributed to a thorough understanding of animal models. This review provides a comprehensive overview of the available animal models, detailing their modifications, strengths, and weaknesses, as well as their historical applications, to aid researchers in selecting the most suitable model for their specific research needs.
Collapse
Affiliation(s)
- Minseok Kang
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
| | - Hwon Kyum Park
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
| | - Kyeong Sik Kim
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
| | - Dongho Choi
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Korea
- Research Institute of Regenerative Medicine and Stem Cells, Hanyang University, Seoul, Korea
- Department of HY-KIST Bio-convergence, Hanyang University, Seoul, Korea
| |
Collapse
|
2
|
David AF, Heinzel A, Kammer M, Aschauer C, Reindl-Schwaighofer R, Hu K, Chen HS, Muckenhuber M, Kubetz A, Weijler AM, Worel N, Edinger M, Berlakovich G, Lion T, Sykes M, Wekerle T, Oberbauer R. Combination cell therapy leads to clonal deletion of donor-specific T cells in kidney transplant recipients. EBioMedicine 2024; 106:105239. [PMID: 38996766 PMCID: PMC11284950 DOI: 10.1016/j.ebiom.2024.105239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND Induction of donor-specific tolerance is a promising approach to achieve long-term graft patency in transplantation with little to no maintenance immunosuppression. Changes to the recipient's T cell receptor (TCR) repertoire are understood to play a pivotal role in the establishment of a robust state of tolerance in chimerism-based transplantation protocols. METHODS We investigated changes to the TCR repertoires of patients participating in an ongoing prospective, controlled, phase I/IIa trial designed to evaluate the safety and efficacy of combination cell therapy in living donor kidney transplantation. Using high-throughput sequencing, we characterized the repertoires of six kidney recipients who also received bone marrow from the same donor (CKBMT), together with an infusion of polyclonal autologous Treg cells instead of myelosuppression. FINDINGS Patients undergoing combination cell therapy exhibited partial clonal deletion of donor-reactive CD4+ T cells at one, three, and six months post-transplant, compared to control patients receiving the same immunosuppression regimen but no cell therapy (p = 0.024). The clonality, R20 and turnover rates of the CD4+ and CD8+ TCR repertoires were comparable in both groups, showing our protocol caused no excessive repertoire shift or loss of diversity. Treg clonality was lower in the case group than in control (p = 0.033), suggesting combination cell therapy helps to preserve Treg diversity. INTERPRETATION Overall, our data indicate that combining Treg cell therapy with CKBMT dampens the alloimmune response to transplanted kidneys in humans in the absence of myelosuppression. FUNDING This study was funded by the Vienna Science and Technology Fund (WWTF).
Collapse
Affiliation(s)
- Ana F David
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Andreas Heinzel
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Michael Kammer
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Center for Medical Data Science, Institute for Clinical Biometrics, Medical University of Vienna, Vienna, Austria
| | - Constantin Aschauer
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Roman Reindl-Schwaighofer
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Karin Hu
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Hao-Shan Chen
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Moritz Muckenhuber
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Anna Kubetz
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Anna Marianne Weijler
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Nina Worel
- Department of Transfusion Medicine and Cell Therapy, Medical University of Vienna, Vienna, Austria
| | - Matthias Edinger
- University Hospital Regensburg, Department of Internal Medicine III & Regensburg Center for Interventional Immunology (RCI), Regensburg, Germany
| | - Gabriela Berlakovich
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Thomas Lion
- St. Anna Children's Cancer, Research Institute and Labdia Labordiagnostik, Vienna, Austria
| | - Megan Sykes
- Columbian Center for Translational Immunology, Department of Medicine, Columbia University, New York City, NY, United States
| | - Thomas Wekerle
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Rainer Oberbauer
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
3
|
Weijler AM, Wekerle T. Combining Treg Therapy With Donor Bone Marrow Transplantation: Experimental Progress and Clinical Perspective. Transplantation 2024; 108:1100-1108. [PMID: 37789519 DOI: 10.1097/tp.0000000000004814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Donor-specific tolerance remains a goal in transplantation because it could improve graft survival and reduce morbidity. Cotransplantation of donor hematopoietic cells to achieve chimerism is a promising approach for tolerance induction, which was successfully tested in clinical trials. However, current protocols are associated with side effects related to the myelosuppressive recipient conditioning, which makes it difficult to introduce them as standard therapy. More recently, adoptive cell therapy with polyclonal or donor-specific regulatory T cells (Treg) proved safe and feasible in several transplant trials, but it is unclear whether it can induce tolerance on its own. The combination of both approaches-Treg therapy and hematopoietic cell transplantation-leads to chimerism and tolerance without myelosuppressive treatment in murine models. Treg therapy promotes engraftment of allogeneic hematopoietic cells, reducing conditioning requirements and enhancing regulatory mechanisms maintaining tolerance. This review discusses possible modes of action of transferred Treg in experimental chimerism models and describes translational efforts investigating the potent synergy of Treg and chimerism.
Collapse
Affiliation(s)
- Anna Marianne Weijler
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
4
|
Annamalai C, Kute V, Sheridan C, Halawa A. Hematopoietic cell-based and non-hematopoietic cell-based strategies for immune tolerance induction in living-donor renal transplantation: A systematic review. Transplant Rev (Orlando) 2023; 37:100792. [PMID: 37709652 DOI: 10.1016/j.trre.2023.100792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/24/2023] [Accepted: 08/17/2023] [Indexed: 09/16/2023]
Abstract
INTRODUCTION Despite its use to prevent acute rejection, lifelong immunosuppression can adversely impact long-term patient and graft outcomes. In theory, immunosuppression withdrawal is the ultimate goal of kidney transplantation, and is made possible by the induction of immunological tolerance. The purpose of this paper is to review the safety and efficacy of immune tolerance induction strategies in living-donor kidney transplantation, both chimerism-based and non-chimerism-based. The impact of these strategies on transplant outcomes, including acute rejection, allograft function and survival, cost, and immune monitoring, will also be discussed. MATERIALS AND METHODS Databases such as PubMed, Scopus, and Web of Science, as well as additional online resources such as EBSCO, were exhaustively searched. Adult living-donor kidney transplant recipients who developed chimerism-based tolerance after concurrent bone marrow or hematopoietic stem cell transplantation or those who received non-chimerism-based, non-hematopoietic cell therapy using mesenchymal stromal cells, dendritic cells, or regulatory T cells were studied between 2000 and 2021. Individual sources of evidence were evaluated critically, and the strength of evidence and risk of bias for each outcome of the transplant tolerance study were assessed. RESULTS From 28,173 citations, 245 studies were retrieved after suitable exclusion and duplicate removal. Of these, 22 studies (2 RCTs, 11 cohort studies, 6 case-control studies, and 3 case reports) explicitly related to both interventions (chimerism- and non-chimerism-based immune tolerance) were used in the final review process and were critically appraised. According to the findings, chimerism-based strategies fostered immunotolerance, allowing for the safe withdrawal of immunosuppressive medications. Cell-based therapy, on the other hand, frequently did not induce tolerance except for minimising immunosuppression. As a result, the rejection rates, renal allograft function, and survival rates could not be directly compared between these two groups. While chimerism-based tolerance protocols posed safety concerns due to myelosuppression, including infections and graft-versus-host disease, cell-based strategies lacked these adverse effects and were largely safe. There was a lack of direct comparisons between HLA-identical and HLA-disparate recipients, and the cost implications were not examined in several of the retrieved studies. Most studies reported successful immunosuppressive weaning lasting at least 3 years (ranging up to 11.4 years in some studies), particularly with chimerism-based therapy, while only a few investigators used immune surveillance techniques. The studies reviewed were often limited by selection, classification, ascertainment, performance, and attrition bias. CONCLUSIONS This review demonstrates that chimerism-based hematopoietic strategies induce immune tolerance, and a substantial number of patients are successfully weaned off immunosuppression. Despite the risk of complications associated with myelosuppression. Non-chimerism-based, non-hematopoietic cell protocols, on the other hand, have been proven to facilitate immunosuppression minimization but seldom elicit immunological tolerance. However, the results of this review must be interpreted with caution because of the non-randomised study design, potential confounding, and small sample size of the included studies. Further validation and refinement of tolerogenic protocols in accordance with local practice preferences is also warranted, with an emphasis on patient selection, cost ramifications, and immunological surveillance based on reliable tolerance assays.
Collapse
Affiliation(s)
- Chandrashekar Annamalai
- Postgraduate School of Medicine, Institute of Teaching and Learning, Faculty of Health and Life Sciences, University of Liverpool, UK.
| | - Vivek Kute
- Nephrology and Transplantation, Institute of Kidney Diseases and Research Center and Dr. H L Trivedi Institute of Transplantation Sciences (IKDRC-ITS), Ahmedabad, India
| | - Carl Sheridan
- Department of Eye and Vision Science, Ocular Cell Transplantation, Faculty of Health and Life Sciences, University of Liverpool, UK
| | - Ahmed Halawa
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| |
Collapse
|
5
|
Mengrelis K, Muckenhuber M, Wekerle T. Chimerism-based Tolerance Induction in Clinical Transplantation: Its Foundations and Mechanisms. Transplantation 2023; 107:2473-2485. [PMID: 37046378 DOI: 10.1097/tp.0000000000004589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Hematopoietic chimerism remains the most promising strategy to bring transplantation tolerance into clinical routine. The concept of chimerism-based tolerance aims to extend the recipient's mechanisms of self-tolerance (ie, clonal deletion, anergy, and regulation) to include the tolerization of donor antigens that are introduced through the cotransplantation of donor hematopoietic cells. For this to be successful, donor hematopoietic cells need to engraft in the recipient at least temporarily. Three pioneering clinical trials inducing chimerism-based tolerance in kidney transplantation have been published to date. Within this review, we discuss the mechanisms of tolerance that are associated with the specific therapeutic protocols of each trial. Recent data highlight the importance of regulation as a mechanism that maintains tolerance. Insufficient regulatory mechanisms are also a likely explanation for situations of tolerance failure despite persisting donor chimerism. After decades of preclinical development of chimerism protocols, mechanistic data from clinical trials have recently become increasingly important. Better understanding of the required mechanisms for tolerance to be induced in humans will be a key to design more reliable and less invasive chimerism protocols in the future.
Collapse
Affiliation(s)
- Konstantinos Mengrelis
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | | | | |
Collapse
|
6
|
Prickler L, Baranyi U, Mengrelis K, Weijler AM, Kainz V, Kratzer B, Steiner R, Mucha J, Rudoph E, Pilat N, Bohle B, Strobl H, Pickl WF, Valenta R, Linhart B, Wekerle T. Adoptive transfer of allergen-expressing B cells prevents IgE-mediated allergy. Front Immunol 2023; 14:1286638. [PMID: 38077381 PMCID: PMC10703460 DOI: 10.3389/fimmu.2023.1286638] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/27/2023] [Indexed: 12/18/2023] Open
Abstract
Introduction Prophylactic strategies to prevent the development of allergies by establishing tolerance remain an unmet medical need. We previously reported that the transfer of autologous hematopoietic stem cells (HSC) expressing the major timothy grass pollen allergen, Phl p 5, on their cell surface induced allergen-specific tolerance in mice. In this study, we investigated the ability of allergen-expressing immune cells (dendritic cells, CD4+ T cells, CD8+ T cells, and CD19+ B cells) to induce allergen-specific tolerance in naive mice and identified CD19+ B cells as promising candidates for allergen-specific cell therapy. Methods For this purpose, CD19+ B cells were isolated from Phl p 5-transgenic BALB/c mice and transferred to naive BALB/c mice, pre-treated with a short course of rapamycin and an anti-CD40L antibody. Subsequently, the mice were subcutaneously sensitized three times at 4-week intervals to Phl p 5 and Bet v 1 as an unrelated control allergen. Allergen-expressing cells were followed in the blood to monitor molecular chimerism, and sera were analyzed for Phl p 5- and Bet v 1-specific IgE and IgG1 levels by RBL assay and ELISA, respectively. In vivo allergen-induced lung inflammation was measured by whole-body plethysmography, and mast cell degranulation was determined by skin testing. Results The transfer of purified Phl p 5-expressing CD19+ B cells to naive BALB/c mice induced B cell chimerism for up to three months and prevented the development of Phl p 5-specific IgE and IgG1 antibody responses for a follow-up period of 26 weeks. Since Bet v 1 but not Phl p 5-specific antibodies were detected, the induction of tolerance was specific for Phl p 5. Whole-body plethysmography revealed preserved lung function in CD19+ B cell-treated mice in contrast to sensitized mice, and there was no Phl p 5-induced mast cell degranulation in treated mice. Discussion Thus, we demonstrated that the transfer of Phl p 5-expressing CD19+ B cells induces allergen-specific tolerance in a mouse model of grass pollen allergy. This approach could be further translated into a prophylactic regimen for the prevention of IgE-mediated allergy in humans.
Collapse
Affiliation(s)
- Lisa Prickler
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Ulrike Baranyi
- Cardiac Surgery Research Laboratory, Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Konstantinos Mengrelis
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Anna Marianne Weijler
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Verena Kainz
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Bernhard Kratzer
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Romy Steiner
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Jasmin Mucha
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Elisa Rudoph
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Nina Pilat
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Barbara Bohle
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Herbert Strobl
- Division of Immunology and Pathophysiology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Winfried Franz Pickl
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| | - Rudolf Valenta
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
- Institute of Immunology Federal Medical-Biological Agency (FMBA) of Russia, National Research Center (NRC), Moscow, Russia
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Birgit Linhart
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Thomas Wekerle
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
7
|
Wang H, Yang R, Wang Z, Cao L, Kong D, Sun Q, Yoshida S, Ren J, Chen T, Duan J, Lu J, Shen Z, Zheng H. Metronomic capecitabine with rapamycin exerts an immunosuppressive effect by inducing ferroptosis of CD4 + T cells after liver transplantation in rat. Int Immunopharmacol 2023; 124:110810. [PMID: 37625370 DOI: 10.1016/j.intimp.2023.110810] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/02/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023]
Abstract
Liver transplantation is one of the most effective treatments for hepatocellular carcinoma (HCC). The balance between inhibiting immune rejection and preventing tumor recurrence after liver transplantation is the key to determining the long-term prognosis of patients with HCC after liver transplantation. In our previous study, we found that capecitabine (CAP), an effective drug for the treatment of HCC, could exert an immunosuppressive effect after liver transplantation by inducing T cell ferroptosis. Recent studies have shown that ferroptosis is highly associated with autophagy. In this study, we confirmed that the autophagy inducer rapamycin (RAPA) combined with metronomic capecitabine (mCAP) inhibits glutathione peroxidase 4 (GPX4) and promotes ferroptosis in CD4+ T cells to exert immunosuppressive effects after rat liver transplantation. Compared with RAPA or mCAP alone, the combination of RAPA and mCAP could adequately reduce liver injury in rats with acute rejection after transplantation. The CD4+ T cell counts in peripheral blood, spleen, and transplanted liver of recipient rats significantly decreased, and the oxidative stress level and ferrous ion concentration of CD4+ T cells significantly increased in the combination group. In vitro, the combination of drugs significantly promoted autophagy, decreased GPX4 protein expression, and induced ferroptosis in CD4+ T cells. In conclusion, the autophagy inducer RAPA improved the mCAP-induced ferroptosis in CD4+ T cells. Our results support the concept of ferroptosis as an autophagy-dependent cell death and suggest that the combination of ferroptosis inducers and autophagy inducers is a new research direction for improving immunosuppressive regimens after liver transplantation.
Collapse
Affiliation(s)
- Hao Wang
- The First Central Clinical School, Tianjin Medical University, Tianjin, China
| | - Ruining Yang
- The First Central Clinical School, Tianjin Medical University, Tianjin, China
| | - Zhenglu Wang
- Organ Transplant Department, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China; Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Lei Cao
- Research Institute of Transplant Medicine, Nankai University, Tianjin, China; Tianjin Key Laboratory for Organ Transplantation, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Dejun Kong
- School of Medicine, Nankai University, Tianjin, China
| | - Qian Sun
- The First Central Clinical School, Tianjin Medical University, Tianjin, China
| | - Sei Yoshida
- Research Institute of Transplant Medicine, Nankai University, Tianjin, China
| | - Jiashu Ren
- The First Central Clinical School, Tianjin Medical University, Tianjin, China
| | - Tao Chen
- School of Medicine, Nankai University, Tianjin, China
| | - Jinliang Duan
- School of Medicine, Nankai University, Tianjin, China
| | - Jianing Lu
- The First Central Clinical School, Tianjin Medical University, Tianjin, China
| | - Zhongyang Shen
- Organ Transplant Department, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China; Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin, China; Research Institute of Transplant Medicine, Nankai University, Tianjin, China; Tianjin Key Laboratory for Organ Transplantation, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China; National Health Commission's Key Laboratory for Critical Care Medicine, Tianjin, China
| | - Hong Zheng
- Organ Transplant Department, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China; Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin, China; Research Institute of Transplant Medicine, Nankai University, Tianjin, China; Tianjin Key Laboratory for Organ Transplantation, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China; National Health Commission's Key Laboratory for Critical Care Medicine, Tianjin, China.
| |
Collapse
|
8
|
Chandran S, Tang Q. Impact of interleukin-6 on T cells in kidney transplant recipients. Am J Transplant 2022; 22 Suppl 4:18-27. [PMID: 36453710 DOI: 10.1111/ajt.17209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 09/23/2022] [Indexed: 12/02/2022]
Abstract
Interleukin-6 (IL-6), a multifunctional proinflammatory cytokine, plays a key role in T cell activation, survival, and differentiation. Acting as a switch that induces the differentiation of naïve T cells into Th17 cells and inhibits their development into regulatory T cells, IL-6 promotes rejection and abrogates tolerance. Therapies that target IL-6 signaling include antibodies to IL-6 and the IL-6 receptor and inhibitors of janus kinases; several of these therapeutics have demonstrated robust clinical efficacy in autoimmune and inflammatory diseases. Clinical trials of IL-6 inhibition in kidney transplantation have focused primarily on its effects on B cells, plasma cells, and HLA antibodies. In this review, we summarize the impact of IL-6 on T cells in experimental models of transplant and describe the effects of IL-6 inhibition on the T cell compartment in kidney transplant recipients.
Collapse
Affiliation(s)
- Sindhu Chandran
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Qizhi Tang
- Department of Surgery, Diabetes Center, Gladstone-UCSF Institute of Genome Immunology, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
9
|
Iglesias M, Brennan DC, Larsen CP, Raimondi G. Targeting inflammation and immune activation to improve CTLA4-Ig-based modulation of transplant rejection. Front Immunol 2022; 13:926648. [PMID: 36119093 PMCID: PMC9478663 DOI: 10.3389/fimmu.2022.926648] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
For the last few decades, Calcineurin inhibitors (CNI)-based therapy has been the pillar of immunosuppression for prevention of organ transplant rejection. However, despite exerting effective control of acute rejection in the first year post-transplant, prolonged CNI use is associated with significant side effects and is not well suited for long term allograft survival. The implementation of Costimulation Blockade (CoB) therapies, based on the interruption of T cell costimulatory signals as strategy to control allo-responses, has proven potential for better management of transplant recipients compared to CNI-based therapies. The use of the biologic cytotoxic T-lymphocyte associated protein 4 (CTLA4)-Ig is the most successful approach to date in this arena. Following evaluation of the BENEFIT trials, Belatacept, a high-affinity version of CTLA4-Ig, has been FDA approved for use in kidney transplant recipients. Despite its benefits, the use of CTLA4-Ig as a monotherapy has proved to be insufficient to induce long-term allograft acceptance in several settings. Multiple studies have demonstrated that events that induce an acute inflammatory response with the consequent release of proinflammatory cytokines, and an abundance of allograft-reactive memory cells in the recipient, can prevent the induction of or break established immunomodulation induced with CoB regimens. This review highlights advances in our understanding of the factors and mechanisms that limit CoB regimens efficacy. We also discuss recent successes in experimentally designing complementary therapies that favor CTLA4-Ig effect, affording a better control of transplant rejection and supporting their clinical applicability.
Collapse
Affiliation(s)
- Marcos Iglesias
- Vascularized and Composite Allotransplantation (VCA) Laboratory, Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- *Correspondence: Giorgio Raimondi, ; Marcos Iglesias,
| | - Daniel C. Brennan
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Christian P. Larsen
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Giorgio Raimondi
- Vascularized and Composite Allotransplantation (VCA) Laboratory, Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- *Correspondence: Giorgio Raimondi, ; Marcos Iglesias,
| |
Collapse
|
10
|
Muckenhuber M, Wekerle T, Schwarz C. Costimulation blockade and Tregs in solid organ transplantation. Front Immunol 2022; 13:969633. [PMID: 36119115 PMCID: PMC9478950 DOI: 10.3389/fimmu.2022.969633] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/15/2022] [Indexed: 12/02/2022] Open
Abstract
Regulatory T cells (Tregs) play a critical role in maintaining self-tolerance and in containing allo-immune responses in the context of transplantation. Recent advances yielded the approval of the first pharmaceutical costimulation blockers (abatacept and belatacept), with more of them in the pipeline. These costimulation blockers inhibit effector cells with high clinical efficacy to control disease activity, but might inadvertently also affect Tregs. Treg homeostasis is controlled by a complex network of costimulatory and coinhibitory signals, including CD28, the main target of abatacept/belatacept, and CTLA4, PD-1 and ICOS. This review shall give an overview on what effects the therapeutic manipulation of costimulation has on Treg function in transplantation.
Collapse
Affiliation(s)
- Moritz Muckenhuber
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Thomas Wekerle
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
- *Correspondence: Thomas Wekerle, ; Christoph Schwarz,
| | - Christoph Schwarz
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, Vienna, Austria
- *Correspondence: Thomas Wekerle, ; Christoph Schwarz,
| |
Collapse
|
11
|
Hu M, Hawthorne WJ, Yi S, O’Connell PJ. Cellular Immune Responses in Islet Xenograft Rejection. Front Immunol 2022; 13:893985. [PMID: 35874735 PMCID: PMC9300897 DOI: 10.3389/fimmu.2022.893985] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/08/2022] [Indexed: 11/18/2022] Open
Abstract
Porcine islets surviving the acute injury caused by humoral rejection and IBMIR will be subjected to cellular xenograft rejection, which is predominately mediated by CD4+ T cells and is characterised by significant infiltration of macrophages, B cells and T cells (CD4+ and CD8+). Overall, the response is different compared to the alloimmune response and more difficult to suppress. Activation of CD4+ T cells is both by direct and indirect antigen presentation. After activation they recruit macrophages and direct B cell responses. Although they are less important than CD4+ T cells in islet xenograft rejection, macrophages are believed to be a major effector cell in this response. Rodent studies have shown that xenoantigen-primed and CD4+ T cell-activated macrophages were capable of recognition and rejection of pancreatic islet xenografts, and they destroyed a graft via the secretion of various proinflammatory mediators, including TNF-α, reactive oxygen and nitrogen species, and complement factors. B cells are an important mediator of islet xenograft rejection via xenoantigen presentation, priming effector T cells and producing xenospecific antibodies. Depletion and/or inhibition of B cells combined with suppressing T cells has been suggested as a promising strategy for induction of xeno-donor-specific T- and B-cell tolerance in islet xenotransplantation. Thus, strategies that expand the influence of regulatory T cells and inhibit and/or reduce macrophage and B cell responses are required for use in combination with clinical applicable immunosuppressive agents to achieve effective suppression of the T cell-initiated xenograft response.
Collapse
Affiliation(s)
- Min Hu
- Centre for Transplant and Renal Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia
- The Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Wayne J. Hawthorne
- Centre for Transplant and Renal Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia
- The Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Shounan Yi
- Centre for Transplant and Renal Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia
- The Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Philip J. O’Connell
- Centre for Transplant and Renal Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia
- The Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- *Correspondence: Philip J. O’Connell,
| |
Collapse
|
12
|
Podestà MA, Sykes M. Chimerism-Based Tolerance to Kidney Allografts in Humans: Novel Insights and Future Perspectives. Front Immunol 2022; 12:791725. [PMID: 35069574 PMCID: PMC8767096 DOI: 10.3389/fimmu.2021.791725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/15/2021] [Indexed: 11/18/2022] Open
Abstract
Chronic rejection and immunosuppression-related toxicity severely affect long-term outcomes of kidney transplantation. The induction of transplantation tolerance – the lack of destructive immune responses to a transplanted organ in the absence of immunosuppression – could potentially overcome these limitations. Immune tolerance to kidney allografts from living donors has been successfully achieved in humans through clinical protocols based on chimerism induction with hematopoietic cell transplantation after non-myeloablative conditioning. Notably, two of these protocols have led to immune tolerance in a significant fraction of HLA-mismatched donor-recipient combinations, which represent the large majority of cases in clinical practice. Studies in mice and large animals have been critical in dissecting tolerance mechanisms and in selecting the most promising approaches for human translation. However, there are several key differences in tolerance induction between these models and humans, including the rate of success and stability of donor chimerism, as well as the relative contribution of different mechanisms in inducing donor-specific unresponsiveness. Kidney allograft tolerance achieved through durable full-donor chimerism may be due to central deletion of graft-reactive donor T cells, even though mechanistic data from patient series are lacking. On the other hand, immune tolerance attained with transient mixed chimerism-based protocols initially relies on Treg-mediated suppression, followed by peripheral deletion of donor-reactive recipient T-cell clones under antigenic pressure from the graft. These conclusions were supported by data deriving from novel high-throughput T-cell receptor sequencing approaches that allowed tracking of alloreactive repertoires over time. In this review, we summarize the most important mechanistic studies on tolerance induction with combined kidney-bone marrow transplantation in humans, discussing open issues that still need to be addressed and focusing on techniques developed in recent years to efficiently monitor the alloresponse in tolerance trials. These cutting-edge methods will be instrumental for the development of immune tolerance protocols with improved efficacy and to identify patients amenable to safe immunosuppression withdrawal.
Collapse
Affiliation(s)
- Manuel Alfredo Podestà
- Renal Division, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milano, Italy
| | - Megan Sykes
- Columbia Center for Translational Immunology, Department of Medicine, Department of Surgery, Department of Microbiology and Immunology, Columbia University, New York, NY, United States
| |
Collapse
|
13
|
Fehr T, Hübel K, de Rougemont O, Abela I, Gaspert A, Güngör T, Hauri M, Helmchen B, Linsenmeier C, Müller T, Nilsson J, Riesterer O, Scandling JD, Schanz U, Cippà PE. Successful Induction of Specific Immunological Tolerance by Combined Kidney and Hematopoietic Stem Cell Transplantation in HLA-Identical Siblings. Front Immunol 2022; 13:796456. [PMID: 35173720 PMCID: PMC8841472 DOI: 10.3389/fimmu.2022.796456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 01/05/2022] [Indexed: 11/30/2022] Open
Abstract
Induction of immunological tolerance has been the holy grail of transplantation immunology for decades. The only successful approach to achieve it in patients has been a combined kidney and hematopoietic stem cell transplantation from an HLA-matched or -mismatched living donor. Here, we report the first three patients in Europe included in a clinical trial aiming at the induction of tolerance by mixed lymphohematopoietic chimerism after kidney transplantation. Two female and one male patient were transplanted with a kidney and peripherally mobilized hematopoietic stem cells from their HLA-identical sibling donor. The protocol followed previous studies at Stanford University: kidney transplantation was performed on day 0 including induction with anti-thymocyte globulin followed by conditioning with 10x 1.2 Gy total lymphoid irradiation and the transfusion of CD34+ cells together with a body weight-adjusted dose of donor T cells on day 11. Immunosuppression consisted of cyclosporine A and steroids for 10 days, cyclosporine A and mycophenolate mofetil for 1 month, and then cyclosporine A monotherapy with tapering over 9–20 months. The 3 patients have been off immunosuppression for 4 years, 19 months and 8 months, respectively. No rejection or graft-versus-host disease occurred. Hematological donor chimerism was stable in the first, but slowly declining in the other two patients. A molecular microscope analysis in patient 2 revealed the genetic profile of a normal kidney. No relevant infections were observed, and the quality of life in all three patients is excellent. During the SARS-CoV-2 pandemic, all three patients were vaccinated with the mRNA vaccine BNT162b2 (Comirnaty®), and they showed excellent humoral and in 2 out 3 patients also cellular SARS-CoV-2-specific immunity. Thus, combined kidney and hematopoietic stem cell transplantation is a feasible and successful approach to induce specific immunological tolerance in the setting of HLA-matched sibling living kidney donation while maintaining immune responsiveness to an mRNA vaccine (ClinicalTrials.gov: NCT00365846).
Collapse
Affiliation(s)
- Thomas Fehr
- Division of Nephrology, University Hospital Zurich, Zurich, Switzerland
- Department of Internal Medicine, Cantonal Hospital Graubuenden, Chur, Switzerland
- *Correspondence: Thomas Fehr,
| | - Kerstin Hübel
- Division of Nephrology, University Hospital Zurich, Zurich, Switzerland
- Department of Surgery and Transplantation, University Hospital Zurich, Zurich, Switzerland
| | - Olivier de Rougemont
- Department of Surgery and Transplantation, University Hospital Zurich, Zurich, Switzerland
| | - Irene Abela
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Ariana Gaspert
- Department of Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Tayfun Güngör
- Division of Stem Cell Transplantation, University Children’s Hospital Zurich – Eleonore Foundation & Children`s Research Center (CRC), Zurich, Switzerland
| | - Mathias Hauri
- Division of Stem Cell Transplantation, University Children’s Hospital Zurich – Eleonore Foundation & Children`s Research Center (CRC), Zurich, Switzerland
| | - Birgit Helmchen
- Department of Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Claudia Linsenmeier
- Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland
| | - Thomas Müller
- Division of Nephrology, University Hospital Zurich, Zurich, Switzerland
| | - Jakob Nilsson
- Laboratory for Transplantation Immunology, University Hospital Zurich, Zurich, Switzerland
| | - Oliver Riesterer
- Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland
| | - John D. Scandling
- Division of Nephrology, Stanford University School of Medicine, Stanford, CA, United States
| | - Urs Schanz
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Pietro E. Cippà
- Division of Nephrology, University Hospital Zurich, Zurich, Switzerland
- Division of Nephrology, Ente Ospedaliero Cantonale, Lugano, Switzerland
| |
Collapse
|
14
|
Cao Z, Li C, He J, Sui X, Wu P, Pan D, Qing L, Tang J. FK506-loaded PLGA nanoparticles improve long-term survival of a vascularized composite allograft in a murine model. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1515. [PMID: 34790721 PMCID: PMC8576731 DOI: 10.21037/atm-21-2425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/20/2021] [Indexed: 11/06/2022]
Abstract
Background The side effects of life-long administration of FK506 limit the clinical practice of vascularized composite allografts (VCAs). This study aimed to evaluate the feasibility of FK506-loaded poly (lactic-co-glycolic acid) (PLGA) nanoparticles (FK506 NPs) for prolonging the long-term survival of VCAs and reducing the side effects of FK506. Methods PLGA nanoparticles loaded with FK506 were prepared by the solvent evaporation method. The characterization of FK506 NPs was evaluated by electron microscopy. To confirm the function and safety of FK506 NPs, these particles were administrated into rats by intraperitoneal injection. The survival time of the allograft, systemic concentration of FK506, anti-rejection activity, and side-effect of FK506 NPs were evaluated in a Brown Norway (BN)-to-Sprague Dawley (SD) epigastric VCA transplantation model. Results Compared with the nontreatment, PLGA control and FK506 groups, the median survival times (MST) of the FK506 NP groups were significantly prolonged. The FK506 NPs could maintain therapeutic drug concentration for 60 days. Moreover, cytokine concentrations, flow cytometry of regulatory T cells (Tregs) and histopathology of allografts revealed significantly prolonged immunosuppression by FK506 NPs. FK506 NPs also ameliorated FK506 nephrotoxicity. Conclusions FK506 NPs prolong the survival time of VCAs in a murine model with minimal nephrotoxicity, and provide a potential clinical strategy for ameliorating long-term side effects of immunosuppressive therapy.
Collapse
Affiliation(s)
- Zheming Cao
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha, China
| | - Cheng Li
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha, China
| | - Jiqiang He
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha, China
| | - Xinlei Sui
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha, China
| | - Panfeng Wu
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha, China
| | - Ding Pan
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha, China
| | - Liming Qing
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha, China
| | - Juyu Tang
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
15
|
Schwarz C, Mahr B, Muckenhuber M, Weijler AM, Unger LW, Pilat N, Latus M, Regele H, Wekerle T. In vivo Treg expansion under costimulation blockade targets early rejection and improves long-term outcome. Am J Transplant 2021; 21:3765-3774. [PMID: 34152692 PMCID: PMC9292010 DOI: 10.1111/ajt.16724] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 05/13/2021] [Accepted: 06/01/2021] [Indexed: 01/25/2023]
Abstract
CTLA4Ig has been shown to improve kidney allograft function, but an increased frequency of early rejection episodes poses a major obstacle for more widespread clinical use. The deleterious effect of CTLA4Ig on Treg numbers provides a possible explanation for graft injury. Therefore, we aimed at improving CTLA4Ig's efficacy by therapeutically increasing the number of Tregs. Murine cardiac allograft transplantation (BALB/c to B6) was performed under CTLA4Ig therapy modeled after the clinically approved dosing regimen and Tregs were transferred early or late after transplant. Neither early nor late Treg transfer prolonged allograft survival. Transferred Tregs were traceable in various lymphoid compartments but only modestly increased overall Treg numbers. Next, we augmented Treg numbers in vivo by means of IL2 complexes. A short course of IL2/anti-IL2-complexes administered before transplantation reversed the CTLA4Ig-mediated decline in Tregs. Of note, the addition of IL2/anti-IL2-complexes to CTLA4Ig therapy substantially prolonged heart allograft survival and significantly improved graft histology on day 100. The depletion of Tregs abrogated this effect and resulted in a significantly diminished allograft survival. The increase in Treg numbers upon IL2 treatment was associated with a decreased expression of B7 on dendritic cells. These results demonstrate that therapy with IL2 complexes improves the efficacy of CTLA4Ig by counterbalancing its unfavorable effect on Tregs.
Collapse
Affiliation(s)
- Christoph Schwarz
- Section of Transplantation ImmunologyDivision of TransplantationDepartment of General SurgeryMedical University ViennaViennaAustria,Division of Visceral SurgeryDepartment of General SurgeryMedical University ViennaViennaAustria
| | - Benedikt Mahr
- Section of Transplantation ImmunologyDivision of TransplantationDepartment of General SurgeryMedical University ViennaViennaAustria
| | - Moritz Muckenhuber
- Section of Transplantation ImmunologyDivision of TransplantationDepartment of General SurgeryMedical University ViennaViennaAustria
| | - Anna Marianne Weijler
- Section of Transplantation ImmunologyDivision of TransplantationDepartment of General SurgeryMedical University ViennaViennaAustria
| | - Lukas Walter Unger
- Section of Transplantation ImmunologyDivision of TransplantationDepartment of General SurgeryMedical University ViennaViennaAustria,Division of Visceral SurgeryDepartment of General SurgeryMedical University ViennaViennaAustria
| | - Nina Pilat
- Section of Transplantation ImmunologyDivision of TransplantationDepartment of General SurgeryMedical University ViennaViennaAustria
| | - Michaela Latus
- Section of Transplantation ImmunologyDivision of TransplantationDepartment of General SurgeryMedical University ViennaViennaAustria
| | - Heinz Regele
- Clinical Institute of PathologyMedical University ViennaViennaAustria
| | - Thomas Wekerle
- Section of Transplantation ImmunologyDivision of TransplantationDepartment of General SurgeryMedical University ViennaViennaAustria
| |
Collapse
|
16
|
Jundziłł A, Klimczak A, Sonmez E, Brzezicki G, Siemionow M. The Positive Impact of Donor Bone Marrow Cells Transplantation into Immunoprivileged Compartments on the Survival of Vascularized Skin Allografts. Arch Immunol Ther Exp (Warsz) 2021; 69:28. [PMID: 34633538 PMCID: PMC8505373 DOI: 10.1007/s00005-021-00631-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/02/2021] [Indexed: 11/30/2022]
Abstract
Using the vascularized skin allograft (VSA) model, we compared the tolerogenic effects of different allogeneic bone marrow transplantation (BMT) delivery routes into immunoprivileged compartments under a 7-day protocol immunosuppressive therapy. Twenty-eight fully MHC mismatched VSA transplants were performed between ACI (RT1a) donors and Lewis (RT11) recipients in four groups of seven animals each, under a 7-day protocol of alfa/beta TCRmAb/CsA (alpha/beta-TCR monoclonal antibodies/Cyclosporine A therapy). Donor bone marrow cells (BMC) (100 × 106 cells) were injected into three different immunoprivileged compartments: Group 1: Control, without cellular supportive therapy, Group 2: Intracapsular BMT, Group 3: Intragonadal BMT, Group 4: Intrathecal BMT. In Group 2, BMC were transplanted under the kidney capsule. In Group 3, BMC were transplanted into the right testis between tunica albuginea and seminiferous tubules, and in Group 4, cells were injected intrathecally. The assessment included: skin evaluation for signs and grade of rejection and immunohistochemistry for donor cells engraftment into host lymphoid compartments. Donor-specific chimerism for MHC class I (RT1a) antigens and the presence of CD4+/CD25+ T cells were assessed in the peripheral blood of recipients. The most extended allograft survival, 50–78 days, was observed in Group 4 after intrathecal BMT. The T cells CD4+/CD25+ in the peripheral blood were higher after intrathecal BMC injection than other experimental groups at each post-transplant time point. Transplantation of BMC into immunoprivileged compartments delayed rejection of fully mismatched VSA and induction of robust, donor-specific chimerism.
Collapse
Affiliation(s)
- Arkadiusz Jundziłł
- Department of Regenerative Medicine, Cell and Tissue Bank, Ludwik Rydygier Medical College, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland.,Department of Plastic, Reconstructive and Aesthetic Surgery, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland.,Department of Plastic Surgery, Cleveland Clinic, Cleveland, OH, USA
| | - Aleksandra Klimczak
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland.,Department of Plastic Surgery, Cleveland Clinic, Cleveland, OH, USA
| | - Erhan Sonmez
- Department of Plastic Surgery, Cleveland Clinic, Cleveland, OH, USA.,Katip Çelebi Üniversity, Atatürk Training Hospital, Plastic and Reconstructive Surgery Clinic, İzmir, Turkey
| | - Grzegorz Brzezicki
- Department of Plastic Surgery, Cleveland Clinic, Cleveland, OH, USA.,Department of Neurosurgery, Virginia Commonwealth University, Richmond, VA, USA
| | - Maria Siemionow
- Department of Plastic Surgery, Cleveland Clinic, Cleveland, OH, USA. .,Department of Orthopaedics, The University of Illinois at Chicago, Chicago, IL, USA. .,Department of Surgery, University of Medical Sciences, Poznan, Poland.
| |
Collapse
|
17
|
Slepicka PF, Yazdanifar M, Bertaina A. Harnessing Mechanisms of Immune Tolerance to Improve Outcomes in Solid Organ Transplantation: A Review. Front Immunol 2021; 12:688460. [PMID: 34177941 PMCID: PMC8222735 DOI: 10.3389/fimmu.2021.688460] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/24/2021] [Indexed: 12/15/2022] Open
Abstract
Survival after solid organ transplantation (SOT) is limited by chronic rejection as well as the need for lifelong immunosuppression and its associated toxicities. Several preclinical and clinical studies have tested methods designed to induce transplantation tolerance without lifelong immune suppression. The limited success of these strategies has led to the development of clinical protocols that combine SOT with other approaches, such as allogeneic hematopoietic stem cell transplantation (HSCT). HSCT prior to SOT facilitates engraftment of donor cells that can drive immune tolerance. Recent innovations in graft manipulation strategies and post-HSCT immune therapy provide further advances in promoting tolerance and improving clinical outcomes. In this review, we discuss conventional and unconventional immunological mechanisms underlying the development of immune tolerance in SOT recipients and how they can inform clinical advances. Specifically, we review the most recent mechanistic studies elucidating which immune regulatory cells dampen cytotoxic immune reactivity while fostering a tolerogenic environment. We further discuss how this understanding of regulatory cells can shape graft engineering and other therapeutic strategies to improve long-term outcomes for patients receiving HSCT and SOT.
Collapse
Affiliation(s)
- Priscila Ferreira Slepicka
- Division of Hematology, Oncology and Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| | - Mahboubeh Yazdanifar
- Division of Hematology, Oncology and Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| | - Alice Bertaina
- Division of Hematology, Oncology and Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
18
|
Mansourabadi AH, Mohamed Khosroshahi L, Noorbakhsh F, Amirzargar A. Cell therapy in transplantation: A comprehensive review of the current applications of cell therapy in transplant patients with the focus on Tregs, CAR Tregs, and Mesenchymal stem cells. Int Immunopharmacol 2021; 97:107669. [PMID: 33965760 DOI: 10.1016/j.intimp.2021.107669] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023]
Abstract
Organ transplantation is a practical treatment for patients with end-stage organ failure. Despite the advances in short-term graft survival, long-term graft survival remains the main challenge considering the increased mortality and morbidity associated with chronic rejection and the toxicity of immunosuppressive drugs. Since a novel therapeutic strategy to induce allograft tolerance seems urgent, focusing on developing novel and safe approaches to prolong graft survival is one of the main goals of transplant investigators. Researchers in the field of organ transplantation are interested in suppressing or optimizing the immune responses by focusing on immune cells including mesenchymal stem cells (MSCs), polyclonal regulatory Tcells (Tregs), and antigen-specific Tregs engineered with chimeric antigen receptors (CAR Tregs). We review the mechanistic pathways, phenotypic and functional characteristics of these cells, and their promising application in organ transplantation.
Collapse
Affiliation(s)
- Amir Hossein Mansourabadi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, 009821 Tehran, Iran; Network of Immunity in Infection, Malignancy, and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), 009821 Tehran, Iran; Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), 009821 Tehran, Iran
| | - Leila Mohamed Khosroshahi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, 009821 Tehran, Iran
| | - Farshid Noorbakhsh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, 009821 Tehran, Iran.
| | - Aliakbar Amirzargar
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, 009821 Tehran, Iran.
| |
Collapse
|
19
|
Oberbauer R, Edinger M, Berlakovich G, Kalhs P, Worel N, Heinze G, Wolzt M, Lion T, Wekerle T. A Prospective Controlled Trial to Evaluate Safety and Efficacy of in vitro Expanded Recipient Regulatory T Cell Therapy and Tocilizumab Together With Donor Bone Marrow Infusion in HLA-Mismatched Living Donor Kidney Transplant Recipients (Trex001). Front Med (Lausanne) 2021; 7:634260. [PMID: 33585521 PMCID: PMC7873436 DOI: 10.3389/fmed.2020.634260] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 12/31/2020] [Indexed: 12/28/2022] Open
Abstract
Background: The induction of donor-specific immunological tolerance could improve outcome after kidney transplantation. However, no tolerance protocol is available for routine clinical use. Chimerism-based regimens hold promise, but their widespread application is impeded in part by unresolved safety issues. This study tests the hypothesis that therapy with polyclonal recipient regulatory T cells (Tregs) and anti-IL6R (tocilizumab) leads to transient chimerism and achieves pro-tolerogenic immunomodulation in kidney transplant recipients also receiving donor bone marrow (BM) without myelosuppressive conditioning of the recipient. Methods/design: A prospective, open-label, controlled, single-center, phase I/IIa academic study is performed in HLA-mismatched living donor kidney transplant recipients. Study group: Recipients of the study group receive in vitro expanded recipient Tregs and a donor bone marrow cell infusion within 3 days after transplantation and tocilizumab for the first 3 weeks post-transplant. In addition they are treated with thymoglobulin, belatacept, sirolimus, and steroids as immunosuppression. Starting 6 months post-transplant, sirolimus and steroids are withdrawn in a step-wise manner in stable patients. Control group: Recipients of the control group are treated with thymoglobulin, belatacept, sirolimus, and steroids as immunosuppression. Co-primary endpoints of safety (impaired graft function [eGFR <35 mL/min/1.73 m2], graft-vs.-host disease or patient death by 12 months) and efficacy (total leukocyte donor chimerism within 28 days post-transplant) are assessed. Secondary endpoints include frequency of biopsy-proven acute rejection episodes and subclinical rejection episodes on surveillance biopsies, assessment of kidney graft function, and the evaluation whether the study protocol leads to detectable changes in the immune system indicative of pro-tolerogenic immune modulation. Discussion: The results of this trial will provide evidence whether treatment with recipient Tregs and donor BM is feasible, safe and efficacious in leading to transient chimerism. If successful, this combination cell therapy has the potential to become a novel treatment option for immunomodulation in organ transplantation without the toxicities associated with myelosuppressive recipient conditioning. Trial registration: European Clinical Trials Database EudraCT Nr 2018-003142-16 and clinicaltrials.gov NCT03867617.
Collapse
Affiliation(s)
- Rainer Oberbauer
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Matthias Edinger
- University Hospital Regensburg, Department of Internal Medicine III & Regensburg Center for Interventional Immunology (RCI), Regensburg, Germany
| | - Gabriela Berlakovich
- Division of Transplantation, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Peter Kalhs
- Bone Marrow Transplant Unit, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Nina Worel
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria
| | - Georg Heinze
- Section for Clinical Biometrics, Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Michael Wolzt
- Clinical Trials Coordination Centre, Medical University of Vienna, Vienna, Austria
| | - Thomas Lion
- St. Anna Children's Cancer Research Institute, Vienna, Austria.,Ludwig Boltzmann Institute for Hematology & Oncology, Medical University of Vienna, Vienna, Austria.,Labdia Labordiagnostik GmbH, Vienna, Austria.,Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Thomas Wekerle
- Section of Transplantation Immunology, Division of Transplantation, Department of Surgery, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
20
|
Regulatory Cell Therapy in Kidney Transplantation: Promise Not Yet Fulfilled. Transplantation 2020; 104:2262-2263. [PMID: 33125204 DOI: 10.1097/tp.0000000000003150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Matar AJ, Crepeau RL, Duran-Struuck R. Cellular Immunotherapies in Preclinical Large Animal Models of Transplantation. Transplant Cell Ther 2020; 27:36-44. [PMID: 33017660 DOI: 10.1016/j.bbmt.2020.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/29/2020] [Accepted: 09/28/2020] [Indexed: 10/23/2022]
Abstract
Hematopoietic stem cell (HSC) transplantation and solid organ transplantation remain the only curative options for many hematologic malignancies and end-stage organ diseases. Unfortunately, the sequelae of long-term immunosuppression, as well as acute and chronic rejection, carry significant morbidities, including infection, malignancy, and graft loss. Numerous murine models have demonstrated the efficacy of adjunctive cellular therapies using HSCs, regulatory T cells, mesenchymal stem cells, and regulatory dendritic cells in modulating the alloimmune response in favor of graft tolerance; however, translation of such murine approaches to other preclinical models and in the clinic has yielded mixed results. Large animals, including nonhuman primates, swine, and canines, provide a more immunologically rigorous model in which to test the clinical translatability of these cellular therapies. Here, we highlight the contributions of large animal models to the development and optimization of HSCs and additional cellular therapies to improve organ transplantation outcomes.
Collapse
Affiliation(s)
- Abraham J Matar
- Emory Transplant Center, Emory University School of Medicine, Atlanta, Georgia
| | - Rebecca L Crepeau
- Emory Transplant Center, Emory University School of Medicine, Atlanta, Georgia
| | - Raimon Duran-Struuck
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania.
| |
Collapse
|
22
|
Abstract
The present review discusses current developments in tolerance induction for solid organ transplantation with a particular emphasis on chimerism-based approaches. It explains the basic mechanisms of chimerism-based tolerance and provides an update on ongoing clinical tolerance trials. The concept of "delayed tolerance" is presented, and ongoing preclinical studies in the nonhuman primate setting-including current limitations and hurdles regarding this approach-are illustrated. In addition, a brief overview and update on cell-based tolerogenic clinical trials is provided. In a critical approach, advantages, limitations, and potential implications for the future of these different regimens are discussed.
Collapse
|
23
|
Schweizer R, Taddeo A, Waldner M, Klein HJ, Fuchs N, Kamat P, Targosinski S, Barth AA, Drach MC, Gorantla VS, Cinelli P, Plock JA. Adipose-derived stromal cell therapy combined with a short course nonmyeloablative conditioning promotes long-term graft tolerance in vascularized composite allotransplantation. Am J Transplant 2020; 20:1272-1284. [PMID: 31774619 DOI: 10.1111/ajt.15726] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/18/2019] [Accepted: 11/20/2019] [Indexed: 01/25/2023]
Abstract
The risks of chronic immunosuppression limit the utility of vascularized composite allotransplantation (VCA) as a reconstructive option in complex tissue defects. We evaluated a novel, clinically translatable, radiation-free conditioning protocol that combines anti-lymphocyte serum (ALS), tacrolimus, and cytotoxic T-lymphocyte-associated protein 4 immunoglobulin (CTLA4-Ig) with adipose-derived stromal cells (ASCs) to allow VCA survival without long-term systemic immunosuppression. Full-mismatched rat hind-limb-transplant recipients received tacrolimus (0.5 mg/kg) for 14 days and were assigned to 4 groups: controls (CTRL) received no conditioning; ASC-group received CTLA4-Ig (10 mg/kg body weight i.p. postoperative day [POD] 2, 4, 7) and donor ASCs (1 × 106 iv, POD 2, 4, 7, 15, 28); the ASC-cyclophosphamide (CYP)-group received CTLA4-Ig, ASC plus cyclophosphamide (50 mg/kg ip, POD 3); the ASC-ALS-group received CTLA4-Ig, ASCs plus ALS (500 µL ip, POD 1, 5). Banff grade III or 120 days were endpoints. ASCs suppressed alloresponse in vitro. Median rejection-free VCA survival was 28 days in CTRL (n = 7), 34 in ASC (n = 6), and 27.5 in ASC-CYP (n = 4). In contrast, ASC-ALS achieved significantly longer, rejection-free VCA survival in 6/7 animals (86%), with persistent mixed donor-cell chimerism, and elevated systemic and allograft skin Tregs , with no signs of acute cellular rejection. Taken together, a regimen comprised of short-course tacrolimus, repeated CTLA4-Ig and ASC administration, combined with ALS, promotes long-term VCA survival without chronic immunosuppression.
Collapse
Affiliation(s)
- Riccardo Schweizer
- Department of Plastic Surgery and Hand Surgery, Regenerative and Reconstructive Plastic Surgery Laboratory, University Hospital Zurich (USZ), University of Zurich, Zurich, Switzerland
| | - Adriano Taddeo
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Matthias Waldner
- Department of Plastic Surgery and Hand Surgery, Regenerative and Reconstructive Plastic Surgery Laboratory, University Hospital Zurich (USZ), University of Zurich, Zurich, Switzerland
| | - Holger J Klein
- Department of Plastic Surgery and Hand Surgery, Regenerative and Reconstructive Plastic Surgery Laboratory, University Hospital Zurich (USZ), University of Zurich, Zurich, Switzerland
| | - Nina Fuchs
- Department of Plastic Surgery and Hand Surgery, Regenerative and Reconstructive Plastic Surgery Laboratory, University Hospital Zurich (USZ), University of Zurich, Zurich, Switzerland
| | - Pranitha Kamat
- Department of Plastic Surgery and Hand Surgery, Regenerative and Reconstructive Plastic Surgery Laboratory, University Hospital Zurich (USZ), University of Zurich, Zurich, Switzerland
| | - Stefan Targosinski
- Department of Plastic Surgery and Hand Surgery, Regenerative and Reconstructive Plastic Surgery Laboratory, University Hospital Zurich (USZ), University of Zurich, Zurich, Switzerland
| | - André A Barth
- Department of Plastic Surgery and Hand Surgery, Regenerative and Reconstructive Plastic Surgery Laboratory, University Hospital Zurich (USZ), University of Zurich, Zurich, Switzerland
| | - Mathias C Drach
- Department of Dermatology, University Hospital Zurich (USZ), University of Zurich, Zurich, Switzerland
| | - Vijay S Gorantla
- Department of Surgery, Wake Forest Baptist Medical Center, Institute for Regenerative Medicine, Winston-Salem, North Carolina
| | - Paolo Cinelli
- Department of Traumatology, Division of Surgical Research, University Hospital Zurich (USZ), University of Zurich, Zurich, Switzerland
| | - Jan A Plock
- Department of Plastic Surgery and Hand Surgery, Regenerative and Reconstructive Plastic Surgery Laboratory, University Hospital Zurich (USZ), University of Zurich, Zurich, Switzerland
| |
Collapse
|
24
|
Mancusi A, Piccinelli S, Velardi A, Pierini A. CD4 +FOXP3 + Regulatory T Cell Therapies in HLA Haploidentical Hematopoietic Transplantation. Front Immunol 2019; 10:2901. [PMID: 31921162 PMCID: PMC6927932 DOI: 10.3389/fimmu.2019.02901] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/26/2019] [Indexed: 12/11/2022] Open
Abstract
Since their discovery CD4+FOXP3+ regulatory T cells (Tregs) represented a promising tool to induce tolerance in allogeneic hematopoietic cell transplantation. Preclinical models proved that adoptive transfer of Tregs or the use of compounds that can favor their function in vivo are effective for prevention and treatment of graft-vs.-host disease (GvHD). Following these findings, Treg-based therapies have been employed in clinical trials. Adoptive immunotherapy with Tregs effectively prevents GvHD induced by alloreactive T cells in the setting of one HLA haplotype mismatched hematopoietic transplantation. The absence of post transplant pharmacologic immunosuppression unleashes T-cell mediated graft-vs.-tumor (GvT) effect, which results in an unprecedented, almost complete control of leukemia relapse in this setting. In the present review, we will report preclinical studies and clinical trials that demonstrate Treg ability to promote donor engraftment, protect from GvHD and improve GvT effect. We will also discuss new strategies to further enhance in vivo efficacy of Treg-based therapies.
Collapse
Affiliation(s)
- Antonella Mancusi
- Hematology and Clinical Immunology and Bone Marrow Transplant Program, Department of Medicine, University of Perugia, Perugia, Italy
| | - Sara Piccinelli
- Hematology and Clinical Immunology and Bone Marrow Transplant Program, Department of Medicine, University of Perugia, Perugia, Italy
| | - Andrea Velardi
- Hematology and Clinical Immunology and Bone Marrow Transplant Program, Department of Medicine, University of Perugia, Perugia, Italy
| | - Antonio Pierini
- Hematology and Clinical Immunology and Bone Marrow Transplant Program, Department of Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
25
|
Abstract
This review focuses on our recent studies involving nonmyeloablative bone marrow transplantation as an approach to inducing organ allograft tolerance across MHC barriers in nonhuman primates and in patients. The clinical studies are focused on mechanisms of tolerance involved in a protocol carried out at Massachusetts General Hospital in HLA-mismatched haploidentical combinations for the induction of renal allograft tolerance. These studies, in which chimerism was only transient and GVHD did not occur, suggest an early role for donor-specific regulatory T cells in tolerance induction, followed by partial and gradual deletion of donor-reactive T cells. We utilized high-throughput sequencing methodologies in a novel way to identify and track large numbers of alloreactive T cell receptors (TCRs). This method has been shown to identify biologically significant alloreactive TCRs in transplant patients and pointed to clonal deletion as a major mechanism of long-term tolerance in these patients. More recently, we adapted this sequencing method to optimally identify the donor-specific regulatory T cell (Treg) repertoire. Interrogation of the early posttransplant repertoire demonstrated expansion of donor-specific Tregs in association with tolerance. Our studies suggest a role for the kidney graft in tolerance by these mechanisms in patients who had only transient chimerism. Nonhuman primate studies indicate that other organs, including the heart, the lungs and the liver, are less readily tolerated following a period of transient mixed chimerism. Our efforts to extend the reach of mixed chimerism for tolerance induction beyond the kidney are therefore focused on the addition of recipient Tregs to the protocol. This approach has the potential to enhance chimerism while further reducing the risk of GVHD.
Collapse
Affiliation(s)
- Megan Sykes
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, USA.
- Department of Medicine, Columbia University Medical Center, New York, NY, USA.
- Department of Microbiology & Immunology, Columbia University Medical Center, New York, NY, USA.
- Department of Surgery, Columbia University Medical Center, New York, NY, USA.
| | - Adam D Griesemer
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, USA
- Department of Surgery, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
26
|
Treg-mediated prolonged survival of skin allografts without immunosuppression. Proc Natl Acad Sci U S A 2019; 116:13508-13516. [PMID: 31196957 PMCID: PMC6613183 DOI: 10.1073/pnas.1903165116] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Injection of Interleukin-2 (IL-2) complexed with a particular anti-IL-2 monoclonal antibody (mab) JES6-1 has been shown to selectively expand CD4+Foxp3+ T regulatory T cells (Tregs) in vivo. Although the potency of this approach with regard to transplantation has already been proven in an islet transplantation model, skin graft survival could not be prolonged. Since the latter is relevant to human allograft survival, we sought to improve the efficiency of IL-2 complex (cplx) treatment for skin allograft survival in a stringent murine skin graft model. Here, we show that combining low doses of IL-2 cplxs with rapamycin and blockade of the inflammatory cytokine IL-6 leads to long-term (>75 d) survival of major histocompatibility complex-different skin allografts without the need for immunosuppression. Allograft survival was critically dependent on CD25+FoxP3+ Tregs and was not accompanied by impaired responsiveness toward donor alloantigens in vitro after IL-2 cplx treatment was stopped. Furthermore, second donor-type skin grafts were rejected and provoked rejection of the primary graft, suggesting that operational tolerance is not systemic but restricted to the graft. These findings plus the lack of donor-specific antibody formation imply that prolonged graft survival was largely a reflection of immunological ignorance. The results may represent a potentially clinically translatable strategy for the development of protocols for tolerance induction.
Collapse
|
27
|
Different phenotypes of CD4 +CD25 +Foxp3 + regulatory T cells in recipients post liver transplantation. Int Immunopharmacol 2019; 69:194-201. [PMID: 30735938 DOI: 10.1016/j.intimp.2019.01.048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/25/2019] [Accepted: 01/30/2019] [Indexed: 11/20/2022]
Abstract
CD4+ regulatory T cells (Tregs) play an important role in inducing immune tolerance in organ transplantation, which can be divided into CD45RA+Tregs (resting Tregs, rTregs) and CD45RO+Tregs (activated Tregs, aTregs). Currently, the expressions and phenotypic changes of Tregs in recipients after liver transplantation (LT) is unknown. We therefore investigated the expression and transformation of rTregs and aTregs in 83 cases of recipients with normal status post-LT. The percentages of CD45RA, CD45RO, CD31 in CD4+Tregs were detected by flow cytometry and the effective factors were analyzed. In LT recipients, the percentage of CD45RO+Tregs in CD4+Tregs was higher than that of CD45RA+Tregs. There was significant difference in the ratio of positive Foxp3 between CD45RA+Tregs and CD45RO+Tregs. Percentage of CD45RA+Tregs was higher in pediatric group than that in adult group, whereas percentage of CD45RO+Tregs was lower in the pediatric group. However, it was different only in CD45RO+Tregs in various survival periods post-LT. In conclusion, Tregs pool in human was heterogeneous post-LT and contained different subsets in phenotypes. Upon stimulation by donor graft, percentages of CD4+Tregs and CD45RO+Tregs were increased post-LT and most of rTregs was transformed into aTregs in peripheral blood, and rTregs and aTregs were both related to recipients' ages.
Collapse
|
28
|
Mahr B, Pilat N, Granofszky N, Wiletel M, Muckenhuber M, Maschke S, Hock K, Wekerle T. Hybrid resistance to parental bone marrow grafts in nonlethally irradiated mice. Am J Transplant 2019; 19:591-596. [PMID: 30346652 PMCID: PMC6492153 DOI: 10.1111/ajt.15146] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/05/2018] [Accepted: 10/10/2018] [Indexed: 01/25/2023]
Abstract
Resistance to parental bone marrow (BM) grafts in F1 hybrid recipients is due to natural killer (NK) cell-mediated rejection triggered through "missing self" recognition. "Hybrid resistance" has usually been investigated in lethally irradiated F1 recipients in conjunction with pharmacological activation of NK cells. Here, we investigated BM-directed NK-cell alloreactivity in settings of reduced conditioning. Nonlethally irradiated (1-3 Gy) or nonirradiated F1 (C57BL6 × BALB/c) recipient mice received titrated doses (5-20 x 106 ) of unseparated parental BALB/c BM without pharmacological NK cell activation. BM successfully engrafted in all mice and multilineage donor chimerism persisted long-term (24 weeks), even in the absence of irradiation. Chimerism was associated with the rearrangement of the NK-cell receptor repertoire suggestive of reduced reactivity to BALB/c. Chimerism levels were lower after transplantation with parental BALB/c than with syngeneic F1 BM, indicating partial NK-mediated rejection of parental BM. Activation of NK cells with polyinosinic-polycytidylic acid sodium salt poly(I:C), reduced parental chimerism in nonirradiated BM recipients but did not prevent hematopoietic stem cell engraftment. In contrast, equal numbers of parental lymph node cells were completely rejected. Hence, hybrid resistance leads to incomplete rejection of parental BM under reduced conditioning settings.
Collapse
Affiliation(s)
- Benedikt Mahr
- Section of Transplantation ImmunologyDepartment of SurgeryMedical University of ViennaViennaAustria
| | - Nina Pilat
- Section of Transplantation ImmunologyDepartment of SurgeryMedical University of ViennaViennaAustria
| | - Nicolas Granofszky
- Section of Transplantation ImmunologyDepartment of SurgeryMedical University of ViennaViennaAustria
| | - Mario Wiletel
- Section of Transplantation ImmunologyDepartment of SurgeryMedical University of ViennaViennaAustria
| | - Moritz Muckenhuber
- Section of Transplantation ImmunologyDepartment of SurgeryMedical University of ViennaViennaAustria
| | - Svenja Maschke
- Section of Transplantation ImmunologyDepartment of SurgeryMedical University of ViennaViennaAustria
| | - Karin Hock
- Section of Transplantation ImmunologyDepartment of SurgeryMedical University of ViennaViennaAustria
| | - Thomas Wekerle
- Section of Transplantation ImmunologyDepartment of SurgeryMedical University of ViennaViennaAustria
| |
Collapse
|
29
|
Katsumata H, Miyairi S, Ikemiyagi M, Hirai T, Fukuda H, Kanzawa T, Ishii R, Saiga K, Ishii Y, Omoto K, Okumi M, Yokoo T, Tanabe K. Evaluation of the impact of conventional immunosuppressant on the establishment of murine transplantation tolerance - an experimental study. Transpl Int 2019; 32:443-453. [PMID: 30561097 DOI: 10.1111/tri.13390] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 12/11/2018] [Indexed: 12/17/2022]
Abstract
Regulatory T cells (Tregs) play a significant role in immune tolerance. Since Treg function deeply depends on Interleukin-2 signaling, calcineurin inhibitors could affect their suppressive potentials, whereas mammalian target of rapamycin (mTOR) inhibitors may have less impact, as mTOR signaling is not fundamental to Treg proliferation. We previously reported a novel mixed hematopoietic chimerism induction regimen that promotes Treg proliferation by stimulating invariant natural killer T cells under CD40 blockade. Here, we use a mouse model to show the impact of tacrolimus (TAC) or everolimus (EVL) on the establishment of chimerism and Treg proliferation in the regimen. In the immunosuppressive drug-dosing phase, peripheral blood chimerism was comparably enhanced by both TAC and EVL. After dosing was discontinued, TAC-treated mice showed gradual graft rejection, whereas EVL-treated mice sustained long-term robust chimerism. Tregs of TAC-treated mice showed lower expression of both Ki67 and cytotoxic T lymphocyte antigen-4 (CTLA-4), and lower suppressive activity in vitro than those of EVL-treated mice, indicating that TAC negatively impacted the regimen by interfering with Treg proliferation and activation. Our results suggest that the usage of calcineurin inhibitors should be avoided if utilizing the regimen to induce Tregs in vivo for the establishment of mixed hematopoietic chimerism.
Collapse
Affiliation(s)
- Haruki Katsumata
- Department of Urology, Tokyo Women's Medical University, Kawadacho, Shinjuku-ku, Tokyo, Japan.,Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Satoshi Miyairi
- Department of Urology, Tokyo Women's Medical University, Kawadacho, Shinjuku-ku, Tokyo, Japan.,Department of Cardiovascular Surgery, Tokyo Women's Medical University, Kawadacho, Shinjuku-ku, Tokyo, Japan
| | - Masako Ikemiyagi
- Department of Urology, Tokyo Women's Medical University, Kawadacho, Shinjuku-ku, Tokyo, Japan
| | - Toshihito Hirai
- Department of Urology, Tokyo Women's Medical University, Kawadacho, Shinjuku-ku, Tokyo, Japan
| | - Hironori Fukuda
- Department of Urology, Tokyo Women's Medical University, Kawadacho, Shinjuku-ku, Tokyo, Japan
| | - Taichi Kanzawa
- Department of Urology, Tokyo Women's Medical University, Kawadacho, Shinjuku-ku, Tokyo, Japan
| | - Rumi Ishii
- Department of Urology, Tokyo Women's Medical University, Kawadacho, Shinjuku-ku, Tokyo, Japan
| | - Kan Saiga
- Department of Urology, Tokyo Women's Medical University, Kawadacho, Shinjuku-ku, Tokyo, Japan.,Department of Urology, Jyoban Hosipital of Tokiwa Foundation, Fukushima, Japan
| | - Yasuyuki Ishii
- Vaccine Innovation Laboratory, RIKEN Cluster for Science, Technology and Innovation Hub (RCSTI), RIKEN, Suehirocho, Tsurumi-ku, Yokohama, Kanagawa, Japan.,REGiMMUNE Corporation, Nihonbashi-Hakozakicho, Chuou-ku, Tokyo, Japan
| | - Kazuya Omoto
- Department of Urology, Tokyo Women's Medical University, Kawadacho, Shinjuku-ku, Tokyo, Japan
| | - Masayoshi Okumi
- Department of Urology, Tokyo Women's Medical University, Kawadacho, Shinjuku-ku, Tokyo, Japan
| | - Takashi Yokoo
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Kazunari Tanabe
- Department of Urology, Tokyo Women's Medical University, Kawadacho, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
30
|
Katsumata H, Ikemiyagi M, Hirai T, Kanzawa T, Ishii R, Miyairi S, Fukuda H, Saiga K, Okumi M, Ishii Y, Yokoo T, Tanabe K. Impact of activated invariant natural killer T cells on the expansion of regulatory T cell precursors in murine thymocytes in vitro. Immunol Lett 2018; 206:41-48. [PMID: 30503823 DOI: 10.1016/j.imlet.2018.11.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/08/2018] [Accepted: 11/28/2018] [Indexed: 02/02/2023]
Abstract
Tolerance induction is a goal of clinical transplantation to prevent graft rejection without the lifelong use of immunosuppressive drugs. In a series of mouse studies, we previously reported that the establishment of mixed chimerism by treatment with a ligand for invariant natural killer T (iNKT) cells with CD40 signal blockade makes it possible to prevent allograft rejection without immunosuppressants, and this approach fails in thymectomized recipient mice. In this study, we showed that iNKT cells in murine thymocyte cultures are indispensable for the expansion of CD4+CD25+Foxp3+ regulatory T (Treg) cells as well as CD4+CD25+Foxp3- cells, which contained precursor Tregs (preTregs). After the culture of BALB/c mouse-derived thymocytes in the presence of α-galactosylceramide (α-GalCer), a representative ligand for iNKT cells, the ratio of CD4+CD25+Foxp3- preTregs to total CD4+CD8- T cells was much higher than that of CD4+CD25+Foxp3+ Treg cells, regardless of anti-CD40 L mAb treatment. The proliferation of CD4+CD25+Foxp3- cells, but not Treg cells, was significantly augmented, and the stability of Treg cells was not affected by α-GalCer. The expansion of thymocyte-derived Tregs was not inhibited by cytokine neutralization. However, in vitro thymus-derived CD4+CD25+Foxp3- cells expressed Foxp3 after IL-2 stimulation in a dose-dependent manner. These results collectively suggest that in vitro thymus-derived Treg cell expansion by α-GalCer treatment was caused by the proliferation of CD4+CD25+Foxp3- preTregs but not existing Treg cells.
Collapse
Affiliation(s)
- Haruki Katsumata
- Department of Urology, Tokyo Women's Medical University, Kawadacho, Shinjuku-ku, Tokyo, 162-8666, Japan; Division of Nephrology and hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, 105-8471, Japan
| | - Masako Ikemiyagi
- Department of Urology, Tokyo Women's Medical University, Kawadacho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Toshihito Hirai
- Department of Urology, Tokyo Women's Medical University, Kawadacho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Taichi Kanzawa
- Department of Urology, Tokyo Women's Medical University, Kawadacho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Rumi Ishii
- Department of Urology, Tokyo Women's Medical University, Kawadacho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Satoshi Miyairi
- Department of Urology, Tokyo Women's Medical University, Kawadacho, Shinjuku-ku, Tokyo, 162-8666, Japan; Department of Cardiovascular Surgery, Tokyo Women's Medical University, Kawadacho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Hironori Fukuda
- Department of Urology, Tokyo Women's Medical University, Kawadacho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Kan Saiga
- Department of Urology, Tokyo Women's Medical University, Kawadacho, Shinjuku-ku, Tokyo, 162-8666, Japan; Department of Urology, Jyoban Hosipital of Tokiwa Foundation, Fukushima, Japan
| | - Masayoshi Okumi
- Department of Urology, Tokyo Women's Medical University, Kawadacho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Yasuyuki Ishii
- Vaccine Innovation Laboratory, RIKEN Cluster for Science, Technology and Innovation Hub (RCSTI), RIKEN, Suehirocho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan; REGiMMUNE Corporation, Nihonbashi-Hakozakicho, Chuou-ku, Tokyo, 103-0015, Japan
| | - Takashi Yokoo
- Division of Nephrology and hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, 105-8471, Japan
| | - Kazunari Tanabe
- Department of Urology, Tokyo Women's Medical University, Kawadacho, Shinjuku-ku, Tokyo, 162-8666, Japan.
| |
Collapse
|
31
|
Abstract
β cell replacement with either pancreas or islet transplantation has progressed immensely over the last decades with current 1- and 5-year insulin independence rates of approximately 85% and 50%, respectively. Recent advances are largely attributed to improvements in immunosuppressive regimen, donor selection, and surgical technique. However, both strategies are compromised by a scarce donor source. Xenotransplantation offers a potential solution by providing a theoretically unlimited supply of islets, but clinical application has been limited by concerns for a potent immune response against xenogeneic tissue. β cell clusters derived from embryonic or induced pluripotent stem cells represent another promising unlimited source of insulin producing cells, but clinical application is pending further advances in the function of the β cell like clusters. Exciting developments and rapid progress in all areas of β cell replacement prompted a lively debate by members of the young investigator committee of the International Pancreas and Islet Transplant Association at the 15th International Pancreas and Islet Transplant Association Congress in Melbourne and at the 26th international congress of The Transplant Society in Hong Kong. This international group of young investigators debated which modality of β cell replacement would predominate the landscape in 10 years, and their arguments are summarized here.
Collapse
|
32
|
CTLA4Ig Improves Murine iTreg Induction via TGF β and Suppressor Function In Vitro. J Immunol Res 2018; 2018:2484825. [PMID: 30057914 PMCID: PMC6051081 DOI: 10.1155/2018/2484825] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/26/2018] [Accepted: 05/29/2018] [Indexed: 12/30/2022] Open
Abstract
Blockade of the CD28:CD80/86 costimulatory pathway has been shown to be potent in blocking T cell activation in vitro and in vivo. The costimulation blocker CTLA4Ig has been approved for the treatment of autoimmune diseases and transplant rejection. The therapeutic application of regulatory T cells (Tregs) has recently gained much attention for its potential of improving allograft survival. However, neither costimulation blockade with CTLA4Ig nor Treg therapy induces robust tolerance on its own. Combining CTLA4Ig with Treg therapy would be an attractive approach for minimizing immunosuppression or for possibly achieving tolerance. However, since the CD28 pathway is more complex than initially thought, the question arose whether blocking CD80/86 would inadvertently impact immunological tolerance by interfering with Treg generation and function. We therefore wanted to investigate the compatibility of CTLA4Ig with regulatory T cells by evaluating direct effects of CTLA4Ig on murine Treg generation and function in vitro. For generation of polyclonal-induced Tregs, we utilized an APC-free in vitro system and added titrated doses of CTLA4Ig at different time points. Phenotypical characterization by flow cytometry and functional characterization in suppressor assays did not reveal negative effects by CTLA4Ig. The costimulation blocker CTLA4Ig does not impair but rather improves murine iTreg generation and suppressor function in vitro.
Collapse
|
33
|
Pilat N, Sabler P, Klaus C, Mahr B, Unger L, Hock K, Wiletel M, Schwarz C, Kristo I, Regele H, Wekerle T. Blockade of adhesion molecule lymphocyte function-associated antigen-1 improves long-term heart allograft survival in mixed chimeras. J Heart Lung Transplant 2018; 37:1119-1130. [PMID: 29699851 DOI: 10.1016/j.healun.2018.03.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 03/16/2018] [Accepted: 03/28/2018] [Indexed: 10/17/2022] Open
Abstract
BACKGROUND The mixed chimerism approach for intentional induction of donor-specific tolerance was shown to be successful in various models from mice to humans. For transplant patients, the approach would obviate the need for long-term immunosuppression and associated side effects; moreover, it would preclude the risk of late graft loss due to chronic rejection. Widespread clinical application is hindered by toxicities related to recipient pre-conditioning. Herein we aimed to investigate a clinically relevant protocol for tolerance induction to cardiac allografts, sparing CD40 blockade or T-cell depletion. METHODS B6 mice were conditioned with non-myeloablative total body irradiation, fully mismatched BALB/c bone marrow cells, and short-term therapy, based on either anti- lymphocyte function-associated antigen-1 (anti-LFA-1) or anti-CD40L. Multilineage chimerism was followed by flow-cytometric analysis, tolerance was assessed with skin and heart allografts from fully or major histocompatibility complex-mismatched donors. Mechanisms of tolerance were investigated by analysis of donor-specific antibodies (DSAs), mixed lymphocyte reaction (MLR) assays, and deletion of donor-reactive T cells. RESULTS We found that the combination of cytotoxic T-lymphocyte antigen 4 immunoglobulin (CTLA4Ig) and rapamycin with LFA-1 blockade enhanced bone marrow engraftment and led to more efficient T-cell engraftment and subsequent tolerization. Although fully mismatched skin grafts were chronically rejected, primarily vascularized heart allografts survived indefinitely and without signs of chronic rejection, independent of minor antigen mismatches. CONCLUSIONS We have demonstarted a robust protocol for the induction of tolerance for cardiac allografts in the absence of CD40 blockade. Our findings demonstrate the potential of a clinically relevant minimal conditioning protocol designed to induce lifelong immunologic tolerance toward cardiac allografts.
Collapse
Affiliation(s)
- Nina Pilat
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Vienna, Austria.
| | - Philipp Sabler
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Christoph Klaus
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Benedikt Mahr
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Lukas Unger
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Karin Hock
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Mario Wiletel
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Christoph Schwarz
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Ivan Kristo
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Heinz Regele
- Institute of Clinical Pathology, Medical University of Vienna, Vienna, Austria
| | - Thomas Wekerle
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
34
|
Hirata Y, Furuhashi K, Ishii H, Li HW, Pinho S, Ding L, Robson SC, Frenette PS, Fujisaki J. CD150 high Bone Marrow Tregs Maintain Hematopoietic Stem Cell Quiescence and Immune Privilege via Adenosine. Cell Stem Cell 2018; 22:445-453.e5. [PMID: 29456159 PMCID: PMC6534147 DOI: 10.1016/j.stem.2018.01.017] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 09/19/2017] [Accepted: 01/19/2018] [Indexed: 12/22/2022]
Abstract
A crucial player in immune regulation, FoxP3+ regulatory T cells (Tregs) are drawing attention for their heterogeneity and noncanonical functions. Here, we describe a Treg subpopulation that controls hematopoietic stem cell (HSC) quiescence and engraftment. These Tregs highly expressed an HSC marker, CD150, and localized within the HSC niche in the bone marrow (BM). Specific reduction of BM Tregs achieved by conditional deletion of CXCR4 in Tregs increased HSC numbers in the BM. Adenosine generated via the CD39 cell surface ectoenzyme on niche Tregs protected HSCs from oxidative stress and maintained HSC quiescence. In transplantation settings, niche Tregs prevented allogeneic (allo-) HSC rejection through adenosine and facilitated allo-HSC engraftment. Furthermore, transfer of niche Tregs promoted allo-HSC engraftment to a much greater extent than transfer of other Tregs. These results identify a unique niche-associated Treg subset and adenosine as regulators of HSC quiescence, abundance, and engraftment, further highlighting their therapeutic utility.
Collapse
Affiliation(s)
- Yuichi Hirata
- Columbia Center for Translational Immunology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA; Columbia Stem Cell Initiative, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Kazuhiro Furuhashi
- Columbia Center for Translational Immunology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA; Columbia Stem Cell Initiative, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Hiroshi Ishii
- Columbia Center for Translational Immunology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA; Columbia Stem Cell Initiative, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Hao Wei Li
- Columbia Center for Translational Immunology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Sandra Pinho
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research and Departments of Cell Biology and Medicine, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Lei Ding
- Columbia Stem Cell Initiative, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA; Departments of Microbiology/Immunology and Rehabilitation and Regenerative Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Simon C Robson
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Paul S Frenette
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research and Departments of Cell Biology and Medicine, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Joji Fujisaki
- Columbia Center for Translational Immunology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA; Columbia Stem Cell Initiative, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA; Department of Pediatrics, Division of Hematology and Oncology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA.
| |
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW The attainment of tolerance remains a highly desirable goal in recipients of kidney transplants. Achievement of this goal would extend graft survival and eradicate toxicities related to long-term immunosuppression. Understanding mechanisms of tolerance and strategies to induce tolerance - their risk/benefit profiles - is essential for future success. RECENT FINDINGS Mechanistic studies of spontaneously tolerant kidney transplant recipients have uncovered potential roles for B or regulatory T cells, or both, in the maintenance of tolerance. Mixed hematopoietic chimerism has been the most commonly used approach to induce tolerance. Distinct protocols at three major transplant centers have led to successful withdrawal of immunosuppression in a subset of living donor kidney transplant recipients at the expense of complications such as infections and graft versus host disease. The addition of regulatory cell therapies to tolerance induction protocols could enhance success while minimizing complications. SUMMARY This review summarizes the features of spontaneous tolerance in kidney transplant recipients, the results of clinical trials of tolerance induction in the context of living donor kidney transplant, and potential measures to improve the safety and efficacy of tolerance induction strategies.
Collapse
|
36
|
Mahr B, Granofszky N, Muckenhuber M, Wekerle T. Transplantation Tolerance through Hematopoietic Chimerism: Progress and Challenges for Clinical Translation. Front Immunol 2017; 8:1762. [PMID: 29312303 PMCID: PMC5743750 DOI: 10.3389/fimmu.2017.01762] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 11/27/2017] [Indexed: 02/06/2023] Open
Abstract
The perception that transplantation of hematopoietic stem cells can confer tolerance to any tissue or organ from the same donor is widely accepted but it has not yet become a treatment option in clinical routine. The reasons for this are multifaceted but can generally be classified into safety and efficacy concerns that also became evident from the results of the first clinical pilot trials. In comparison to standard immunosuppressive therapies, the infection risk associated with the cytotoxic pre-conditioning necessary to allow allogeneic bone marrow engraftment and the risk of developing graft-vs.-host disease (GVHD) constitute the most prohibitive hurdles. However, several approaches have recently been developed at the experimental level to reduce or even overcome the necessity for cytoreductive conditioning, such as costimulation blockade, pro-apoptotic drugs, or Treg therapy. But even in the absence of any hazardous pretreatment, the recipients are exposed to the risk of developing GVHD as long as non-tolerant donor T cells are present. Total lymphoid irradiation and enriching the stem cell graft with facilitating cells emerged as potential strategies to reduce this peril. On the other hand, the long-lasting survival of kidney allografts, seen with transient chimerism in some clinical series, questions the need for durable chimerism for robust tolerance. From a safety point of view, loss of chimerism would indeed be favorable as it eliminates the risk of GVHD, but also complicates the assessment of tolerance. Therefore, other biomarkers are warranted to monitor tolerance and to identify those patients who can safely be weaned off immunosuppression. In addition to these safety concerns, the limited efficacy of the current pilot trials with approximately 40-60% patients becoming tolerant remains an important issue that needs to be resolved. Overall, the road ahead to clinical routine may still be rocky but the first successful long-term patients and progress in pre-clinical research provide encouraging evidence that deliberately inducing tolerance through hematopoietic chimerism might eventually make it from dream to reality.
Collapse
Affiliation(s)
- Benedikt Mahr
- Department of Surgery, Section of Transplantation Immunology, Medical University of Vienna, Vienna, Austria
| | - Nicolas Granofszky
- Department of Surgery, Section of Transplantation Immunology, Medical University of Vienna, Vienna, Austria
| | - Moritz Muckenhuber
- Department of Surgery, Section of Transplantation Immunology, Medical University of Vienna, Vienna, Austria
| | - Thomas Wekerle
- Department of Surgery, Section of Transplantation Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
37
|
Mahr B, Pilat N, Maschke S, Granofszky N, Schwarz C, Unger L, Hock K, Farkas AM, Klaus C, Regele H, Wekerle T. Regulatory T Cells Promote Natural Killer Cell Education in Mixed Chimeras. Am J Transplant 2017; 17:3049-3059. [PMID: 28489338 DOI: 10.1111/ajt.14342] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/24/2017] [Accepted: 04/27/2017] [Indexed: 01/25/2023]
Abstract
Therapeutic administration of regulatory T cells (Tregs) leads to engraftment of conventional doses of allogeneic bone marrow (BM) in nonirradiated recipient mice conditioned with costimulation blockade and mammalian target of rapamycin inhibition. The mode of action responsible for this Treg effect is poorly understood but may encompass the control of costimulation blockade-resistant natural killer (NK) cells. We show that transient NK cell depletion at the time of BM transplantation led to BM engraftment and persistent chimerism without Treg transfer but failed to induce skin graft tolerance. In contrast, the permanent absence of anti-donor NK reactivity in mice grafted with F1 BM was associated with both chimerism and tolerance comparable to Treg therapy, implying that NK cell tolerization is a critical mechanism of Treg therapy. Indeed, NK cells of Treg-treated BM recipients reshaped their receptor repertoire in the presence of donor MHC in a manner suggesting attenuated donor reactivity. These results indicate that adoptively transferred Tregs prevent BM rejection, at least in part, by suppressing NK cells and promote tolerance by regulating the appearance of NK cells expressing activating receptors to donor class I MHC.
Collapse
Affiliation(s)
- B Mahr
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - N Pilat
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - S Maschke
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - N Granofszky
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - C Schwarz
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - L Unger
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - K Hock
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - A M Farkas
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - C Klaus
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - H Regele
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - T Wekerle
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
38
|
Pilat N, Granofszky N, Wekerle T. Combining Adoptive Treg Transfer with Bone Marrow Transplantation for Transplantation Tolerance. CURRENT TRANSPLANTATION REPORTS 2017; 4:253-261. [PMID: 29201599 PMCID: PMC5691126 DOI: 10.1007/s40472-017-0164-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW The mixed chimerism approach is an exceptionally potent strategy for the induction of donor-specific tolerance in organ transplantation and so far the only one that was demonstrated to work in the clinical setting. Regulatory T cells (Tregs) have been shown to improve chimerism induction in experimental animal models. This review summarizes the development of innovative BMT protocols using therapeutic Treg transfer for tolerance induction. RECENT FINDINGS Treg cell therapy promotes BM engraftment in reduced conditioning protocols in both, mice and non-human primates. In mice, transfer of polyclonal recipient Tregs was sufficient to substitute cytotoxic recipient conditioning. Treg therapy prevented chronic rejection of skin and heart allografts related to tissue-specific antigen disparities, in part by promoting intragraft Treg accumulation. SUMMARY Adoptive Treg transfer is remarkably effective in facilitating BM engraftment in reduced-intensity protocols in mice and non-human primates. Furthermore, it promotes regulatory mechanisms that prevent chronic rejection.
Collapse
Affiliation(s)
- Nina Pilat
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Nicolas Granofszky
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Thomas Wekerle
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| |
Collapse
|
39
|
Zuber J, Sykes M. Mechanisms of Mixed Chimerism-Based Transplant Tolerance. Trends Immunol 2017; 38:829-843. [PMID: 28826941 PMCID: PMC5669809 DOI: 10.1016/j.it.2017.07.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 06/24/2017] [Accepted: 07/19/2017] [Indexed: 02/06/2023]
Abstract
Immune responses to allografts represent a major barrier in organ transplantation. Immune tolerance to avoid chronic immunosuppression is a critical goal in the field, recently achieved in the clinic by combining bone marrow transplantation (BMT) with kidney transplantation following non-myeloablative conditioning. At high levels of chimerism such protocols can permit central deletional tolerance, but with a significant risk of graft-versus-host (GVH) disease (GVHD). By contrast, transient chimerism-based tolerance is devoid of GVHD risk and appears to initially depend on regulatory T cells (Tregs) followed by gradual, presumably peripheral, clonal deletion of donor-reactive T cells. Here we review recent mechanistic insights into tolerance and the development of more robust and safer protocols for tolerance induction that will be guided by innovative immune monitoring tools.
Collapse
Affiliation(s)
- Julien Zuber
- Service de Transplantation Rénale, Hôpital Necker, Université Paris Descartes, Paris, France; INSERM UMRS_1163, IHU Imagine, Paris, France.
| | - Megan Sykes
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY 10032, USA; Department of Surgery, Columbia University, New York, NY 10032, USA; Department of Microbiology and Immunology, Columbia University Center, New York, NY 10032, USA.
| |
Collapse
|
40
|
Pilat N, Wekerle T. Combining Treg therapy with mixed chimerism: Getting the best of both worlds. CHIMERISM 2017; 1:26-9. [PMID: 21327149 DOI: 10.4161/chim.1.1.12964] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Accepted: 07/12/2010] [Indexed: 11/19/2022]
Abstract
Deliberate establishment of donor-specific immunologic tolerance is considered to be the "Holy Grail" in transplantation medicine, but clinical tolerance protocols for routine organ transplantation are still an unmet need. Mixed hematopoietic chimerism is an attractive tolerance strategy with considerable potential. Recent pilot trials provide proof-of-principle that mixed chimerism can induce tolerance in renal transplant recipients. Routine clinical translation, however, is impeded by the side effects of the cytotoxic recipient conditioning necessary for the transient engraftment of HLA-mismatched BM. In murine studies recently published in The American Journal of Transplantation, we demonstrated that the therapeutic application of polyclonal recipient regulatory T cells (Tregs) leads to engraftment of practicable doses of fully allogeneic BM and to donor-specific tolerance without any cytotoxic conditioning, thereby eliminating a major impediment for the clinical translation of the mixed chimerism strategy in the experimental setting. The background and the implications of these findings are discussed.
Collapse
Affiliation(s)
- Nina Pilat
- Division of Transplantation; Department of Surgery; Vienna General Hospital; Medical University of Vienna; Vienna, Austria
| | | |
Collapse
|
41
|
Mahr B, Wekerle T. Murine models of transplantation tolerance through mixed chimerism: advances and roadblocks. Clin Exp Immunol 2017; 189:181-189. [PMID: 28395110 PMCID: PMC5508343 DOI: 10.1111/cei.12976] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2017] [Indexed: 02/06/2023] Open
Abstract
Organ transplantation is the treatment of choice for patients with end-stage organ failure, but chronic immunosuppression is taking its toll in terms of morbidity and poor efficacy in preventing late graft loss. Therefore, a drug-free state would be desirable where the recipient permanently accepts a donor organ while remaining otherwise fully immunologically competent. Mouse studies unveiled mixed chimerism as an effective approach to induce such donor-specific tolerance deliberately and laid the foundation for a series of clinical pilot trials. Nevertheless, its widespread clinical implementation is currently prevented by cytotoxic conditioning and limited efficacy. Therefore, the use of mouse studies remains an indispensable tool for the development of novel concepts with potential for translation and for the delineation of underlying tolerance mechanisms. Recent innovations developed in mice include the use of pro-apoptotic drugs or regulatory T cell (Treg ) transfer for promoting bone marrow engraftment in the absence of myelosuppression and new insight gained in the role of innate immunity and the interplay between deletion and regulation in maintaining tolerance in chimeras. Here, we review these and other recent advances in murine studies inducing transplantation tolerance through mixed chimerism and discuss both the advances and roadblocks of this approach.
Collapse
Affiliation(s)
- B. Mahr
- Section of Transplantation Immunology, Department of SurgeryMedical University of ViennaViennaAustria
| | - T. Wekerle
- Section of Transplantation Immunology, Department of SurgeryMedical University of ViennaViennaAustria
| |
Collapse
|
42
|
Granofszky N, Farkas AM, Muckenhuber M, Mahr B, Unger L, Maschke S, Pilat N, Holly R, Wiletel M, Regele H, Wekerle T. Anti-Interleukin-6 Promotes Allogeneic Bone Marrow Engraftment and Prolonged Graft Survival in an Irradiation-Free Murine Transplant Model. Front Immunol 2017; 8:821. [PMID: 28769930 PMCID: PMC5515831 DOI: 10.3389/fimmu.2017.00821] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 06/29/2017] [Indexed: 01/06/2023] Open
Abstract
Transfer of recipient regulatory T cells (Tregs) induces mixed chimerism and tolerance in an irradiation-free bone marrow (BM) transplantation (BMT) model involving short-course co-stimulation blockade and mTOR inhibition. Boosting endogenous Tregs pharmacologically in vivo would be an attractive alternative avoiding the current limitations of performing adoptive cell therapy in the routine clinical setting. Interleukin-6 (IL-6) potently inhibits Treg differentiation and its blockade was shown to increase Treg numbers in vivo. Therefore, we investigated whether IL-6 blockade can replace adoptive Treg transfer in irradiation-free allogeneic BMT. Treatment with anti-IL-6 instead of Treg transfer led to multi-lineage chimerism (persisting for ~12 weeks) in recipients of fully mismatched BM and significantly prolonged donor skin (MST 58 days) and heart (MST > 100 days) graft survival. Endogenous Foxp3+ Tregs expanded in anti-IL-6-treated BMT recipients, while dendritic cell (DC) activation and memory CD8+ T cell development were inhibited. Adding anti-IL-17 to anti-IL-6 treatment increased Treg frequencies, but did not further prolong donor skin graft survival significantly. These results demonstrate that IL-6 blockade promotes BM engraftment and donor graft survival in non-irradiated recipients and might provide an alternative to Treg cell therapy in the clinical setting.
Collapse
Affiliation(s)
- Nicolas Granofszky
- Department of Surgery, Section of Transplant Immunology, Medical University of Vienna, Vienna, Austria
| | - Andreas M Farkas
- Department of Surgery, Section of Transplant Immunology, Medical University of Vienna, Vienna, Austria
| | - Moritz Muckenhuber
- Department of Surgery, Section of Transplant Immunology, Medical University of Vienna, Vienna, Austria
| | - Benedikt Mahr
- Department of Surgery, Section of Transplant Immunology, Medical University of Vienna, Vienna, Austria
| | - Lukas Unger
- Department of Surgery, Section of Transplant Immunology, Medical University of Vienna, Vienna, Austria
| | - Svenja Maschke
- Department of Surgery, Section of Transplant Immunology, Medical University of Vienna, Vienna, Austria
| | - Nina Pilat
- Department of Surgery, Section of Transplant Immunology, Medical University of Vienna, Vienna, Austria
| | - Raimund Holly
- Department of Surgery, Section of Transplant Immunology, Medical University of Vienna, Vienna, Austria
| | - Mario Wiletel
- Department of Surgery, Section of Transplant Immunology, Medical University of Vienna, Vienna, Austria
| | - Heinz Regele
- Clin. Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - Thomas Wekerle
- Department of Surgery, Section of Transplant Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
43
|
Effect of Ex Vivo-Expanded Recipient Regulatory T Cells on Hematopoietic Chimerism and Kidney Allograft Tolerance Across MHC Barriers in Cynomolgus Macaques. Transplantation 2017; 101:274-283. [PMID: 27846155 DOI: 10.1097/tp.0000000000001559] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Infusion of recipient regulatory T (Treg) cells promotes durable mixed hematopoietic chimerism and allograft tolerance in mice receiving allogeneic bone marrow transplant (BMT) with minimal conditioning. We applied this strategy in a Cynomolgus macaque model. METHODS CD4 CD25 Treg cells that were polyclonally expanded in culture were highly suppressive in vitro and maintained high expression of FoxP3. Eight monkeys underwent nonmyeloablative conditioning and major histocompatibility complex mismatched BMT with or without Treg cell infusion. Renal transplantation (from the same BMT donor) was performed 4 months post-BMT without immunosuppression to assess for robust donor-specific tolerance. RESULTS Transient mixed chimerism, without significant T cell chimerism, was achieved in the animals that received BMT without Treg cells (N = 3). In contrast, 2 of 5 recipients of Treg cell BMT that were evaluable displayed chimerism in all lineages, including T cells, for up to 335 days post-BMT. Importantly, in the animal that survived long-term, greater than 90% of donor T cells were CD45RA CD31, suggesting they were new thymic emigrants. In this animal, the delayed (to 4 months) donor kidney graft was accepted more than 294 days without immunosuppression, whereas non-Treg cell BMT recipients rejected delayed donor kidneys within 3 to 4 weeks. Early CMV reactivation and treatment was associated with early failure of chimerism, regardless of Treg cell administration. CONCLUSIONS Our studies provide proof-of-principle that, in the absence of early CMV reactivation (and BM-toxic antiviral therapy), cotransplantation of host Treg cell can promote prolonged and high levels of multilineage allogeneic chimerism and robust tolerance to the donor.
Collapse
|
44
|
Wekerle T, Segev D, Lechler R, Oberbauer R. Strategies for long-term preservation of kidney graft function. Lancet 2017; 389:2152-2162. [PMID: 28561006 DOI: 10.1016/s0140-6736(17)31283-7] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 03/13/2017] [Accepted: 03/16/2017] [Indexed: 12/21/2022]
Abstract
Kidney transplantation has become a routine procedure in the treatment of patients with kidney failure, and requires collaboration of experts from different disciplines, such as nephrology, surgery, immunology, pathology, infectious disease medicine, cardiology, and oncology. Grafts can be obtained from deceased or living donors, with different logistical requirements and implications for long-term graft patency. 1-year graft survival rates are greater than 95% in many centres but improvement of long-term function remains a challenge. New developments in molecular immunology and computational biology have increased precision of donor and recipient matching of HLA and non-HLA compatibility. Individual omics-wide molecular diagnostics, extracorporeal therapies, and drug developments allow for precise individual decision making and treatment. Tolerance induction by mixed chimerism without toxic conditioning and with a low risk of graft versus host disease is a visionary but realistic goal. Some of these innovations are already used in modern transplant centres and will allow advancement in long-term allograft preservation.
Collapse
Affiliation(s)
- Thomas Wekerle
- Department of Surgery, Section of Transplantation Immunology, Medical University of Vienna, Vienna, Austria
| | - Dorry Segev
- Department of Surgery, Johns Hopkins University, Baltimore, MD, USA
| | - Robert Lechler
- MRC Centre for Transplantation, King's College London, London, UK
| | - Rainer Oberbauer
- Department of Nephrology and Dialysis, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
45
|
Alessandrini A, Turka LA. FOXP3-Positive Regulatory T Cells and Kidney Allograft Tolerance. Am J Kidney Dis 2017; 69:667-674. [PMID: 28049555 PMCID: PMC5403573 DOI: 10.1053/j.ajkd.2016.10.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 10/22/2016] [Indexed: 11/11/2022]
Abstract
Normal immune homeostasis is achieved by several mechanisms, and prominent among them is immunoregulation. Although several types of regulatory lymphocyte populations have been described, CD4 T cells expressing the FOXP3 transcription factor (FOXP3-positive regulatory T cells [FOXP3+ Tregs]) are the best understood. This population of cells is critical for maintaining self-tolerance throughout the life of the organism. FOXP3+ Tregs can develop within the thymus, but also under select circumstances, naive peripheral T cells can be induced to express FOXP3 and become stable Tregs as well. Abundant evidence from animal systems, as well as limited evidence in humans, implicates Tregs in transplant tolerance, although whether these Tregs recognize allo- or self-antigens is not clear. New translational approaches to promote immunosuppression minimization and/or actual tolerance are being designed to exploit these observations. These include strategies to boost the generation, maintenance, and stability of endogenous Tregs, as well as adoptive cellular therapy with exogenous Tregs.
Collapse
Affiliation(s)
- Alessandro Alessandrini
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, MA.
| | - Laurence A Turka
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, MA.
| |
Collapse
|
46
|
Zuber J. Tolérance en transplantation par chimérisme mixte. Nephrol Ther 2017; 13 Suppl 1:S127-S130. [DOI: 10.1016/j.nephro.2017.01.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 01/24/2017] [Accepted: 01/30/2017] [Indexed: 10/19/2022]
|
47
|
Miyairi S, Hirai T, Ishii R, Okumi M, Nunoda S, Yamazaki K, Ishii Y, Tanabe K. Donor bone marrow cells are essential for iNKT cell-mediated Foxp3+ Treg cell expansion in a murine model of transplantation tolerance. Eur J Immunol 2017; 47:734-742. [PMID: 28127757 DOI: 10.1002/eji.201646670] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 12/03/2016] [Accepted: 01/23/2017] [Indexed: 01/03/2023]
Abstract
Mixed chimerism induction is the most reliable method for establishing transplantation tolerance. We previously described a novel treatment using a suboptimal dose of anti-CD40 ligand (anti-CD40L) and liposomal formulation of a ligand for invariant natural killer T cells administered to sub-lethally irradiated recipient mice after donor bone marrow cell (BMC) transfer. Recipient mice treated with this regimen showed expansion of a Foxp3-positive regulatory T(Treg) cell phenotype, and formation of mixed chimera. However, the mechanism of expansion and bioactivity of Treg cells remains unclear. Here, we examine the role of donor BMCs in the expansion of bioactive Treg cells. The mouse model was transplanted with a heart allograft the day after treatment. The results showed that transfer of spleen cells in place of BMCs failed to deplete host interferon (IFN)-γ-producing CD8+ T cells, expand host Ki67+ CD4+ CD25+ Foxp3+ Treg cells, and prolong graft survival. Severe combined immunodeficiency mice who received Treg cells obtained from BMC-recipients accepted skin grafts in an allo-specific manner. Myeloid-derived suppressor cells, which were a copious cell subset in BMCs, enhanced the Ki67 expression of Treg cells. This suggests that donor BMCs are indispensable for the expansion of host bioactive Treg cells in our novel treatment for transplant tolerance induction.
Collapse
Affiliation(s)
- Satoshi Miyairi
- Department of Urology, Tokyo Women's Medical University, Tokyo, Japan.,Department of Cardiovascular Surgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Toshihito Hirai
- Department of Urology, Tokyo Women's Medical University, Tokyo, Japan
| | - Rumi Ishii
- Department of Urology, Tokyo Women's Medical University, Tokyo, Japan
| | - Masayoshi Okumi
- Department of Urology, Tokyo Women's Medical University, Tokyo, Japan
| | - Shinichi Nunoda
- Department of Cardiovascular Surgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Kenji Yamazaki
- Department of Cardiovascular Surgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Yasuyuki Ishii
- Cluster for Industry Partnerships (CIP), RIKEN, Yokohama, Kanagawa, Japan
| | - Kazunari Tanabe
- Department of Urology, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
48
|
Shen XF, Jiang JP, Yang JJ, Wang WZ, Guan WX, Du JF. Donor-Specific Regulatory T Cells Acquired from Tolerant Mice Bearing Cardiac Allograft Promote Mixed Chimerism and Prolong Intestinal Allograft Survival. Front Immunol 2016; 7:511. [PMID: 27909438 PMCID: PMC5113131 DOI: 10.3389/fimmu.2016.00511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 11/02/2016] [Indexed: 12/17/2022] Open
Abstract
The induction of donor-specific transplant tolerance has always been a central problem for small bowel transplantation (SBT), which is thought to be the best therapy for end-stage bowel failure. With the development of new tolerance-inducing strategies, mixed chimerism induced by co-stimulation blockade has become most potent for tolerance of allografts, such as skin, kidney, and heart. However, a lack of clinically available co-stimulation blockers has hindered efficient application in humans. Furthermore, unlike those for other types of solid organ transplantation, strategies to induce robust mixed chimerism for intestinal allografts have not been fully developed. To improve current mixed chimerism induction protocols for future clinical application, we developed a new protocol using donor-specific regulatory T (Treg) cells from mice with heart allograft tolerance, immunosuppressive drugs which could be used clinically and low doses of irradiation. Our results demonstrated that donor-specific Treg cells acquired from tolerant mice after in vitro expansion generate stable chimerism and lead to acceptance of intestinal allograft. Increased intragraft Treg cells and clonal deletion contribute to the development of SBT tolerance.
Collapse
Affiliation(s)
- Xiao-Fei Shen
- Department of General Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School , Nanjing , China
| | - Jin-Peng Jiang
- Department of Rehabilitation Medicine, PLA Army General Hospital , Beijing , China
| | - Jian-Jun Yang
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University , Xi'an , China
| | - Wei-Zhong Wang
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University , Xi'an , China
| | - Wen-Xian Guan
- Department of General Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School , Nanjing , China
| | - Jun-Feng Du
- Department of General Surgery, PLA Army General Hospital , Beijing , China
| |
Collapse
|
49
|
Bone marrow chimerism as a strategy to produce tolerance in solid organ allotransplantation. Curr Opin Organ Transplant 2016; 21:595-602. [PMID: 27805947 DOI: 10.1097/mot.0000000000000366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
PURPOSE OF REVIEW Clinical transplant tolerance has been most successfully achieved combining hematopoietic chimerism with kidney transplantation. This review outlines this strategy in animal models and human transplantation, and possible clinical challenges. RECENT FINDINGS Kidney transplant tolerance has been achieved through chimerism in several centers beginning with Massachusetts General Hospital's success with mixed chimerism in human leukocyte antigen (HLA)-mismatched patients and the Stanford group with HLA-matched patients, and the more recent success of the Northwestern protocol achieving full chimerism. This has challenged the original view that stable mixed chimerism is necessary for organ graft tolerance. However, among the HLA-mismatched kidney transplant-tolerant patients, loss of mixed chimerism does not lead to renal-graft rejection, and the development of host Foxp3+ regulatory T cells has been observed. Recent animal models suggest that graft tolerance through bone marrow chimerism occurs through both clonal deletion and regulatory immune cells. Further, Tregs have been shown to improve chimerism in animal models. SUMMARY Animal studies continue to suggest ways to improve our current clinical strategies. Advances in chimerism protocols suggest that tolerance may be clinically achievable with relative safety for HLA-mismatched kidney transplants.
Collapse
|
50
|
Pilat N, Mahr B, Unger L, Hock K, Schwarz C, Farkas AM, Baranyi U, Wrba F, Wekerle T. Incomplete clonal deletion as prerequisite for tissue-specific minor antigen tolerization. JCI Insight 2016; 1:e85911. [PMID: 27699263 PMCID: PMC5033814 DOI: 10.1172/jci.insight.85911] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 04/19/2016] [Indexed: 11/17/2022] Open
Abstract
Central clonal deletion has been considered the critical factor responsible for the robust state of tolerance achieved by chimerism-based experimental protocols, but split-tolerance models and the clinical experience are calling this assumption into question. Although clone-size reduction through deletion has been shown to be universally required for achieving allotolerance, it remains undetermined whether it is sufficient by itself. Therapeutic Treg treatment induces chimerism and tolerance in a stringent murine BM transplantation model devoid of myelosuppressive recipient treatment. In contrast to irradiation chimeras, chronic rejection (CR) of skin and heart allografts in Treg chimeras was permanently prevented, even in the absence of complete clonal deletion of donor MHC-reactive T cells. We show that minor histocompatibility antigen mismatches account for CR in irradiation chimeras without global T cell depletion. Furthermore, we show that Treg therapy-induced tolerance prevents CR in a linked suppression-like fashion, which is maintained by active regulatory mechanisms involving recruitment of thymus-derived Tregs to the graft. These data suggest that highly efficient intrathymic and peripheral deletion of donor-reactive T cells for specificities expressed on hematopoietic cells preclude the expansion of donor-specific Tregs and, hence, do not allow for spreading of tolerance to minor specificities that are not expressed by donor BM.
Collapse
Affiliation(s)
- Nina Pilat
- Section of Transplantation Immunology, Department of Surgery, and
| | - Benedikt Mahr
- Section of Transplantation Immunology, Department of Surgery, and
| | - Lukas Unger
- Section of Transplantation Immunology, Department of Surgery, and
| | - Karin Hock
- Section of Transplantation Immunology, Department of Surgery, and
| | | | | | - Ulrike Baranyi
- Section of Transplantation Immunology, Department of Surgery, and
| | - Fritz Wrba
- Institute of Clinical Pathology, Medical University of Vienna, Vienna, Austria
| | - Thomas Wekerle
- Section of Transplantation Immunology, Department of Surgery, and
| |
Collapse
|