1
|
Ebersole JL, Novak MJ, Cappelli D, Dawson DR, Gonzalez OA. Use of Nonhuman Primates in Periodontal Disease Research: Contribution of the Caribbean Primate Research Center and Cayo Santiago Rhesus Colony. Am J Primatol 2025; 87:e23724. [PMID: 39902755 DOI: 10.1002/ajp.23724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 12/04/2024] [Accepted: 12/16/2024] [Indexed: 02/06/2025]
Abstract
This review article provides a historical summary regarding the use, value, and validity of the nonhuman primate model of periodontal disease. The information provided cites results regarding the features of naturally occurring periodontitis in various nonhuman primate species, as well as the implementation of a model of experimental periodontitis. Clinical similarities to human disease are discussed, as well as the use of these models to document physiological and pathophysiological tissue changes in the periodontium related to the initiation and progression of the disease. Additionally, the use of these analytics in examination of the tissue characteristics of the disease, and the utility of nonhuman primates in testing and describing various therapeutic modalities are described. As periodontitis represents a disease of an oral microbiome dysbiosis, features of the altered microbiome in the disease in nonhuman primates are related to similar findings in the human condition. The review then provides a summary of the features of local and systemic host responses to a periodontal infection in an array of nonhuman primate species. This includes attributes of innate immunity, acute and chronic inflammation, and adaptive immune responses. Finally, extensive information is presented regarding the role of Macaca mulatta derived from the Cayo Santiago community in evaluating critical biologic details of disease initiation, progression, and resolution. This unique resource afforded the capacity to relate risk and expression of disease and traits of the responses to age, sex, and matriline derivation (e.g., heritability) of the animals. The Cayo Santiago colony continues to provide a critical preclinical model for assessment of molecular aspects of the disease process that can lead to both new targets for therapeutics and consideration of vaccine approaches to preventing and/or treating this global disease.
Collapse
Grants
- This study was supported by National Institute on Minority Health and Health Disparities (MD007600), National Institute of Dental and Craniofacial Research (DE05599, DE07267, DE07457), National Center for Research Resources (RR003051, RR020145, RR03640), National Institute of General Medical Sciences (GM103538), Office of Research Infrastructure Programs (OD012217, OD021458), and National Institute on Aging (AG021406).
Collapse
Affiliation(s)
- Jeffrey L Ebersole
- Department of Biomedical Sciences, University of Nevada Las Vegas, Las Vegas, Nevada, USA
| | - M J Novak
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, Kentucky, USA
| | - D Cappelli
- Department of Biomedical Sciences, University of Nevada Las Vegas, Las Vegas, Nevada, USA
| | - D R Dawson
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, Kentucky, USA
- Department of Oral Health Practice, College of Dentistry, University of Kentucky, Lexington, Kentucky, USA
| | - O A Gonzalez
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, Kentucky, USA
- Department of Oral Health Practice, College of Dentistry, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
2
|
Noh SG, Kim HW, Kim S, Chung KW, Jung YS, Yoon JH, Yu BP, Lee J, Chung HY. Senoinflammation as the underlying mechanism of aging and its modulation by calorie restriction. Ageing Res Rev 2024; 101:102503. [PMID: 39284417 DOI: 10.1016/j.arr.2024.102503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/25/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
Senoinflammation is characterized by an unresolved low-grade inflammatory process that affects multiple organs and systemic functions. This review begins with a brief overview of the fundamental concepts and frameworks of senoinflammation. It is widely involved in the aging of various organs and ultimately leads to progressive systemic degeneration. Senoinflammation underlying age-related inflammation, is causally related to metabolic dysregulation and the formation of senescence-associated secretory phenotype (SASP) during aging and age-related diseases. This review discusses the biochemical evidence and molecular biology data supporting the concept of senoinflammation and its regulatory processes, highlighting the anti-aging and anti-inflammatory effects of calorie restriction (CR). Experimental data from CR studies demonstrated effective suppression of various pro-inflammatory cytokines and chemokines, lipid accumulation, and SASP during aging. In conclusion, senoinflammation represents the basic mechanism that creates a microenvironment conducive to aging and age-related diseases. Furthermore, it serves as a potential therapeutic target for mitigating aging and age-related diseases.
Collapse
Affiliation(s)
- Sang Gyun Noh
- Research Institute for Drug Development, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Hyun Woo Kim
- Research Institute for Drug Development, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Seungwoo Kim
- Department of Pharmacy, College of Pharmacy, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Ki Wung Chung
- Research Institute for Drug Development, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea; Department of Pharmacy, College of Pharmacy, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Young-Suk Jung
- Research Institute for Drug Development, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea; Department of Pharmacy, College of Pharmacy, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Jeong-Hyun Yoon
- Research Institute for Drug Development, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea; Department of Pharmacy, College of Pharmacy, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Byung Pal Yu
- Department of Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Jaewon Lee
- Research Institute for Drug Development, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea; Department of Pharmacy, College of Pharmacy, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea.
| | - Hae Young Chung
- Research Institute for Drug Development, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea; Department of Pharmacy, College of Pharmacy, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea.
| |
Collapse
|
3
|
Lira-Junior R, Aogáin MM, Crncalo E, Ekberg NR, Chotirmall SH, Pettersson S, Gustafsson A, Brismar K, Bostanci N. Effects of intermittent fasting on periodontal inflammation and subgingival microbiota. J Periodontol 2024; 95:640-649. [PMID: 38655661 DOI: 10.1002/jper.23-0676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/21/2024] [Accepted: 03/29/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Studies on the impact of intermittent fasting on periodontal health are still scarce. Thus, this study evaluated the effects of long-term intermittent fasting on periodontal health and the subgingival microbiota. METHODS This pilot study was part of a nonrandomized controlled trial. Overweight/obese participants (n = 14) entered an intermittent fasting program, specifically the 5:2 diet, in which they restricted caloric intake to about a quarter of the normal total daily caloric expenditure for two nonconsecutive days/week. Subjects underwent a thorough clinical and laboratory examination, including an assessment of their periodontal condition, at baseline and 6 months after starting the diet. Additionally, subgingival microbiota was assessed by 16S rRNA gene sequencing. RESULTS After 6 months of intermittent fasting, weight, body mass index, C-reactive protein, hemoglobin A1c (HbA1c), and the cholesterol profile improved significantly (p < 0.05). Moreover, significant reductions were observed in bleeding on probing (p = 0.01) and the presence of shallow periodontal pockets after fasting (p < 0.001), while no significant change was seen in plaque index (p = 0.14). While we did not observe significant changes in α- or β-diversity of the subgingival microbiota related to dietary intervention (p > 0.05), significant differences were seen in the abundances of several taxa among individuals exhibiting ≥60% reduction (good responders) in probing pocket depth of 4-5 mm compared to those with <60% reduction (bad responders). CONCLUSION Intermittent fasting decreased systemic and periodontal inflammation. Although the subgingival microbiota was unaltered by this intervention, apparent taxonomic variability was observed between good and bad responders.
Collapse
Affiliation(s)
- Ronaldo Lira-Junior
- Section of Oral Diagnostics and Surgery, Division of Oral Diagnostics and Rehabilitation, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Micheál Mac Aogáin
- Biochemical Genetics Laboratory, Department of Biochemistry, St. James's Hospital, Dublin, Ireland
- Clinical Biochemistry Unit, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Eva Crncalo
- Division of Oral Health and Periodontology, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Neda Rajamand Ekberg
- Department of Molecular Medicine and Surgery, Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore, Singapore
| | - Sven Pettersson
- Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore
| | - Anders Gustafsson
- Division of Oral Health and Periodontology, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Kerstin Brismar
- Department of Molecular Medicine and Surgery, Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| | - Nagihan Bostanci
- Division of Oral Health and Periodontology, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
4
|
Al-Ghumlas AK. Ramadan intermittent fasting is associated with improved anticoagulant activity among healthy people: a case-control study. Sci Rep 2024; 14:13855. [PMID: 38879576 PMCID: PMC11180170 DOI: 10.1038/s41598-024-64582-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 06/11/2024] [Indexed: 06/19/2024] Open
Abstract
Data on the pathophysiological mechanisms of hemostatic alterations in the thrombotic events that occur during Ramadan intermittent fasting (RIF), particularly in the natural coagulation inhibitors, are very limited. Thus, our objective was to evaluate the effect of RIF on the natural anticoagulants level, antithrombin, protein C, and total and free protein S (PS) in healthy participants. Participants were divided into two groups. Group I consisted of 29 healthy fasting participants whose blood samples were taken after 20 days of fasting. Group II included 40 healthy non-fasting participants whose blood samples were taken 2-4 weeks before the month of Ramadan. Coagulation screening tests including prothrombin time (PT), activated partial thromboplastin time (APTT) and plasma fibrinogen level, natural anticoagulants; antithrombin, protein C, free and total PS and C4 binding protein (C4BP) levels were evaluated in the two groups. High levels of total and free PS without change in antithrombin, protein C, and C4BP levels were noted in the fasting group as compared with non-fasting ones (p < 0.05). PT and APTT showed no difference between the two groups. However, the fibrinogen level was higher in the fasting group. In conclusion, RIF was found to be associated with improved anticoagulant activity in healthy participants, which may provide temporal physiological protection against the development of thrombosis in healthy fasting people.
Collapse
Affiliation(s)
- Abeer Khalid Al-Ghumlas
- The Coagulation Research Laboratory, Physiology Department, College of Medicine and King Saud University Medical City, King Saud University, 11461, Riyadh, Saudi Arabia.
| |
Collapse
|
5
|
Yakupova E, Semenovich D, Abramicheva P, Zorova L, Pevzner I, Andrianova N, Popkov V, Manskikh V, Bocharnikov A, Voronina Y, Zorov D, Plotnikov E. Effects of caloric restriction and ketogenic diet on renal fibrosis after ischemia/reperfusion injury. Heliyon 2023; 9:e21003. [PMID: 37928038 PMCID: PMC10623167 DOI: 10.1016/j.heliyon.2023.e21003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/25/2023] [Accepted: 10/12/2023] [Indexed: 11/07/2023] Open
Abstract
The beneficial effects of caloric restriction (CR) and a ketogenic diet (KD) have been previously shown when performed prior to kidney injury. We investigated the effects of CR and KD on fibrosis development after unilateral kidney ischemia/reperfusion (UIR). Post-treatment with CR significantly (p < 0.05) affected blood glucose (2-fold decrease), ketone bodies (3-fold increase), lactate (1.5-fold decrease), and lipids (1.4-fold decrease). In the kidney, CR improved succinate dehydrogenase and malate dehydrogenase activity by 2-fold each, but worsened fibrosis progression. Similar results were shown for the KD, which restored the post-UIR impaired activities of succinate dehydrogenase, malate dehydrogenase, and α-ketoglutarate dehydrogenase (which was decreased 2-fold) but had no effect on fibrosis progression. Thus, our study shows that the use of CR or KD after UIR did not reduce the development of fibrosis, as shown by hydroxyproline content, western-blotting, and RT-PCR, whereas it caused significant metabolic changes in kidney tissue after UIR.
Collapse
Affiliation(s)
- E.I. Yakupova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - D.S. Semenovich
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - P.A. Abramicheva
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - L.D. Zorova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Moscow 117997, Russia
| | - I.B. Pevzner
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Moscow 117997, Russia
| | - N.V. Andrianova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - V.A. Popkov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Moscow 117997, Russia
| | - V.N. Manskikh
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - A.D. Bocharnikov
- Sechenov First Moscow State Medical University, Moscow 119992, Russia
| | - Y.A. Voronina
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Moscow 119234, Russia
- Laboratory of Cardiac Electrophysiology, National Medical Research Center for Cardiology, Moscow 121552, Russia
| | - D.B. Zorov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Moscow 117997, Russia
| | - E.Y. Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Moscow 117997, Russia
| |
Collapse
|
6
|
Pandey S, Anang V, Singh S, Seth S, Bhatt AN, Kalra N, Manda K, Soni R, Roy BG, Natarajan K, Dwarakanath BS. Dietary administration of the glycolytic inhibitor 2-deoxy-D-glucose reduces endotoxemia-induced inflammation and oxidative stress: Implications in PAMP-associated acute and chronic pathology. Front Pharmacol 2023; 14:940129. [PMID: 37234710 PMCID: PMC10206263 DOI: 10.3389/fphar.2023.940129] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
Pathogen-associated molecular patterns (PAMPs) like bacterial cell wall components and viral nucleic acids are known ligands of innate inflammatory receptors that trigger multiple inflammatory pathways that may result in acute inflammation and oxidative stress-driven tissue and organ toxicity. When dysregulated, this inflammation may lead to acute toxicity and multiorgan failure. Inflammatory events are often driven by high energy demands and macromolecular biosynthesis. Therefore, we proposed that targeting the metabolism of lipopolysaccharide (LPS)-driven inflammatory events, using an energy restriction approach, can be an effective strategy to prevent the acute or chronic detrimental effects of accidental or seasonal bacterial and other pathogenic exposures. In the present study, we investigated the potential of energy restriction mimetic agent (ERMA) 2-deoxy-D-glucose (2-DG) in targeting the metabolism of inflammatory events during LPS-elicited acute inflammatory response. Mice fed with 2-DG as a dietary component in drinking water showed reduced LPS-driven inflammatory processes. Dietary 2-DG reduced LPS-induced lung endothelial damage and oxidative stress by strengthening the antioxidant defense system and limiting the activation and expression of inflammatory proteins, viz., P-Stat-3, NfκΒ, and MAP kinases. This was accompanied by decreased TNF, IL-1β, and IL-6 levels in peripheral blood and bronchoalveolar lavage fluid (BALF). 2-DG also reduced the infiltration of PMNCs (polymorphonuclear cells) in inflamed tissues. Altered glycolysis and improved mitochondrial activity in 2-DG-treated RAW 264.7 macrophage cells suggested possible impairment of macrophage metabolism and, therefore, activation in macrophages. Taken together, the present study suggests that inclusion of glycolytic inhibitor 2-DG as a part of the diet can be helpful in preventing the severity and poor prognosis associated with inflammatory events during bacterial and other pathogenic exposures.
Collapse
Affiliation(s)
- Sanjay Pandey
- Division of Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
- Infectious Disease Immunology Laboratory, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Vandana Anang
- Infectious Disease Immunology Laboratory, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Saurabh Singh
- Division of Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
- Infectious Disease Immunology Laboratory, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Saurabh Seth
- Division of Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Anant Narayan Bhatt
- Division of Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Namita Kalra
- Division of Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Kailash Manda
- Division of Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Ravi Soni
- Division of Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Bal Gangadhar Roy
- Division of Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - K. Natarajan
- Infectious Disease Immunology Laboratory, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Bilikere S. Dwarakanath
- Division of Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| |
Collapse
|
7
|
Phillips EJ, Simons MJP. Rapamycin not dietary restriction improves resilience against pathogens: a meta-analysis. GeroScience 2023; 45:1263-1270. [PMID: 36399256 PMCID: PMC9886774 DOI: 10.1007/s11357-022-00691-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022] Open
Abstract
Dietary restriction (DR) and rapamycin both increase lifespan across a number of taxa. Despite this positive effect on lifespan and other aspects of health, reductions in some physiological functions have been reported for DR, and rapamycin has been used as an immunosuppressant. Perhaps surprisingly, both interventions have been suggested to improve immune function and delay immunosenescence. The immune system is complex and consists of many components. Therefore, arguably, the most holistic measurement of immune function is survival from an acute pathogenic infection. We reanalysed published post-infection short-term survival data of mice (n = 1223 from 23 studies comprising 46 effect sizes involving DR (n = 17) and rapamycin treatment (n = 29) and analysed these results using meta-analysis. Rapamycin treatment significantly increased post infection survival rate (lnHR = - 0.72; CI = - 1.17, -0.28; p = 0.0015). In contrast, DR reduced post-infection survival (lnHR = 0.80; CI = 0.08, 1.52; p = 0.03). Importantly, the overall effect size of rapamycin treatment was significantly lower (p < 0.001) than the estimate from DR studies, suggesting opposite effects on immune function. Our results show that immunomodulation caused by rapamycin treatment is beneficial to the survival from acute infection. For DR, our results are based on a smaller number of studies, but do warrant caution as they indicate possible immune costs of DR. Our quantitative synthesis suggests that the geroprotective effects of rapamycin extend to the immune system and warrants further clinical trials of rapamycin to boost immunity in humans.
Collapse
Affiliation(s)
- Eleanor J Phillips
- School of Biosciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Mirre J P Simons
- School of Biosciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
| |
Collapse
|
8
|
Whole Transcriptome Analysis of Hypothalamus in Mice during Short-Term Starvation. Int J Mol Sci 2023; 24:ijms24043204. [PMID: 36834616 PMCID: PMC9968171 DOI: 10.3390/ijms24043204] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
Molecular profiling of the hypothalamus in response to metabolic shifts is a critical cue to better understand the principle of the central control of whole-body energy metabolism. The transcriptional responses of the rodent hypothalamus to short-term calorie restriction have been documented. However, studies on the identification of hypothalamic secretory factors that potentially contribute to the control of appetite are lacking. In this study, we analyzed the differential expression of hypothalamic genes and compared the selected secretory factors from the fasted mice with those of fed control mice using bulk RNA-sequencing. We verified seven secretory genes that were significantly altered in the hypothalamus of fasted mice. In addition, we determined the response of secretory genes in cultured hypothalamic cells to treatment with ghrelin and leptin. The current study provides further insights into the neuronal response to food restriction at the molecular level and may be useful for understanding the hypothalamic control of appetite.
Collapse
|
9
|
Mozaffari SA, Salehi A, Mousavi E, Zaman BA, Nassaj AE, Ebrahimzadeh F, Nasiri H, Valedkarimi Z, Adili A, Asemani G, Akbari M. SARS-CoV-2-associated gut microbiome alteration; A new contributor to colorectal cancer pathogenesis. Pathol Res Pract 2022; 239:154131. [PMID: 36191449 PMCID: PMC9477615 DOI: 10.1016/j.prp.2022.154131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/31/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022]
Abstract
The emergence of a novel coronavirus, COVID-19, in December 2019 led to a global pandemic with more than 170 million confirmed infections and more than 6 million deaths (by July 2022). Studies have shown that infection with SARS-CoV-2 in cancer patients has a higher mortality rate than in people without cancer. Here, we have reviewed the evidence showing that gut microbiota plays an important role in health and is linked to colorectal cancer development. Studies have shown that SARS-CoV-2 infection leads to a change in gut microbiota, which modify intestinal inflammation and barrier permeability and affects tumor-suppressor or oncogene genes, proposing SARS-CoV-2 as a potential contributor to CRC pathogenesis.
Collapse
Affiliation(s)
- Shahrooz Amin Mozaffari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Ali Salehi
- Department of Oral and Maxillofacial Radiology, School of Dentistry, Islamic Azad University, Isfahan (Khorasgan) Branch, Isfahan, Islamic Republic of Iran
| | - Elnaz Mousavi
- Dental Sciences Research Center, Department of Endodontics, School of Dentistry, Guilan University of Medical Sciences, Rasht, Islamic Republic of Iran
| | - Burhan Abdullah Zaman
- Department of Basic Sciences, College of Pharmacy, University of Duhok, Duhok, Kurdistan Region, Iraq
| | - Ali Eslambol Nassaj
- Department of Endodontics, School of Dentistry, Kerman University of Medical Sciences, Kerman, Islamic Republic of Iran
| | - Farnoosh Ebrahimzadeh
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Islamic Republic of Iran
| | - Hadi Nasiri
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Zahra Valedkarimi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Ali Adili
- Senior Adult Oncology Department, Moffitt Cancer Center, University of South Florida, Tampa, USA; Department of Oncology, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Ghazaleh Asemani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Morteza Akbari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran; Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran.
| |
Collapse
|
10
|
Pamuk F, Kantarci A. Inflammation as a link between periodontal disease and obesity. Periodontol 2000 2022; 90:186-196. [PMID: 35916870 DOI: 10.1111/prd.12457] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nutrition plays a critical role in the homeostatic balance, maintenance of health, and longevity. There is a close link between inflammatory diseases and nutritional health. Obesity is a severe pathological process with grave implications on several organ systems and disease processes, including type 2 diabetes, cardiovascular disease, osteoarthritis, and rheumatoid arthritis. The impact of obesity on periodontal inflammation has not been fully understood; the association between nutritional balance and periodontal inflammation is much less explored. This review is focused on the potential mechanistic links between periodontal diseases and obesity and common inflammatory activity pathways that can be pharmacologically targeted.
Collapse
Affiliation(s)
- Ferda Pamuk
- Forsyth Institute, Cambridge, Massachusetts, USA.,Department of Oral Health Sciences, University of Leuven (KU Leuven), Leuven, Belgium
| | | |
Collapse
|
11
|
Caron JP, Kreher MA, Mickle AM, Wu S, Przkora R, Estores IM, Sibille KT. Intermittent Fasting: Potential Utility in the Treatment of Chronic Pain across the Clinical Spectrum. Nutrients 2022; 14:nu14122536. [PMID: 35745266 PMCID: PMC9228511 DOI: 10.3390/nu14122536] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 11/25/2022] Open
Abstract
Dietary behavior can have a consequential and wide-ranging influence on human health. Intermittent fasting, which involves intermittent restriction in energy intake, has been shown to have beneficial cellular, physiological, and system-wide effects in animal and human studies. Despite the potential utility in preventing, slowing, and reversing disease processes, the clinical application of intermittent fasting remains limited. The health benefits associated with the simple implementation of a 12 to 16 h fast suggest a promising role in the treatment of chronic pain. A literature review was completed to characterize the physiologic benefits of intermittent fasting and to relate the evidence to the mechanisms underlying chronic pain. Research on different fasting regimens is outlined and an overview of research demonstrating the benefits of intermittent fasting across diverse health conditions is provided. Data on the physiologic effects of intermittent fasting are summarized. The physiology of different pain states is reviewed and the possible implications for intermittent fasting in the treatment of chronic pain through non-invasive management, prehabilitation, and rehabilitation following injury and invasive procedures are presented. Evidence indicates the potential utility of intermittent fasting in the comprehensive management of chronic pain and warrants further investigation.
Collapse
Affiliation(s)
- Jesse P. Caron
- Pain TRAIL—Translational Research in Assessment & Intervention Lab, Department of Physical Medicine & Rehabilitation, College of Medicine, University of Florida, Gainesville, FL 32607, USA; (J.P.C.); (M.A.K.); (A.M.M.); (S.W.); (R.P.); (I.M.E.)
| | - Margaret Ann Kreher
- Pain TRAIL—Translational Research in Assessment & Intervention Lab, Department of Physical Medicine & Rehabilitation, College of Medicine, University of Florida, Gainesville, FL 32607, USA; (J.P.C.); (M.A.K.); (A.M.M.); (S.W.); (R.P.); (I.M.E.)
| | - Angela M. Mickle
- Pain TRAIL—Translational Research in Assessment & Intervention Lab, Department of Physical Medicine & Rehabilitation, College of Medicine, University of Florida, Gainesville, FL 32607, USA; (J.P.C.); (M.A.K.); (A.M.M.); (S.W.); (R.P.); (I.M.E.)
| | - Stanley Wu
- Pain TRAIL—Translational Research in Assessment & Intervention Lab, Department of Physical Medicine & Rehabilitation, College of Medicine, University of Florida, Gainesville, FL 32607, USA; (J.P.C.); (M.A.K.); (A.M.M.); (S.W.); (R.P.); (I.M.E.)
| | - Rene Przkora
- Pain TRAIL—Translational Research in Assessment & Intervention Lab, Department of Physical Medicine & Rehabilitation, College of Medicine, University of Florida, Gainesville, FL 32607, USA; (J.P.C.); (M.A.K.); (A.M.M.); (S.W.); (R.P.); (I.M.E.)
- Department of Anesthesiology, Division of Pain Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Irene M. Estores
- Pain TRAIL—Translational Research in Assessment & Intervention Lab, Department of Physical Medicine & Rehabilitation, College of Medicine, University of Florida, Gainesville, FL 32607, USA; (J.P.C.); (M.A.K.); (A.M.M.); (S.W.); (R.P.); (I.M.E.)
| | - Kimberly T. Sibille
- Pain TRAIL—Translational Research in Assessment & Intervention Lab, Department of Physical Medicine & Rehabilitation, College of Medicine, University of Florida, Gainesville, FL 32607, USA; (J.P.C.); (M.A.K.); (A.M.M.); (S.W.); (R.P.); (I.M.E.)
- Department of Anesthesiology, Division of Pain Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Correspondence:
| |
Collapse
|
12
|
Kim CK, Sachdev PS, Braidy N. Recent Neurotherapeutic Strategies to Promote Healthy Brain Aging: Are we there yet? Aging Dis 2022; 13:175-214. [PMID: 35111369 PMCID: PMC8782556 DOI: 10.14336/ad.2021.0705] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/05/2021] [Indexed: 12/21/2022] Open
Abstract
Owing to the global exponential increase in population ageing, there is an urgent unmet need to develop reliable strategies to slow down and delay the ageing process. Age-related neurodegenerative diseases are among the main causes of morbidity and mortality in our contemporary society and represent a major socio-economic burden. There are several controversial factors that are thought to play a causal role in brain ageing which are continuously being examined in experimental models. Among them are oxidative stress and brain inflammation which are empirical to brain ageing. Although some candidate drugs have been developed which reduce the ageing phenotype, their clinical translation is limited. There are several strategies currently in development to improve brain ageing. These include strategies such as caloric restriction, ketogenic diet, promotion of cellular nicotinamide adenine dinucleotide (NAD+) levels, removal of senescent cells, 'young blood' transfusions, enhancement of adult neurogenesis, stem cell therapy, vascular risk reduction, and non-pharmacological lifestyle strategies. Several studies have shown that these strategies can not only improve brain ageing by attenuating age-related neurodegenerative disease mechanisms, but also maintain cognitive function in a variety of pre-clinical experimental murine models. However, clinical evidence is limited and many of these strategies are awaiting findings from large-scale clinical trials which are nascent in the current literature. Further studies are needed to determine their long-term efficacy and lack of adverse effects in various tissues and organs to gain a greater understanding of their potential beneficial effects on brain ageing and health span in humans.
Collapse
Affiliation(s)
- Chul-Kyu Kim
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Perminder S Sachdev
- Neuropsychiatric Institute, Euroa Centre, Prince of Wales Hospital, Sydney, Australia
| | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| |
Collapse
|
13
|
Angoorani P, Ejtahed HS, Hasani-Ranjbar S, Siadat SD, Soroush AR, Larijani B. Gut microbiota modulation as a possible mediating mechanism for fasting-induced alleviation of metabolic complications: a systematic review. Nutr Metab (Lond) 2021; 18:105. [PMID: 34906176 PMCID: PMC8670288 DOI: 10.1186/s12986-021-00635-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/30/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Intermittent fasting has been reported to have positive effects on obesity, diabetes, cardiovascular diseases, hypertension, and several neurodegenerative diseases through different mechanisms such as alteration in the gut microbiota. This systematic review was conducted with the aim of providing an overview of the existing animal and human literature regarding the gut microbiota alterations in various fasting regimens. METHOD A systematic literature search was conducted on PubMed, Scopus and Web of Science databases up to May 2021 to find all relevant studies examining the gut microbiota alteration during the fasting. Original researches on animal models or human patients were included in this study. RESULTS The search fulfilled 3072 documents from which 31 studies (20 animal and 11 human studies) were included. Upon fasting, abundance of several beneficial bacteria including Lactobacillus and Bifidobacterium shifted significantly. Moreover, some taxa, including Odoribacter which negatively associated with blood pressure bloomed during fasting. Ramadan fasting, as a kind of intermittent fasting, improves health parameters through positive changes in gut microbiota including upregulation of A. muciniphila, B. fragilis, Bacteroides and butyric acid-producing Lachnospiraceae. CONCLUSION The findings suggest that different fasting regimens including alternate-day fasting, calorie- and time-restricted fasting programs and Ramadan fasting could promote health maybe through the modulation of gut microbiome. However, further studies are needed to explore properly the connection between gut microbiota and meal frequency and timing.
Collapse
Affiliation(s)
- Pooneh Angoorani
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hanieh-Sadat Ejtahed
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, North Kargar Ave, 1411413137, Tehran, Iran.
| | - Shirin Hasani-Ranjbar
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Ahmad Reza Soroush
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, North Kargar Ave, 1411413137, Tehran, Iran
| |
Collapse
|
14
|
Yakupova EI, Zorov DB, Plotnikov EY. Bioenergetics of the Fibrosis. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:1599-1606. [PMID: 34937539 DOI: 10.1134/s0006297921120099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
It is known that the development of fibrosis is associated with many diseases, being both a cause and effect of the damage to organs and tissues. Replacement of functional tissue with a scar can lead to organ dysfunction, which is often a life-threatening condition. The development of effective approaches for the prevention or treatment of fibrosis requires an in-depth understanding of all aspects of its pathogenesis, from epithelial-mesenchymal transformation to fibroblast proliferation. Fibrosis can be induced by trauma, ischemic injury, inflammation, and many other pathological states accompanied by repeated cycles of tissue damage and repair. Energy metabolism is the basis of functioning of all cells in an organism and its disruptions are associated with the development of different diseases, hence, it could be a target for the therapy of such pathological processes as ischemia/reperfusion, epilepsy, diabetes, cancer, and neurological disorders. The emergence of fibrosis is also associated with the changes in cell bioenergetics. In this work, we analyzed the changes in the energy metabolism that occur with the progression of fibrosis and evaluated the possibility of affecting energetics as target in the anti-fibrotic approach.
Collapse
Affiliation(s)
- Elmira I Yakupova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.,Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Dmitry B Zorov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia. .,Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia
| | - Egor Y Plotnikov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia. .,Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia
| |
Collapse
|
15
|
Campos J, Silva NA, Salgado AJ. Nutritional interventions for spinal cord injury: preclinical efficacy and molecular mechanisms. Nutr Rev 2021; 80:1206-1221. [PMID: 34472615 DOI: 10.1093/nutrit/nuab068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Spinal cord injury (SCI) is a debilitating condition that leads to motor, sensory, and autonomic impairments. Its intrinsic pathophysiological complexity has hindered the establishment of effective treatments for decades. Nutritional interventions (NIs) for SCI have been proposed as a route to circumvent some of the problems associated with this condition. Results obtained in animal models point to a more holistic effect, rather than to specific modulation, of several relevant SCI pathophysiological processes. Indeed, published data have shown NI improves energetic imbalance, oxidative damage, and inflammation, which are promoters of improved proteostasis and neurotrophic signaling, leading ultimately to neuroprotection and neuroplasticity. This review focuses on the most well-documented Nis. The mechanistic implications and their translational potential for SCI are discussed.
Collapse
Affiliation(s)
- Jonas Campos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno A Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
16
|
Parveen S. Impact of calorie restriction and intermittent fasting on periodontal health. Periodontol 2000 2021; 87:315-324. [PMID: 34463980 DOI: 10.1111/prd.12400] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The scientific evidence indicates that calorie restriction and intermittent fasting are among the appropriate strategies targeting factual causative factors of various inflammatory and lifestyle-related disorders. Periodontitis is a common oral inflammatory disease leading to bone loss that is associated with various systemic problems. Previous studies suggest that calorie restriction may dampen inflammation and concomitant tissue damage under inflammatory conditions, such as periodontal diseases in nonhuman primates. However, insufficient research has been carried out to assess the effects of a calorie-restricted diet on the initiation and progression of periodontal disease in humans. This review of the literature aims to describe the general concepts of calorie restriction, its clinical implications, and related therapeutic potential in controlling periodontal inflammation. The review shows that fasting regimen groups have shown lesser bone loss because of an increase in osteoprogenitor cells than non-fasting groups. Calorie restriction dampens the inflammatory response and reduces circulating inflammatory mediators like tumor necrosis factor-alpha, interleukin-6, matrix metalloproteinase-8, matrix metalloproteinase-9, and interleukin-1-beta in gingival crevicular fluid. However, the incorporation of this form of dietary intervention continues to be challenging in our current society, in which obesity is a major public concern. Calorie restriction and intermittent fasting can play a key role in the cost-effective resolution of periodontal inflammation as a primary prevention strategy for the management of chronic inflammatory diseases, including periodontal diseases.
Collapse
Affiliation(s)
- Sameena Parveen
- Department of Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
17
|
Howell MC, Green R, McGill AR, Dutta R, Mohapatra S, Mohapatra SS. SARS-CoV-2-Induced Gut Microbiome Dysbiosis: Implications for Colorectal Cancer. Cancers (Basel) 2021; 13:2676. [PMID: 34071688 PMCID: PMC8198029 DOI: 10.3390/cancers13112676] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
The emergence of a novel coronavirus, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), in December 2019 led to a worldwide pandemic with over 170 million confirmed infections and over 3.5 million deaths (as of May 2021). Early studies have shown higher mortality rates from SARS-CoV-2 infection in cancer patients than individuals without cancer. Herein, we review the evidence that the gut microbiota plays a crucial role in health and has been linked to the development of colorectal cancer (CRC). Investigations have shown that SARS-CoV-2 infection causes changes to the gut microbiota, including an overall decline in microbial diversity, enrichment of opportunistic pathogens such as Fusobacterium nucleatum bacteremia, and depletion of beneficial commensals, such as the butyrate-producing bacteria. Further, these changes lead to increased colonic inflammation, which leads to gut barrier disruption, expression of genes governing CRC tumorigenesis, and tumor immunosuppression, thus further exacerbating CRC progression. Additionally, a long-lasting impact of SARS-CoV-2 on gut dysbiosis might result in a greater possibility of new CRC diagnosis or aggravating the condition in those already afflicted. Herein, we review the evidence relating to the current understanding of how infection with SARS-CoV-2 impacts the gut microbiota and the effects this will have on CRC carcinogenesis and progression.
Collapse
Affiliation(s)
- Mark C. Howell
- Department of Veterans Affairs, James A. Haley Veterans Hospital, Tampa, FL 33612, USA; (M.C.H.); (R.G.); (A.R.M.)
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Ryan Green
- Department of Veterans Affairs, James A. Haley Veterans Hospital, Tampa, FL 33612, USA; (M.C.H.); (R.G.); (A.R.M.)
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Andrew R. McGill
- Department of Veterans Affairs, James A. Haley Veterans Hospital, Tampa, FL 33612, USA; (M.C.H.); (R.G.); (A.R.M.)
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Rinku Dutta
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Subhra Mohapatra
- Department of Veterans Affairs, James A. Haley Veterans Hospital, Tampa, FL 33612, USA; (M.C.H.); (R.G.); (A.R.M.)
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Shyam S. Mohapatra
- Department of Veterans Affairs, James A. Haley Veterans Hospital, Tampa, FL 33612, USA; (M.C.H.); (R.G.); (A.R.M.)
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
18
|
Zhou RH, Wang Q, Hu XM, Liu M, Zhang AR. The influence of fasting and caloric restriction on inflammation levels in humans: A protocol for systematic review and meta analysis. Medicine (Baltimore) 2021; 100:e25509. [PMID: 33847668 PMCID: PMC8052001 DOI: 10.1097/md.0000000000025509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 03/24/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Fasting and caloric restriction have a potential means of anti-inflammatory, as they can decrease the level of systemic inflammation. Although encouraging results have been obtained in animal experiments, there is no consensus on whether these results are applicable to human. The objective of this systematic review and meta-analysis is to analyze the influence of fasting and caloric restriction on inflammation levels in humans. METHODS The systematic review and meta-analysis will be conducted in accordance with the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) guidelines. The following eight databases will be searched:(The retrieval time is from the establishment of each database to December 2020): PubMed, the Cochrane Library, Embase, Web of Science, China National Knowledge infrastructure (CNKI), China Biology Medicine (CBM), Wan Fang Data, the Chinese Science and Technology Periodical Database (VIP). Relevant data will be performed by Revman 5.3 software provided (Cochrane Collaboration) and Stata 14.0 statistical software. RESULTS The results of this systematic review and meta-analysis will be published in a peer-reviewed journal. CONCLUSIONS This systematic review will provide evidence to judge the effectiveness of fasting and calorie restriction in human subjects, so as to provide a sound basis for future research and lifestyle promotion. INPLASY REGISTRATION NUMBER INPLASY202130026.
Collapse
Affiliation(s)
- Rui-han Zhou
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine
| | - Qian Wang
- Care Alliance Rehabilitation Hospital of Chengdu
| | - Xiao-min Hu
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine
| | - Mei Liu
- Care Alliance Rehabilitation Hospital of Chengdu
| | - An-Ren Zhang
- Care Alliance Rehabilitation Hospital of Chengdu
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, China
| |
Collapse
|
19
|
Sarkar A, Kuehl MN, Alman AC, Burkhardt BR. Linking the oral microbiome and salivary cytokine abundance to circadian oscillations. Sci Rep 2021; 11:2658. [PMID: 33514800 PMCID: PMC7846843 DOI: 10.1038/s41598-021-81420-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/06/2021] [Indexed: 12/17/2022] Open
Abstract
Saliva has immense potential as a diagnostic fluid for identification and monitoring of several systemic diseases. Composition of the microbiome and inflammation has been associated and reflective of oral and overall health. In addition, the relative ease of collection of saliva further strengthens large-scale diagnostic purposes. However, the future clinical utility of saliva cannot be fully determined without a detailed examination of daily fluctuations that may occur within the oral microbiome and inflammation due to circadian rhythm. In this study, we explored the association between the salivary microbiome and the concentration of IL-1β, IL-6 and IL-8 in the saliva of 12 healthy adults over a period of 24 h by studying the 16S rRNA gene followed by negative binomial mixed model regression analysis. To determine the periodicity and oscillation patterns of both the oral microbiome and inflammation (represented by the cytokine levels), two of the twelve subjects were studied for three consecutive days. Our results indicate that the Operational Taxonomic Units (OTUs) belonging to Prevotella, SR1 and Ruminococcaceae are significantly associated to IL-1β while Prevotella and Granulicatella were associated with IL-8. Our findings have also revealed a periodicity of both the oral microbiome (OTUs) and inflammation (cytokine levels) with identifiable patterns between IL-1β and Prevotella, and IL-6 with Prevotella, Neisseria and Porphyromonas. We believe that this study represents the first measure and demonstration of simultaneous periodic fluctuations of cytokine levels and specific populations of the oral microbiome.
Collapse
Affiliation(s)
- Anujit Sarkar
- College of Public Health, University of South Florida, Tampa, FL, 33612, USA
| | - Melanie N Kuehl
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA.
- IPS Labs, 1 Harvard Way, Hillsborough Township, NJ, 08844, USA.
| | - Amy C Alman
- College of Public Health, University of South Florida, Tampa, FL, 33612, USA
| | - Brant R Burkhardt
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA.
| |
Collapse
|
20
|
Soares EL, Dos Santos FA, Mroczek T, de Lima DC, Josefino HVB, da Silva LAB, Mecca LEA, Franco GCN. Effect of caloric restriction on alveolar bone loss in rats. Life Sci 2021; 269:119067. [PMID: 33465390 DOI: 10.1016/j.lfs.2021.119067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 01/07/2021] [Accepted: 01/13/2021] [Indexed: 10/22/2022]
Affiliation(s)
| | | | - Tayline Mroczek
- Department of Health Sciences, Universidade Estadual de Ponta Grossa, PR, Brazil
| | | | | | | | | | | |
Collapse
|
21
|
Wang X, Yang Q, Liao Q, Li M, Zhang P, Santos HO, Kord-Varkaneh H, Abshirini M. Effects of intermittent fasting diets on plasma concentrations of inflammatory biomarkers: A systematic review and meta-analysis of randomized controlled trials. Nutrition 2020; 79-80:110974. [PMID: 32947129 DOI: 10.1016/j.nut.2020.110974] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/25/2020] [Accepted: 07/28/2020] [Indexed: 12/22/2022]
Abstract
Intermittent fasting (IF) and energy-restricted diets (ERDs) have emerged as dietary approaches to decrease inflammatory status; however, there are no consistent results regarding humans. To achieve a comprehensive conclusion, we aimed to conduct a meta-analysis of randomized control trials (RCTs) to evaluate the effects of IF or ERDs on plasma concentrations of inflammatory biomarkers. We systematically searched online medical databases including Web of Sciences, PubMed, SCOPUS, and Google Scholar up to June 2019. Evaluations of effect sizes were described employing in weighted mean difference and 95% confidence intervals from the random-effects model. Eighteen eligible RCTs were included in this meta-analysis. The pooled estimation from the random-effect model showed that IF regimens and ERDs significantly reduced C-reactive protein (CRP) concentrations (WMD: -0.024 mg/dL; 95% CI: -0.044 to -0.005, I2 = 7.0%). Additionally, IF regimens (WMD: -0.029; 95% CI: -0.058 to -0.000, I2 = 17.9%) were more effective in reducing CRP levels than ERDs (WMD: -0.001 mg/dL; 95% CI: -0.037 to 0.034, I2 = 0.0%). Moreover, based on the treatment duration and types of the studies' population, a greater reduction was observed in overweight and obese individuals (WMD: -0.03 mg/dL; 95% CI: -0.05 to 0.01, I2 = 42.1%), and in treatment duration ≥8 wk (WMD: -0.03 mg/dL; 95% CI: -0.05 to 0.01, I2 = 0.0%) as well. However, IF and ERDs did not significantly reduced tumor necrosis factor-α (WMD: -0.158 pg/mL; P = 0.549, I2 = 98.3) and interleukin-6 (IL-6) concentrations (WMD: -0.541 pg/mL; P = 0.080, I2 = 94.7%). This meta-analysis demonstrated that IF regimens and ERDs may reduce CRP concentrations, particularly in overweight and obese individuals and through a considerable length of intervention (≥2 mo). However, neither dietary model affected the concentrations of tumor necrosis factor-α or interleukin-6.
Collapse
Affiliation(s)
- Xiaoli Wang
- Department of Endocrinology, Zhijiang Branch, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, 310000, China.
| | - Qingqing Yang
- Department of Endocrinology, Zhijiang Branch, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, 310000, China
| | - Qiumei Liao
- Department of Endocrinology, Zhijiang Branch, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, 310000, China
| | - Mengdi Li
- Department of Endocrinology, Zhijiang Branch, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, 310000, China
| | - Pengyu Zhang
- Department of Endocrinology, Zhijiang Branch, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, 310000, China
| | - Heitor O Santos
- School of Medicine, Federal University of Uberlandia (UFU), Uberlandia, Minas Gerais, Brazil
| | - Hamed Kord-Varkaneh
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryame Abshirini
- School of Health Sciences, College of Health, Massey University, Palmerston North, New Zealand
| |
Collapse
|
22
|
Adda L, Melhem SA, Pol J. [Fasting reduces inflammation associated with chronic inflammatory diseases without affecting the immune response to acute infections]. Med Sci (Paris) 2020; 36:665-668. [PMID: 32614320 DOI: 10.1051/medsci/2020119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Leslie Adda
- Master 2 Immunologie Translationnelle et Biothérapies, Mention BMC, Sorbonne Université, Paris, France
| | - Sara Abou Melhem
- Master 2 Immunologie Translationnelle et Biothérapies, Mention BMC, Sorbonne Université, Paris, France
| | - Jonathan Pol
- Équipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Inserm U1138, Université de Paris, Sorbonne Université, Paris, France. - Gustave Roussy Cancer Campus, Villejuif, France. - Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| |
Collapse
|
23
|
Almeneessier AS, BaHammam AA, Alzoghaibi M, Olaish AH, Nashwan SZ, BaHammam AS. The effects of diurnal intermittent fasting on proinflammatory cytokine levels while controlling for sleep/wake pattern, meal composition and energy expenditure. PLoS One 2019; 14:e0226034. [PMID: 31821377 PMCID: PMC6903761 DOI: 10.1371/journal.pone.0226034] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/17/2019] [Indexed: 11/27/2022] Open
Abstract
Purpose This study aimed to assess the effect of diurnal intermittent fasting (DIF) during and outside of the month of Ramadan on plasma levels of interleukin (IL)-1β, IL-6, and IL-8, while controlling for sleep/wake pattern, sleep length and quality, meal composition, energy consumption and expenditure, and light exposure. DIF outside of the month of Ramadan was performed to evaluate the effect of DIF in the absence of the way of life accompanying Ramadan. Methods Twelve healthy male volunteers with a mean age of 25.1 ± 2.5 years arrived to the sleep laboratory on 4 times: 1) adaptation, 5 weeks before Ramadan; 2) 4 weeks before Ramadan while performing DIF for 1 week (fasting outside of Ramadan; FOR); 3) 1 week before Ramadan (non-fasting baseline; non-fasting BL); and 4) After completing 2 weeks of Ramadan while performing DIF. Plasma levels of cytokines were assessed using enzyme-linked immunoassays at 22:00, 02:00, 04:00, 06:00, and 11:00. Results During DIF, there was a significant decrease in the levels of cytokines, particularly, IL-1β and IL-6, in most measurements compared to non-fasting BL. This reduction was more obvious during the FOR period. There were no significant changes in the circadian phase of the measured cytokines reflected by the acrophase of the measured variables during fasting (FOR and Ramadan) compared to non-fasting BL. Conclusion Under controlled conditions, DIF led to significantly decreased plasma levels of cytokines (IL-1β, IL-6, and IL-8), particularly IL-1β and IL-6 across 24 h. DIF had no effect on the circadian patterns of the measured cytokines as shown by cosinor analysis.
Collapse
Affiliation(s)
- Aljohara S. Almeneessier
- Department of Family Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia
- University Sleep Disorders Center, College of Medicine, King Sau University, Riyadh, Saudi Arabia
| | - Abdulrahman A. BaHammam
- King Abdulaziz & his companies Foundation for giftedness & creativity, Manarat Al Riyadh School, Ministry of Education, Riyadh, Saudi Arabia
| | - Mohammed Alzoghaibi
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Awad H. Olaish
- University Sleep Disorders Center, College of Medicine, King Sau University, Riyadh, Saudi Arabia
| | - Samar Z. Nashwan
- University Sleep Disorders Center, College of Medicine, King Sau University, Riyadh, Saudi Arabia
| | - Ahmed S. BaHammam
- University Sleep Disorders Center, College of Medicine, King Sau University, Riyadh, Saudi Arabia
- The Strategic Technologies Program of the National Plan for Sciences and Technology and Innovation, Saudi Arabia (MED511-02-08), Riyadh, Saudi Arabia
- * E-mail:
| |
Collapse
|
24
|
Lorenz TK. Interactions between inflammation and female sexual desire and arousal function. CURRENT SEXUAL HEALTH REPORTS 2019; 11:287-299. [PMID: 33312080 PMCID: PMC7731354 DOI: 10.1007/s11930-019-00218-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW To describe the current state of research on interactions between inflammation and female sexual function. RECENT FINDINGS Inflammation may interfere with female sexual desire and arousal via direct (neural) and indirect (endocrine, vascular, social/behavioral) pathways. There are significant sex differences in the effect of inflammation on sexual function, arising from different evolutionary selection pressures on regulation of reproduction. A variety of inflammation-related conditions are associated with risk of female sexual dysfunction, including cardiovascular disease, metabolic syndrome, and chronic pain. SUMMARY Clinical implications include the need for routine assessment for sexual dysfunction in patients with inflammation-related conditions, the potential for anti-inflammatory diets to improve sexual desire and arousal function, and consideration of chronic inflammation as moderator of sexual effects of hormonal treatments. Although the evidence points to a role for inflammation in the development and maintenance of female sexual dysfunction, the precise nature of these associations remains unclear.
Collapse
Affiliation(s)
- Tierney K Lorenz
- Department of Psychology and Center for Brain, Biology and Behavior, University of Nebraska at Lincoln
| |
Collapse
|
25
|
Herbst A, Hoang AN, Woo W, McKenzie D, Aiken JM, Miller RA, Allison DB, Liu N, Wanagat J. Mitochondrial DNA alterations in aged macrophage migration inhibitory factor-knockout mice. Mech Ageing Dev 2019; 182:111126. [PMID: 31381889 PMCID: PMC6718337 DOI: 10.1016/j.mad.2019.111126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 07/16/2019] [Accepted: 07/30/2019] [Indexed: 01/06/2023]
Abstract
The age-induced, exponential accumulation of mitochondrial DNA (mtDNA) deletion mutations contributes to muscle fiber loss. The causes of these mutations are not known. Systemic inflammation is associated with decreased muscle mass in older adults and is implicated in the formation of sporadic mtDNA deletions. Macrophage migration inhibitory factor knockout (MIF-KO) mice are long-lived with decreased inflammation. We hypothesized that aged MIF-KO mice would have lower mtDNA deletion frequencies and fewer electron transport chain (ETC) deficient fibers. We measured mtDNA copy number and mutation frequency as well as the number and length of ETC deficient fibers in 22-month old MIF-KO and F2 hybrid control mice. We also measured mtDNA copy number and deletion frequency in female UM-HET3 mice, a strain whose lifespan matches the MIF-KO mice. We did not observe a significant effect of MIF ablation on muscle mtDNA deletion frequency. There was a significantly lower mtDNA copy number in the MIF-KO mice and the lifespan-matched UM-HET3 mice compared to the F2 hybrids, suggesting the importance of genetic background in mtDNA copy number control. Our data do not support a definitive role for MIF in age-induced mtDNA deletions.
Collapse
Affiliation(s)
- Allen Herbst
- Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Austin N Hoang
- Department of Medicine, Division of Geriatrics, UCLA, Los Angeles, CA, USA
| | - Wendy Woo
- Department of Medicine, Division of Geriatrics, UCLA, Los Angeles, CA, USA
| | - Debbie McKenzie
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Judd M Aiken
- Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Richard A Miller
- Department of Pathology and Geriatrics Center, University of Michigan, Ann Arbor, MI, USA
| | - David B Allison
- Department of Epidemiology and Biostatistics, Indiana University Bloomington, Bloomington, IN, USA
| | - Nianjun Liu
- Department of Epidemiology and Biostatistics, Indiana University Bloomington, Bloomington, IN, USA
| | - Jonathan Wanagat
- Department of Medicine, Division of Geriatrics, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
26
|
Bang E, Lee B, Noh SG, Kim DH, Jung HJ, Ha S, Yu BP, Chung HY. Modulation of senoinflammation by calorie restriction based on biochemical and Omics big data analysis. BMB Rep 2019. [PMID: 30545444 PMCID: PMC6386225 DOI: 10.5483/bmbrep.2019.52.1.301] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Aging is a complex and progressive process characterized by physiological and functional decline with time that increases susceptibility to diseases. Aged-related functional change is accompanied by a low-grade, unresolved chronic inflammation as a major underlying mechanism. In order to explain aging in the context of chronic inflammation, a new integrative concept on age-related chronic inflammation is necessary that encompasses much broader and wider characteristics of cells, tissues, organs, systems, and interactions between immune and non-immune cells, metabolic and non-metabolic organs. We have previously proposed a novel concept of senescent (seno)-inflammation and provided its frameworks. This review summarizes senoinflammation concept and additionally elaborates modulation of senoinflammation by calorie restriction (CR). Based on aging and CR studies and systems-biological analysis of Omics big data, we observed that senescence associated secretory phenotype (SASP) primarily composed of cytokines and chemokines was notably upregulated during aging whereas CR suppressed them. This result further strengthens the novel concept of senoinflammation in aging process. Collectively, such evidence of senoinflammation and modulatory role of CR provide insights into aging mechanism and potential interventions, thereby promoting healthy longevity. [BMB Reports 2019; 52(1): 56-63].
Collapse
Affiliation(s)
- EunJin Bang
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Korea
| | - Bonggi Lee
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu 41062, Korea
| | - Sang-Gyun Noh
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Korea
| | - Dae Hyun Kim
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Korea
| | - Hee Jin Jung
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Korea
| | - Sugyeong Ha
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Korea
| | - Byung Pal Yu
- Department of Physiology, The University of Texas Health Science Center at San Antonio, TX 78229, USA
| | - Hae Young Chung
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Korea
| |
Collapse
|
27
|
Moura J, Madureira P, Leal EC, Fonseca AC, Carvalho E. Immune aging in diabetes and its implications in wound healing. Clin Immunol 2019; 200:43-54. [PMID: 30735729 PMCID: PMC7322932 DOI: 10.1016/j.clim.2019.02.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/04/2019] [Accepted: 02/04/2019] [Indexed: 02/06/2023]
Abstract
Immune systems have evolved to recognize and eliminate pathogens and damaged cells. In humans, it is estimated to recognize 109 epitopes and natural selection ensures that clonally expanded cells replace unstimulated cells and overall immune cell numbers remain stationary. But, with age, it faces continuous repertoire restriction and concomitant accumulation of primed cells. Changes shaping the aging immune system have bitter consequences because, as inflammatory responses gain intensity and duration, tissue-damaging immunity and inflammatory disease arise. During inflammation, the glycolytic flux cannot cope with increasing ATP demands, limiting the immune response's extent. In diabetes, higher glucose availability stretches the glycolytic limit, dysregulating proteostasis and increasing T-cell expansion. Long-term hyperglycemia exerts an accumulating effect, leading to higher inflammatory cytokine levels and increased cytotoxic mediator secretion upon infection, a phenomenon known as diabetic chronic inflammation. Here we review the etiology of diabetic chronic inflammation and its consequences on wound healing.
Collapse
Affiliation(s)
- J Moura
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, University of Porto, Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal.
| | - P Madureira
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal; IBMC - Instituto de Biologia Celular e Molecular, University of Porto, Porto, Portugal; Immunethep, Biocant Park, Cantanhede, Portugal
| | - E C Leal
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - A C Fonseca
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - E Carvalho
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Instituto de Investigação Interdisciplinar, University of Coimbra, Coimbra, Portugal; Department of Geriatrics, University of Arkansas for Medical Sciences and Arkansas Children's Research Institute, Little Rock, AR, United States
| |
Collapse
|
28
|
Bang E, Lee B, Noh SG, Kim DH, Jung HJ, Ha S, Yu BP, Chung HY. Modulation of senoinflammation by calorie restriction based on biochemical and Omics big data analysis. BMB Rep 2019; 52:56-63. [PMID: 30545444 PMCID: PMC6386225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Indexed: 10/07/2023] Open
Abstract
Aging is a complex and progressive process characterized by physiological and functional decline with time that increases susceptibility to diseases. Aged-related functional change is accompanied by a low-grade, unresolved chronic inflammation as a major underlying mechanism. In order to explain aging in the context of chronic inflammation, a new integrative concept on age-related chronic inflammation is necessary that encompasses much broader and wider characteristics of cells, tissues, organs, systems, and interactions between immune and non-immune cells, metabolic and non-metabolic organs. We have previously proposed a novel concept of senescent (seno)-inflammation and provided its frameworks. This review summarizes senoinflammation concept and additionally elaborates modulation of senoinflammation by calorie restriction (CR). Based on aging and CR studies and systems-biological analysis of Omics big data, we observed that senescence associated secretory phenotype (SASP) primarily composed of cytokines and chemokines was notably upregulated during aging whereas CR suppressed them. This result further strengthens the novel concept of senoinflammation in aging process. Collectively, such evidence of senoinflammation and modulatory role of CR provide insights into aging mechanism and potential interventions, thereby promoting healthy longevity. [BMB Reports 2019; 52(1): 56-63].
Collapse
Affiliation(s)
- EunJin Bang
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241,
Korea
| | - Bonggi Lee
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu 41062,
Korea
| | - Sang-Gyun Noh
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241,
Korea
| | - Dae Hyun Kim
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241,
Korea
| | - Hee Jin Jung
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241,
Korea
| | - Sugyeong Ha
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241,
Korea
| | - Byung Pal Yu
- Department of Physiology, The University of Texas Health Science Center at San Antonio, TX 78229,
USA
| | - Hae Young Chung
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241,
Korea
| |
Collapse
|
29
|
Ebersole JL, Kirakodu S, Novak MJ, Orraca L, Stormberg AJ, Gonzalez-Martinez J, Burgos A, Gonzalez OA. Comparative analysis of expression of microbial sensing molecules in mucosal tissues with periodontal disease. Immunobiology 2018; 224:196-206. [PMID: 30470434 DOI: 10.1016/j.imbio.2018.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 11/13/2018] [Indexed: 12/30/2022]
Abstract
Host-derived pattern recognition receptors (PRRs) are necessary for effective innate immune engagement of pathogens that express microbial-associated molecular patterns (MAMP) ligands for these PRRs. This study used a nonhuman primate model to evaluate the expression of these sensing molecules in gingival tissues. Macaca mulatta aged 12-24 with a healthy periodontium (n = 13) or periodontitis (n = 11) provided gingival tissues for assessment of naturally-occurring periodontitis. An additional group of animals (12-23 years; n = 18) was subjected to a 5 month longitudinal study examining the initiation and progression of periodontitis, RNA was isolated and microarray analysis conducted for gene expression of the sensing PRRs. The results demonstrated increased expression of various PRRs in naturally-occurring established periodontitis. Selected PRRs also correlated with both bleeding on probing (BOP) and pocket depth (PD) in the animals. The longitudinal model demonstrated multiple TLRs, as well as selected other PRRs that were significantly increased by 2 weeks during initiation of the lesion. While gene expression levels of various PRRs correlated with BOP and PD at baseline and resolution of disease, few correlated with these clinical parameters during initiation and progression of the lesion. These findings suggest that the levels of various PRRs are affected in established periodontitis lesions, and that PRR expression increased most dramatically during the initiation of the disease process, presumably in response to the juxtaposed microbial challenge to the tissues and goal of reestablishing homeostasis.
Collapse
Affiliation(s)
- J L Ebersole
- Center for Oral Health Research, University of Kentucky, Lexington, KY, United States.
| | - S Kirakodu
- Center for Oral Health Research, University of Kentucky, Lexington, KY, United States
| | - M J Novak
- Center for Oral Health Research, University of Kentucky, Lexington, KY, United States
| | - L Orraca
- School of Dental Medicine, University of Puerto Rico, San Juan, PR, United States
| | - A J Stormberg
- Department of Statistics, College of Arts and Sciences, University of Kentucky, Lexington, KY, United States
| | - J Gonzalez-Martinez
- Caribbean Primate Research Center, University of Puerto Rico, Toa Baja, PR, United States
| | - A Burgos
- Caribbean Primate Research Center, University of Puerto Rico, Toa Baja, PR, United States
| | - O A Gonzalez
- Center for Oral Health Research, University of Kentucky, Lexington, KY, United States; Division of Periodontics, College of Dentistry, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
30
|
Effect of Low-Fat Diet in Obese Mice Lacking Toll-like Receptors. Nutrients 2018; 10:nu10101464. [PMID: 30304787 PMCID: PMC6213519 DOI: 10.3390/nu10101464] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 09/28/2018] [Accepted: 10/02/2018] [Indexed: 12/11/2022] Open
Abstract
Background: This study aimed at assessing the effect of a low-fat diet (LFD) in obese mice lacking toll–like receptors (Tlr) and understanding the expression and regulation of microRNAs during weight reduction. Methods: C57BL/6, Tlr5−/−, Tlr2−/− and Tlr4−/− mice were used in this study. A group of mice were fed with a high-fat diet (HFD) (58% kcal) for 12 weeks to induce obesity (diet-induced obesity, DIO). Another group that had been fed with HFD for eight weeks (obese mice) were switched to a low-fat diet (LFD) (10.5% kcal) for the next four weeks to reduce their body weight. The control mice were fed with a standard AIN-76A diet for the entire 12 weeks. The body weight of the mice was measured weekly. At the end of the experiment, epididymal fat weight and adipocyte size were measured. The differentially expressed miRNAs in the fat tissue was determined by next-generation sequencing with real-time quantitative reverse transcription polymerase chain reaction (RT–qPCR). Target prediction and functional annotation of miRNAs were performed using miRSystem database. Results: Switching to LFD significantly reduced the body weight and epididymal fat mass in the HFD-fed C57BL/6 and Tlr5−/− mice but not in Tlr2−/− and Tlr4−/− mice. Weight reduction significantly decreased the size of adipocytes in C57BL/6 but not in the Tlr knockout mice. In Tlr2−/− and Tlr4−/− mice, feeding with HFD and the subsequent weight reduction resulted in an aberrant miRNA expression in the epididymal fat tissue unlike in C57BL/6 and Tlr5−/−. However, target prediction and functional annotation by miRSystem database revealed that all the top 10 Kyoto Encyclopedia of Genes and Genomes (KEGG) database pathways of the dysregulated miRNAs during weight reduction in the C57BL/6 mice were also found in the regulated pathways of Tlr5−/−, Tlr2−/−, and Tlr4−/− strains. However, among these pathways, gene sets involved in arginine and proline metabolism and glutathione metabolism were mainly involved in the Tlr knockout mice but not in the C57BL/6 mice. Conclusions: In this study, we demonstrated that feeding of LFD leads to significant body weight reduction in C57BL/6 and Tlr5−/− mice, but not in Tlr2−/− and Tlr4−/− mice. Significant reduction in the size of adipocytes of epididymal fat was only found in C57BL/6, but not in Tlr5−/−, Tlr2−/−, and Tlr4−/− mice. The dysregulated miRNAs in Tlr2−/− and Tlr4−/− mice were different from those in C57BL/6 and Tlr5−/− strains. Among those miRNA-regulated pathways, arginine and proline metabolism as well as glutathione metabolism may have important roles in the Tlr knockout mice rather than in C57BL/6 mice.
Collapse
|
31
|
Bautista CJ, Rodríguez-González GL, Morales A, Lomas-Soria C, Cruz-Pérez F, Reyes-Castro LA, Zambrano E. Maternal obesity in the rat impairs male offspring aging of the testicular antioxidant defence system. Reprod Fertil Dev 2018; 29:1950-1957. [PMID: 28063465 DOI: 10.1071/rd16277] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 11/15/2016] [Indexed: 12/16/2022] Open
Abstract
A high-fat diet during intrauterine development predisposes offspring (F1) to phenotypic alterations, such as lipid synthesis imbalance and increased oxidative stress, causing changes in male fertility. The objective of this study was to evaluate the effects of maternal obesity during pregnancy and lactation on antioxidant enzymes in the F1 testes. Female Wistar rats (F0) were fed either a control (C, 5% fat) or an obesogenic (MO, maternal obesity, 25% fat) diet from weaning and throughout subsequent pregnancy and lactation. F1 offspring were weaned to the control diet. Testes were retrieved at 110, 450 and 650 postnatal days (PND) for real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR) and immunohistochemical (IHC) antioxidant enzyme analyses. Catalase was similar between groups by RT-qPCR, whereas by IHC it was higher in the MO group at all ages than in the C group. Superoxide dismutase 1 (SOD1) had lower expression at PND 110 in MO than in C by both techniques; at PND 450 and 650 by immunoanalysis SOD1 was higher in MO than in C. Glutathione peroxidase 1 (GPX1), GPX2 and GPX4 by RT-qPCR were similar between groups and ages; by IHC GPX1/2 was higher in MO than in C, whereas GPX4 showed the opposite result at PND 110 and 450. In conclusion, antioxidant enzymes in the rat testes are modified with age. Maternal obesity negatively affects the F1 testicular antioxidant defence system, which, in turn, can explain the decrease in reproductive capacity.
Collapse
Affiliation(s)
- Claudia J Bautista
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Departamento de Biología de la Reproducción, Vasco de Quiroga 15, Belisario Domínguez, Tlalpan, 14080, México, D.F. México
| | - Guadalupe L Rodríguez-González
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Departamento de Biología de la Reproducción, Vasco de Quiroga 15, Belisario Domínguez, Tlalpan, 14080, México, D.F. México
| | - Angélica Morales
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Departamento de Biología de la Reproducción, Vasco de Quiroga 15, Belisario Domínguez, Tlalpan, 14080, México, D.F. México
| | - Consuelo Lomas-Soria
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Departamento de Biología de la Reproducción, Vasco de Quiroga 15, Belisario Domínguez, Tlalpan, 14080, México, D.F. México
| | - Fabiola Cruz-Pérez
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Departamento de Biología de la Reproducción, Vasco de Quiroga 15, Belisario Domínguez, Tlalpan, 14080, México, D.F. México
| | - Luis A Reyes-Castro
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Departamento de Biología de la Reproducción, Vasco de Quiroga 15, Belisario Domínguez, Tlalpan, 14080, México, D.F. México
| | - Elena Zambrano
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Departamento de Biología de la Reproducción, Vasco de Quiroga 15, Belisario Domínguez, Tlalpan, 14080, México, D.F. México
| |
Collapse
|
32
|
Najeeb S, Zafar MS, Khurshid Z, Zohaib S, Madathil SA, Mali M, Almas K. Efficacy of metformin in the management of periodontitis: A systematic review and meta-analysis. Saudi Pharm J 2018; 26:634-642. [PMID: 29991907 PMCID: PMC6035318 DOI: 10.1016/j.jsps.2018.02.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 02/15/2018] [Indexed: 12/22/2022] Open
Abstract
Periodontitis is characterized by inflammation of the periodontium and leads to loss of teeth if untreated. Although a number of surgical and pharmacological options are available for the management of periodontitis, it still affects a large proportion of population. Recently, metformin (MF), an oral hypoglycemic, has been used to treat periodontitis. The aim of this review is to systematically evaluate the efficacy of MF in the treatment of periodontitis. An electronic search was carried out using the keywords 'metformin', 'periodontal' and 'periodontitis' via the PubMed/Medline, ISI Web of Science and Google Scholar databases for relevant articles published from 1949 to 2016. The addressed focused question was: 'Is metformin effective in reducing bone loss in periodontitis? Critical review and meta-analysis were conducted of the results obtained in the selected studies. Following the removal of the duplicate results, the primary search resulted in 17 articles and seven articles were excluded based on title and abstract. Hence, 10 articles were read completely for eligibility. After exclusion of four irrelevant studies, six articles were included. The topical application of MF resulted in improved histological, clinical and radiographic outcomes. Additionally, results from the meta-analysis indicated that application of metformin improved the clinical and radiographic outcomes of scaling and root-planing, but at the same time heterogeneity was evident among the results. However, because of a lack of histological and bacterial studies, in addition to short follow-up periods and risk of bias, the long-term efficacy of MF in the treatment of bony defects is not yet ascertained. Further studies are needed to envisage the long-term efficacy of MF in the management of periodontitis.
Collapse
Affiliation(s)
- Shariq Najeeb
- Restorative Dental Sciences, Al-Farabi Colleges, King Abdullah Road, Riyadh, Saudi Arabia
| | - Muhammad Sohail Zafar
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Madinah Al Munawwarah, Saudi Arabia
- Department of Dental Materials, Islamic International Dental College, Riphah International University, Islamabad, Pakistan
| | - Zohaib Khurshid
- Department of Biomaterials and Prosthodontics, College of Dentistry, King Faisal University, Al Hofuf, Saudi Arabia
| | - Sana Zohaib
- Department of Biomedical Engineering, School of Engineering, King Faisal University, Al Hofuf, Saudi Arabia
| | - Sreenath Arekunnath Madathil
- Division of Oral Health and Society Research, Faculty of Dentistry, McGill University, 2001 McGill College Ave, Montreal, Quebec, Canada
| | - Maria Mali
- Department of Orthodontics, Islamic International Dental College, Ripah International University, Islamabad 44000, Pakistan
| | - Khalid Almas
- Department of Preventive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
33
|
Gonzalez OA, Kirakodu S, Novak MJ, Stromberg AJ, Orraca L, Gonzalez-Martinez J, Burgos A, Ebersole JL. Comparative analysis of microbial sensing molecules in mucosal tissues with aging. Immunobiology 2018; 223:279-287. [PMID: 29066255 PMCID: PMC5821569 DOI: 10.1016/j.imbio.2017.10.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 10/14/2017] [Indexed: 12/19/2022]
Abstract
Host-bacterial interactions at mucosal surfaces require recognition of the bacteria by host cells enabling targeted responses to maintain tissue homeostasis. It is now well recognized that an array of host-derived pattern recognition receptors (PRRs), both cell-bound and soluble, are critical to innate immune engagement of microbes via microbial-associated molecular patterns (MAMP). This report describes the use of a nonhuman primate model to evaluate changes in the expression of these sensing molecules related to aging in healthy gingival tissues. Macaca mulatta aged 3-24 years were evaluated clinically and gingival tissues obtained, RNA isolated and microarray analysis conducted for gene expression of the sensing pattern recognition receptors (PRRs). The results demonstrated increased expression of various PRRs in healthy aging gingiva including extracellular (CD14, CD209, CLEC4E, TLR4), intracellular (NAIP, IFIH1, DAI) and soluble (PTX4, SAA1) PRRs. Selected PRRs were also correlated with both bleeding on probing (BOP) and pocket depth (PD) in the animals. These findings suggest that aged animals express altered levels of various PRRs that could affect the ability of the tissues to interact effectively with the juxtaposed microbial ecology, presumably contributing to an enhanced risk of periodontitis even in clinically healthy oral mucosal tissues with aging.
Collapse
Affiliation(s)
- O A Gonzalez
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, United States
| | - S Kirakodu
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, United States
| | - M J Novak
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, United States
| | - A J Stromberg
- School of Dental Medicine, University of Puerto Rico, San Juan, PR, United States
| | - L Orraca
- Department of Statistics, College of Arts and Sciences, University of Kentucky, Lexington, KY, United States
| | - J Gonzalez-Martinez
- Caribbean Primate Research Center, University of Puerto Rico, Toa Baja, PR, United States
| | - A Burgos
- Caribbean Primate Research Center, University of Puerto Rico, Toa Baja, PR, United States
| | - J L Ebersole
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, United States.
| |
Collapse
|
34
|
Ebersole JL, Novak MJ, Orraca L, Martinez-Gonzalez J, Kirakodu S, Chen KC, Stromberg A, Gonzalez OA. Hypoxia-inducible transcription factors, HIF1A and HIF2A, increase in aging mucosal tissues. Immunology 2018; 154:452-464. [PMID: 29338076 DOI: 10.1111/imm.12894] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/22/2017] [Accepted: 01/05/2018] [Indexed: 02/06/2023] Open
Abstract
Hypoxia (i.e. oxygen deprivation) activates the hypoxia-signalling pathway, primarily via hypoxia-inducible transcription factors (HIF) for numerous target genes, which mediate angiogenesis, metabolism and coagulation, among other processes to try to replenish tissues with blood and oxygen. Hypoxia signalling dysregulation also commonly occurs during chronic inflammation. We sampled gingival tissues from rhesus monkeys (Macaca mulatta; 3-25 years old) and total RNA was isolated for microarray analysis. HIF1A, HIF1B and HIF2A were significantly different in healthy aged tissues, and both HIF1A and HIF3A were positively correlated with aging. Beyond these transcription factor alterations, analysis of patterns of gene expression involved in hypoxic changes in tissues showed specific increases in metabolic pathway hypoxia-inducible genes, whereas angiogenesis pathway gene changes were more variable in healthy aging tissues across the animals. With periodontitis, aging tissues showed decreases in metabolic gene expression related to carbohydrate/lipid utilization (GBE1, PGAP1, TPI1), energy metabolism and cell cycle regulation (IER3, CCNG2, PER1), with up-regulation of transcription genes and cellular proliferation genes (FOS, EGR1, MET, JMJD6) that are hypoxia-inducible. The potential clinical implications of these results are related to the epidemiological findings of increased susceptibility and expression of periodontitis with aging. More specifically the findings describe that hypoxic stress may exist in aging gingival tissues before documentation of clinical changes of periodontitis and, so, may provide an explanatory molecular risk factor for an elevated capacity of the tissues to express destructive processes in response to changes in the microbial biofilms characteristic of a more pathogenic microbial challenge.
Collapse
Affiliation(s)
- Jeffrey L Ebersole
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA
| | - Michael John Novak
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA
| | - Luis Orraca
- School of Dentistry, University of Puerto Rico, Sabana Seca, PR, USA
| | | | - Sreenatha Kirakodu
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA
| | - Kuey C Chen
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Arnold Stromberg
- Department of Statistics, College of Arts and Sciences, University of Kentucky, Lexington, KY, USA
| | - Octavio A Gonzalez
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
35
|
Do K, Laing BT, Landry T, Bunner W, Mersaud N, Matsubara T, Li P, Yuan Y, Lu Q, Huang H. The effects of exercise on hypothalamic neurodegeneration of Alzheimer's disease mouse model. PLoS One 2018; 13:e0190205. [PMID: 29293568 PMCID: PMC5749759 DOI: 10.1371/journal.pone.0190205] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/11/2017] [Indexed: 11/18/2022] Open
Abstract
Alzheimer’s disease is a neurodegenerative disorder that affects the central nervous system. In this study, we characterized and examined the early metabolic changes in the triple transgenic mouse AD model (3xtg-AD), and their relationship with the hypothalamus, a key regulator of metabolism in the central nervous system. We observed that the 3xtg-AD model exhibited significantly higher oxygen consumption as well as food intake before reported amyloid plaque formation, indicating that metabolic abnormalities occurred at early onset in the 3xtg-AD model compared with their counterparts. Analysis of gene expression in the hypothalamus indicated increased mRNA expression of inflammation- and apoptosis-related genes, as well as decreased gene expression of Agouti-related protein (AgRP) and Melanocortin 4 receptor (MC4R) at 12 weeks of age. Immunofluorescence analysis revealed that pro-opiomelanocortin (POMC) and NPY-expressing neurons decreased at 24 weeks in the 3xtg-AD model. Four weeks of voluntary exercise were sufficient to reverse the gene expression of inflammation and apoptotic markers in the hypothalamus, six weeks of exercise improved glucose metabolism, moreover, 8 weeks of voluntary exercise training attenuated apoptosis and augmented POMC and NPY-expressing neuronal populations in the hypothalamus compared to the control group. Our results indicated that early onset of metabolic abnormalities may contribute to the pathology of AD, which is associated with increased inflammation as well as decreased neuronal population and key neuropeptides in the hypothalamus. Furthermore, early intervention by voluntary exercise normalized hypothalamic inflammation and neurodegeneration as well as glucose metabolism in the 3xtg-AD model. The data, taken as a whole, suggests a hypothalamic-mediated mechanism where exercise prevents the progression of dementia and of Alzheimer’s disease.
Collapse
Affiliation(s)
- Khoa Do
- Department of Kinesiology, East Carolina University, Greenville, North Carolina, United States of America
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina, United States of America
| | - Brenton Thomas Laing
- Department of Kinesiology, East Carolina University, Greenville, North Carolina, United States of America
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina, United States of America
| | - Taylor Landry
- Department of Kinesiology, East Carolina University, Greenville, North Carolina, United States of America
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina, United States of America
| | - Wyatt Bunner
- Department of Kinesiology, East Carolina University, Greenville, North Carolina, United States of America
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina, United States of America
| | - Naderi Mersaud
- Department of Kinesiology, East Carolina University, Greenville, North Carolina, United States of America
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina, United States of America
| | - Tomoko Matsubara
- Department of Kinesiology, East Carolina University, Greenville, North Carolina, United States of America
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina, United States of America
| | - Peixin Li
- Department of Kinesiology, East Carolina University, Greenville, North Carolina, United States of America
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina, United States of America
| | - Yuan Yuan
- Department of Kinesiology, East Carolina University, Greenville, North Carolina, United States of America
| | - Qun Lu
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States of America
- The Harriet and John Wooten Laboratory for Alzheimer’s and Neurodegenerative Diseases Research, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States of America
| | - Hu Huang
- Department of Kinesiology, East Carolina University, Greenville, North Carolina, United States of America
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina, United States of America
- The Harriet and John Wooten Laboratory for Alzheimer’s and Neurodegenerative Diseases Research, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States of America
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
36
|
Differential alternative splicing coupled to nonsense-mediated decay of mRNA ensures dietary restriction-induced longevity. Nat Commun 2017; 8:306. [PMID: 28824175 PMCID: PMC5563511 DOI: 10.1038/s41467-017-00370-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 06/23/2017] [Indexed: 12/22/2022] Open
Abstract
Alternative splicing (AS) coupled to nonsense-mediated decay (AS-NMD) is a conserved mechanism for post-transcriptional gene regulation. Here we show that, during dietary restriction (DR), AS is enhanced in Caenorhabditis elegans and mice. A splicing mediator hrpu-1 regulates a significant part of these AS events in C. elegans; knocking it down suppresses DR-mediated longevity. Concurrently, due to increased AS, NMD pathway genes are upregulated and knocking down UPF1 homologue smg-2 suppresses DR lifespan. Knockdown of NMD during DR significantly increases the inclusion of PTC-containing introns and the lengths of the 3′UTRs. Finally, we demonstrate that PHA-4/FOXA transcriptionally regulates the AS-NMD genes. Our study suggests that DR uses AS to amplify the proteome, supporting physiological remodelling required for enhanced longevity. This increases the dependence on NMD, but also helps fine-tune the expression of metabolic and splicing mediators. AS-NMD may thus provide an energetically favourable level of dynamic gene expression control during dietary restriction. Alternative splicing coupled to nonsense-mediated decay (AS-NMD) is a conserved mechanism for post-transcriptional gene regulation. Here, the authors provide evidence that AS-NMD is enhanced during dietary restriction (DR) and is required for DR-mediated longevity assurance in C. elegans.
Collapse
|
37
|
Dogan S, Ray A, Cleary MP. The influence of different calorie restriction protocols on serum pro-inflammatory cytokines, adipokines and IGF-I levels in female C57BL6 mice: short term and long term diet effects. Meta Gene 2017; 12:22-32. [PMID: 28373962 PMCID: PMC5375115 DOI: 10.1016/j.mgene.2016.12.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Calorie restriction (CR) is an effective intervention to prevent chronic diseases including cancer. Although many factors, i.e., sex hormones, IGF-I and mTOR have been studied in response to CR, the molecular mechanisms of CR remain to be identified. Our objective was to determine the short and long-term effects of different CR protocols on pro-inflammatory cytokines. Our hypothesis was that Intermittent CR (ICR) would result in greater inhibition of pro-inflammatory serum cytokines compared to Chronic CR (CCR) as we previously found ICR to be more protective in the prevention of mammary tumor development. From ten weeks of age female C57BL6 mice were maintained on either ad libitum (AL) fed, ICR or CCR protocols (overall CR of ~75% of AL) for up to 74 weeks of age. Blood samples were collected for measurements of serum interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), adiponectin, leptin, IGF-I and insulin at specified ages. For ICR mice samples were collected following 3 weeks of restriction (ICR-R) and after one week of refeeding (ICR-RF). In general, both modes of CR significantly reduced serum IL-6, TNF-α, IGF-I and leptin levels compared to AL with IL-6 levels 24 and 3.5 fold and TNF-α levels t 11 and 1.5 fold lower in ICR and CCR groups, respectively at study termination. There was a trend for adiponectin and insulin to be highest in ICR-RF mice. Body weights were positively correlated with IL-6, TNF-α, insulin and leptin but negatively correlated with adiponectin-to-leptin ratio. Moreover, there was a positive correlation between IL-6 and TNF-α. Beneficial effects of ICR may function through pro-inflammatory cytokine pathways.
Collapse
Affiliation(s)
- Soner Dogan
- University of Minnesota, Hormel Institute Medical Research Center, Austin, MN, USA
- Yeditepe University, School of Medicine, Department of Medical Biology, Istanbul, Turkey
| | - Amitabha Ray
- University of Minnesota, Hormel Institute Medical Research Center, Austin, MN, USA
| | - Margot P. Cleary
- University of Minnesota, Hormel Institute Medical Research Center, Austin, MN, USA
| |
Collapse
|
38
|
Park CY, Chung J, Koo KO, Kim MS, Han SN. Hepatic iron storage is related to body adiposity and hepatic inflammation. Nutr Metab (Lond) 2017; 14:14. [PMID: 28228829 PMCID: PMC5307864 DOI: 10.1186/s12986-017-0169-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 02/06/2017] [Indexed: 12/21/2022] Open
Abstract
Background Obesity has been reported to be associated with iron deficiency. However, few studies have investigated iron status in low adiposity. To investigate whether body adiposity was associated with altered hepatic iron status, we compared liver iron levels and markers involved in inflammation and iron absorption in obese, control, and mildly calorie restricted mice. Methods Seven week old C57BL/6 mice were fed control (10% kcal fat, Control) or high fat (60% kcal fat, HFD) diets, or reduced amount of control diet to achieve 15% calorie restriction (CR) for 16 weeks. Hepatic non-heme iron content and ferritin protein level, and hematocrit and hemoglobin levels were determined to assess iron status. Hepatic expression of Mcp-1 and Tnf-α were measured as hepatic inflammatory markers. Hepatic hepcidin (Hamp) and Bmp6, and duodenal Dmt1, Dcyt1b, hephaestin (Heph) and ferroportin mRNA levels were measured as factors involved in regulation of iron absorption. Results Hepatic non-heme iron and ferritin protein levels were significantly higher in the CR group compared with the Control group, and significantly lower in the HFD group. These two iron status markers showed significantly negative correlations with the amount of white adipose tissue (r = -0.689 for hepatic non-heme iron and r = -0.740 for ferritin). Hepatic Mcp-1 and Tnf-α mRNA levels were significantly lower in the CR compared with the HFD (74 and 47% lower) and showed significantly negative correlations with hepatic non-heme iron levels (Mcp-1: r = -0.557, P < 0.05; Tnf-α: r = -0.464, P < 0.05). Hepatic Hamp mRNA levels were lower in the HFD and higher in the CR groups compared with the Control group, which could be a response to maintain iron homeostasis. Duodenal Dcyt1b mRNA levels were higher in the CR group compared with the HFD group and duodenal Heph mRNA levels were higher in the CR group than the Control group. Conclusion We showed that body adiposity was inversely correlated with liver iron status. Low inflammation levels in hepatic milieu and enhanced expression of duodenal oxidoreductases induced by calorie restriction could have contributed to higher iron status.
Collapse
Affiliation(s)
- Chan Yoon Park
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, South Korea
| | - Jayong Chung
- Department of Food and Nutrition, College of Human Ecology, Kyung Hee University, Seoul, South Korea
| | - Kyung-Ok Koo
- Department of Food and Nutrition, College of Human Ecology, Kyung Hee University, Seoul, South Korea
| | - Min Soo Kim
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, South Korea
| | - Sung Nim Han
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, South Korea.,Research Institute of Human Ecology, Seoul National University, Seoul, South Korea
| |
Collapse
|
39
|
Simó-Mirabet P, Bermejo-Nogales A, Calduch-Giner JA, Pérez-Sánchez J. Tissue-specific gene expression and fasting regulation of sirtuin family in gilthead sea bream (Sparus aurata). J Comp Physiol B 2016; 187:153-163. [DOI: 10.1007/s00360-016-1014-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 07/07/2016] [Accepted: 07/09/2016] [Indexed: 01/12/2023]
|
40
|
Gonzalez OA, Nagarajan R, Novak MJ, Orraca L, Gonzalez-Martinez JA, Kirakodu SS, Ebersole JL. Immune system transcriptome in gingival tissues of young nonhuman primates. J Periodontal Res 2016; 51:152-63. [PMID: 26077888 PMCID: PMC4681702 DOI: 10.1111/jre.12293] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2015] [Indexed: 12/28/2022]
Abstract
BACKGROUND AND OBJECTIVE Young/adolescent humans harbor many microorganisms associated with periodontal disease in adults and show substantial gingival inflammatory responses. However, younger individuals do not demonstrate the soft- and hard-tissue destruction that hallmark periodontitis. MATERIAL AND METHODS This study evaluated responses to the oral microbial ecology in gingival tissues from clinically healthy young Macaca mulatta (< 3 years of age) compared with older animals (5-23 years of age). RNA was isolated from the tissues and analyzed for the transcriptome using the Rhesus Macaque GeneChip (Affymetrix). RESULTS Global transcriptional profiling of four age groups revealed a subset of 159 genes that were differentially expressed across at least one of the age comparisons. Correlation metrics generated a relevance network abstraction of these genes. Partitioning of the relevance network revealed seven distinct communities comprising functionally related genes associated with host inflammatory and immune responses. A group of genes was identified that were selectively increased/decreased or positively/negatively correlated with gingival profiles in the animals. A principal components analysis created metagenes of expression profiles for classifying the 23 animals. CONCLUSION The results provide novel system-level insights into gene-expression differences in gingival tissues from healthy young animals, weighted toward host responses associated with anti-inflammatory biomolecules or those linked with T-cell regulation of responses. The combination of the regulated microenvironment may help to explain the apparent 'resistance' of younger individuals to developing periodontal disease.
Collapse
Affiliation(s)
- O A Gonzalez
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA
| | - R Nagarajan
- Division of Biomedical Informatics, College of Public Health, University of Kentucky, Lexington, KY, USA
- Department of Biostatistics, College of Public Health, University of Kentucky, Lexington, KY, USA
| | - M J Novak
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA
| | - L Orraca
- School of Dentistry, University of Puerto Rico, San Juan, Puerto Rico
| | | | - S S Kirakodu
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA
| | - J L Ebersole
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
41
|
Ebersole JL, Kirakodu S, Novak MJ, Exposto CR, Stromberg AJ, Shen S, Orraca L, Gonzalez-Martinez J, Gonzalez OA. Effects of aging in the expression of NOD-like receptors and inflammasome-related genes in oral mucosa. Mol Oral Microbiol 2016; 31:18-32. [PMID: 26197995 PMCID: PMC4712099 DOI: 10.1111/omi.12121] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2015] [Indexed: 01/28/2023]
Abstract
The molecular changes underlying the higher risk of chronic inflammatory disorders during aging remain incompletely understood. Molecular variations in the innate immune response related to recognition and interaction with microbes at mucosal surfaces could be involved in aging-related inflammation. We developed an ontology analysis of 20 nucleotide-binding and oligomerization domain (NOD)-like receptors (NLRs) and seven inflammasome-related genes (IRGs) in healthy and inflamed/periodontitis oral mucosal tissues from young, adolescent, adult, and aged non-human primates (Macaca mulatta) using the GeneChip(®) Rhesus Macaque Genome array. Validation of some of the significant changes was done by quantitative reverse transcription-polymerase chain reaction. The expression of NLRB/NAIP, NLRP12, and AIM2 increased with aging in healthy mucosa whereas NLRC2/NOD2 expression decreased. Although higher expression levels of some NLRs were generally observed with periodontitis in adult mucosal tissues (e.g. NLRB/NAIP, NLRP5, and NLRX1), various receptors (e.g. NLRC2/NOD2 and NLRP2) and the inflammasome adaptor protein ASC, exhibited a significant reduction in expression in aged periodontitis tissues. Accordingly, the expression of NLR-activated innate immune genes, such as HBD3 and IFNB1, was impaired in aged but not adult periodontitis tissues. Both adult and aged tissues showed significant increase in interleukin-1β expression. These findings suggest that the expression of a subset of NLRs appears to change with aging in healthy oral mucosa, and that aging-related oral mucosal inflammation could involve an impaired regulation of the inflammatory and antimicrobial response associated with downregulation of specific NLRs and IRGs.
Collapse
Affiliation(s)
- Jeffrey L. Ebersole
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA
| | - Sreenatha Kirakodu
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA
| | - M. John Novak
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA
| | - Cristina R. Exposto
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA
| | - Arnold J. Stromberg
- Department of Statistics, College of Arts and Sciences, University of Kentucky, Lexington, KY, USA
| | - Shu Shen
- Department of Statistics, College of Arts and Sciences, University of Kentucky, Lexington, KY, USA
| | - Luis Orraca
- School of Dental Medicine, University of Puerto Rico, San Juan, PR
| | | | - Octavio A. Gonzalez
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
42
|
Effect of Weight-Reduction in Obese Mice Lacking Toll-Like Receptor 5 and C57BL/6 Mice Fed a Low-Fat Diet. Mediators Inflamm 2015; 2015:852126. [PMID: 26681840 PMCID: PMC4670872 DOI: 10.1155/2015/852126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/20/2015] [Accepted: 10/25/2015] [Indexed: 12/02/2022] Open
Abstract
Background. This study aims to investigate the effect of feeding low-fat diet (LFD) to diet-induced obesity (DIO) mice lacking TLR5 (TLR5−/−), which have a tendency to develop glucose intolerance with increased adiposity, compared to that in C57BL/6 mice. Results. TLR5−/− and C57BL/6 male mice were divided into three subgroups: (1) control, mice were fed a standard AIN-76A (fat: 11.5 kcal%) diet for 12 weeks; (2) DIO, mice were fed a 58 kcal% high-fat diet (HFD) for 12 weeks; and (3) diet, mice were fed a HFD for 8 weeks to induce obesity and then switched to a 10.5 kcal% LFD for 4 weeks. The glucose intolerance in DIO TLR5−/− mice was more significant than that in DIO C57BL/6 mice and was not attenuated by a switch to the LFD. Weight-reduction with LFD had significantly decreased the epididymal fat mass in C57BL/6 mice but not in TLR5−/− mice. In addition, the LFD-fed TLR5−/− mice showed significantly higher expression of ghrelin in the serum and resistin in the epididymal fat than that in C57BL/6 mice. Conclusions. This study demonstrated that TLR5 gene knockout impairs some effects of weight-reduction in DIO.
Collapse
|
43
|
Park HS, Nam HS, Seo HS, Hwang SJ. Change of periodontal inflammatory indicators through a 4-week weight control intervention including caloric restriction and exercise training in young Koreans: a pilot study. BMC Oral Health 2015; 15:109. [PMID: 26385382 PMCID: PMC4575481 DOI: 10.1186/s12903-015-0094-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 09/09/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recent cross-sectional studies indicate that obesity is a risk factor for periodontal disease. Exercise training in high fat mice or rats can inhibit gingival inflammation effectively. The objective of this human intervention study was to investigate whether short-term weight control could affect periodontal indexes and serum and gingival crevicular fluid (GCF) biomarkers in young Koreans. METHODS Forty-one obese volunteers (body mass index (BMI) > 25.0) and 12 normal weight subjects (18.5 ≤ BMI ≤ 23.0) participated in a four-week weight control program to analyze the changes in anthropometric criteria, the concentrations of C-reactive protein (CRP), low-density lipoprotein (LDL), high-density lipoprotein (HDL), and triglycerides in serum, gingival index, bleeding on probing, periodontal biomarkers in GCF, and dental plaque index at the first and the 27th days. RESULTS The means of obesity measures decreased significantly more in the obese group (BMI 2.53 ± 0.96, waist-to-hip ratio (WHR) 4.88 ± 1.58 %, LDL 35.85 ± 21.74 mgdL(-1)) than in the normal weight group (BMI 0.78 ± 0.72, WHR 2.00 ± 0.95 %, LDL 15.58 ± 18.07 mgdL(-1)). While the obese group showed significant decreases in the biomarkers in GCF (IL-1β 58.38 ± 65.55 pgmL(-1), MMP-8 4.19 ± 5.61 ngmL(-1), MMP-9 3.36 ± 6.30 ngmL(-1)), the mean changes for the normal weight group (IL-1β 10.07 ± 21.08 pgmL(-1), MMP-8 1.49 ± 4.61 ngmL(-1), MMP-9 -1.52 ± 9.71 ngmL(-1)) were not statistically significant. Anthropometric measures and the amounts of GCF biomarkers had weak positive correlations (0.242 ≤ r ≤ 0.340), and LDL in serum correlated with MMP-8 (r = 0.332) and IL-1β (r = 0.342) in the obese group. Stepwise multiple linear regression analysis in the obese group showed that the relationship between the amount of IL-1β in GCF and predictor variables including LDL and BMI was highly significant and accounted for 19.1 % of the variance in IL-1β in GCF. CONCLUSIONS In periodontally healthy subjects, weight control could reduce the amounts of MMP-8, MMP-9, and IL-1β in GCF of the obese subjects. Further studies with periodontally unhealthy and obese people are needed to identify the mechanism of decreases in inflammation biomarkers in GCF through weight control. TRIAL REGISTRATION ISRCTN86753073 (2015.08.14).
Collapse
Affiliation(s)
- Hoo-Seob Park
- Department of Preventive Medicine and Public Health, School of Medicine, Chungnam National University, Daejeon, South Korea.
| | - Hae-Sung Nam
- Department of Preventive Medicine and Public Health, School of Medicine, Chungnam National University, Daejeon, South Korea.
| | - Hyung-Seok Seo
- Department of Sports Medicine, College of Culture, Science & Technology, Konyang University, Nonsan, Chungcheongnamdo, South Korea.
| | - Soo-Jeong Hwang
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea. .,Department of Dental Hygiene, College of Medical Science, Konyang University, Daejeon, South Korea.
| |
Collapse
|
44
|
Hajishengallis G. Aging and its Impact on Innate Immunity and Inflammation: Implications for Periodontitis. J Oral Biosci 2014; 56:30-37. [PMID: 24707191 DOI: 10.1016/j.job.2013.09.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The elderly exhibit increased susceptibility to a number of inflammatory or degenerative pathologies. Aging is similarly thought to be associated with increased prevalence and severity of periodontitis, although the underlying causes are poorly understood. Among the plausible mechanisms whereby aging could contribute to increased susceptibility to periodontitis are age-dependent alterations in the innate immune and inflammatory status of the host. This hypothesis is supported by studies in humans and animal models outlined in this Review. Indeed, innate immune cells isolated from elderly subjects exhibit age-related cell-intrinsic defects that could predispose the elderly to deregulated immune and inflammatory responses. Moreover, the investigation of age-related alterations in the tissue environment where recruited inflammatory cells ultimately function could provide complementary, if not better, insights into the impact of aging on periodontitis. Integrative approaches combining in vitro and in vivo mechanistic models are underway and can potentially contribute to targeted molecular therapies that can reverse or mitigate the effects of aging on periodontitis and other inflammatory diseases.
Collapse
Affiliation(s)
- George Hajishengallis
- Department of Microbiology, University of Pennsylvania, School of Dental Medicine, Philadelphia, Pennsylvania, PA 19104, USA
| |
Collapse
|
45
|
Acquisition of oral microbes and associated systemic responses of newborn nonhuman primates. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 21:21-8. [PMID: 24173024 DOI: 10.1128/cvi.00291-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The acquisition and development of the complex oral microbiome remain ill defined. While selected species of oral bacteria have been examined in relation to their initial colonization in neonates, a more detailed understanding of the dynamics of the microbiome has been developed only in adults. The current investigation used a nonhuman primate model to document the kinetics of colonization of the oral cavities of newborns and infants by a range of oral commensals and pathogens. Differences in colonization were evaluated in newborns from mothers who were maintained on an oral hygiene regimen pre- and postparturition with those displaying naturally acquired gingivitis/periodontitis. The results demonstrate distinct profiles of acquisition of selected oral bacteria, with the transmission of targeted pathogens, Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans, being passed on primarily from mothers with gingivitis/periodontitis. This colonization resulted in defined patterns of systemic antibody responses in the infants. The significant relative risk measures for infection with the pathogens, as well as the relationship of oral infection and blood serum antibody levels, were consistent with those of the newborns from mothers with gingivitis/periodontitis. These findings indicate that the early acquisition of potentially pathogenic oral bacterial species might impact the development of mucosal responses in the gingiva and may provide an enhanced risk for the development of periodontitis later in life.
Collapse
|
46
|
Chung K, Kim D, Park M, Choi Y, Kim N, Lee J, Yu B, Chung H. Recent advances in calorie restriction research on aging. Exp Gerontol 2013. [DOI: 10.1016/j.exger.2012.11.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
47
|
Macaulay R, Akbar AN, Henson SM. The role of the T cell in age-related inflammation. AGE (DORDRECHT, NETHERLANDS) 2013; 35:563-72. [PMID: 22252437 PMCID: PMC3636399 DOI: 10.1007/s11357-012-9381-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 01/03/2012] [Indexed: 05/16/2023]
Abstract
Ageing is accompanied by alterations to T-cell immunity and also by a low-grade chronic inflammatory state termed inflammaging. The significance of these phenomena is highlighted by their being predictors of earlier mortality. We have recently published that the proinflammatory cytokine TNFα is a strong inducer of CD4(+) T-cell senescence and T-cell differentiation, adding to the growing body of literature implicating proinflammatory molecules in mediating these critical age-related T-cell alterations. Moreover, the inflammatory process is also being increasingly implicated in the pathogenesis of many common and severe age-related diseases, including cancer, cardiovascular diseases and type 2 diabetes. Furthermore, major age-related risk factors for poor health, such as obesity, stress and smoking, are also associated with an upregulation in systemic inflammatory markers. We propose the idea that the ensuing inflammatory response to influenza infection propagates cardiovascular diseases and constitutes a major cause of influenza-related mortality. While inflammation is not a negative phenomenon per se, this age-related dysregulation of inflammatory responses may play crucial roles driving age-related pathologies, T-cell immunosenescence and CMV reactivation, thereby underpinning key features of the ageing process.
Collapse
Affiliation(s)
- Richard Macaulay
- Division of Infection and Immunity, Rayne Institute, University College London, 5 University Street, London, WC1E 6JF UK
| | - Arne N. Akbar
- Division of Infection and Immunity, Rayne Institute, University College London, 5 University Street, London, WC1E 6JF UK
| | - Sian M. Henson
- Division of Infection and Immunity, Rayne Institute, University College London, 5 University Street, London, WC1E 6JF UK
| |
Collapse
|
48
|
Overlapped Metabolic and Therapeutic Links between Alzheimer and Diabetes. Mol Neurobiol 2012; 47:399-424. [DOI: 10.1007/s12035-012-8352-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 09/12/2012] [Indexed: 12/12/2022]
|
49
|
Schleit J, Wasko BM, Kaeberlein M. Yeast as a model to understand the interaction between genotype and the response to calorie restriction. FEBS Lett 2012; 586:2868-73. [PMID: 22828279 PMCID: PMC4016815 DOI: 10.1016/j.febslet.2012.07.038] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 07/13/2012] [Accepted: 07/16/2012] [Indexed: 12/01/2022]
Abstract
Calorie restriction is reported to enhance survival and delay the onset of age-related decline in many different species. Several proteins have been proposed to play a role in mediating the response to calorie restriction, including the target of rapamycin kinase, sirtuins, and AMP kinase. An enhanced mechanistic understanding of calorie restriction has popularized the concept of "calorie restriction mimetics", drugs that mimic the beneficial effects of caloire restriction without requiring a reduction in nutrient intake. In theory, such drugs should delay the onset and progression of multiple age-related diseases, similar to calorie restriction in mammals. Despite the potential benefits of such calorie restriction mimetics, however, relatively little is known about the interaction between genetic variation and individual response to calorie restriction. Limited evidence from model systems indicates that genotype plays a large role in determining both the magnitude and direction of effect that calorie restriction has on longevity. Here we present an overview of these data from the perspective of using yeast as a model to study aging and describe an approach we are taking to further characterize the molecular mechanisms underlying genotype-dependent responses to calorie restriction.
Collapse
Affiliation(s)
- Jennifer Schleit
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Brian M. Wasko
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Matt Kaeberlein
- Department of Pathology, University of Washington, Seattle, WA, USA
- Institute of Aging Research, Guangdong Medical College, Dongguan 523808, China
| |
Collapse
|
50
|
Moura LP, Figueredo GA, Bertolini NO, Ceccato M, Pereira JR, Sponton ACS, de Mello MAR. Dietary restriction, caloric value and the accumulation of hepatic fat. Lipids Health Dis 2012; 11:2. [PMID: 22221448 PMCID: PMC3276414 DOI: 10.1186/1476-511x-11-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 01/05/2012] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Studies using laboratory animals under what are considered to be "standard" conditions normally offer unrestricted amounts of food to the animals, which can lead to metabolic disorders. Moreover, standard diets have different compositions. AIM Therefore, the aim of the present study was to assess the effects of two non-isocaloric diets (commercial Purina® and AIN-93M), which are considered standard diets, on the accumulation of fat in the liver of rats when offered ad libitum or in a restricted amount. METHODS Thus, 40 Wistar rats (90 days old) were separated into 4 groups according to the amount of food offered (ad libitum or dietary restriction) and the type of diet (commercial diet, 3,028.0 kcal/g or AIN-93M, 3,802.7 kcal/g): animals fed the commercial Purina® diet ad libitum (AP), animals fed restricted amounts of the commercial Purina® diet (RP), animals fed the AIN-93M diet ad libitum (AD), and animals fed restricted amounts of the AIN-93M diet (RD). Dietary restriction consisted of pair-feeding the RP and RD groups with 60% of the total food consumed by the corresponding ad libitum groups. RESULTS Because of its higher carbohydrate and calorie content, AIN-93M was found to accelerate weight gain, reduce glucose tolerance and peripheral insulin sensitivity, and increase the amount of fat in the liver when compared to the commercial diet. Conversely, a 40% dietary restriction assisted in weight loss without causing malnutrition, contributing to an improved glucose tolerance and higher levels of HDL cholesterol. CONCLUSION Therefore, differences in the amount of carbohydrates and calories provided by the diet can lead to important metabolic disorders, such as impaired tolerance and accumulation of hepatic fat, and dietary restriction improves serum and tissue lipid profiles in laboratory animals.
Collapse
Affiliation(s)
- Leandro P Moura
- Department of Physical Education, Universidade Estadual Paulista (UNESP), Avenida 24ª n° 1515, P.O. Box 199, Bela Vista, Rio Claro, Zip code: 13506-900, SP, Brazil
| | - Gabriella A Figueredo
- Department of Physical Education, Universidade Estadual Paulista (UNESP), Avenida 24ª n° 1515, P.O. Box 199, Bela Vista, Rio Claro, Zip code: 13506-900, SP, Brazil
| | - Natália O Bertolini
- Department of Physical Education, Universidade Estadual Paulista (UNESP), Avenida 24ª n° 1515, P.O. Box 199, Bela Vista, Rio Claro, Zip code: 13506-900, SP, Brazil
| | - Marilia Ceccato
- Department of Physical Education, Universidade Estadual Paulista (UNESP), Avenida 24ª n° 1515, P.O. Box 199, Bela Vista, Rio Claro, Zip code: 13506-900, SP, Brazil
| | - Jessica R Pereira
- Department of Physical Education, Universidade Estadual Paulista (UNESP), Avenida 24ª n° 1515, P.O. Box 199, Bela Vista, Rio Claro, Zip code: 13506-900, SP, Brazil
| | - Amanda Christine S Sponton
- Department of Physical Education, Universidade Estadual Paulista (UNESP), Avenida 24ª n° 1515, P.O. Box 199, Bela Vista, Rio Claro, Zip code: 13506-900, SP, Brazil
| | - Maria Alice R de Mello
- Department of Physical Education, Universidade Estadual Paulista (UNESP), Avenida 24ª n° 1515, P.O. Box 199, Bela Vista, Rio Claro, Zip code: 13506-900, SP, Brazil
| |
Collapse
|