1
|
Seltrecht N, Hardtke-Wolenski M, Iordanidis K, Jonigk D, Galla M, Schambach A, Buitrago-Molina LE, Wedemeyer H, Noyan F, Jaeckel E. Graft-Specific Regulatory T Cells for Long-Lasting, Local Tolerance Induction. Cells 2024; 13:1216. [PMID: 39056797 PMCID: PMC11274814 DOI: 10.3390/cells13141216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Solid organ transplantation is hindered by immune-mediated chronic graft dysfunction and the side effects of immunosuppressive therapy. Regulatory T cells (Tregs) are crucial for modulating immune responses post-transplantation; however, the transfer of polyspecific Tregs alone is insufficient to induce allotolerance in rodent models. METHODS To enhance the efficacy of adoptive Treg therapy, we investigated different immune interventions in the recipients. By utilizing an immunogenic skin transplant model and existing transplantation medicine reagents, we facilitated the clinical translation of our findings. Specifically, antigen-specific Tregs were used. RESULTS Our study demonstrated that combining the available induction therapies with drug-induced T-cell proliferation due to lymphopenia effectively increased the Treg/T effector ratios. This results in significant Treg accumulation within the graft, leading to long-term tolerance after the transfer of antigen-specific Tregs. Importantly, all the animals achieved operational tolerance, which boosted the presence of adoptively transferred Tregs within the graft. CONCLUSIONS This protocol offers a means to establish tolerance by utilizing antigen-specific Tregs. These results have promising implications for future trials involving adoptive Treg therapy in organ transplantation.
Collapse
Affiliation(s)
- Nadja Seltrecht
- Department of Gastroenterology, Hepatology, Infectious Diseases & Endocrinology, Hannover Medical School, 30625 Hannover, Germany (L.E.B.-M.); (H.W.); (E.J.)
| | - Matthias Hardtke-Wolenski
- Department of Gastroenterology, Hepatology, Infectious Diseases & Endocrinology, Hannover Medical School, 30625 Hannover, Germany (L.E.B.-M.); (H.W.); (E.J.)
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Konstantinos Iordanidis
- Department of Gastroenterology, Hepatology, Infectious Diseases & Endocrinology, Hannover Medical School, 30625 Hannover, Germany (L.E.B.-M.); (H.W.); (E.J.)
| | - Danny Jonigk
- Institute of Pathology, Hannover Medical School, 30625 Hannover, Germany
| | - Melanie Galla
- Institute of Experimental Haematology, Hannover Medical School, 30625 Hannover, Germany; (M.G.); (A.S.)
| | - Axel Schambach
- Institute of Experimental Haematology, Hannover Medical School, 30625 Hannover, Germany; (M.G.); (A.S.)
| | - Laura Elisa Buitrago-Molina
- Department of Gastroenterology, Hepatology, Infectious Diseases & Endocrinology, Hannover Medical School, 30625 Hannover, Germany (L.E.B.-M.); (H.W.); (E.J.)
| | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology, Infectious Diseases & Endocrinology, Hannover Medical School, 30625 Hannover, Germany (L.E.B.-M.); (H.W.); (E.J.)
| | - Fatih Noyan
- Department of Gastroenterology, Hepatology, Infectious Diseases & Endocrinology, Hannover Medical School, 30625 Hannover, Germany (L.E.B.-M.); (H.W.); (E.J.)
| | - Elmar Jaeckel
- Department of Gastroenterology, Hepatology, Infectious Diseases & Endocrinology, Hannover Medical School, 30625 Hannover, Germany (L.E.B.-M.); (H.W.); (E.J.)
- Department of Liver Transplantation, Multi Organ Transplant Program, Toronto General Hospital, United Health Network, University of Toronto, Toronto, ON M5G 2N2, Canada
| |
Collapse
|
2
|
Han JL, Zimmerer JM, Zeng Q, Chaudhari S, Satoskar A, Abdel-Rasoul M, Uwase H, Breuer CK, Bumgardner GL. Antibody-Suppressor CXCR5+CD8+ T Cells Are More Potent Regulators of Humoral Alloimmunity after Kidney Transplant in Mice Compared to CD4+ Regulatory T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1504-1518. [PMID: 38517294 PMCID: PMC11047759 DOI: 10.4049/jimmunol.2300289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 02/27/2024] [Indexed: 03/23/2024]
Abstract
Adoptive cell therapy (ACT), especially with CD4+ regulatory T cells (CD4+ Tregs), is an emerging therapeutic strategy to minimize immunosuppression and promote long-term allograft acceptance, although much research remains to realize its potential. In this study, we investigated the potency of novel Ab-suppressor CXCR5+CD8+ T cells (CD8+ TAb-supp) in comparison with conventional CD25highFoxp3+CD4+ Tregs for suppression of humoral alloimmunity in a murine kidney transplant (KTx) model of Ab-mediated rejection (AMR). We examined quantity of peripheral blood, splenic and graft-infiltrating CD8+ TAb-supp, and CD4+ Tregs in KTx recipients and found that high alloantibody-producing CCR5 knockout KTx recipients have significantly fewer post-transplant peripheral blood and splenic CD8+ TAb-supp, as well as fewer splenic and graft-infiltrating CD4+ Tregs compared with wild-type KTx recipients. ACT with alloprimed CXCR5+CD8+ T cells reduced alloantibody titer, splenic alloprimed germinal center (GC) B cell quantity, and improved AMR histology in CCR5 knockout KTx recipients. ACT with alloprimed CD4+ Treg cells improved AMR histology without significantly inhibiting alloantibody production or the quantity of splenic alloprimed GC B cells. Studies with TCR transgenic mice confirmed Ag specificity of CD8+ TAb-supp-mediated effector function. In wild-type recipients, CD8 depletion significantly increased alloantibody titer, GC B cells, and severity of AMR pathology compared with isotype-treated controls. Anti-CD25 mAb treatment also resulted in increased but less pronounced effect on alloantibody titer, quantity of GC B cells, and AMR pathology than CD8 depletion. To our knowledge, this is the first report that CD8+ TAb-supp cells are more potent regulators of humoral alloimmunity than CD4+ Treg cells.
Collapse
Affiliation(s)
- Jing L. Han
- Department of Surgery, Comprehensive Transplant Center, and the College of Medicine, The Ohio State University, Columbus, OH
- Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH
| | - Jason M. Zimmerer
- Department of Surgery, Comprehensive Transplant Center, and the College of Medicine, The Ohio State University, Columbus, OH
| | - Qiang Zeng
- Center for Regenerative Medicine, The Research Institute at Nationwide Children’s Hospital, Columbus, OH
| | - Sachi Chaudhari
- Department of Surgery, Comprehensive Transplant Center, and the College of Medicine, The Ohio State University, Columbus, OH
| | - Anjali Satoskar
- Department of Pathology, The Ohio State University, Columbus, OH
| | | | - Hope Uwase
- Department of Surgery, Comprehensive Transplant Center, and the College of Medicine, The Ohio State University, Columbus, OH
| | - Christopher K. Breuer
- Center for Regenerative Medicine, The Research Institute at Nationwide Children’s Hospital, Columbus, OH
| | - Ginny L. Bumgardner
- Department of Surgery, Comprehensive Transplant Center, and the College of Medicine, The Ohio State University, Columbus, OH
| |
Collapse
|
3
|
Amini L, Kaeda J, Fritsche E, Roemhild A, Kaiser D, Reinke P. Clinical adoptive regulatory T Cell therapy: State of the art, challenges, and prospective. Front Cell Dev Biol 2023; 10:1081644. [PMID: 36794233 PMCID: PMC9924129 DOI: 10.3389/fcell.2022.1081644] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/29/2022] [Indexed: 02/01/2023] Open
Abstract
Rejection of solid organ transplant and graft versus host disease (GvHD) continue to be challenging in post transplantation management. The introduction of calcineurin inhibitors dramatically improved recipients' short-term prognosis. However, long-term clinical outlook remains poor, moreover, the lifelong dependency on these toxic drugs leads to chronic deterioration of graft function, in particular the renal function, infections and de-novo malignancies. These observations led investigators to identify alternative therapeutic options to promote long-term graft survival, which could be used concomitantly, but preferably, replace pharmacologic immunosuppression as standard of care. Adoptive T cell (ATC) therapy has evolved as one of the most promising approaches in regenerative medicine in the recent years. A range of cell types with disparate immunoregulatory and regenerative properties are actively being investigated as potential therapeutic agents for specific transplant rejection, autoimmunity or injury-related indications. A significant body of data from preclinical models pointed to efficacy of cellular therapies. Significantly, early clinical trial observations have confirmed safety and tolerability, and yielded promising data in support of efficacy of the cellular therapeutics. The first class of these therapeutic agents commonly referred to as advanced therapy medicinal products have been approved and are now available for clinical use. Specifically, clinical trials have supported the utility of CD4+CD25+FOXP3+ regulatory T cells (Tregs) to minimize unwanted or overshooting immune responses and reduce the level of pharmacological immunosuppression in transplant recipients. Tregs are recognized as the principal orchestrators of maintaining peripheral tolerance, thereby blocking excessive immune responses and prevent autoimmunity. Here, we summarize rationale for the adoptive Treg therapy, challenges in manufacturing and clinical experiences with this novel living drug and outline future perspectives of its use in transplantation.
Collapse
Affiliation(s)
- Leila Amini
- Berlin Center for Advanced Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany,Berlin Institute of Health—Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jaspal Kaeda
- Berlin Center for Advanced Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Enrico Fritsche
- Berlin Center for Advanced Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Andy Roemhild
- Berlin Center for Advanced Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Daniel Kaiser
- Berlin Center for Advanced Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Petra Reinke
- Berlin Center for Advanced Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany,Berlin Institute of Health—Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany,*Correspondence: Petra Reinke,
| |
Collapse
|
4
|
Adoptive transfer of ex vivo expanded regulatory T-cells improves immune cell engraftment and therapy-refractory chronic GvHD. Mol Ther 2022; 30:2298-2314. [PMID: 35240319 DOI: 10.1016/j.ymthe.2022.02.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 01/09/2022] [Accepted: 02/25/2022] [Indexed: 11/22/2022] Open
Abstract
Graft-versus-Host-Disease (GvHD) is still the major non-relapse, life-limiting complication following hematopoietic stem cell transplantation. Modern pharmacologic immunosuppression is often insufficient and associated with significant side effects. Novel treatment strategies now include adoptive transfer of ex vivo expanded regulatory T-cells (Tregs), but their efficacy in chronic GvHD is unknown. We treated three children suffering from severe, therapy-refractory GvHD with polyclonally expanded Tregs generated from the original stem cell donor. Third-line maintenance immunosuppression was tapered to Cyclosporin A and low-dose steroids shortly before cell transfer. Regular follow-up included assessment of the subjective and objective clinical development, safety parameters and in-depth immune monitoring. All patients showed marked clinical improvement with substantially reduced GvHD activity. Laboratory follow-up showed a significant enhancement of the immunologic engraftment including lymphocytes and dendritic cells. Monitoring the fate of Tregs by next generation sequencing demonstrated clonal expansion. In summary, adoptive transfer of Tregs was well tolerated and able to modulate an established undesired T-cell mediated allo-response. Although no signs of overimmunosuppression were detectable, treatment of patients with invasive opportunistic infections should be undertaken with caution. Further controlled studies, are necessary to confirm these encouraging effects and eventually pave the way for adoptive Treg therapy in chronic GvHD.
Collapse
|
5
|
Bernaldo-de-Quirós E, Pion M, Martínez-Bonet M, Correa-Rocha R. A New Generation of Cell Therapies Employing Regulatory T Cells (Treg) to Induce Immune Tolerance in Pediatric Transplantation. Front Pediatr 2022; 10:862807. [PMID: 35633970 PMCID: PMC9130702 DOI: 10.3389/fped.2022.862807] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Kidney transplantation is the most common solid organ transplant and the preferred treatment for pediatric patients with end-stage renal disease, but it is still not a definitive solution due to immune graft rejection. Regulatory T cells (Treg) and their control over effector T cells is a crucial and intrinsic tolerance mechanism in limiting excessive immune responses. In the case of transplants, Treg are important for the survival of the transplanted organ, and their dysregulation could increase the risk of rejection in transplanted children. Chronic immunosuppression to prevent rejection, for which Treg are especially sensitive, have a detrimental effect on Treg counts, decreasing the Treg/T-effector balance. Cell therapy with Treg cells is a promising approach to restore this imbalance, promoting tolerance and thus increasing graft survival. However, the strategies used to date that employ peripheral blood as a Treg source have shown limited efficacy. Moreover, it is not possible to use this approach in pediatric patients due to the limited volume of blood that can be extracted from children. Here, we outline our innovative strategy that employs the thymus removed during pediatric cardiac surgeries as a source of therapeutic Treg that could make this therapy accessible to transplanted children. The advantageous properties and the massive amount of Treg cells obtained from pediatric thymic tissue (thyTreg) opens a new possibility for Treg therapies to prevent rejection in pediatric kidney transplants. We are recruiting patients in a clinical trial to prevent rejection in heart-transplanted children through the infusion of autologous thyTreg cells (NCT04924491). If its efficacy is confirmed, thyTreg therapy may establish a new paradigm in preventing organ rejection in pediatric transplants, and their allogeneic use would extend its application to other solid organ transplantation.
Collapse
Affiliation(s)
- Esther Bernaldo-de-Quirós
- Laboratory of Immune-Regulation, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Marjorie Pion
- Laboratory of Immune-Regulation, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Marta Martínez-Bonet
- Laboratory of Immune-Regulation, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Rafael Correa-Rocha
- Laboratory of Immune-Regulation, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| |
Collapse
|
6
|
Li Y, An H, Shen C, Wang B, Zhang T, Hong Y, Jiang H, Zhou P, Ding X. Deep phenotyping of T cell populations under long-term treatment of tacrolimus and rapamycin in patients receiving renal transplantations by mass cytometry. Clin Transl Med 2021; 11:e629. [PMID: 34841735 PMCID: PMC8574956 DOI: 10.1002/ctm2.629] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/04/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022] Open
Abstract
Tacrolimus (FK506) and rapamycin (RAPA) are widely used to maintain long-term immunosuppression after organ transplantation. However, the impact of accumulative drug administration on the recipients' immune systems remains unclear. We investigated the impact of 3-year FK506 or RAPA treatment after renal transplantation on the human immune systems. A discovery cohort of 30 patients was first recruited, and we discovered two distinctive T lineage suppressive regulatory patterns induced by chronic treatment of FK506 and RAPA. The increased percentage of senescent CD8+ CD57+ T lineages and less responsive T cell receptor (TCR) pathway in the FK506 group indicate better graft acceptance. Meanwhile, percentages of regulatory T cells (Tregs) and expression of CTLA-4 were both up to two-fold higher in the RAPA group, suggesting the inconsistent reactivation potential of the FK506 and RAPA groups when an anti-tumour or anti-infection immune response is concerned. Additionally, up-regulation of phosphorylated signaling proteins in T lineages after in vitro CD3/CD28 stimulation suggested more sensitive TCR-signaling pathways reserved in the RAPA group. An independent validation cohort of 100 renal transplantation patients was further investigated for the hypothesis that long-term RAPA administration mitigates the development of tumours and infections during long-term intake of immunosuppressants. Our results indicate that RAPA administration indeed results in less clinical oncogenesis and infection. The deep phenotyping of T-cell lineages, as educated by the long-term treatment of different immunosuppressants, provides new evidence for personalized precision medicine after renal transplantations.
Collapse
Affiliation(s)
- Yiyang Li
- State Key Laboratory of Oncogenes and Related GenesSchool of Biomedical EngineeringInstitute for Personalized MedicineShanghai Jiao Tong UniversityShanghaiPeople's Republic of China
| | - Huimin An
- Division of Kidney TransplantDepartment of UrologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiPeople's Republic of China
| | - Chuan Shen
- Department of Liver SurgeryRenji HospitalShanghai Jiao Tong University School of MedicineShanghaiPeople's Republic of China
| | - Boqian Wang
- State Key Laboratory of Oncogenes and Related GenesSchool of Biomedical EngineeringInstitute for Personalized MedicineShanghai Jiao Tong UniversityShanghaiPeople's Republic of China
| | - Ting Zhang
- State Key Laboratory of Oncogenes and Related GenesSchool of Biomedical EngineeringInstitute for Personalized MedicineShanghai Jiao Tong UniversityShanghaiPeople's Republic of China
| | - Yifan Hong
- State Key Laboratory of Oncogenes and Related GenesSchool of Biomedical EngineeringInstitute for Personalized MedicineShanghai Jiao Tong UniversityShanghaiPeople's Republic of China
| | - Hui Jiang
- State Key Laboratory of Oncogenes and Related GenesSchool of Biomedical EngineeringInstitute for Personalized MedicineShanghai Jiao Tong UniversityShanghaiPeople's Republic of China
| | - Peijun Zhou
- Division of Kidney TransplantDepartment of UrologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiPeople's Republic of China
| | - Xianting Ding
- State Key Laboratory of Oncogenes and Related GenesSchool of Biomedical EngineeringInstitute for Personalized MedicineShanghai Jiao Tong UniversityShanghaiPeople's Republic of China
| |
Collapse
|
7
|
Landwehr-Kenzel S, Zobel A, Schmitt-Knosalla I, Forke A, Hoffmann H, Schmueck-Henneresse M, Klopfleisch R, Volk HD, Reinke P. Cyclosporine A but Not Corticosteroids Support Efficacy of Ex Vivo Expanded, Adoptively Transferred Human Tregs in GvHD. Front Immunol 2021; 12:716629. [PMID: 34707604 PMCID: PMC8543016 DOI: 10.3389/fimmu.2021.716629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/02/2021] [Indexed: 11/13/2022] Open
Abstract
Reshaping the immune balance by adoptive transfer of regulatory T-cells (Tregs) has emerged as a promising strategy to combat undesired immune reactions, including in Graft-versus-Host Disease (GvHD), which is the most lethal non-relapse complication of allogeneic hematopoietic stem cell transplantation. Currently however, little is known about the potentially inhibitory in vivo effects of conventional immunosuppressive drugs, which are routinely used to treat GvHD, on adoptively transferred Tregs. Here we demonstrate drug-specific effects of the conventional immunosuppressive drugs Cyclosporine A, Mycophenolate mofetil and methylprednisolone on adoptively transferred Tregs in a humanized NOD/SCID/IL2Rgamma-/- GvHD mouse model. The clinical course of GvHD and postmortem organ histology, including cellular organ infiltration, showed that co-administration of Cyclosporine A and Tregs is highly beneficial as it enhanced Treg accumulation at inflammatory sites like lung and liver. Similarly, co-administration of Mycophenolate mofetil and Tregs improved clinical signs of GvHD. In contrast, co-administration of methylprednisolone and Tregs resulted in reduced Treg recruitment to inflammatory sites and the fast deterioration of some animals. Consequently, when clinical trials investigating safety and efficacy of adjunctive Treg therapy in GvHD are designed, we suggest co-administering Cyclosporine A, whereas high doses of glucocorticosteroids should be avoided.
Collapse
Affiliation(s)
- Sybille Landwehr-Kenzel
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité – Universitätsmedizin Berlin, BIH-Center for Regenerative Therapies (BCRT), Berlin, Germany
- Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Anne Zobel
- Berlin Institute of Health (BIH) at Charité – Universitätsmedizin Berlin, BIH-Center for Regenerative Therapies (BCRT), Berlin, Germany
| | - Isabela Schmitt-Knosalla
- Institute of Medical Immunology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Anne Forke
- Berlin Institute of Health (BIH) at Charité – Universitätsmedizin Berlin, BIH-Center for Regenerative Therapies (BCRT), Berlin, Germany
| | - Henrike Hoffmann
- Berlin Institute of Health (BIH) at Charité – Universitätsmedizin Berlin, BIH-Center for Regenerative Therapies (BCRT), Berlin, Germany
| | - Michael Schmueck-Henneresse
- Berlin Institute of Health (BIH) at Charité – Universitätsmedizin Berlin, BIH-Center for Regenerative Therapies (BCRT), Berlin, Germany
- Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Robert Klopfleisch
- Department of Veterinary Medicine, Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Hans-Dieter Volk
- Berlin Institute of Health (BIH) at Charité – Universitätsmedizin Berlin, BIH-Center for Regenerative Therapies (BCRT), Berlin, Germany
- Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Institute of Medical Immunology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Petra Reinke
- Berlin Institute of Health (BIH) at Charité – Universitätsmedizin Berlin, BIH-Center for Regenerative Therapies (BCRT), Berlin, Germany
- Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Nephrology and Internal Intensive Care Medicine, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
8
|
Roemhild A, Otto NM, Moll G, Abou-El-Enein M, Kaiser D, Bold G, Schachtner T, Choi M, Oellinger R, Landwehr-Kenzel S, Juerchott K, Sawitzki B, Giesler C, Sefrin A, Beier C, Wagner DL, Schlickeiser S, Streitz M, Schmueck-Henneresse M, Amini L, Stervbo U, Babel N, Volk HD, Reinke P. Regulatory T cells for minimising immune suppression in kidney transplantation: phase I/IIa clinical trial. BMJ 2020; 371:m3734. [PMID: 33087345 PMCID: PMC7576328 DOI: 10.1136/bmj.m3734] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To assess whether reshaping of the immune balance by infusion of autologous natural regulatory T cells (nTregs) in patients after kidney transplantation is safe, feasible, and enables the tapering of lifelong high dose immunosuppression, with its limited efficacy, adverse effects, and high direct and indirect costs, along with addressing several key challenges of nTreg treatment, such as easy and robust manufacturing, danger of over immunosuppression, interaction with standard care drugs, and functional stability in an inflammatory environment in a useful proof-of-concept disease model. DESIGN Investigator initiated, monocentre, nTreg dose escalation, phase I/IIa clinical trial (ONEnTreg13). SETTING Charité-University Hospital, Berlin, Germany, within the ONE study consortium (funded by the European Union). PARTICIPANTS Recipients of living donor kidney transplant (ONEnTreg13, n=11) and corresponding reference group trial (ONErgt11-CHA, n=9). INTERVENTIONS CD4+ CD25+ FoxP3+ nTreg products were given seven days after kidney transplantation as one intravenous dose of 0.5, 1.0, or 2.5-3.0×106 cells/kg body weight, with subsequent stepwise tapering of triple immunosuppression to low dose tacrolimus monotherapy until week 48. MAIN OUTCOME MEASURES The primary clinical and safety endpoints were assessed by a composite endpoint at week 60 with further three year follow-up. The assessment included incidence of biopsy confirmed acute rejection, assessment of nTreg infusion related adverse effects, and signs of over immunosuppression. Secondary endpoints addressed allograft functions. Accompanying research included a comprehensive exploratory biomarker portfolio. RESULTS For all patients, nTreg products with sufficient yield, purity, and functionality could be generated from 40-50 mL of peripheral blood taken two weeks before kidney transplantation. None of the three nTreg dose escalation groups had dose limiting toxicity. The nTreg and reference groups had 100% three year allograft survival and similar clinical and safety profiles. Stable monotherapy immunosuppression was achieved in eight of 11 (73%) patients receiving nTregs, while the reference group remained on standard dual or triple drug immunosuppression (P=0.002). Mechanistically, the activation of conventional T cells was reduced and nTregs shifted in vivo from a polyclonal to an oligoclonal T cell receptor repertoire. CONCLUSIONS The application of autologous nTregs was safe and feasible even in patients who had a kidney transplant and were immunosuppressed. These results warrant further evaluation of Treg efficacy and serve as the basis for the development of next generation nTreg approaches in transplantation and any immunopathologies. TRIAL REGISTRATION NCT02371434 (ONEnTreg13) and EudraCT:2011-004301-24 (ONErgt11).
Collapse
Affiliation(s)
- Andy Roemhild
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Berlin, Germany
- Berlin Centre for Advanced Therapies (BeCAT), Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - Natalie Maureen Otto
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Berlin, Germany
- Berlin Centre for Advanced Therapies (BeCAT), Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, D-13353 Berlin, Germany
- Department of Nephrology and Internal Intensive Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Guido Moll
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Mohamed Abou-El-Enein
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Berlin, Germany
- Berlin Centre for Advanced Therapies (BeCAT), Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - Daniel Kaiser
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Berlin, Germany
- Berlin Centre for Advanced Therapies (BeCAT), Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - Gantuja Bold
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Berlin, Germany
- Department of Nephrology and Internal Intensive Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Thomas Schachtner
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Berlin, Germany
- Department of Nephrology and Internal Intensive Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Mira Choi
- Department of Nephrology and Internal Intensive Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Robert Oellinger
- Department of Abdominal and Transplant Surgery, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Sybille Landwehr-Kenzel
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Berlin, Germany
- Berlin Centre for Advanced Therapies (BeCAT), Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - Karsten Juerchott
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Berlin, Germany
- Institute of Medical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Birgit Sawitzki
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Berlin, Germany
- Institute of Medical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Cordula Giesler
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Berlin, Germany
- Berlin Centre for Advanced Therapies (BeCAT), Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, D-13353 Berlin, Germany
- Department of Nephrology and Internal Intensive Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Anett Sefrin
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Berlin, Germany
- Berlin Centre for Advanced Therapies (BeCAT), Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, D-13353 Berlin, Germany
- Department of Nephrology and Internal Intensive Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Carola Beier
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Berlin, Germany
- Berlin Centre for Advanced Therapies (BeCAT), Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - Dimitrios Laurin Wagner
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Berlin, Germany
- Berlin Centre for Advanced Therapies (BeCAT), Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - Stephan Schlickeiser
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Berlin, Germany
- Institute of Medical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Mathias Streitz
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Berlin, Germany
- Institute of Medical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Schmueck-Henneresse
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Berlin, Germany
- Berlin Centre for Advanced Therapies (BeCAT), Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - Leila Amini
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Berlin, Germany
- Berlin Centre for Advanced Therapies (BeCAT), Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - Ulrik Stervbo
- Medical Department 1, University hospitals of the Ruhr University of Bochum, Herne, Germany
| | - Nina Babel
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Berlin, Germany
- Institute of Medical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
- Medical Department 1, University hospitals of the Ruhr University of Bochum, Herne, Germany
| | - Hans-Dieter Volk
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Berlin, Germany
- Berlin Centre for Advanced Therapies (BeCAT), Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, D-13353 Berlin, Germany
- Institute of Medical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Petra Reinke
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Berlin, Germany
- Berlin Centre for Advanced Therapies (BeCAT), Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, D-13353 Berlin, Germany
- Department of Nephrology and Internal Intensive Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
9
|
Landwehr-Kenzel S, Zobel A, Hoffmann H, Landwehr N, Schmueck-Henneresse M, Schachtner T, Roemhild A, Reinke P. Ex vivo expanded natural regulatory T cells from patients with end-stage renal disease or kidney transplantation are useful for autologous cell therapy. Kidney Int 2018; 93:1452-1464. [PMID: 29792274 DOI: 10.1016/j.kint.2018.01.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 01/05/2018] [Accepted: 01/11/2018] [Indexed: 02/08/2023]
Abstract
Novel concepts employing autologous, ex vivo expanded natural regulatory T cells (nTreg) for adoptive transfer has potential to prevent organ rejection after kidney transplantation. However, the impact of dialysis and maintenance immunosuppression on the nTreg phenotype and peripheral survival is not well understood, but essential when assessing patient eligibility. The current study investigates regulatory T-cells in dialysis and kidney transplanted patients and the feasibility of generating a clinically useful nTreg product from these patients. Heparinized blood from 200 individuals including healthy controls, dialysis patients with end stage renal disease and patients 1, 5, 10, 15, 20 years after kidney transplantation were analyzed. Differentiation and maturation of nTregs were studied by flow cytometry in order to compare dialysis patients and kidney transplanted patients under maintenance immunosuppression to healthy controls. CD127 expressing CD4+CD25highFoxP3+ nTregs were detectable at increased frequencies in dialysis patients with no negative impact on the nTreg end product quality and therapeutic usefulness of the ex vivo expanded nTregs. Further, despite that immunosuppression mildly altered nTreg maturation, neither dialysis nor pharmacological immunosuppression or previous acute rejection episodes impeded nTreg survival in vivo. Accordingly, the generation of autologous, highly pure nTreg products is feasible and qualifies patients awaiting or having received allogenic kidney transplantation for adoptive nTreg therapy. Thus, our novel treatment approach may enable us to reduce the incidence of organ rejection and reduce the need of long-term immunosuppression.
Collapse
Affiliation(s)
- Sybille Landwehr-Kenzel
- Berlin-Brandenburg Center for Regenerative Therapies, Charité University Medicine Berlin, Berlin, Germany; Berlin-Brandenburg School for Regenerative Therapies, Charité University Medicine Berlin, Berlin, Germany; Department of Pediatrics, Division of Pneumonology and Immunology, Charité University Medicine Berlin, Berlin, Germany.
| | - Anne Zobel
- Berlin-Brandenburg Center for Regenerative Therapies, Charité University Medicine Berlin, Berlin, Germany; Renal and Transplant Research Unit, Department of Nephrology and Internal Intensive Care, Charité University Medicine Berlin, Berlin, Germany
| | - Henrike Hoffmann
- Berlin-Brandenburg Center for Regenerative Therapies, Charité University Medicine Berlin, Berlin, Germany
| | - Niels Landwehr
- Leibniz-Institute for Agricultural Engineering and Bioeconomy, Potsdam, Germany; University of Potsdam, Department for Computer Science, Potsdam, Germany
| | - Michael Schmueck-Henneresse
- Berlin-Brandenburg Center for Regenerative Therapies, Charité University Medicine Berlin, Berlin, Germany; Renal and Transplant Research Unit, Department of Nephrology and Internal Intensive Care, Charité University Medicine Berlin, Berlin, Germany; Institute of Medical Immunology, Charité University Medicine Berlin, 13353 Berlin, Germany
| | - Thomas Schachtner
- Renal and Transplant Research Unit, Department of Nephrology and Internal Intensive Care, Charité University Medicine Berlin, Berlin, Germany
| | - Andy Roemhild
- Berlin-Brandenburg Center for Regenerative Therapies, Charité University Medicine Berlin, Berlin, Germany
| | - Petra Reinke
- Berlin-Brandenburg Center for Regenerative Therapies, Charité University Medicine Berlin, Berlin, Germany; Renal and Transplant Research Unit, Department of Nephrology and Internal Intensive Care, Charité University Medicine Berlin, Berlin, Germany
| |
Collapse
|
10
|
Kawai K, Uchiyama M, Hester J, Wood K, Issa F. Regulatory T cells for tolerance. Hum Immunol 2018; 79:294-303. [DOI: 10.1016/j.humimm.2017.12.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 12/16/2017] [Accepted: 12/26/2017] [Indexed: 12/29/2022]
|
11
|
Behnam Sani K, Sawitzki B. Immune monitoring as prerequisite for transplantation tolerance trials. Clin Exp Immunol 2017; 189:158-170. [PMID: 28518214 DOI: 10.1111/cei.12988] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2017] [Indexed: 02/06/2023] Open
Abstract
Ever since its first application in clinical medicine, scientists have been urged to induce tolerance towards foreign allogeneic transplants and thus avoid rejection by the recipient's immune system. This would circumvent chronic use of immunosuppressive drugs (IS) and thus avoid development of IS-induced side effects, which are contributing to the still unsatisfactory long-term graft and patient survival after solid organ transplantation. Although manifold strategies of tolerance induction have been described in preclinical models, only three therapeutic approaches have been utilized successfully in a still small number of patients. These approaches are based on (i) IS withdrawal in spontaneous operational tolerant (SOT) patients, (ii) induction of a mixed chimerism and (iii) adoptive transfer of regulatory cells. Results of clinical trials utilizing these approaches show that tolerance induction does not work in all patients. Thus, there is a need for reliable biomarkers, which can be used for patient selection and post-therapeutic immune monitoring of safety, success and failure. In this review, we summarize recent achievements in the identification and validation of such immunological assays and biomarkers, focusing mainly on kidney and liver transplantation. From the published findings so far, it has become clear that indicative biomarkers may vary between different therapeutic approaches applied and organs transplanted. Also, patient numbers studied so far are very small. This is the main reason why nearly all described parameters lack validation and reproducibility testing in large clinical trials, and are therefore not yet suitable for clinical practice.
Collapse
Affiliation(s)
- K Behnam Sani
- Institute of Medical Immunology, Charité Universitaetsmedizin Berlin, Berlin, Germany
| | - B Sawitzki
- Institute of Medical Immunology, Charité Universitaetsmedizin Berlin, Berlin, Germany
| |
Collapse
|
12
|
Noyan F, Zimmermann K, Hardtke-Wolenski M, Knoefel A, Schulde E, Geffers R, Hust M, Huehn J, Galla M, Morgan M, Jokuszies A, Manns MP, Jaeckel E. Prevention of Allograft Rejection by Use of Regulatory T Cells With an MHC-Specific Chimeric Antigen Receptor. Am J Transplant 2017; 17:917-930. [PMID: 27997080 DOI: 10.1111/ajt.14175] [Citation(s) in RCA: 229] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 12/02/2016] [Accepted: 12/07/2016] [Indexed: 01/25/2023]
Abstract
CD4+ CD25high FOXP3+ regulatory T cells (Tregs) are involved in graft-specific tolerance after solid organ transplantation. However, adoptive transfer of polyspecific Tregs alone is insufficient to prevent graft rejection even in rodent models, indicating that graft-specific Tregs are required. We developed a highly specific chimeric antigen receptor that recognizes the HLA molecule A*02 (referred to as A2-CAR). Transduction into natural regulatory T cells (nTregs) changes the specificity of the nTregs without alteration of their regulatory phenotype and epigenetic stability. Activation of nTregs via the A2-CAR induced proliferation and enhanced the suppressor function of modified nTregs. Compared with nTregs, A2-CAR Tregs exhibited superior control of strong allospecific immune responses in vitro and in humanized mouse models. A2-CAR Tregs completely prevented rejection of allogeneic target cells and tissues in immune reconstituted humanized mice in the absence of any immunosuppression. Therefore, these modified cells have great potential for incorporation into clinical trials of Treg-supported weaning after allogeneic transplantation.
Collapse
Affiliation(s)
- F Noyan
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, Hannover, Germany.,Integrated Research and Treatment Center, Transplantation (IFB-Tx), Hannover Medical School, Hannover, Germany
| | - K Zimmermann
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, Hannover, Germany
| | - M Hardtke-Wolenski
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, Hannover, Germany
| | - A Knoefel
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - E Schulde
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, Hannover, Germany
| | - R Geffers
- RG of Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - M Hust
- Department of Biotechnology, Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - J Huehn
- Department of Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - M Galla
- Institute of Experimental Haematology, Hannover Medical School, Hannover, Germany
| | - M Morgan
- Institute of Experimental Haematology, Hannover Medical School, Hannover, Germany
| | - A Jokuszies
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Hannover, Germany
| | - M P Manns
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, Hannover, Germany
| | - E Jaeckel
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, Hannover, Germany.,Integrated Research and Treatment Center, Transplantation (IFB-Tx), Hannover Medical School, Hannover, Germany
| |
Collapse
|
13
|
Abou-El-Enein M, Volk HD, Reinke P. Clinical Development of Cell Therapies: Setting the Stage for Academic Success. Clin Pharmacol Ther 2016; 101:35-38. [PMID: 27709611 DOI: 10.1002/cpt.523] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 09/19/2016] [Accepted: 09/21/2016] [Indexed: 01/05/2023]
Abstract
Cellular therapies have potential to treat a wide range of diseases with autologous immunotherapies showing unprecedented therapeutic promise in clinical trials. Such therapies are mainly developed by academic researchers applying small-scale production, targeting rare and unmet medical needs. Here, we highlight the clinical translation of immunotherapy product in an academic setting, which may serve as a success model for early academic development of cell-based therapeutics.
Collapse
Affiliation(s)
- M Abou-El-Enein
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Berlin, Germany
- Department of Nephrology and Internal Intensive Care, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - H-D Volk
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Berlin, Germany
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - P Reinke
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Berlin, Germany
- Department of Nephrology and Internal Intensive Care, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
14
|
Abstract
Immunosuppression strategies that selectively inhibit effector T cells while preserving and even enhancing CD4FOXP3 regulatory T cells (Treg) permit immune self-regulation and may allow minimization of immunosuppression and associated toxicities. Many immunosuppressive drugs were developed before the identity and function of Treg were appreciated. A good understanding of the interactions between Treg and immunosuppressive agents will be valuable to the effective design of more tolerable immunosuppression regimens. This review will discuss preclinical and clinical evidence regarding the influence of current and emerging immunosuppressive drugs on Treg homeostasis, stability, and function as a guideline for the selection and development of Treg-friendly immunosuppressive regimens.
Collapse
Affiliation(s)
- Akiko Furukawa
- Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Steven A Wisel
- Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Qizhi Tang
- Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
15
|
Combining Exosomes Derived from Immature DCs with Donor Antigen-Specific Treg Cells Induces Tolerance in a Rat Liver Allograft Model. Sci Rep 2016; 6:32971. [PMID: 27640806 PMCID: PMC5027549 DOI: 10.1038/srep32971] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 08/18/2016] [Indexed: 12/20/2022] Open
Abstract
Allograft tolerance is the ultimate goal in the field of transplantation immunology. Immature dendritic cells (imDCs) play an important role in establishing tolerance but have limitations, including potential for maturation, short lifespan in vivo and short storage times in vitro. However, exosomes (generally 30–100 nm) from imDCs (imDex) retain many source cell properties and may overcome these limitations. In previous reports, imDex prolonged the survival time of heart or intestine allografts. However, tolerance or long-term survival was not achieved unless immune suppressants were used. Regulatory T cells (Tregs) can protect allografts from immune rejection, and our previous study showed that the effects of imDex were significantly associated with Tregs. Therefore, we incorporated Tregs into the treatment protocol to further reduce or avoid suppressant use. We defined the optimal exosome dose as approximately 20 μg (per treatment before, during and after transplantation) in rat liver transplantation and the antigen-specific role of Tregs in protecting liver allografts. In the co-treatment group, recipients achieved long-term survival, and tolerance was induced. Moreover, imDex amplified Tregs, which required recipient DCs and were enhanced by IL-2. Fortunately, the expanded Tregs retained their regulatory ability and donor-specificity. Thus, imDex and donor-specific Tregs can collaboratively induce graft tolerance.
Collapse
|
16
|
Lei H, Kuchenbecker L, Streitz M, Sawitzki B, Vogt K, Landwehr-Kenzel S, Millward J, Juelke K, Babel N, Neumann A, Reinke P, Volk HD. Human CD45RA(-) FoxP3(hi) Memory-Type Regulatory T Cells Show Distinct TCR Repertoires With Conventional T Cells and Play an Important Role in Controlling Early Immune Activation. Am J Transplant 2015; 15:2625-35. [PMID: 25988290 DOI: 10.1111/ajt.13315] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 03/10/2015] [Accepted: 03/15/2015] [Indexed: 01/25/2023]
Abstract
Adoptive immunotherapy with regulatory T cells (Treg) is a new option to promote immune tolerance following solid organ transplantation (SOT). However, Treg from elderly patients awaiting transplantation are dominated by the CD45RA(-) CD62L(+) central memory type Treg subset (TregCM), and the yield of well-characterized and stable naïve Treg (TregN) is low. It is, therefore, important to determine whether these TregCM are derived from the thymus and express high stability, suppressive capacity and a broad antigen repertoire like TregN. In this study, we showed that TregCM use a different T cell receptor (TCR) repertoire from conventional T cells (Tconv), using next-generation sequencing of all 24 Vβ families, with an average depth of 534 677 sequences. This showed almost no contamination with induced Treg. Furthermore, TregCM showed enhanced suppressive activity on Tconv at early checkpoints of immune activation controlling activation markers expression and cytokine secretion, but comparable inhibition of proliferation. Following in vitro expansion under mTOR inhibition, TregCM expanded equally as well as TregN without losing their function. Despite relatively limited TCR repertoire, TregCM also showed specific alloresponse, although slightly reduced compared to TregN. These results support the therapeutic usefulness of manufacturing Treg products from CD45RA(-) CD62L(+) Treg-enriched starting material to be applied for adoptive Treg therapy.
Collapse
Affiliation(s)
- H Lei
- Berlin-Brandenburg Center for Regenerative Therapies, Charité University Medicine Berlin, Berlin, Germany.,Institute of Medical Immunology, Charité University Medicine Berlin, Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charité University Medicine Berlin, Berlin, Germany
| | - L Kuchenbecker
- Berlin-Brandenburg Center for Regenerative Therapies, Charité University Medicine Berlin, Berlin, Germany.,International Max Planck Research School for Computational Biology and Scientific Computing, Berlin, Germany
| | - M Streitz
- Berlin-Brandenburg Center for Regenerative Therapies, Charité University Medicine Berlin, Berlin, Germany.,Institute of Medical Immunology, Charité University Medicine Berlin, Berlin, Germany
| | - B Sawitzki
- Berlin-Brandenburg Center for Regenerative Therapies, Charité University Medicine Berlin, Berlin, Germany.,Institute of Medical Immunology, Charité University Medicine Berlin, Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charité University Medicine Berlin, Berlin, Germany
| | - K Vogt
- Institute of Medical Immunology, Charité University Medicine Berlin, Berlin, Germany
| | - S Landwehr-Kenzel
- Berlin-Brandenburg Center for Regenerative Therapies, Charité University Medicine Berlin, Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charité University Medicine Berlin, Berlin, Germany.,Department of Pediatric Pulmonology and Immunology, Charité University Medicine Berlin, Berlin, Germany
| | - J Millward
- Institute of Medical Immunology, Charité University Medicine Berlin, Berlin, Germany.,Experimental and Clinical Research Center (ECRC), MDC and Charité University Medicine, Berlin, Germany
| | - K Juelke
- Berlin-Brandenburg Center for Regenerative Therapies, Charité University Medicine Berlin, Berlin, Germany.,Institute of Medical Immunology, Charité University Medicine Berlin, Berlin, Germany
| | - N Babel
- Berlin-Brandenburg Center for Regenerative Therapies, Charité University Medicine Berlin, Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charité University Medicine Berlin, Berlin, Germany.,Department of Nephrology and Intensive Care, Charité University Medicine Berlin, Berlin, Germany
| | - A Neumann
- Berlin-Brandenburg Center for Regenerative Therapies, Charité University Medicine Berlin, Berlin, Germany.,Goodman Faculty of Life Sciences, Bar Ilan University, Ramat-Gan, Israel.,Institute for Theoretical Biology, Humboldt University, Berlin, Germany
| | - P Reinke
- Berlin-Brandenburg Center for Regenerative Therapies, Charité University Medicine Berlin, Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charité University Medicine Berlin, Berlin, Germany.,Department of Nephrology and Intensive Care, Charité University Medicine Berlin, Berlin, Germany
| | - H-D Volk
- Berlin-Brandenburg Center for Regenerative Therapies, Charité University Medicine Berlin, Berlin, Germany.,Institute of Medical Immunology, Charité University Medicine Berlin, Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charité University Medicine Berlin, Berlin, Germany
| |
Collapse
|
17
|
Trzonkowski P, Bacchetta R, Battaglia M, Berglund D, Bohnenkamp HR, ten Brinke A, Bushell A, Cools N, Geissler EK, Gregori S, Marieke van Ham S, Hilkens C, Hutchinson JA, Lombardi G, Madrigal JA, Marek-Trzonkowska N, Martinez-Caceres EM, Roncarolo MG, Sanchez-Ramon S, Saudemont A, Sawitzki B. Hurdles in therapy with regulatory T cells. Sci Transl Med 2015; 7:304ps18. [PMID: 26355029 DOI: 10.1126/scitranslmed.aaa7721] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Improper activation of the immune system contributes to a variety of clinical conditions, including autoimmune and allergic diseases as well as solid organ and bone marrow transplantation. One approach to counteract this activation is through adoptive therapy with regulatory T cells (Tregs). Efforts to manufacture these cells have led to good maunfacturing practice-compliant protocols, and Treg products are entering early clinical trials. Here, we report the stance of the European Union Cooperation in Science and Technology Action BM1305, "Action to Focus and Accelerate Cell-based Tolerance-inducing Therapies-A FACTT," which identifies hurdles hindering Treg clinical applications in Europe and provides possible solutions.
Collapse
Affiliation(s)
- Piotr Trzonkowski
- Medical University of Gdansk, Department of Clinical Immunology and Transplantology, Debinki 7, 80-952 Gdansk, Poland. All authors equally contributed to this work.
| | - Rosa Bacchetta
- Department of Pediatric Stem Cell Transplantation and Regenerative Medicine, Stanford School of Medicine, Standford, California, USA
| | - Manuela Battaglia
- Diabetes Research Institute (DRI), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - David Berglund
- Uppsala University, Department of Immunology, Genetics and Pathology; Section of Clinical Immunology, Rudbeck Laboratory, 751 85 Uppsala, Sweden
| | | | - Anja ten Brinke
- Department of Immunopathology, Sanquin Blood Supply, Division Research, Plesmanlaan 125, 1066 CX Amsterdam, Netherland and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Andrew Bushell
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK
| | - Nathalie Cools
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp University Hospital (UZA), Wilrijkstraat 10, B-2650 Edegem, Belgium
| | - Edward K Geissler
- Division of Experimental Surgery, Department of Surgery, University Hospital Regensburg, Regensburg, Bavaria, 93053, Germany
| | - Silvia Gregori
- San Raffaele Telethon Institute for Gene Therapy (HSR-TIGET), Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - S Marieke van Ham
- Department of Immunopathology, Sanquin Blood Supply, Division Research, Plesmanlaan 125, 1066 CX Amsterdam, Netherland and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | | | - James A Hutchinson
- Division of Experimental Surgery, Department of Surgery, University Hospital Regensburg, Regensburg, 93053, Bavaria, Germany
| | - Giovanna Lombardi
- Medical Research Council (MRC) Centre in Transplantation, Kings College London, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | - J Alejandro Madrigal
- Anthony Nolan Research Institute, University College London (UCL) Royal Free Hospital Campus, 77c Fleet Road, London NW3 2QG, UK
| | | | - Eva M Martinez-Caceres
- Immunology Division, Germans Trias i Pujol University Hospital. Campus Can Ruti. Department of Cellular Biology, Physiology, and Immunology, Universitat Autònoma Barcelona 08916, Badalona, Barcelona, Spain
| | - Maria Grazia Roncarolo
- San Raffaele Telethon Institute for Gene Therapy (HSR-TIGET), Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy. Department of Pediatric Stem Cell Transplantation and Regenerative Medicine, Stanford School of Medicine, Stanford, California, USA
| | - Silvia Sanchez-Ramon
- Departamento de Inmunología Clínica, Hospital Clínico San Carlos, Calle Profesor Martín Lagos S/N, E- 28040 Madrid, Spain
| | - Aurore Saudemont
- Anthony Nolan Research Institute, University College London (UCL) Royal Free Hospital Campus, 77c Fleet Road, London NW3 2QG, UK
| | - Birgit Sawitzki
- AG Transplantationstoleranz, Charite Universitätsmedizin, Institut für Med. Imunologie, Augustenburgerplatz 1, 13353 Berlin, Germany
| |
Collapse
|
18
|
Effect of induction therapy on the expression of molecular markers associated with rejection and tolerance. BMC Nephrol 2015; 16:146. [PMID: 26286066 PMCID: PMC4545708 DOI: 10.1186/s12882-015-0141-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 08/06/2015] [Indexed: 12/02/2022] Open
Abstract
Background Induction therapy can improve kidney transplantation (KTx) outcomes, but little is known about the mechanisms underlying its effects. Methods The mRNA levels of T cell-related genes associated with tolerance or rejection (CD247, GZMB, PRF1, FOXP3, MAN1A1, TCAIM, and TLR5) and lymphocyte subpopulations were monitored prospectively in the peripheral blood of 60 kidney transplant recipients before and 7, 14, 21, 28, 60, 90 days, 6 months, and 12 months after KTx. Patients were treated with calcineurin inhibitor-based triple immunosuppression and induction with rabbit anti-thymocyte globulin (rATG, n = 24), basiliximab (n = 17), or without induction (no-induction, n = 19). A generalized linear mixed model with gamma distribution for repeated measures, adjusted for rejection, recipient/donor age and delayed graft function, was used for statistical analysis. Results rATG treatment caused an intense reduction in all T cell type population and natural killer (NK) cells within 7 days, then a slow increase and repopulation was observed. This was also noticed in the expression levels of CD247, FOXP3, GZMB, and PRF1. The basiliximab group exhibited higher CD247, GZMB, FOXP3 and TCAIM mRNA levels and regulatory T cell (Treg) counts than the no-induction group. The levels of MAN1A1 and TLR5 mRNA expressions were increased, whereas TCAIM decreased in the rATG group as compared with those in the no-induction group. Conclusion The rATG induction therapy was associated with decreased T and NK cell-related transcript levels and with upregulation of two rejection-associated transcripts (MAN1A1 and TLR5) shortly after KTx. Basiliximab treatment was associated with increased absolute number of Treg cells, and increased level of FOXP3 and TCAIM expression.
Collapse
|
19
|
Niemann N, Sawitzki B. Treg Therapy in Transplantation: How and When Will We Do It? CURRENT TRANSPLANTATION REPORTS 2015. [DOI: 10.1007/s40472-015-0066-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
20
|
van der Net JB, Bushell A, Wood KJ, Harden PN. Regulatory T cells: first steps of clinical application in solid organ transplantation. Transpl Int 2015; 29:3-11. [DOI: 10.1111/tri.12608] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/26/2015] [Accepted: 05/13/2015] [Indexed: 01/03/2023]
Affiliation(s)
- Jeroen B. van der Net
- Transplantation Research Immunology Group; Nuffield Department of Surgical Sciences; University of Oxford; Oxford UK
- Oxford Transplant Centre; Oxford University Hospitals NHS Trust; Oxford UK
| | - Andrew Bushell
- Transplantation Research Immunology Group; Nuffield Department of Surgical Sciences; University of Oxford; Oxford UK
| | - Kathryn J. Wood
- Transplantation Research Immunology Group; Nuffield Department of Surgical Sciences; University of Oxford; Oxford UK
| | - Paul N. Harden
- Oxford Transplant Centre; Oxford University Hospitals NHS Trust; Oxford UK
| |
Collapse
|
21
|
Hutchinson JA, Geissler EK. Now or never? The case for cell-based immunosuppression in kidney transplantation. Kidney Int 2015; 87:1116-24. [PMID: 25738251 DOI: 10.1038/ki.2015.50] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 12/20/2014] [Accepted: 01/02/2015] [Indexed: 02/07/2023]
Abstract
By exploiting mechanisms of immunological regulation against donor alloantigen, it may be possible to reduce the dependence of kidney transplant recipients upon calcineurin inhibitor-based maintenance immunosuppression. One means to strengthen regulatory responses is treating recipients with preparations of regulatory cells obtained by ex vivo manipulation. This strategy, which is a well-established experimental method, has been developed to the point that early-phase clinical trials in kidney transplantation are now feasible. Cell-based therapies represent a radical departure from conventional treatment, so what grounds are there for this new approach? This article offers a three-part justification for trialing cell-based therapies in kidney transplantation: first, a clinical need for alternatives to standard immunosuppression is identified, based on the inadequacies of calcineurin inhibitor-based regimens in preventing late allograft loss; second, a mechanistic explanation of how cell-based therapies might address this clinical need is given; and third, the possible benefit to patients is weighed against the potential risks of cell-based immunosuppressive therapy. It is concluded that the safety of cell-based immunosuppressive therapy will not be greatly improved by further basic scientific and preclinical development. Only trials in humans can now tell us whether cell-based therapy is likely to benefit kidney transplant recipients, but these should be conservative in design to minimize any potential harm to patients.
Collapse
Affiliation(s)
- James A Hutchinson
- Department of Surgery, Section of Experimental Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Edward K Geissler
- Department of Surgery, Section of Experimental Surgery, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
22
|
Juvet SC, Whatcott AG, Bushell AR, Wood KJ. Harnessing regulatory T cells for clinical use in transplantation: the end of the beginning. Am J Transplant 2014; 14:750-63. [PMID: 24592900 DOI: 10.1111/ajt.12647] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 12/19/2013] [Accepted: 12/19/2013] [Indexed: 01/25/2023]
Abstract
Owing to the adverse effects of immunosuppression and an inability to prevent chronic rejection, there is a pressing need for alternative strategies to control alloimmunity. In three decades, regulatory T cells (Tregs) have evolved from a hypothetical mediator of adoptively transferred tolerance to a well-defined population that can be expanded ex vivo and returned safely to patients in clinical trials. Herein, we review the historical developments that have permitted these advances and the current status of clinical trials examining Tregs as a cellular therapy in transplantation. We conclude by discussing the critical unanswered questions that face this field in the coming years.
Collapse
Affiliation(s)
- S C Juvet
- Nuffield Department of Surgical Sciences, Transplantation Research Immunology Group, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | | | | | | |
Collapse
|
23
|
Waldmann H, Hilbrands R, Howie D, Cobbold S. Harnessing FOXP3+ regulatory T cells for transplantation tolerance. J Clin Invest 2014; 124:1439-45. [PMID: 24691478 DOI: 10.1172/jci67226] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Early demonstrations that mice could be tolerized to transplanted tissues with short courses of immunosuppressive therapy and that with regard to tolerance to self, CD4+FOXP3+ regulatory T cells (Tregs) appeared to play a critical role, have catalyzed strategies to harness FOXP3-dependent processes to control rejection in human transplantation. This review seeks to examine the scientific underpinning for this new approach to finesse immunosuppression.
Collapse
|
24
|
Landwehr-Kenzel S, Issa F, Luu SH, Schmück M, Lei H, Zobel A, Thiel A, Babel N, Wood K, Volk HD, Reinke P. Novel GMP-compatible protocol employing an allogeneic B cell bank for clonal expansion of allospecific natural regulatory T cells. Am J Transplant 2014; 14:594-606. [PMID: 24467477 DOI: 10.1111/ajt.12629] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 12/13/2013] [Indexed: 01/25/2023]
Abstract
The adoptive transfer of natural regulatory T cells (nTreg) is a new option to reshape undesired immune reactivity in autoimmunity and transplantation toward "tolerance." The first clinical trials using adoptive transfer of polyclonal nTreg demonstrated safety and hints of efficacy. However, the low frequencies of antigen-specific cells among the pool of polyclonal nTreg and their broad antigen nonspecific suppression are limitations of this approach regarding efficacy and safety. Recently, the isolation and expansion of (allo)antigen-specific nTreg have successfully been achieved by using Treg-specific activation markers but the yield is relatively low. Here, we describe a novel good manufacturing practice (GMP)-compatible expansion protocol of alloantigen-specific nTreg based on the stimulation of nTreg by allogeneic activated B cells. Their functionality and specificity are superior compared to polyclonal nTreg both in vitro and in vivo. Employing an allogeneic B cell bank, designed to cover the majority of HLA types, allows fast GMP-compliant manufacturing for donor-specific nTreg for clinical application in organ and stem cell transplantation. TCR repertoire analyses by next generation sequencing revealed impressive expansion by several log-steps of even very low-abundance alloantigen-specific nTreg clones. This novel method offers a simple approach for expanding antigen-specific nTreg and is characterized by high replicability and easy transferability to full GMP standards.
Collapse
Affiliation(s)
- S Landwehr-Kenzel
- Berlin-Brandenburg Center for Regenerative Therapies, Charité University Medicine Berlin, Berlin, Germany; Berlin-Brandenburg School for Regenerative Therapies, Charité University Medicine Berlin, Berlin, Germany; Department of Pediatric Pulmonology and Immunology, Charité University Medicine Berlin, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Presensitized Immune Condition of Host Exaggerates Prolonged Cold Ischemia-Mediated Injury of Cardiac Graft Involving Regulatory T Cells. Transplantation 2013; 96:609-15. [DOI: 10.1097/tp.0b013e31829df26d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
26
|
Siepert A, Brösel S, Vogt K, Ahrlich S, Schmitt-Knosalla I, Loddenkemper C, Kühl A, Baumgrass R, Gerstmayer B, Tomiuk S, Tiedge M, Viklický O, Brabcova I, Nizze H, Lehmann M, Volk HD, Sawitzki B. Mechanisms and rescue strategies of calcineurin inhibitor mediated tolerance abrogation induced by anti-CD4 mAb treatment. Am J Transplant 2013; 13:2308-21. [PMID: 23855618 DOI: 10.1111/ajt.12352] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 05/26/2013] [Accepted: 05/29/2013] [Indexed: 01/25/2023]
Abstract
To ensure safety tolerance induction protocols are accompanied by conventional immunosuppressive drugs (IS). But IS such as calcineurin inhibitors (CNI), for example, cyclosporin A (CsA), can interfere with tolerance induction. We investigated the effect of an additional transient CsA treatment on anti-CD4mAb-induced tolerance induction upon rat kidney transplantation. Additional CsA treatment induced deteriorated graft function, resulting in chronic rejection characterized by glomerulosclerosis, interstitial fibrosis, tubular atrophy and vascular changes. Microarray analysis revealed enhanced intragraft expression of the B cell attracting chemokine CXCL13 early during CsA treatment. Increase in CXCL13 expression is accompanied by enhanced B cell infiltration with local and systemic IgG production and C3d deposition as early as 5 days upon CsA withdrawal. Adding different CNIs to cultures of primary mesangial cells isolated from glomeruli resulted in a concentration-dependent increase in CXCL13 transcription. CsA in synergy with TNF-α can enhance the B cell attracting and activating potential of mesangial cells. Transient B cell depletion or transfer of splenocytes from tolerant recipients 3 weeks after transplantation could rescue tolerance induction and did inhibit intragraft B cell accumulation, alloantibody production and ameliorate chronic rejection.
Collapse
Affiliation(s)
- A Siepert
- Institute of Medical Biochemistry and Molecular Biology, University of Rostock, Rostock, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Elevation of CD4+ differentiated memory T cells is associated with acute cellular and antibody-mediated rejection after liver transplantation. Transplantation 2013; 95:1512-20. [PMID: 23619734 DOI: 10.1097/tp.0b013e318290de18] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND It is now well known that the outcome after allogeneic transplantation, such as incidence of acute rejections, very much depends on the individual's immune reactivity status. There is also increasing evidence that the presence of preexisting memory T cells can affect antigraft immune responses. METHODS In a prospective study, we monitored peripheral CD4 and CD8 central memory, effector memory, and terminal differentiated effector memory (TEMRA) T cells in 55 patients who underwent deceased liver transplantation and received conventional immunosuppressive treatment with or without basiliximab induction. The primary endpoint of the study was acute allograft rejection during a 1-year follow-up period. RESULTS We observed significantly increased proportions of CD4 and CD8 TEMRA cells in patients before transplantation compared with healthy controls (P=0.006 and 0.009, respectively). This characteristic was independent of the underlying disease. In patients with no signs of acute rejection, we observed an immediate reduction of CD4 TEMRA cells. In contrast, patients who experienced acute cellular rejection, and especially antibody-mediated rejection, displayed persistent elevated TEMRA cells (P=0.017 and 0.027, respectively). Basiliximab induction therapy did not influence CD4 and CD8 TEMRA numbers. CONCLUSIONS Conventional immunosuppressive or basiliximab treatment cannot control the persistence of TEMRA T cells, which may contribute to acute cellular rejection and antibody-mediated rejection after liver transplantation. In the future, specific targeting of TEMRA cells in selected patients may prevent the occurrence of difficult to treat steroid-resistant rejections, thereby leading to improved patient outcome.
Collapse
|
28
|
Cobbold SP, Waldmann H. Regulatory cells and transplantation tolerance. Cold Spring Harb Perspect Med 2013; 3:3/6/a015545. [PMID: 23732858 DOI: 10.1101/cshperspect.a015545] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Transplantation tolerance is a continuing therapeutic goal, and it is now clear that a subpopulation of T cells with regulatory activity (Treg) that express the transcription factor foxp3 are crucial to this aspiration. Although reprogramming of the immune system to donor-specific transplantation tolerance can be readily achieved in adult mouse models, it has yet to be successfully translated in human clinical practice. This requires that we understand the fundamental mechanisms by which donor antigen-specific Treg are induced and function to maintain tolerance, so that we can target therapies to enhance rather than impede these regulatory processes. Our current understanding is that Treg act via numerous molecular mechanisms, and critical underlying components such as mTOR inhibition, are only now emerging.
Collapse
Affiliation(s)
- Stephen P Cobbold
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, United Kingdom.
| | | |
Collapse
|
29
|
Schaefer SM, Süsal C, Sommerer C, Zeier M, Morath C. Current pharmacotherapeutical options for the prevention of kidney transplant rejection. Expert Opin Pharmacother 2013; 14:1029-41. [DOI: 10.1517/14656566.2013.788151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|