1
|
Deri E, Kumar Ojha S, Kartawy M, Khaliulin I, Amal H. Multi-omics study reveals differential expression and phosphorylation of autophagy-related proteins in autism spectrum disorder. Sci Rep 2025; 15:10878. [PMID: 40158064 PMCID: PMC11954894 DOI: 10.1038/s41598-025-95860-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 03/24/2025] [Indexed: 04/01/2025] Open
Abstract
Our multi-omics study investigated the molecular mechanisms underlying autism spectrum disorder (ASD) using Shank3Δ4-22 and Cntnap2-/- mouse models. Through global- and phospho- proteomics of the mouse cortex, we focused on shared molecular changes and found that autophagy was particularly affected in both models. Global proteomics identified a small number of differentially expressed proteins that significantly impact postsynaptic components and synaptic function, including key pathways such as mTOR signaling. Phosphoproteomics revealed unique phosphorylation sites in autophagy-related proteins such as ULK2, RB1CC1, ATG16L1, and ATG9, suggesting that altered phosphorylation patterns contribute to impaired autophagic flux in ASD. SH-SY5Y cells with SHANK3 gene deletion showed elevated LC3-II and p62 levels, indicating autophagosome accumulation and autophagy initiation, while the reduced level of the lysosomal activity marker LAMP1 suggested impaired autophagosome-lysosome fusion. The study highlights the involvement of reactive nitrogen species and nitric oxide (NO) on autophagy disruption. Importantly, inhibition of neuronal NO synthase (nNOS) by 7-NI normalized autophagy markers levels in the SH-SY5Y cells and primary cultured neurons. We have previously shown that nNOS inhibition improved synaptic and behavioral phenotypes in Shank3Δ4-22 and Cntnap2-/- mouse models. Our multi-omics study reveals differential expression and phosphorylation of autophagy-related proteins in ASD but further investigation is needed to prove the full involvement of autophagy in ASD. Our study underscores the need for further examination into the functional consequences of the identified phosphorylation sites, which may offer potential novel therapeutic autophagy-related targets for ASD treatment.
Collapse
Affiliation(s)
- Eden Deri
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shashank Kumar Ojha
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Maryam Kartawy
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Igor Khaliulin
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Haitham Amal
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, MA, USA.
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Alhesain M, Alzu’bi A, Sankar N, Smith C, Kerwin J, Laws R, Lindsay S, Clowry GJ. Development of the early fetal human thalamus: from a protomap to emergent thalamic nuclei. Front Neuroanat 2025; 19:1530236. [PMID: 39990522 PMCID: PMC11842364 DOI: 10.3389/fnana.2025.1530236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/21/2025] [Indexed: 02/25/2025] Open
Abstract
Introduction Most of what is known about thalamic development comes from rodent studies, however, the increased proportion of human association cortex has co-evolved with increased thalamocortical connectivity. Higher order thalamic nuclei, relaying information between cortical regions and important in higher cognitive function, are greatly expanded. Methods This study mapped the emergence of thalamic nuclei in human fetal development (8-16 post conceptional weeks; PCW) by revealing gene expression patterns using in situ hybridization and immunohistochemistry for previously established thalamic development markers. Results In the proliferative thalamic ventricular zone, OLIG3 and NR2F1 immunoreactivity marked the extent of the thalamus, whereas PAX6 and NR2F2 were expressed in gradients, suggesting an early protomap. This was also the case for post-mitotic transcription factors ZIC4, GBX2, FOXP2 and OTX2 which marked thalamic boundaries but also exhibited opposing gradients with ZIC4 expression higher anterior/lateral, and GBX2, FOXP2 and OTX2 higher in posterior/medial. Expression patterns became increasingly compartmentalized as development progressed and by 14 PCW recognizable thalamic nuclei were observed with, for instance, the centromedian nucleus being characterized by high FOXP2 and absent GBX2 expression. SP8-like immunoreactivity was expressed in distinct thalamic locations other than the reticular formation which has not been previously reported. Markers for GABAergic neurons and their precursors revealed the location of the prethalamus and its development into the reticular formation and zona incerta. No GAD67+ neurons were observed in the thalamus at 10 PCW, but by 14 PCW the medial posterior quadrant of the thalamus at various levels was infiltrated by GAD67+/ SOX14+ cells of presumed pretectal/midbrain origin. We compared expression of the neurodevelopmental disease susceptibility gene CNTNAP2 to these patterns. It was highly expressed by glutamatergic neurons in many thalamic regions by 14 PCW, sometimes but not always in conjunction with its upstream expression regulator FOXP2. Conclusion In human discrete thalamic nuclei exhibiting discrete gene expression patterns emerge relatively early from a protomap of gene expression. The migration of GABAergic neurons into the thalamus occurs over a protracted period, first from the midbrain. Disruption of CNTNAP2 activity and function could be hypothezised to have a variety of effects upon thalamic development.
Collapse
Affiliation(s)
- Maznah Alhesain
- Newcastle University Biosciences Institute and Centre for Transformative Neuroscience, Newcastle upon Tyne, United Kingdom
| | - Ayman Alzu’bi
- Newcastle University Biosciences Institute and Centre for Transformative Neuroscience, Newcastle upon Tyne, United Kingdom
- Newcastle University Biosciences Institute and Human Developmental Biology Resource, Newcastle upon Tyne, United Kingdom
- Department of Basic Medical Sciences, Yarmouk University, Irbid, Jordan
| | - Niveditha Sankar
- Newcastle University Biosciences Institute and Centre for Transformative Neuroscience, Newcastle upon Tyne, United Kingdom
- Newcastle University Biosciences Institute and Human Developmental Biology Resource, Newcastle upon Tyne, United Kingdom
| | - Charles Smith
- Newcastle University Biosciences Institute and Centre for Transformative Neuroscience, Newcastle upon Tyne, United Kingdom
- Newcastle University Biosciences Institute and Human Developmental Biology Resource, Newcastle upon Tyne, United Kingdom
| | - Janet Kerwin
- Newcastle University Biosciences Institute and Human Developmental Biology Resource, Newcastle upon Tyne, United Kingdom
| | - Ross Laws
- Electron Microscopy Research Services, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Susan Lindsay
- Newcastle University Biosciences Institute and Human Developmental Biology Resource, Newcastle upon Tyne, United Kingdom
| | - Gavin J. Clowry
- Newcastle University Biosciences Institute and Centre for Transformative Neuroscience, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
3
|
Möhrle D, Murari K, Rho JM, Cheng N. Vocal communication in asocial BTBR mice is more malleable by a ketogenic diet in juveniles than adults. Neuroscience 2024; 561:43-64. [PMID: 39413868 DOI: 10.1016/j.neuroscience.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/28/2024] [Accepted: 10/01/2024] [Indexed: 10/18/2024]
Abstract
Deficits in social communication and language development are a hallmark of autism spectrum disorder currently with no effective approaches to reduce the negative impact. Interventional studies using animal models have been very limited in demonstrating improved vocal communication. Autism has been proposed to involve metabolic dysregulation. Ketogenic diet (KD) is a metabolism-based therapy for medically intractable epilepsy, and its applications in other neurological conditions have been increasingly tested. However, how KD would affect vocal communication has not been explored. The BTBR mouse strain is widely used to model asocial phenotypes. They display robust and pronounced deficits in vocalization during social interaction, and have metabolic changes implicated in autism. We investigated the effects of KD on ultrasonic vocalizations (USVs) in juvenile and adult BTBR mice during male-female social encounters. After a brief treatment with KD, the number, spectral bandwidth, and much of the temporal structure of USVs were robustly closer to control levels in both juvenile and adult BTBR mice. Composition of call categories and transitioning between individual call subtypes were more effectively altered to more closely align with the control group in juvenile BTBR mice. Together, our data provide further support to the hypothesis that metabolism-based dietary intervention could modify disease expression, including core symptoms, in autism. Future studies should tease apart the molecular mechanisms of KD's effects on vocalization.
Collapse
Affiliation(s)
- Dorit Möhrle
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.
| | - Kartikeya Murari
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada; Department of Electrical and Software Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada.
| | - Jong M Rho
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| | - Ning Cheng
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
4
|
Ren H, Li YZ, Bi HY, Yang Y. The shared neurobiological basis of developmental dyslexia and developmental stuttering: A meta-analysis of functional and structural MRI studies. Int J Clin Health Psychol 2024; 24:100519. [PMID: 39582485 PMCID: PMC11585698 DOI: 10.1016/j.ijchp.2024.100519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/02/2024] [Indexed: 11/26/2024] Open
Abstract
Background Developmental dyslexia (DD) and persistent developmental stuttering (PDS) are the most representative written and spoken language disorders, respectively, and both significantly hinder life success. Although widespread brain alterations are evident in both DD and PDS, it remains unclear to what extent these two language disorders share common neural substrates. Methods A systematic review and meta-analysis of task-based functional magnetic resonance imaging (fMRI) and voxel-based morphometry (VBM) studies of PDS and DD were conducted to explore the shared functional and anatomical alterations across these disorders. Results The results of fMRI studies indicated shared hypoactivation in the left inferior temporal gyrus and inferior parietal gyrus across PDS and DD compared to healthy controls. When examined separately for children and adults, we found that child participants exhibited reduced activation in the left inferior temporal gyrus, inferior parietal gyrus, precentral gyrus, middle temporal gyrus, and inferior frontal gyrus, possibly reflecting the universal causes of written and spoken language disorders. In contrast, adult participants exhibited hyperactivation in the right precentral gyrus and left cingulate motor cortex, possibly reflecting common compensatory mechanisms. Anatomically, the analysis of VBM studies revealed decreased gray matter volume in the left inferior frontal gyrus across DD and PDS, which was exclusively observed in children. Finally, meta-analytic connectivity modeling and brain-behavior correlation analyses were conducted to explore functional connectivity patterns and related cognitive functions of the brain regions commonly involved in DD and PDS. Conclusions This study identified concordances in brain abnormalities across DD and PDS, suggesting common neural substrates for written and spoken language disorders and providing new insights into the transdiagnostic neural signatures of language disorders.
Collapse
Affiliation(s)
- Huan Ren
- Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi zhen Li
- Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Yan Bi
- Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Yang
- Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Language and Brain, Shenzhen Institute of Neuroscience, Shenzhen 518057, China
| |
Collapse
|
5
|
Shiota Y, Nishiyama T, Yokoyama S, Yoshimura Y, Hasegawa C, Tanaka S, Iwasaki S, Kikuchi M. Association of genetic variants with autism spectrum disorder in Japanese children revealed by targeted sequencing. Front Genet 2024; 15:1352480. [PMID: 39280100 PMCID: PMC11395840 DOI: 10.3389/fgene.2024.1352480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/04/2024] [Indexed: 09/18/2024] Open
Abstract
Introduction Autism spectrum disorders (ASD) represent a heterogeneous group of neurodevelopmental disorders with strong genetic predispositions. Although an increasing number of genetic variants have been implicated in the pathogenesis of ASD, little is known about the relationship between ASD-associated genetic variants and individual ASD traits. Therefore, we aimed to investigate these relationships. Methods Here, we report a case-control association study of 32 Japanese children with ASD (mainly with high-functioning autism [HFA]) and 36 with typical development (TD). We explored previously established ASD-associated genes using a next-generation sequencing panel and determined the association between Social Responsiveness Scale (SRS) T-scores and intelligence quotient (IQ) scores. Results In the genotype-phenotype analyses, 40 variants of five genes (SCN1A, SHANK3, DYRK1A, CADPS, and SCN2A) were associated with ASD/TD phenotypes. In particular, 10 SCN1A variants passed permutation filtering (false discovery rate <0.05). In the quantitative association analyses, 49 variants of 12 genes (CHD8, SCN1A, SLC6A1, KMT5B, CNTNAP2, KCNQ3, SCN2A, ARID1B, SHANK3, DYRK1A, FOXP1, and GRIN2B) and 50 variants of 10 genes (DYRK1A, SCN2A, SLC6A1, ARID1B, CNTNAP2, SHANK3, FOXP1, PTEN, SCN1A, and CHD8) were associated with SRS T- and IQ-scores, respectively. Conclusion Our data suggest that these identified variants are essential for the genetic architecture of HFA.
Collapse
Affiliation(s)
- Yuka Shiota
- Japan Society for the Promotion of Science, Tokyo, Japan
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Tomoaki Nishiyama
- Research Center for Experimental Modeling of Human Disease, Kanazawa University, Kanazawa, Japan
| | - Shigeru Yokoyama
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Kanazawa, Japan
| | - Yuko Yoshimura
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Kanazawa, Japan
- Institute of Human and Social Sciences, Kanazawa University, Kanazawa, Japan
| | - Chiaki Hasegawa
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Kanazawa, Japan
| | - Sanae Tanaka
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Kanazawa, Japan
| | - Sumie Iwasaki
- Japan Society for the Promotion of Science, Tokyo, Japan
- Institute of Human and Social Sciences, Kanazawa University, Kanazawa, Japan
| | - Mitsuru Kikuchi
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Kanazawa, Japan
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
6
|
Arutiunian V, Santhosh M, Neuhaus E, Sullivan CAW, Bernier RA, Bookheimer SY, Dapretto M, Geschwind DH, Jack A, McPartland JC, Van Horn JD, Pelphrey KA, Gupta AR, Webb SJ. A common genetic variant in the Neurexin family member CNTNAP2 is related to language but not communication skills in youth with Autism Spectrum Disorder. Autism Res 2024:10.1002/aur.3193. [PMID: 38984666 PMCID: PMC11717989 DOI: 10.1002/aur.3193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/23/2024] [Indexed: 07/11/2024]
Abstract
One of the candidate genes related to language variability in individuals with Autism Spectrum Disorder (ASD) is the contactin-associated protein-like 2 gene (CNTNAP2), a member of the Neurexin family. However, due to the different assessment tools used, it is unknown whether the polymorphisms of the CNTNAP2 gene are linked to structural language skills or more general communication abilities. A total of 302 youth aged 7 to 18 years participated in the present study: 131 verbal youth with ASD (62 female), 130 typically developing (TD) youth (64 female), and 41 unaffected siblings (US) of youth with ASD (25 female). Blood samples were collected to obtain genomic DNA and processed by the Rutgers University Cell and Data Repository or using standard protocols (Gentra Puregene Blood DNA extraction kit; Qiagen). Language and verbal communication skills were screened with the Clinical Evaluation of Language Fundamental-4 (CELF-4) and Vineland-II Communication domain, subsequently. The results showed that the polymorphism of CNTNAP2 (SNP rs2710102) was related to structural language abilities, such that participants carrying the A-allele had lower language skills in comparison to the G-allele homozygotes. No relationship was found between the polymorphism of CNTNAP2 and more general communication abilities. Although the study revealed genetic mechanisms that are associated with CELF-4 measures but not Vineland-II in youth with ASD, follow-up studies are needed that will include measures of language and communication that are less correlated to each other as well as will include a group of minimally and/or non-verbal individuals with ASD.
Collapse
Affiliation(s)
- Vardan Arutiunian
- Center for Child Health, Behavior and Development, Seattle Children’s Research Institute, Seattle, WA, USA
| | - Megha Santhosh
- Center for Child Health, Behavior and Development, Seattle Children’s Research Institute, Seattle, WA, USA
| | - Emily Neuhaus
- Center for Child Health, Behavior and Development, Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Psychiatry and Behavioral Science, University of Washington, Seattle, WA, USA
| | | | - Raphael A. Bernier
- Department of Psychiatry and Behavioral Science, University of Washington, Seattle, WA, USA
| | - Susan Y. Bookheimer
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Mirella Dapretto
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Daniel H. Geschwind
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Allison Jack
- Department of Psychology, George Mason University, Fairfax, VA, USA
| | | | - John D. Van Horn
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
- School of Data Science, University of Virginia, Charlottesville, VA, USA
| | - Kevin A. Pelphrey
- Department of Neurology, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Abha R. Gupta
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
- Yale Child Study Center, Yale School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Sara Jane Webb
- Center for Child Health, Behavior and Development, Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Psychiatry and Behavioral Science, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
7
|
Boerma T, Ter Haar S, Ganga R, Wijnen F, Blom E, Wierenga CJ. What risk factors for Developmental Language Disorder can tell us about the neurobiological mechanisms of language development. Neurosci Biobehav Rev 2023; 154:105398. [PMID: 37741516 DOI: 10.1016/j.neubiorev.2023.105398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/03/2023] [Accepted: 09/17/2023] [Indexed: 09/25/2023]
Abstract
Language is a complex multidimensional cognitive system that is connected to many neurocognitive capacities. The development of language is therefore strongly intertwined with the development of these capacities and their neurobiological substrates. Consequently, language problems, for example those of children with Developmental Language Disorder (DLD), are explained by a variety of etiological pathways and each of these pathways will be associated with specific risk factors. In this review, we attempt to link previously described factors that may interfere with language development to putative underlying neurobiological mechanisms of language development, hoping to uncover openings for future therapeutical approaches or interventions that can help children to optimally develop their language skills.
Collapse
Affiliation(s)
- Tessel Boerma
- Institute for Language Sciences, Department of Languages, Literature and Communication, Utrecht University, Utrecht, the Netherlands
| | - Sita Ter Haar
- Institute for Language Sciences, Department of Languages, Literature and Communication, Utrecht University, Utrecht, the Netherlands; Cognitive Neurobiology and Helmholtz Institute, Department of Psychology, Utrecht University/Translational Neuroscience, University Medical Center Utrecht, the Netherlands
| | - Rachida Ganga
- Institute for Language Sciences, Department of Languages, Literature and Communication, Utrecht University, Utrecht, the Netherlands
| | - Frank Wijnen
- Institute for Language Sciences, Department of Languages, Literature and Communication, Utrecht University, Utrecht, the Netherlands
| | - Elma Blom
- Department of Development and Education of youth in Diverse Societies (DEEDS), Utrecht University, Utrecht, the Netherlands; Department of Language and Culture, The Arctic University of Norway UiT, Tromsø, Norway.
| | - Corette J Wierenga
- Biology Department, Faculty of Science, Utrecht University, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands.
| |
Collapse
|
8
|
Mann RS, Allman BL, Schmid S. Developmental changes in electrophysiological properties of auditory cortical neurons in the Cntnap2 knockout rat. J Neurophysiol 2023; 129:937-947. [PMID: 36947880 PMCID: PMC10110732 DOI: 10.1152/jn.00029.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/13/2023] [Accepted: 03/18/2023] [Indexed: 03/24/2023] Open
Abstract
Disruptions in the CNTNAP2 gene are known to cause language impairments and symptoms associated with autism spectrum disorder (ASD). Importantly, knocking out this gene in rodents results in ASD-like symptoms that include auditory processing deficits. This study used in vitro patch-clamp electrophysiology to examine developmental alterations in auditory cortex pyramidal neurons of Cntnap2-/- rats, hypothesizing that CNTNAP2 is essential for maintaining intrinsic neuronal properties and synaptic wiring in the developing auditory cortex. Whole cell patch-clamp recordings were conducted in wildtype and Cntnap2-/- littermates at three postnatal age ranges (P8-12, P18-21, and P70-90). Consistent changes across age were seen in all measures of intrinsic membrane properties and spontaneous synaptic input. Intrinsic cell properties such as action potential half-widths, rheobase, and action-potential firing frequencies were different between wildtype and Cntnap2-/- rats predominantly during the juvenile stage (P18-21), whereas adult Cntnap2-/- rats showed higher frequencies of spontaneous and mini postsynaptic currents (sPSCs; mPSCs), with lower sPSC amplitudes. These results indicate that intrinsic cell properties are altered in Cntnap2-/- rats during the juvenile age, leading to a hyperexcitable phenotype during this stage of synaptic remodeling and refinement. Although intrinsic properties eventually normalize by reaching adulthood, changes in synaptic input, potentially caused by the differences in intrinsic membrane properties, seem to manifest in the adult age and are presumably responsible for the hyperreactive behavioral phenotype. In conjunction with a previous study, the present results also indicate a large influence of breeding scheme, i.e., pre- or postnatal environment, on the impact of Cntnap2 on cellular physiology.NEW & NOTEWORTHY This study shows that neurons in the auditory cortex of Cntnap2 knockout rats are hyperexcitable only during the juvenile age, whereas resulting changes in synaptic input persist in the adult. In conjunction with a previous study, the present results indicate that it is not the genes alone, but also the influence of pre- and postnatal environment, that shape neuronal function, highlighting the importance of early intervention in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Rajkamalpreet S Mann
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Brian L Allman
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Susanne Schmid
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
9
|
Möhrle D, Yuen M, Zheng A, Haddad FL, Allman BL, Schmid S. Characterizing maternal isolation-induced ultrasonic vocalizations in a gene-environment interaction rat model for autism. GENES, BRAIN, AND BEHAVIOR 2023:e12841. [PMID: 36751016 DOI: 10.1111/gbb.12841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 02/09/2023]
Abstract
Deficits in social communication and language development belong to the earliest diagnostic criteria of autism spectrum disorders. Of the many risk factors for autism spectrum disorder, the contactin-associated protein-like 2 gene, CNTNAP2, is thought to be important for language development. The present study used a rat model to investigate the potential compounding effects of autism spectrum disorder risk gene mutation and environmental challenges, including breeding conditions or maternal immune activation during pregnancy, on early vocal communication in the offspring. Maternal isolation-induced ultrasonic vocalizations from Cntnap2 wildtype and knockout rats at selected postnatal days were analyzed for their acoustic, temporal and syntax characteristics. Cntnap2 knockout pups from heterozygous breeding showed normal numbers and largely similar temporal structures of ultrasonic vocalizations to wildtype controls, whereas both parameters were affected in homozygously bred knockouts. Homozygous breeding further exacerbated altered pitch and transitioning between call types found in Cntnap2 knockout pups from heterozygous breeding. In contrast, the effect of maternal immune activation on the offspring's vocal communication was confined to call type syntax, but left ultrasonic vocalization acoustic and temporal organization intact. Our results support the "double-hit hypothesis" of autism spectrum disorder risk gene-environment interactions and emphasize that complex features of vocal communication are a useful tool for identifying early autistic-like features in rodent models.
Collapse
Affiliation(s)
- Dorit Möhrle
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Megan Yuen
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Alice Zheng
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Faraj L Haddad
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Brian L Allman
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Susanne Schmid
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
10
|
Kalashnikova TP, Satyukova MO, Anisimov GV, Karakulova YV. [Genetic background of dyslexia and dysgraphy in children]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:48-52. [PMID: 37315241 DOI: 10.17116/jnevro202312305148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The review is devoted to one of the current problems of pediatric neurology - reading and writing disorders in children as part of a partial developmental disorder. With the development of neuroscience, the paradigm of «brain damage» in the understanding of a number of pathological conditions was replaced by the concept of «evolutionary neurology». The dominance of the ontogenetic approach caused the appearance of a new section in ICD-11 - «Neurodevelopmental disorders». Twenty-one genes associated with the acquisition of reading and writing skills have been identified. Modern studies demonstrate the connection of neuropsychological prerequisites for reading and writing, and clinical phenotypes of dyslexia with changes in specific loci. It is assumed that there are different molecular genetic bases for dyslexia and dysgraphia depending on ethnicity, orthographic features of language, including logographic features. Pleiotropy of genes is a cause of comorbidity of reading and writing disorders with attention deficit and hyperactivity disorder, specific speech articulation disorders, and dyscalculia. A key function of many of the identified genes is their involvement in the processes of neurogenesis. Their dysfunctions cause atypical neuronal migration, ectopic formation, inadequate axonal growth, and dendrite branching at the early stage of brain development. Morphological changes can distort the correct distribution and/or integration of linguistic stimuli in critical brain areas, leading to abnormalities in phonology, semantics, spelling, and general reading comprehension. The knowledge gained can form the basis for the development of risk models for dysgraphia and dyslexia formation and be used as a diagnostic and/or screening tool, which is important for evidence-based correction, optimization of academic performance, and mitigation of psychosocial consequences.
Collapse
Affiliation(s)
| | | | - G V Anisimov
- First Medico-Pedagogical Center «Lingua Bona», Perm, Russia
| | | |
Collapse
|
11
|
Scott KE, Mann RS, Schormans AL, Schmid S, Allman BL. Hyperexcitable and immature-like neuronal activity in the auditory cortex of adult rats lacking the language-linked CNTNAP2 gene. Cereb Cortex 2022; 32:4797-4817. [PMID: 35106542 PMCID: PMC9626820 DOI: 10.1093/cercor/bhab517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 11/12/2022] Open
Abstract
The contactin-associated protein-like 2 gene, CNTNAP2, is a highly penetrant risk gene thought to play a role in the genetic etiology of language-related disorders, such as autism spectrum disorder and developmental language disorder. Despite its candidacy for influencing language development, few preclinical studies have examined the role of CNTNAP2 in auditory processing. Using in vivo and in vitro electrophysiological recordings in a rat model with translational validity, we report that a loss of the Cntnap2 gene function caused immature-like cortical evoked potentials, delayed multiunit response latencies to acoustic stimuli, impaired temporal processing, and led to a pattern of hyperexcitability in both multiunit and single cell recordings in adulthood. These collective results provide direct evidence that a constitutive loss of Cntnap2 gene function in rats can cause auditory processing impairments similar to those seen in language-related human disorders, indicating that its contribution in maintaining cortical neuron excitability may underlie the cortical activity alterations observed in Cntnap2-/- rats.
Collapse
Affiliation(s)
- Kaela E Scott
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Rajkamalpreet S Mann
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Ashley L Schormans
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Susanne Schmid
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Brian L Allman
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| |
Collapse
|
12
|
Shiota Y, Hirosawa T, Yoshimura Y, Tanaka S, Hasegawa C, Iwasaki S, Sano M, An K, Yokoyama S, Kikuchi M. Effect of
CNTNAP2
polymorphism on receptive language in children with autism spectrum disorder without language developmental delay. Neuropsychopharmacol Rep 2022; 42:352-355. [PMID: 35733350 PMCID: PMC9515703 DOI: 10.1002/npr2.12267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/11/2022] [Accepted: 05/14/2022] [Indexed: 11/14/2022] Open
Abstract
Aim The receptive language ability of individuals with autism spectrum disorder (ASD) seems to lag behind expressive language ability. Several autism‐related genes may influence this developmental delay. Polymorphism of one such gene, namely, the contactin‐associated protein‐like 2 gene (CNTNAP2), affects receptive language in individuals with language delay. However, the association between CNTNAP2 polymorphism and receptive language in individuals with no language delay remains unclear. Methods We included 59 children with ASD and 57 children with typical development in this study and investigated this association using coarse‐grained exact matching. Results We present the first evidence of an association between CNTNAP2 rs2710102 (A‐allele carrier) and reduced receptive language ability in children with ASD whose language development was not delayed. Similarly, among children with typical development, A‐allele carriers had lower receptive language ability, but the difference was non‐significant. Conclusions It is possible that the effect of rs2710102 on receptive language ability is larger in the presence of autism‐related genes. Consequently, we speculate that the effect of rs2710102 on receptive language ability would be exerted in combination with other genes. These findings provide new insights into the genetic interactions between mutations associated with common language disorders and ASD and identify molecular mechanisms and risk alleles that contribute to receptive vocabulary. These findings also provide practical guidance in terms of providing candidate genetic markers that may provide opportunities for targeted early intervention to stratify risk and improve prognosis for poor receptive language development in children with ASD.
Collapse
Affiliation(s)
- Yuka Shiota
- United Graduate School of Child Development Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, University of Fukui Kanazawa Japan
- Japan Society for the Promotion of Science Tokyo Japan
- Research Center for Child Mental Development Kanazawa University Kanazawa Japan
| | - Tetsu Hirosawa
- United Graduate School of Child Development Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, University of Fukui Kanazawa Japan
- Research Center for Child Mental Development Kanazawa University Kanazawa Japan
| | - Yuko Yoshimura
- United Graduate School of Child Development Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, University of Fukui Kanazawa Japan
- Research Center for Child Mental Development Kanazawa University Kanazawa Japan
- Institute of Human and Social Sciences Kanazawa University Kanazawa Japan
| | - Sanae Tanaka
- United Graduate School of Child Development Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, University of Fukui Kanazawa Japan
- Research Center for Child Mental Development Kanazawa University Kanazawa Japan
| | - Chiaki Hasegawa
- Japan Society for the Promotion of Science Tokyo Japan
- Research Center for Child Mental Development Kanazawa University Kanazawa Japan
- Department of Cognitive Science Macquarie University Sydney Australia
| | - Sumie Iwasaki
- Japan Society for the Promotion of Science Tokyo Japan
- Research Center for Child Mental Development Kanazawa University Kanazawa Japan
| | - Masuhiko Sano
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science Kanazawa University Kanazawa Japan
| | - Kyung‐min An
- Research Center for Child Mental Development Kanazawa University Kanazawa Japan
| | - Shigeru Yokoyama
- United Graduate School of Child Development Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, University of Fukui Kanazawa Japan
- Research Center for Child Mental Development Kanazawa University Kanazawa Japan
| | - Mitsuru Kikuchi
- United Graduate School of Child Development Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, University of Fukui Kanazawa Japan
- Research Center for Child Mental Development Kanazawa University Kanazawa Japan
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science Kanazawa University Kanazawa Japan
| |
Collapse
|
13
|
Kang J, Jiao Z, Qin Y, Wang Y, Wang J, Jin L, Feng J, Wang F, Tang Y, Gong X. Associations between polygenic risk scores and amplitude of low-frequency fluctuation of inferior frontal gyrus in schizophrenia. J Psychiatr Res 2022; 147:4-12. [PMID: 34999338 DOI: 10.1016/j.jpsychires.2021.12.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 12/14/2021] [Accepted: 12/20/2021] [Indexed: 10/19/2022]
Abstract
Schizophrenia (SCZ) is a serious and complex mental disorder with high heritability. Polygenic risk score (PRS) is a useful tool calculating the accumulating effects of multiple common genetic variants of schizophrenia. The amplitude of low-frequency fluctuation (ALFF) is an efficient index to reflect spontaneous, intrinsic neuronal activity. Aberrant ALFF of brain regions were reported in schizophrenia frequently, but the relationship between PRS and ALFF has not been studied. In the present study, we compared PRS and ALFF in 101 schizophrenia patients and 106 age-matched healthy controls to test their associations with schizophrenia. Then, the correlation of PRS with ALFF was measured to reveal the effect of polygenic risk on brain activity in schizophrenia. We found that schizophrenia patients showed significant differences in PRS and ALFF compared with controls. Twenty-six brain regions showed significant difference of ALFF between schizophrenia cases and controls, of which left inferior frontal gyrus, triangular part (IFGtriang.L) showed increased activity in schizophrenia. PRS-SCZ was positively correlated with ALFF in IFGtriang.L in 57 non-chronic patients. Genes involved in synaptic organization and transmission, especially in glutamatergic synapse, were highly enriched in PRS-SCZ genes, suggesting the dysfunction of synapses in schizophrenia. These results help to understand the molecular mechanism underlying schizophrenia and related brain dysfunction.
Collapse
Affiliation(s)
- Jujiao Kang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Shanghai Center for Mathematical Science, Fudan University, Shanghai, China
| | - Zeyu Jiao
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Shanghai Center for Mathematical Science, Fudan University, Shanghai, China
| | - Yue Qin
- School of Life Sciences, Fudan University, Shanghai, China
| | - Yi Wang
- School of Life Sciences, Fudan University, Shanghai, China
| | - Jiucun Wang
- School of Life Sciences, Fudan University, Shanghai, China; Human Phoneme Institute, Fudan University, Shanghai, China
| | - Li Jin
- School of Life Sciences, Fudan University, Shanghai, China
| | - Jianfeng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Shanghai Center for Mathematical Science, Fudan University, Shanghai, China; Department of Computer Science, University of Warwick, Coventry, CV4 7AL, UK
| | - Fei Wang
- Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Yanqing Tang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, China.
| | - Xiaohong Gong
- School of Life Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
14
|
Wong PCM, Kang X, So HC, Choy KW. Contributions of common genetic variants to specific languages and to when a language is learned. Sci Rep 2022; 12:580. [PMID: 35022429 PMCID: PMC8755716 DOI: 10.1038/s41598-021-04163-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 12/10/2021] [Indexed: 11/16/2022] Open
Abstract
Research over the past two decades has identified a group of common genetic variants explaining a portion of variance in native language ability. The present study investigates whether the same group of genetic variants are associated with different languages and languages learned at different times in life. We recruited 940 young adults who spoke from childhood Chinese and English as their first (native) (L1) and second (L2) language, respectively, who were learners of a new, third (L3) language. For the variants examined, we found a general decrease of contribution of genes to language functions from native to foreign (L2 and L3) languages, with variance in foreign languages explained largely by non-genetic factors such as musical training and motivation. Furthermore, genetic variants that were found to contribute to traits specific to Chinese and English respectively exerted the strongest effects on L1 and L2. These results seem to speak against the hypothesis of a language- and time-universal genetic core of linguistic functions. Instead, they provide preliminary evidence that genetic contribution to language may depend at least partly on the intricate language-specific features. Future research including a larger sample size, more languages and more genetic variants is required to further explore these hypotheses.
Collapse
Affiliation(s)
- Patrick C M Wong
- Department of Linguistics and Modern Languages, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China. .,Brain and Mind Institute, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China. .,Department of Otorhinolaryngology, Head and Neck Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| | - Xin Kang
- Department of Linguistics and Modern Languages, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China. .,Brain and Mind Institute, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China. .,Research Centre for Language, Cognition and Language Application, Chongqing University, Chongqing, China. .,School of Foreign Languages and Cultures, Chongqing University, Chongqing, China.
| | - Hon-Cheong So
- Brain and Mind Institute, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.,School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Kwong Wai Choy
- Department of Obsterics and Gynecology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
15
|
Eve M, Gandawijaya J, Yang L, Oguro-Ando A. Neuronal Cell Adhesion Molecules May Mediate Neuroinflammation in Autism Spectrum Disorder. Front Psychiatry 2022; 13:842755. [PMID: 35492721 PMCID: PMC9051034 DOI: 10.3389/fpsyt.2022.842755] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/15/2022] [Indexed: 12/15/2022] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition characterized by restrictive and repetitive behaviors, alongside deficits in social interaction and communication. The etiology of ASD is largely unknown but is strongly linked to genetic variants in neuronal cell adhesion molecules (CAMs), cell-surface proteins that have important roles in neurodevelopment. A combination of environmental and genetic factors are believed to contribute to ASD pathogenesis. Inflammation in ASD has been identified as one of these factors, demonstrated through the presence of proinflammatory cytokines, maternal immune activation, and activation of glial cells in ASD brains. Glial cells are the main source of cytokines within the brain and, therefore, their activity is vital in mediating inflammation in the central nervous system. However, it is unclear whether the aforementioned neuronal CAMs are involved in modulating neuroimmune signaling or glial behavior. This review aims to address the largely unexplored role that neuronal CAMs may play in mediating inflammatory cascades that underpin neuroinflammation in ASD, primarily focusing on the Notch, nuclear factor-κB (NF-κB), and mitogen-activated protein kinase (MAPK) cascades. We will also evaluate the available evidence on how neuronal CAMs may influence glial activity associated with inflammation. This is important when considering the impact of environmental factors and inflammatory responses on ASD development. In particular, neural CAM1 (NCAM1) can regulate NF-κB transcription in neurons, directly altering proinflammatory signaling. Additionally, NCAM1 and contactin-1 appear to mediate astrocyte and oligodendrocyte precursor proliferation which can alter the neuroimmune response. Importantly, although this review highlights the limited information available, there is evidence of a neuronal CAM regulatory role in inflammatory signaling. This warrants further investigation into the role other neuronal CAM family members may have in mediating inflammatory cascades and would advance our understanding of how neuroinflammation can contribute to ASD pathology.
Collapse
Affiliation(s)
- Madeline Eve
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Josan Gandawijaya
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Liming Yang
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Asami Oguro-Ando
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
16
|
Shiota Y, Hirosawa T, Yoshimura Y, Tanaka S, Hasegawa C, Iwasaki S, An KM, Soma D, Sano M, Yokoyama S, Kikuchi M. A common variant of CNTNAP2 is associated with sub-threshold autistic traits and intellectual disability. PLoS One 2021; 16:e0260548. [PMID: 34898614 PMCID: PMC8668106 DOI: 10.1371/journal.pone.0260548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/10/2021] [Indexed: 12/05/2022] Open
Abstract
Sub-threshold autistic traits are common in the general population. Children with sub-threshold autistic traits have difficulties with social adaptation. Contactin-associated protein-like 2 (CNTNAP2) is associated with the development of Autism spectrum disorder (ASD) and the single-nucleotide polymorphism rs2710102 (G/A) of CNTNAP2 is suggested to contribute to sub-threshold social impairments and intellectual disabilities. We recruited 67 children with Autistic disorder (AD) (49 boys, 18 girls, aged 38–98 months) and 57 typically developing (TD) children (34 boys, 23 girls, aged 53–90 months). We assessed the participants’ intelligence and social reciprocity using the Kaufman Assessment Battery for Children (K-ABC) and the Social Responsiveness Scale (SRS), respectively. Genomic DNA was extracted from the buccal mucosa and genotyped for rs2710102. A chi-square test revealed a significant association between genotype and group [χ2(2) = 6.56, p = 0.038]. When a co-dominant model was assumed, the results from linear regression models demonstrated that TD children with A-carriers (AA + AG) presented higher SRS T-scores [t(55) = 2.11, p = 0.039] and lower simultaneous processing scale scores of K-ABC [t(55) = -2.19, p = 0.032] than those with GG homozygotes. These associations were not significant in children with ASD. TD children with the rs2710102 A-allele may have more sub-threshold autistic traits than those with GG homozygotes, reflected in higher SRS scores and lower simultaneous processing scale scores. These results support the use of genetic evidence to detect sub-threshold autistic traits.
Collapse
Affiliation(s)
- Yuka Shiota
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Kanazawa, Japan
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Tetsu Hirosawa
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Kanazawa, Japan
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
- * E-mail:
| | - Yuko Yoshimura
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Kanazawa, Japan
- Institute of Human and Social Sciences, Kanazawa University, Kanazawa, Japan
| | - Sanae Tanaka
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Kanazawa, Japan
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Chiaki Hasegawa
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Sumie Iwasaki
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Kyung-min An
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Kanazawa, Japan
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Daiki Soma
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Masuhiko Sano
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Shigeru Yokoyama
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Kanazawa, Japan
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Mitsuru Kikuchi
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Kanazawa, Japan
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
17
|
Riva D. Sex and gender difference in cognitive and behavioral studies in developmental age: An introduction. J Neurosci Res 2021; 101:543-552. [PMID: 34687075 DOI: 10.1002/jnr.24970] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 11/09/2022]
Abstract
This paper introduces a special issue focused on sex and gender (s/g) cognitive/behavioral differences at developmental ages providing an overview of this multifaceted and debated topic. It will provide a description of the biological systems that are strongly interconnected to generate s/g differences, that is, genetic determinants, sex hormones, differences in brain structure, organization, and/or function, inherited or modifiable under environmental pressures. Developmental studies are rare. Some addressed whether s/g differences in cognitive/behavioral characteristics are evident early in life and are consistent throughout development, entailing that s/g differences can follow the evolving steps in girls and boys in different domains. The data are far from being homogeneous and consistent about s/g difference in language, social skills, and visuo/spatial abilities. The differences are small, often with overlapping performances, similar to what is seen in adulthood. Given that several variables and the interactions between them are implicated, further longitudinal studies adopting adequate assessment tools, very large size multicultural samples stratified in different, well-sized and precise age groups, considering biological and sociocultural variables, are needed. Due to the complexity of the issue, there is still the need to support and adopt an s/g difference approach also in cognitive and behavioral studies at developmental ages. Finally, these studies have not only scientific importance and relevant cultural, anthropological, and social implications, but are also useful for pedagogical programming as well as for the study of the different susceptibility to develop CNS diseases and consequently to promote different therapies and treatments.
Collapse
Affiliation(s)
- Daria Riva
- Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy.,Fondazione Pierfranco e Luisa Mariani, Milano, Italy.,Fondazione Together To Go, Milano, Italy
| |
Collapse
|
18
|
Lu P, Wang F, Zhou S, Huang X, Sun H, Zhang YW, Yao Y, Zheng H. A Novel CNTNAP2 Mutation Results in Abnormal Neuronal E/I Balance. Front Neurol 2021; 12:712773. [PMID: 34737720 PMCID: PMC8562072 DOI: 10.3389/fneur.2021.712773] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/24/2021] [Indexed: 11/13/2022] Open
Abstract
CNTNAP2 (coding for protein Caspr2), a member of the neurexin family, plays an important role in the balance of excitatory and inhibitory post-synaptic currents (E/I balance). Here, we describe a novel pathogenic missense mutation in an infant with spontaneous recurrent seizures (SRSs) and intellectual disability. Genetic testing revealed a missense mutation, c.2329 C>G (p. R777G), in the CNTNAP2 gene. To explore the effect of this novel mutation, primary cultured neurons were transfected with wild type homo CNTNAP2 or R777G mutation and the morphology and function of neurons were evaluated. When compared with the vehicle control group or wild type group, the neurites and the membrane currents, including spontaneous excitatory post-synaptic currents (sEPSCs) and inhibitory post-synaptic currents (sIPSCs), in CNTNAP2 R777G mutation group were all decreased or weakened. Moreover, the action potentials (APs) were also impaired in CNTNAP2 R777G group. Therefore, CNTNAP2 R777G may lead to the imbalance of excitatory and inhibitory post-synaptic currents in neural network contributing to SRSs.
Collapse
Affiliation(s)
- Ping Lu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
- Jiangsu Province Hospital of Integrated Chinese and Western Medicine, Nanjing, China
| | - Fengpeng Wang
- Department of Functional Neurosurgery, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, China
| | - Shuixiu Zhou
- Department of Neurology, Xiamen University Hospital, Xiamen, China
| | - Xiaohua Huang
- Basic Medical Sciences, College of Medicine, Xiamen University, Xiamen, China
| | - Hao Sun
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Yun-Wu Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Yi Yao
- Department of Functional Neurosurgery, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, China
| | - Honghua Zheng
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
- Basic Medical Sciences, College of Medicine, Xiamen University, Xiamen, China
- Shenzhen Research Institute, Xiamen University, Shenzhen, China
| |
Collapse
|
19
|
Andres EM, Neely HL, Hafeez H, Yasmin T, Kausar F, Basra MAR, Raza MH. Study of rare genetic variants in TM4SF20, NFXL1, CNTNAP2, and ATP2C2 in Pakistani probands and families with language impairment. Meta Gene 2021; 30. [PMID: 34540591 DOI: 10.1016/j.mgene.2021.100966] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Language impairment (LI) is highly heritable and aggregates in families. Genetic investigation of LI has revealed many chromosomal regions and genes of interest, though very few studies have focused on rare variant analysis in non-English speaking or non-European samples. We selected four candidate genes (TM4SF20, NFXL1, CNTNAP2 and ATP2C2) strongly suggested for specific language impairment (SLI), a subtype of LI, and investigated rare protein coding variants through Sanger sequencing of probands with LI ascertained from Pakistan. The probands and their family members completed a speech and language family history questionnaire and a vocabulary measure, the Peabody Picture Vocabulary Test-fourth edition (PPVT-4), translated to Urdu, the national language of Pakistan. Our study aimed to determine the significance of rare variants in these SLI candidate genes through segregation analysis in a novel population with a high rate of consanguinity. In total, we identified 16 rare variants (according to the rare MAF in the global population in gnomAD v2.1.1 database exomes), including eight variants with a MAF <0.5 % in the South Asian population. Most of the identified rare variants aggregated in proband's families, one rare variant (c.*9T>C in CNTNAP2) co-segregated in a small family (PKSLI-64) and another (c.2465C>T in ATP2C2) co-segregated in the proband branch (PKSLI-27). The lack of complete co-segregation of most of the identified rare variants indicates that while these genes could be involved in overall risk for LI, other genes are likely involved in LI in this population. Future investigation of these consanguineous families has the potential to expand our understanding of gene function related to language acquisition and impairment.
Collapse
Affiliation(s)
- Erin M Andres
- University of Kansas, Child Language Doctoral Program
| | | | - Huma Hafeez
- School of Chemistry, University of the Punjab
| | | | | | | | | |
Collapse
|
20
|
Parcerisas A, Ortega-Gascó A, Pujadas L, Soriano E. The Hidden Side of NCAM Family: NCAM2, a Key Cytoskeleton Organization Molecule Regulating Multiple Neural Functions. Int J Mol Sci 2021; 22:10021. [PMID: 34576185 PMCID: PMC8471948 DOI: 10.3390/ijms221810021] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 02/07/2023] Open
Abstract
Although it has been over 20 years since Neural Cell Adhesion Molecule 2 (NCAM2) was identified as the second member of the NCAM family with a high expression in the nervous system, the knowledge of NCAM2 is still eclipsed by NCAM1. The first studies with NCAM2 focused on the olfactory bulb, where this protein has a key role in axonal projection and axonal/dendritic compartmentalization. In contrast to NCAM1, NCAM2's functions and partners in the brain during development and adulthood have remained largely unknown until not long ago. Recent studies have revealed the importance of NCAM2 in nervous system development. NCAM2 governs neuronal morphogenesis and axodendritic architecture, and controls important neuron-specific processes such as neuronal differentiation, synaptogenesis and memory formation. In the adult brain, NCAM2 is highly expressed in dendritic spines, and it regulates synaptic plasticity and learning processes. NCAM2's functions are related to its ability to adapt to the external inputs of the cell and to modify the cytoskeleton accordingly. Different studies show that NCAM2 interacts with proteins involved in cytoskeleton stability and proteins that regulate calcium influx, which could also modify the cytoskeleton. In this review, we examine the evidence that points to NCAM2 as a crucial cytoskeleton regulation protein during brain development and adulthood. This key function of NCAM2 may offer promising new therapeutic approaches for the treatment of neurodevelopmental diseases and neurodegenerative disorders.
Collapse
Affiliation(s)
- Antoni Parcerisas
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, University of Barcelona, 08028 Barcelona, Spain; (A.O.-G.); (L.P.)
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
- Department of Basic Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Spain
| | - Alba Ortega-Gascó
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, University of Barcelona, 08028 Barcelona, Spain; (A.O.-G.); (L.P.)
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Lluís Pujadas
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, University of Barcelona, 08028 Barcelona, Spain; (A.O.-G.); (L.P.)
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Eduardo Soriano
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, University of Barcelona, 08028 Barcelona, Spain; (A.O.-G.); (L.P.)
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| |
Collapse
|
21
|
Unger N, Heim S, Hilger DI, Bludau S, Pieperhoff P, Cichon S, Amunts K, Mühleisen TW. Identification of Phonology-Related Genes and Functional Characterization of Broca's and Wernicke's Regions in Language and Learning Disorders. Front Neurosci 2021; 15:680762. [PMID: 34539327 PMCID: PMC8446646 DOI: 10.3389/fnins.2021.680762] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 08/04/2021] [Indexed: 12/02/2022] Open
Abstract
Impaired phonological processing is a leading symptom of multifactorial language and learning disorders suggesting a common biological basis. Here we evaluated studies of dyslexia, dyscalculia, specific language impairment (SLI), and the logopenic variant of primary progressive aphasia (lvPPA) seeking for shared risk genes in Broca's and Wernicke's regions, being key for phonological processing within the complex language network. The identified "phonology-related genes" from literature were functionally characterized using Atlas-based expression mapping (JuGEx) and gene set enrichment. Out of 643 publications from the last decade until now, we extracted 21 candidate genes of which 13 overlapped with dyslexia and SLI, six with dyslexia and dyscalculia, and two with dyslexia, dyscalculia, and SLI. No overlap was observed between the childhood disorders and the late-onset lvPPA often showing symptoms of learning disorders earlier in life. Multiple genes were enriched in Gene Ontology terms of the topics learning (CNTNAP2, CYFIP1, DCDC2, DNAAF4, FOXP2) and neuronal development (CCDC136, CNTNAP2, CYFIP1, DCDC2, KIAA0319, RBFOX2, ROBO1). Twelve genes showed above-average expression across both regions indicating moderate-to-high gene activity in the investigated cortical part of the language network. Of these, three genes were differentially expressed suggesting potential regional specializations: ATP2C2 was upregulated in Broca's region, while DNAAF4 and FOXP2 were upregulated in Wernicke's region. ATP2C2 encodes a magnesium-dependent calcium transporter which fits with reports about disturbed calcium and magnesium levels for dyslexia and other communication disorders. DNAAF4 (formerly known as DYX1C1) is involved in neuronal migration supporting the hypothesis of disturbed migration in dyslexia. FOXP2 is a transcription factor that regulates a number of genes involved in development of speech and language. Overall, our interdisciplinary and multi-tiered approach provided evidence that genetic and transcriptional variation of ATP2C2, DNAAF4, and FOXP2 may play a role in physiological and pathological aspects of phonological processing.
Collapse
Affiliation(s)
- Nina Unger
- Cécile and Oskar Vogt Institute for Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Department of Neurology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Stefan Heim
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany
- JARA-Brain, Jülich-Aachen Research Alliance, Jülich, Germany
| | - Dominique I. Hilger
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Sebastian Bludau
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Peter Pieperhoff
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Sven Cichon
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Katrin Amunts
- Cécile and Oskar Vogt Institute for Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- JARA-Brain, Jülich-Aachen Research Alliance, Jülich, Germany
| | - Thomas W. Mühleisen
- Cécile and Oskar Vogt Institute for Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
22
|
den Hoed J, Devaraju K, Fisher SE. Molecular networks of the FOXP2 transcription factor in the brain. EMBO Rep 2021; 22:e52803. [PMID: 34260143 PMCID: PMC8339667 DOI: 10.15252/embr.202152803] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/19/2021] [Accepted: 06/23/2021] [Indexed: 01/06/2023] Open
Abstract
The discovery of the FOXP2 transcription factor, and its implication in a rare severe human speech and language disorder, has led to two decades of empirical studies focused on uncovering its roles in the brain using a range of in vitro and in vivo methods. Here, we discuss what we have learned about the regulation of FOXP2, its downstream effectors, and its modes of action as a transcription factor in brain development and function, providing an integrated overview of what is currently known about the critical molecular networks.
Collapse
Affiliation(s)
- Joery den Hoed
- Language and Genetics DepartmentMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
- International Max Planck Research School for Language SciencesMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
| | - Karthikeyan Devaraju
- Language and Genetics DepartmentMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
| | - Simon E Fisher
- Language and Genetics DepartmentMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
- Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenThe Netherlands
| |
Collapse
|
23
|
Li D, Zhang L, Bai T, Huang W, Ji GJ, Yang T, Zhang Y, Tian Y, Qiu B, Wang K. Common variants of the autism-associated CNTNAP2 gene contribute to the modulatory effect of social function mediated by temporal cortex. Behav Brain Res 2021; 409:113319. [PMID: 33901431 DOI: 10.1016/j.bbr.2021.113319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/26/2021] [Accepted: 04/20/2021] [Indexed: 10/21/2022]
Abstract
Autistic traits are highly heritable and characterized by social deficits. Common genetic variants of the autism-related CNTNAP2 gene have been linked with social impairments, but the neural substrates are poorly understood. In the present study, we investigated the genetic effect of common variants of CNTNAP2 (rs2710102 and rs7794745) on gray matter volume and its association with social performance among 442 healthy participants. Our results showed that individuals with rs2710102 GG homozygotes had smaller left superior temporal gyrus (STG)/insular volume than A-allele carriers (AA and AG), while individuals with rs7794745 TT and AT showed smaller right parahippocampal, right STG/insular, and left inferior parietal lobule (IPL) cortex volume than those with rs7794745 AA. Smaller volume of the STG/insular and parahippocampal cortex was associated with poorer social performance. An indirect effect of CNTNAP2 rs7794745 and rs2710102 genotype on the social performance was mediated by the STG/insular cortex and parahippocampal cortex volume. These findings provided insight into the genetic effect of CNTNAP2 variants on social behavior, which may be moderated by the temporal cortex.
Collapse
Affiliation(s)
- Dandan Li
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230022, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, 230022, China; School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230022, China
| | - Long Zhang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230022, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, 230022, China
| | - Tongjian Bai
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230022, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, 230022, China
| | - Wanling Huang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Gong-Jun Ji
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230022, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, 230022, China; School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230022, China
| | - Tingting Yang
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230022, China
| | - Yifan Zhang
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230022, China
| | - Yanghua Tian
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230022, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, 230022, China
| | - Bensheng Qiu
- Center for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui, 230022, China
| | - Kai Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230022, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, 230022, China; School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230022, China; Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, 230022, China.
| |
Collapse
|
24
|
Chien YL, Chen YC, Gau SSF. Altered cingulate structures and the associations with social awareness deficits and CNTNAP2 gene in autism spectrum disorder. NEUROIMAGE-CLINICAL 2021; 31:102729. [PMID: 34271514 PMCID: PMC8280509 DOI: 10.1016/j.nicl.2021.102729] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/11/2021] [Accepted: 06/12/2021] [Indexed: 01/23/2023]
Abstract
ASD individuals showed thinner cortical thickness in bilateral cingulate subregions. The right anterior cingulate WM volume was correlated with social awareness deficit. The CNTNAP2 variant might be associated with the right middle cingulate WM volume. The CNTNAP2 might interact with ASD diagnosis and age on the cortical thickness.
Backgrounds Although evidence suggests that the activity of the anterior cingulate cortex involves social cognition, there are inconsistent findings regarding the aberrant cingulate gray matter (GM) and scanty evidence about altered cortical thickness and white matter (WM) of cingulate in individuals with autism spectrum disorder (ASD). Evidence supports the association between the genetic variants of CNTNAP2 and altered brain connectivity. This study investigated the cingulate substructure and its association with social awareness deficits and the CNTNAP2 variants in individuals with ASD and typically-developing controls (TDC). Methods We assessed 118 individuals with ASD and 122 TDC with MRI and clinical evaluation. The GM, WM volumes and cortical thickness of the cingulate gyrus were compared between ASD and TDC based on fine parcellation. Five SNPs of the CNTNAP2 linked to ASD and brain structural abnormality were genotyped, and rs2710102, rs2538991, rs2710126 passed quality control filters. Results ASD individuals showed thinner cortical thickness in bilateral cingulate subregions than TDC without significant group differences in GM and WM volumes. The WM volume of the right anterior cingulate gyrus was correlated with social awareness deficits in ASD. The CNTNAP2 variant demonstrated a main effect on the WM volumes of the right middle cingulate gyrus. Besides, the CNTNAP2 variants interacted with ASD diagnosis and age on the cortical thickness of the left anterior middle cingulate cortex. Conclusions Our findings suggest that aberrant cingulate structure in ASD might be associated with the social awareness deficits and genetic variants of the CNTNAP2. These novel findings need validation.
Collapse
Affiliation(s)
- Yi-Ling Chien
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Yu-Chieh Chen
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Susan Shur-Fen Gau
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
25
|
Newbury DF, Simpson NH, Thompson PA, Bishop DVM. Stage 2 Registered Report: Variation in neurodevelopmental outcomes in children with sex chromosome trisomies: testing the double hit hypothesis. Wellcome Open Res 2021; 3:85. [PMID: 30271887 PMCID: PMC6134338 DOI: 10.12688/wellcomeopenres.14677.4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2021] [Indexed: 12/15/2022] Open
Abstract
Background: The presence of an extra sex chromosome is associated with an increased rate of neurodevelopmental difficulties involving language. The 'double hit' hypothesis proposes that the adverse impact of the extra sex chromosome is amplified when genes that are expressed from the sex chromosomes interact with autosomal variants that usually have only mild effects. We predicted that the impact of an additional sex chromosome on neurodevelopment would depend on common autosomal variants involved in synaptic functions. Methods: We analysed data from 130 children with sex chromosome trisomies (SCTs: 42 girls with trisomy X, 43 boys with Klinefelter syndrome, and 45 boys with XYY). Two comparison groups were formed from 370 children from a twin study. Three indicators of phenotype were: (i) Standard score on a test of nonword repetition; (ii). A language factor score derived from a test battery; (iii) A general scale of neurodevelopmental challenges based on all available information. Preselected regions of two genes, CNTNAP2 and NRXN1, were tested for association with neurodevelopmental outcomes using Generalised Structural Component Analysis. Results: There was wide phenotypic variation in the SCT group, as well as overall impairment on all three phenotypic measures. There was no association of phenotype with CNTNAP2 or NRXN1 variants in either the SCT group or the comparison groups. Supplementary analyses found no indication of any impact of trisomy type on the results, and exploratory analyses of individual SNPs confirmed the lack of association. Conclusions: We cannot rule out that a double hit may be implicated in the phenotypic variability in children with SCTs, but our analysis does not find any support for the idea that common variants in CNTNAP2 or NRXN1 are associated with the severity of language and neurodevelopmental impairments that often accompany an extra X or Y chromosome. Stage 1 report: http://dx.doi.org/10.12688/wellcomeopenres.13828.2.
Collapse
Affiliation(s)
- Dianne F. Newbury
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Nuala H. Simpson
- Department of Experimental Psychology, University of Oxford, Oxford, OX2 6GG, UK
| | - Paul A. Thompson
- Department of Experimental Psychology, University of Oxford, Oxford, OX2 6GG, UK
| | - Dorothy V. M. Bishop
- Department of Experimental Psychology, University of Oxford, Oxford, OX2 6GG, UK
| |
Collapse
|
26
|
CNTNAP2 gene polymorphisms in autism spectrum disorder and language impairment among Bangladeshi children: a case-control study combined with a meta-analysis. Hum Cell 2021; 34:1410-1423. [PMID: 33950402 DOI: 10.1007/s13577-021-00546-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 04/29/2021] [Indexed: 10/21/2022]
Abstract
Autism spectrum disorder (ASD) is a multifactorial neurodevelopmental disorder characterized by communication deficits, impaired social interactions, repetitive and stereotyped behaviors with restricted interests, and connected with the interaction between environmental factors and genetic vulnerability. CNTNAP2 gene has been extensively investigated for ASD and related neurodevelopment diseases. However, previous studies have resulted in an inconsistent outcome. Based on this fact, we conducted a case-control study followed by a meta-analysis to investigate the association of rs7794745 and rs2710102 polymorphisms with ASD. A total of 216 autistic children and 240 healthy volunteers were recruited, and genotyping was performed using the PCR-RFLP method. We observed that SNP rs7794745 revealed a significantly (p < 0.05) increased association with the development of ASD in children in all genetic models. No significant association was found for rs2710102 with ASD. Besides, rs2710102 exhibited a significant association with language impairment in TC genotype, C allele, and dominant model. From the meta-analysis of both SNPs, we found a significant association in codominant 1, 2, and the dominant model of rs2710102 and codominant 1 and dominant model of rs7794745 with ASD. Our case-control study suggests that rs7794745 polymorphism is associated with ASD, while rs2710102 is correlated with language impairment. Moreover, meta-analysis results indicated the association between both rs7794745 and rs2710102 polymorphisms and ASD.
Collapse
|
27
|
Andres EM, Earnest KK, Smith SD, Rice ML, Raza MH. Pedigree-Based Gene Mapping Supports Previous Loci and Reveals Novel Suggestive Loci in Specific Language Impairment. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2020; 63:4046-4061. [PMID: 33186502 PMCID: PMC8608229 DOI: 10.1044/2020_jslhr-20-00102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Purpose Specific language impairment (SLI) is characterized by a delay in language acquisition despite a lack of other developmental delays or hearing loss. Genetics of SLI is poorly understood. The purpose of this study is to identify SLI genetic loci through family-based linkage mapping. Method We performed genome-wide parametric linkage analysis in six families segregating with SLI. An age-appropriate standardized omnibus language measure was used to categorically define the SLI phenotype. Results A suggestive linkage region replicated a previous region of interest with the highest logarithm of odds (LOD) score of 2.40 at 14q11.2-q13.3 in Family 489. A paternal parent-of-origin effect associated with SLI and language phenotypes on a nonsynonymous single nucleotide polymorphism (SNP) in NOP9 (14q12) was reported previously. Linkage analysis identified a new SLI locus at 15q24.3-25.3 with the highest parametric LOD score of 3.06 in Family 315 under a recessive mode of inheritance. Suggestive evidence of linkage was also revealed at 4q31.23-q35.2 in Family 300, with the highest LOD score of 2.41. Genetic linkage was not identified in the other three families included in parametric linkage analysis. Conclusions These results are the first to report genome-wide suggestive linkage with a total language standard score on an age-appropriate omnibus language measure across a wide age range. Our findings confirm previous reports of a language-associated locus on chromosome 14q, report new SLI loci, and validate the pedigree-based parametric linkage analysis approach to mapping genes for SLI. Supplemental Material https://doi.org/10.23641/asha.13203218.
Collapse
Affiliation(s)
- Erin M. Andres
- Child Language Doctoral Program, University of Kansas, Lawrence
| | | | - Shelley D. Smith
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha
| | - Mabel L. Rice
- Child Language Doctoral Program, University of Kansas, Lawrence
| | | |
Collapse
|
28
|
Rebelo MÂ, Gómez C, Gomes I, Poza J, Martins S, Maturana-Candelas A, Ruiz-Gómez SJ, Durães L, Sousa P, Figueruelo M, Rodríguez M, Pita C, Arenas M, Álvarez L, Hornero R, Pinto N, Lopes AM. Genome-Wide Scan for Five Brain Oscillatory Phenotypes Identifies a New QTL Associated with Theta EEG Band. Brain Sci 2020; 10:brainsci10110870. [PMID: 33218114 PMCID: PMC7698967 DOI: 10.3390/brainsci10110870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 11/17/2022] Open
Abstract
Brain waves, measured by electroencephalography (EEG), are a powerful tool in the investigation of neurophysiological traits and a noninvasive and cost-effective alternative in the diagnostic of some neurological diseases. In order to identify novel Quantitative Trait Loci (QTLs) for brain wave relative power (RP), we collected resting state EEG data in five frequency bands (δ, θ, α, β1, and β2) and genome-wide data in a cohort of 105 patients with late onset Alzheimer’s disease (LOAD), 41 individuals with mild cognitive impairment and 45 controls from Iberia, correcting for disease status. One novel association was found with an interesting candidate for a role in brain wave biology, CLEC16A (C-type lectin domain family 16), with a variant at this locus passing the adjusted genome-wide significance threshold after Bonferroni correction. This finding reinforces the importance of immune regulation in brain function. Additionally, at a significance cutoff value of 5 × 10−6, 18 independent association signals were detected. These signals comprise brain expression Quantitative Loci (eQTLs) in caudate basal ganglia, spinal cord, anterior cingulate cortex and hypothalamus, as well as chromatin interactions in adult and fetal cortex, neural progenitor cells and hippocampus. Moreover, in the set of genes showing signals of association with brain wave RP in our dataset, there is an overrepresentation of loci previously associated with neurological traits and pathologies, evidencing the pleiotropy of the genetic variation modulating brain function.
Collapse
Affiliation(s)
- Miguel Ângelo Rebelo
- IPATIMUP—Instituto de Patologia e Imunologia Molecular da Universidade do Porto, 4200-135 Porto, Portugal; (M.Â.R.); (I.G.); (S.M.); (A.M.L.)
- I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Carlos Gómez
- Grupo de Ingeniería Biomédica, Universidad de Valladolid, 47011 Valladolid, Spain; (J.P.); (A.M.-C.); (S.J.R.-G.); (R.H.)
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, (CIBER-BBN), 47011 Valladolid, Spain
- Correspondence: (C.G.); (N.P.)
| | - Iva Gomes
- IPATIMUP—Instituto de Patologia e Imunologia Molecular da Universidade do Porto, 4200-135 Porto, Portugal; (M.Â.R.); (I.G.); (S.M.); (A.M.L.)
- I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Jesús Poza
- Grupo de Ingeniería Biomédica, Universidad de Valladolid, 47011 Valladolid, Spain; (J.P.); (A.M.-C.); (S.J.R.-G.); (R.H.)
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, (CIBER-BBN), 47011 Valladolid, Spain
- Instituto de Investigación en Matemáticas (IMUVA), Universidad de Valladolid, 47011 Valladolid, Spain
| | - Sandra Martins
- IPATIMUP—Instituto de Patologia e Imunologia Molecular da Universidade do Porto, 4200-135 Porto, Portugal; (M.Â.R.); (I.G.); (S.M.); (A.M.L.)
- I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Aarón Maturana-Candelas
- Grupo de Ingeniería Biomédica, Universidad de Valladolid, 47011 Valladolid, Spain; (J.P.); (A.M.-C.); (S.J.R.-G.); (R.H.)
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, (CIBER-BBN), 47011 Valladolid, Spain
| | - Saúl J. Ruiz-Gómez
- Grupo de Ingeniería Biomédica, Universidad de Valladolid, 47011 Valladolid, Spain; (J.P.); (A.M.-C.); (S.J.R.-G.); (R.H.)
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, (CIBER-BBN), 47011 Valladolid, Spain
| | - Luis Durães
- Associação Portuguesa de Familiares e Amigos de Doentes de Alzheimer, Delegação Norte, 4455-301 Lavra, Portugal; (L.D.); (P.S.)
| | - Patrícia Sousa
- Associação Portuguesa de Familiares e Amigos de Doentes de Alzheimer, Delegação Norte, 4455-301 Lavra, Portugal; (L.D.); (P.S.)
| | - Manuel Figueruelo
- Asociación de Familiares y Amigos de Enfermos de Alzheimer y otras demencias de Zamora, 49021 Zamora, Spain; (M.F.); (M.R.); (C.P.)
| | - María Rodríguez
- Asociación de Familiares y Amigos de Enfermos de Alzheimer y otras demencias de Zamora, 49021 Zamora, Spain; (M.F.); (M.R.); (C.P.)
| | - Carmen Pita
- Asociación de Familiares y Amigos de Enfermos de Alzheimer y otras demencias de Zamora, 49021 Zamora, Spain; (M.F.); (M.R.); (C.P.)
| | - Miguel Arenas
- Department of Biochemistry, Genetics and Immunology, University of Vigo, 36310 Vigo, Spain;
| | | | - Roberto Hornero
- Grupo de Ingeniería Biomédica, Universidad de Valladolid, 47011 Valladolid, Spain; (J.P.); (A.M.-C.); (S.J.R.-G.); (R.H.)
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, (CIBER-BBN), 47011 Valladolid, Spain
- Instituto de Investigación en Matemáticas (IMUVA), Universidad de Valladolid, 47011 Valladolid, Spain
| | - Nádia Pinto
- IPATIMUP—Instituto de Patologia e Imunologia Molecular da Universidade do Porto, 4200-135 Porto, Portugal; (M.Â.R.); (I.G.); (S.M.); (A.M.L.)
- I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Centro de Matemática da, Universidade do Porto, 4169-007 Porto, Portugal
- Correspondence: (C.G.); (N.P.)
| | - Alexandra M. Lopes
- IPATIMUP—Instituto de Patologia e Imunologia Molecular da Universidade do Porto, 4200-135 Porto, Portugal; (M.Â.R.); (I.G.); (S.M.); (A.M.L.)
- I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
29
|
A genetic window to auditory-verbal problems in bipolar disorder. Psychiatr Genet 2020; 30:169-173. [PMID: 33165203 DOI: 10.1097/ypg.0000000000000265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Bipolar disorder is a high prevalent psychiatric condition entailing recurrent episodes of elevated mood and depression, but also diverse cognitive problems. One deficit observed in patients concerns to auditory-verbal processing. Being a hereditary condition with a complex genetic architecture, it is not clear which genes contribute to this deficit. We show that candidates for bipolar disorder significantly overlap with candidates for clinical conditions resulting from a deficit in the phonological loop of working memory, particularly, developmental dyslexia and specific language impairment. The overlapping genes are involved in aspects of brain development and function (particularly, brain oscillations) potentially underlying phonological processing and accordingly, emerge as promising candidates for auditory-verbal deficits in bipolar disorder.
Collapse
|
30
|
Falsaperla R, Pappalardo XG, Romano C, Marino SD, Corsello G, Ruggieri M, Parano E, Pavone P. Intronic Variant in CNTNAP2 Gene in a Boy With Remarkable Conduct Disorder, Minor Facial Features, Mild Intellectual Disability, and Seizures. Front Pediatr 2020; 8:550. [PMID: 33042910 PMCID: PMC7518065 DOI: 10.3389/fped.2020.00550] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/30/2020] [Indexed: 12/02/2022] Open
Abstract
Introduction: Mutations in the contactin-associated protein-like 2 (CNTNAP2) gene (MIM#604569) encoding for CASPR2, a cell adhesion protein of the neurexin family, are known to be associated with autism, intellectual disability, and other neuropsychiatric disorders. A set of intronic deletions of CNTNAP2 gene has also been suggested to have a causative role in individuals with a wide phenotypic spectrum, including Pitt-Hopkins syndrome, cortical dysplasia-focal epilepsy syndrome, Tourette syndrome, language dysfunction, and abnormal behavioral manifestations. Case presentation: A 10-years-old boy was referred to the hospital with mild intellectual disability and language impairment. Moreover, the child exhibited minor facial features, epileptic seizures, and notable behavioral abnormalities including impulsivity, aggressivity, and hyperactivity suggestive of the diagnosis of disruptive, impulse-control and conduct disorder (CD). Array comparative genomic hybridization (CGH) revealed a copy number variant (CNV) deletion in the first intron of CNTNAP2 gene inherited from a healthy father. Conclusions: A comprehensive description of the phenotypic features of the child is provided, revealing a distinct and remarkable alteration of social behavior not previously reported in individuals affected by disorders related to CNTNAP2 gene disruptions. A possible causative link between the deletion of a non-coding regulatory region and the symptoms presented by the boy has been advanced.
Collapse
Affiliation(s)
- Raffaele Falsaperla
- Unit of Neonatology, University Hospital “Policlinico-Vittorio Emanuele, ” Catania, Italy
| | - Xena Giada Pappalardo
- National Council of Research, Institute for Biomedical Research and Innovation (IRIB), Catania, Italy
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Catania, Italy
| | - Catia Romano
- Unit of Pediatrics and Pediatric Emergency, University Hospital “Policlinico-Vittorio Emanuele, ” Catania, Italy
| | - Simona Domenica Marino
- Unit of Neonatology, University Hospital “Policlinico-Vittorio Emanuele, ” Catania, Italy
| | - Giovanni Corsello
- Department of Sciences for Health Promotion and Mother and Child Care “G. D'Alessandro, ” University of Palermo, Palermo, Italy
| | - Martino Ruggieri
- Unit of Pediatrics and Pediatric Emergency, University Hospital “Policlinico-Vittorio Emanuele, ” Catania, Italy
| | - Enrico Parano
- National Council of Research, Institute for Biomedical Research and Innovation (IRIB), Catania, Italy
| | - Piero Pavone
- Unit of Pediatrics and Pediatric Emergency, University Hospital “Policlinico-Vittorio Emanuele, ” Catania, Italy
| |
Collapse
|
31
|
Newbury DF, Simpson NH, Thompson PA, Bishop DVM. Stage 2 Registered Report: Variation in neurodevelopmental outcomes in children with sex chromosome trisomies: testing the double hit hypothesis. Wellcome Open Res 2020; 3:85. [PMID: 30271887 PMCID: PMC6134338 DOI: 10.12688/wellcomeopenres.14677.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2020] [Indexed: 04/03/2024] Open
Abstract
Background: The presence of an extra sex chromosome is associated with an increased rate of neurodevelopmental difficulties involving language. The 'double hit' hypothesis proposes that the adverse impact of the extra sex chromosome is amplified when genes that are expressed from the sex chromosomes interact with autosomal variants that usually have only mild effects. We predicted that the impact of an additional sex chromosome on neurodevelopment would depend on common autosomal variants involved in synaptic functions. Methods: We analysed data from 130 children with sex chromosome trisomies (SCTs: 42 girls with trisomy X, 43 boys with Klinefelter syndrome, and 45 boys with XYY). Two comparison groups were formed from 370 children from a twin study. Three indicators of phenotype were: (i) Standard score on a test of nonword repetition; (ii). A language factor score derived from a test battery; (iii) A general scale of neurodevelopmental challenges based on all available information. Preselected regions of two genes, CNTNAP2 and NRXN1, were tested for association with neurodevelopmental outcomes using Generalised Structural Component Analysis. Results: There was wide phenotypic variation in the SCT group, as well as overall impairment on all three phenotypic measures. There was no association of phenotype with CNTNAP2 or NRXN1 variants in either the SCT group or the comparison groups. Supplementary analyses found no indication of any impact of trisomy type on the results, and exploratory analyses of individual SNPs confirmed the lack of association. Conclusions: We cannot rule out that a double hit may be implicated in the phenotypic variability in children with SCTs, but our analysis does not find any support for the idea that common variants in CNTNAP2 or NRXN1 are associated with the severity of language and neurodevelopmental impairments that often accompany an extra X or Y chromosome. Stage 1 report: http://dx.doi.org/10.12688/wellcomeopenres.13828.2.
Collapse
Affiliation(s)
- Dianne F. Newbury
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Nuala H. Simpson
- Department of Experimental Psychology, University of Oxford, Oxford, OX2 6GG, UK
| | - Paul A. Thompson
- Department of Experimental Psychology, University of Oxford, Oxford, OX2 6GG, UK
| | - Dorothy V. M. Bishop
- Department of Experimental Psychology, University of Oxford, Oxford, OX2 6GG, UK
| |
Collapse
|
32
|
Wong PCM, Kang X, Wong KHY, So HC, Choy KW, Geng X. ASPM-lexical tone association in speakers of a tone language: Direct evidence for the genetic-biasing hypothesis of language evolution. SCIENCE ADVANCES 2020; 6:eaba5090. [PMID: 32537487 PMCID: PMC7253162 DOI: 10.1126/sciadv.aba5090] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/20/2020] [Indexed: 05/12/2023]
Abstract
How language has evolved into more than 7000 varieties today remains a question that puzzles linguists, anthropologists, and evolutionary scientists. The genetic-biasing hypothesis of language evolution postulates that genes and language features coevolve, such that a population that is genetically predisposed to perceiving a particular linguistic feature would tend to adopt that feature in their language. Statistical studies that correlated a large number of genetic variants and linguistic features not only generated this hypothesis but also specifically pinpointed a linkage between ASPM and lexical tone. However, there is currently no direct evidence for this association and, therefore, the hypothesis. In an experimental study, we provide evidence to link ASPM with lexical tone perception in a sample of over 400 speakers of a tone language. In addition to providing the first direct evidence for the genetic-biasing hypothesis, our results have implications for further studies of linguistic anthropology and language disorders.
Collapse
Affiliation(s)
- Patrick C. M. Wong
- Department of Linguistics and Modern Languages, The Chinese University of Hong Kong, Shatin, Hong Kong
- Brain and Mind Institute, The Chinese University of Hong Kong, Shatin, Hong Kong
- Department of Otorhinolaryngology, Head and Neck Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Xin Kang
- Department of Linguistics and Modern Languages, The Chinese University of Hong Kong, Shatin, Hong Kong
- Brain and Mind Institute, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Kay H. Y. Wong
- Department of Linguistics and Modern Languages, The Chinese University of Hong Kong, Shatin, Hong Kong
- Brain and Mind Institute, The Chinese University of Hong Kong, Shatin, Hong Kong
- Department of Otorhinolaryngology, Head and Neck Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Hon-Cheong So
- Brain and Mind Institute, The Chinese University of Hong Kong, Shatin, Hong Kong
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Kwong Wai Choy
- Brain and Mind Institute, The Chinese University of Hong Kong, Shatin, Hong Kong
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Xiujuan Geng
- Department of Linguistics and Modern Languages, The Chinese University of Hong Kong, Shatin, Hong Kong
- Brain and Mind Institute, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
33
|
Lovell PV, Wirthlin M, Kaser T, Buckner AA, Carleton JB, Snider BR, McHugh AK, Tolpygo A, Mitra PP, Mello CV. ZEBrA: Zebra finch Expression Brain Atlas-A resource for comparative molecular neuroanatomy and brain evolution studies. J Comp Neurol 2020; 528:2099-2131. [PMID: 32037563 DOI: 10.1002/cne.24879] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/22/2020] [Accepted: 01/25/2020] [Indexed: 12/14/2022]
Abstract
An in-depth understanding of the genetics and evolution of brain function and behavior requires a detailed mapping of gene expression in functional brain circuits across major vertebrate clades. Here we present the Zebra finch Expression Brain Atlas (ZEBrA; www.zebrafinchatlas.org, RRID: SCR_012988), a web-based resource that maps the expression of genes linked to a broad range of functions onto the brain of zebra finches. ZEBrA is a first of its kind gene expression brain atlas for a bird species and a first for any sauropsid. ZEBrA's >3,200 high-resolution digital images of in situ hybridized sections for ~650 genes (as of June 2019) are presented in alignment with an annotated histological atlas and can be browsed down to cellular resolution. An extensive relational database connects expression patterns to information about gene function, mouse expression patterns and phenotypes, and gene involvement in human diseases and communication disorders. By enabling brain-wide gene expression assessments in a bird, ZEBrA provides important substrates for comparative neuroanatomy and molecular brain evolution studies. ZEBrA also provides unique opportunities for linking genetic pathways to vocal learning and motor control circuits, as well as for novel insights into the molecular basis of sex steroids actions, brain dimorphisms, reproductive and social behaviors, sleep function, and adult neurogenesis, among many fundamental themes.
Collapse
Affiliation(s)
- Peter V Lovell
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon
| | - Morgan Wirthlin
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon
| | - Taylor Kaser
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon
| | - Alexa A Buckner
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon
| | - Julia B Carleton
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon
| | - Brian R Snider
- Center for Spoken Language Understanding, Institute on Development and Disability, Oregon Health and Science University, Portland, Oregon
| | - Anne K McHugh
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon
| | | | - Partha P Mitra
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Claudio V Mello
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW To better understand the shared basis of language and mental health, this review examines the behavioral and neurobiological features of aberrant language in five major neuropsychiatric conditions. Special attention is paid to genes implicated in both language and neuropsychiatric disorders, as they reveal biological domains likely to underpin the processes controlling both. RECENT FINDINGS Abnormal language and communication are common manifestations of neuropsychiatric conditions, and children with impaired language are more likely to develop psychiatric disorders than their peers. Major themes in the genetics of both language and psychiatry include master transcriptional regulators, like FOXP2; key developmental regulators, like AUTS2; and mediators of neurotransmission, like GRIN2A and CACNA1C.
Collapse
|
35
|
Castro Martínez XH, Moltó Ruiz MD, Morales Marin ME, Flores Lázaro JC, González Fernández J, Gutiérrez Najera NA, Alvarez Amado DE, Nicolini Sánchez JH. FOXP2 and language alterations in psychiatric pathology. SALUD MENTAL 2019; 42:297-308. [DOI: 10.17711/sm.0185-3325.2019.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Background. From the first reports of the linguist Noam Chomsky it has become clear that the development of language has an important genetic component. Several reports in families have shown the relationship between language disorders and genetic polymorphisms. The FOXP2 gene has been a fundamental piece for the understanding of language development. This gene codes for a transcription factor containing a forkhead domain of DNA binding and participates in the regulation of the expression of a large number of genes involved in the embryonic development of fundamental neuronal structures needed for the development of speech and language. Objective. To present an updated view of the relationship between FOXP2 and language alterations in psychiatric pathology. Method. Narrative review of information reported in databases on the recent advances supporting genetic participation in language disorders of psychiatric illness. Results. Update of content related to FOXP2 and its participation in language alterations in psychiatric diseases. Discussion and conclusion. Advances in the genetic study of language disorders in psychiatric pathology open up new avenues of investigation that allow us to explore how language emerged and how it evolved, as well as to carry out comparative studies on the structure and functioning of genes to approach the understanding of this complex characteristic that makes us human.
Collapse
|
36
|
Wang Z, Zhang T, Liu J, Wang H, Lu T, Jia M, Zhang D, Wang L, Li J. Family-based association study of ZNF804A polymorphisms and autism in a Han Chinese population. BMC Psychiatry 2019; 19:159. [PMID: 31122238 PMCID: PMC6533675 DOI: 10.1186/s12888-019-2144-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 05/06/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Autism is a complex neurodevelopmental disorder with high heritability. Zinc finger protein 804A (ZNF804A) was suggested to play important roles in neurodevelopment. Previous studies indicated that single-nucleotide polymorphism (SNP) rs1344706 in ZNF804A was strongly associated with schizophrenia and might influence social interaction. Only one study explored the significance of ZNF804A polymorphisms in autism, which discovered that rs7603001 was nominally associated with autism. Moreover, no previous study investigated the association between ZNF804A and autism in a Han Chinese population. Here, we investigated whether these two SNPs (rs1344706 and rs7603001) in ZNF804A contribute to the risk of autism in a Han Chinese population. METHODS We performed a family-based association study in 640 Han Chinese autism trios. Sanger sequencing was used for sample genotyping. Then, single marker association analyses were conducted using the family-based association test (FBAT) program. RESULTS No significant association was found between the two SNPs (rs1344706 and rs7603001) in ZNF804A and autism (P > 0.05). CONCLUSIONS Our findings suggested that rs1344706 and rs7603001 in ZNF804A might not be associated with autism in a Han Chinese population.
Collapse
Affiliation(s)
- Ziqi Wang
- 0000 0004 1798 0615grid.459847.3Peking University Sixth Hospital, No. 51, Hua Yuan Bei Road, Beijing, 100191 China ,0000 0001 2256 9319grid.11135.37Peking University Institute of Mental Health, Beijing, 100191 China ,0000 0001 2256 9319grid.11135.37NHC Key Laboratory of Mental Health (Peking University), Beijing, 100191 China ,0000 0004 1798 0615grid.459847.3National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191 China
| | - Tian Zhang
- 0000 0004 1798 0615grid.459847.3Peking University Sixth Hospital, No. 51, Hua Yuan Bei Road, Beijing, 100191 China ,0000 0001 2256 9319grid.11135.37Peking University Institute of Mental Health, Beijing, 100191 China ,0000 0001 2256 9319grid.11135.37NHC Key Laboratory of Mental Health (Peking University), Beijing, 100191 China ,0000 0004 1798 0615grid.459847.3National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191 China
| | - Jing Liu
- 0000 0004 1798 0615grid.459847.3Peking University Sixth Hospital, No. 51, Hua Yuan Bei Road, Beijing, 100191 China ,0000 0001 2256 9319grid.11135.37Peking University Institute of Mental Health, Beijing, 100191 China ,0000 0001 2256 9319grid.11135.37NHC Key Laboratory of Mental Health (Peking University), Beijing, 100191 China ,0000 0004 1798 0615grid.459847.3National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191 China
| | - Han Wang
- 0000 0004 1798 0615grid.459847.3Peking University Sixth Hospital, No. 51, Hua Yuan Bei Road, Beijing, 100191 China ,0000 0001 2256 9319grid.11135.37Peking University Institute of Mental Health, Beijing, 100191 China ,0000 0001 2256 9319grid.11135.37NHC Key Laboratory of Mental Health (Peking University), Beijing, 100191 China ,0000 0004 1798 0615grid.459847.3National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191 China
| | - Tianlan Lu
- 0000 0004 1798 0615grid.459847.3Peking University Sixth Hospital, No. 51, Hua Yuan Bei Road, Beijing, 100191 China ,0000 0001 2256 9319grid.11135.37Peking University Institute of Mental Health, Beijing, 100191 China ,0000 0001 2256 9319grid.11135.37NHC Key Laboratory of Mental Health (Peking University), Beijing, 100191 China ,0000 0004 1798 0615grid.459847.3National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191 China
| | - Meixiang Jia
- 0000 0004 1798 0615grid.459847.3Peking University Sixth Hospital, No. 51, Hua Yuan Bei Road, Beijing, 100191 China ,0000 0001 2256 9319grid.11135.37Peking University Institute of Mental Health, Beijing, 100191 China ,0000 0001 2256 9319grid.11135.37NHC Key Laboratory of Mental Health (Peking University), Beijing, 100191 China ,0000 0004 1798 0615grid.459847.3National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191 China
| | - Dai Zhang
- Peking University Sixth Hospital, No. 51, Hua Yuan Bei Road, Beijing, 100191, China. .,Peking University Institute of Mental Health, Beijing, 100191, China. .,NHC Key Laboratory of Mental Health (Peking University), Beijing, 100191, China. .,National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China. .,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China. .,PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China.
| | - Lifang Wang
- Peking University Sixth Hospital, No. 51, Hua Yuan Bei Road, Beijing, 100191, China. .,Peking University Institute of Mental Health, Beijing, 100191, China. .,NHC Key Laboratory of Mental Health (Peking University), Beijing, 100191, China. .,National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China.
| | - Jun Li
- Peking University Sixth Hospital, No. 51, Hua Yuan Bei Road, Beijing, 100191, China. .,Peking University Institute of Mental Health, Beijing, 100191, China. .,NHC Key Laboratory of Mental Health (Peking University), Beijing, 100191, China. .,National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China.
| |
Collapse
|
37
|
Benítez-Burraco A, Kimura R. Robust Candidates for Language Development and Evolution Are Significantly Dysregulated in the Blood of People With Williams Syndrome. Front Neurosci 2019; 13:258. [PMID: 30971880 PMCID: PMC6444191 DOI: 10.3389/fnins.2019.00258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/05/2019] [Indexed: 01/06/2023] Open
Abstract
Williams syndrome (WS) is a clinical condition, involving cognitive deficits and an uneven language profile, which has been the object of intense inquiry over the last decades. Although WS results from the hemideletion of around two dozen genes in chromosome 7, no gene has yet been probed to account for, or contribute significantly to, the language problems exhibited by the affected people. In this paper we have relied on gene expression profiles in the peripheral blood of WS patients obtained by microarray analysis and show that several robust candidates for language disorders and/or for language evolution in the species, all of them located outside the hemideleted region, are up- or downregulated in the blood of subjects with WS. Most of these genes play a role in the development and function of brain areas involved in language processing, which exhibit structural and functional anomalies in people with this condition. Overall, these genes emerge as robust candidates for language dysfunction in WS.
Collapse
Affiliation(s)
- Antonio Benítez-Burraco
- Department of Spanish, Linguistics, and Theory of Literature (Linguistics), Faculty of Philology, University of Seville, Seville, Spain
| | - Ryo Kimura
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
38
|
Comprehensive cross-disorder analyses of CNTNAP2 suggest it is unlikely to be a primary risk gene for psychiatric disorders. PLoS Genet 2018; 14:e1007535. [PMID: 30586385 PMCID: PMC6324819 DOI: 10.1371/journal.pgen.1007535] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 01/08/2019] [Accepted: 11/12/2018] [Indexed: 12/21/2022] Open
Abstract
The contactin-associated protein-like 2 (CNTNAP2) gene is a member of the neurexin superfamily. CNTNAP2 was first implicated in the cortical dysplasia-focal epilepsy (CDFE) syndrome, a recessive disease characterized by intellectual disability, epilepsy, language impairments and autistic features. Associated SNPs and heterozygous deletions in CNTNAP2 were subsequently reported in autism, schizophrenia and other psychiatric or neurological disorders. We aimed to comprehensively examine evidence for the role of CNTNAP2 in susceptibility to psychiatric disorders, by the analysis of multiple classes of genetic variation in large genomic datasets. In this study we used: i) summary statistics from the Psychiatric Genomics Consortium (PGC) GWAS for seven psychiatric disorders; ii) examined all reported CNTNAP2 structural variants in patients and controls; iii) performed cross-disorder analysis of functional or previously associated SNPs; and iv) conducted burden tests for pathogenic rare variants using sequencing data (4,483 ASD and 6,135 schizophrenia cases, and 13,042 controls). The distribution of CNVs across CNTNAP2 in psychiatric cases from previous reports was no different from controls of the database of genomic variants. Gene-based association testing did not implicate common variants in autism, schizophrenia or other psychiatric phenotypes. The association of proposed functional SNPs rs7794745 and rs2710102, reported to influence brain connectivity, was not replicated; nor did predicted functional SNPs yield significant results in meta-analysis across psychiatric disorders at either SNP-level or gene-level. Disrupting CNTNAP2 rare variant burden was not higher in autism or schizophrenia compared to controls. Finally, in a CNV mircroarray study of an extended bipolar disorder family with 5 affected relatives we previously identified a 131kb deletion in CNTNAP2 intron 1, removing a FOXP2 transcription factor binding site. Quantitative-PCR validation and segregation analysis of this CNV revealed imperfect segregation with BD. This large comprehensive study indicates that CNTNAP2 may not be a robust risk gene for psychiatric phenotypes. Genetic mutations that disrupt both copies of the CNTNAP2 gene lead to severe disease, characterized by profound intellectual disability, epilepsy, language difficulties and autistic traits, leading to the hypothesis that this gene may also be involved in autism given some overlapping clinical features with this disease. Indeed, several large DNA deletions affecting one of the two copies of CNTNAP2 were found in some patients with autism, and later also in patients with schizophrenia, bipolar disorder, ADHD and epilepsy, suggesting that this gene was implicated in several psychiatric or neurologic diseases. Other studies considered genetic sequence variations that are common in the general population, and suggested that two such sequence variations in CNTNAP2 predispose to psychiatric diseases by influencing the functionality and connectivity of the brain. To better understand the involvement of CNTNAP2 in risk of mental illness, we performed several genetic analyses using a series of large publicly available or in-house datasets, comprising many thousands of patients and controls. Furthermore, we report the deletion of one copy of CNTNAP2 in two patients with bipolar disorder and one unaffected relative from an extended family where five relatives were affected with this condition. Despite the previous consideration of CNTNAP2 as a strong candidate gene for autism or schizophrenia, we show little evidence across multiple classes of DNA variation, that CNTNAP2 is likely to play a major role in risk of psychiatric diseases.
Collapse
|
39
|
Murphy E, Benítez-Burraco A. Toward the Language Oscillogenome. Front Psychol 2018; 9:1999. [PMID: 30405489 PMCID: PMC6206218 DOI: 10.3389/fpsyg.2018.01999] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 09/28/2018] [Indexed: 12/20/2022] Open
Abstract
Language has been argued to arise, both ontogenetically and phylogenetically, from specific patterns of brain wiring. We argue that it can further be shown that core features of language processing emerge from particular phasal and cross-frequency coupling properties of neural oscillations; what has been referred to as the language ‘oscillome.’ It is expected that basic aspects of the language oscillome result from genetic guidance, what we will here call the language ‘oscillogenome,’ for which we will put forward a list of candidate genes. We have considered genes for altered brain rhythmicity in conditions involving language deficits: autism spectrum disorders, schizophrenia, specific language impairment and dyslexia. These selected genes map on to aspects of brain function, particularly on to neurotransmitter function. We stress that caution should be adopted in the construction of any oscillogenome, given the range of potential roles particular localized frequency bands have in cognition. Our aim is to propose a set of genome-to-language linking hypotheses that, given testing, would grant explanatory power to brain rhythms with respect to language processing and evolution.
Collapse
Affiliation(s)
- Elliot Murphy
- Division of Psychology and Language Sciences, University College London, London, United Kingdom.,Department of Psychology, University of Westminster, London, United Kingdom
| | - Antonio Benítez-Burraco
- Department of Spanish Language, Linguistics and Literary Theory, University of Seville, Seville, Spain
| |
Collapse
|
40
|
Newbury DF, Simpson NH, Thompson PA, Bishop DVM. Stage 2 Registered Report: Variation in neurodevelopmental outcomes in children with sex chromosome trisomies: testing the double hit hypothesis. Wellcome Open Res 2018; 3:85. [PMID: 30271887 PMCID: PMC6134338 DOI: 10.12688/wellcomeopenres.14677.2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2018] [Indexed: 01/26/2024] Open
Abstract
Background: The presence of an extra sex chromosome is associated with an increased rate of neurodevelopmental difficulties involving language. The 'double hit' hypothesis proposes that the adverse impact of the extra sex chromosome is amplified when genes that are expressed from the sex chromosomes interact with autosomal variants that usually have only mild effects. We predicted that the impact of an additional sex chromosome on neurodevelopment would depend on common autosomal variants involved in synaptic functions. Methods: We analysed data from 130 children with sex chromosome trisomies (SCTs: 42 girls with trisomy X, 43 boys with Klinefelter syndrome, and 45 boys with XYY). Two comparison groups were formed from 370 children from a twin study. Three indicators of phenotype were: (i) Standard score on a test of nonword repetition; (ii). A language factor score derived from a test battery; (iii) A general scale of neurodevelopmental challenges based on all available information. Preselected regions of two genes, CNTNAP2 and NRXN1, were tested for association with neurodevelopmental outcomes using Generalised Structural Component Analysis. Results: There was wide phenotypic variation in the SCT group, as well as overall impairment on all three phenotypic measures. There was no association of phenotype with CNTNAP2 or NRXN1 variants in either the SCT group or the comparison groups. Supplementary analyses found no indication of any impact of trisomy type on the results, and exploratory analyses of individual SNPs confirmed the lack of association. Conclusions: We cannot rule out that a double hit may be implicated in the phenotypic variability in children with SCTs, but our analysis does not find any support for the idea that common variants in CNTNAP2 or NRXN1 are associated with the severity of language and neurodevelopmental impairments that often accompany an extra X or Y chromosome. Stage 1 report: http://dx.doi.org/10.12688/wellcomeopenres.13828.2.
Collapse
Affiliation(s)
- Dianne F. Newbury
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Nuala H. Simpson
- Department of Experimental Psychology, University of Oxford, Oxford, OX2 6GG, UK
| | - Paul A. Thompson
- Department of Experimental Psychology, University of Oxford, Oxford, OX2 6GG, UK
| | - Dorothy V. M. Bishop
- Department of Experimental Psychology, University of Oxford, Oxford, OX2 6GG, UK
| |
Collapse
|
41
|
Altered Auditory Processing, Filtering, and Reactivity in the Cntnap2 Knock-Out Rat Model for Neurodevelopmental Disorders. J Neurosci 2018; 38:8588-8604. [PMID: 30126973 DOI: 10.1523/jneurosci.0759-18.2018] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 08/13/2018] [Accepted: 08/14/2018] [Indexed: 12/21/2022] Open
Abstract
Sensory processing, and auditory processing in particular, is altered in individuals with neurodevelopmental disorders such as autism spectrum disorders (ASDs). The typical maturation of the auditory system is perturbed in these individuals during early development, which may underlie altered auditory reactivity that persists in later life. Of the many genes that regulate the auditory system development, loss-of-function mutations in the CNTNAP2 gene are strongly associated with language processing deficits and ASD. Therefore, using a novel Cntnap2 knock-out rat model, we tested the impact of Cntnap2 loss on auditory processing, filtering, and reactivity throughout development and young adulthood in male and female animals. Although hearing thresholds were not altered in Cntnap2 knock-out animals, we found a reduction in response amplitudes and a delay in response latency of the auditory brainstem response (ABR) in juvenile Cntnap2 knock-out rats compared with age-matched controls. Amplitudes and latency of the ABR largely normalized by adulthood, indicating a delayed maturation of auditory processing pathways in Cntnap2 knock-out rats. Despite the reduced ABR amplitudes, adolescent Cntnap2 knock-out animals displayed increased startle reactivity accompanied by disruptions in sensory filtering and sensorimotor gating across various conditions, most of which persisted in adulthood. All of these observations show striking parallels to disruptions reported in ASD. Our results also imply that developmental disruptions of sensory signal processing are associated with persistent changes in neural circuitries responsible for implicit auditory evoked behavior, emphasizing the need for interventions that target sensory processing disruptions early during development in ASD.SIGNIFICANCE STATEMENT This is the first study of brainstem auditory processing in a novel knock-out rat model with very high construct and face validity for autism spectrum disorders. Electrophysiological and behavioral measures of implicit auditory-evoked responses were systematically taken across developmental stages. Auditory processing, filtering, and reactivity disruptions show striking similarities to observations in autism. We also show for the first time that, whereas auditory brainstem responses normalize by adulthood, disruptions in brainstem-mediated auditory-evoked behavior persist. This indicates that early developmental perturbations in sensory processing can cause permanent maladaptive changes in circuitries responsible for auditory reactivity, underlining the importance for interventions early during development aiming at normalizing sensory processing.
Collapse
|
42
|
Gossmann A, Zille P, Calhoun V, Wang YP. FDR-Corrected Sparse Canonical Correlation Analysis With Applications to Imaging Genomics. IEEE TRANSACTIONS ON MEDICAL IMAGING 2018; 37:1761-1774. [PMID: 29993802 DOI: 10.1109/tmi.2018.2815583] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Reducing the number of false discoveries is presently one of the most pressing issues in the life sciences. It is of especially great importance for many applications in neuroimaging and genomics, where data sets are typically high-dimensional, which means that the number of explanatory variables exceeds the sample size. The false discovery rate (FDR) is a criterion that can be employed to address that issue. Thus it has gained great popularity as a tool for testing multiple hypotheses. Canonical correlation analysis (CCA) is a statistical technique that is used to make sense of the cross-correlation of two sets of measurements collected on the same set of samples (e.g., brain imaging and genomic data for the same mental illness patients), and sparse CCA extends the classical method to high-dimensional settings. Here, we propose a way of applying the FDR concept to sparse CCA, and a method to control the FDR. The proposed FDR correction directly influences the sparsity of the solution, adapting it to the unknown true sparsity level. Theoretical derivation as well as simulation studies show that our procedure indeed keeps the FDR of the canonical vectors below a user-specified target level. We apply the proposed method to an imaging genomics data set from the Philadelphia Neurodevelopmental Cohort. Our results link the brain connectivity profiles derived from brain activity during an emotion identification task, as measured by functional magnetic resonance imaging, to the corresponding subjects' genomic data.
Collapse
|
43
|
Newbury DF, Simpson NH, Thompson PA, Bishop DVM. Stage 2 Registered Report: Variation in neurodevelopmental outcomes in children with sex chromosome trisomies: testing the double hit hypothesis. Wellcome Open Res 2018; 3:85. [PMID: 30271887 PMCID: PMC6134338 DOI: 10.12688/wellcomeopenres.14677.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2018] [Indexed: 12/26/2022] Open
Abstract
Background: The presence of an extra sex chromosome is associated with an increased rate of neurodevelopmental difficulties involving language. The 'double hit' hypothesis proposes that the adverse impact of the extra sex chromosome is amplified when genes that are expressed from the sex chromosomes interact with autosomal variants that usually have only mild effects. We predicted that the impact of an additional sex chromosome on neurodevelopment would depend on common autosomal variants involved in synaptic functions. Methods: We analysed data from 130 children with sex chromosome trisomies (SCTs: 42 girls with trisomy X, 43 boys with Klinefelter syndrome, and 45 boys with XYY). Two comparison groups were formed from 370 children from a twin study. Three indicators of phenotype were: (i) Standard score on a test of nonword repetition; (ii). A language factor score derived from a test battery; (iii) A general scale of neurodevelopmental challenges based on all available information. Preselected regions of two genes, CNTNAP2 and NRXN1, were tested for association with neurodevelopmental outcomes using Generalised Structural Component Analysis. Results: There was wide phenotypic variation in the SCT group, as well as overall impairment on all three phenotypic measures. There was no association of phenotype with CNTNAP2 or NRXN1 variants in either the SCT group or the comparison groups. Supplementary analyses found no indication of any impact of trisomy type on the results, and exploratory analyses of individual SNPs confirmed the lack of association. Conclusions: We cannot rule out that a double hit may be implicated in the phenotypic variability in children with SCTs, but our analysis does not find any support for the idea that common variants in CNTNAP2 or NRXN1 are associated with the severity of language and neurodevelopmental impairments that often accompany an extra X or Y chromosome. Stage 1 report: http://dx.doi.org/10.12688/wellcomeopenres.13828.2.
Collapse
Affiliation(s)
- Dianne F. Newbury
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Nuala H. Simpson
- Department of Experimental Psychology, University of Oxford, Oxford, OX2 6GG, UK
| | - Paul A. Thompson
- Department of Experimental Psychology, University of Oxford, Oxford, OX2 6GG, UK
| | - Dorothy V. M. Bishop
- Department of Experimental Psychology, University of Oxford, Oxford, OX2 6GG, UK
| |
Collapse
|
44
|
The Influence of Dyslexia Candidate Genes on Reading Skill in Old Age. Behav Genet 2018; 48:351-360. [PMID: 29959602 PMCID: PMC6097729 DOI: 10.1007/s10519-018-9913-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 06/23/2018] [Indexed: 11/27/2022]
Abstract
A number of candidate genes for reading and language impairment have been replicated, primarily in samples of children with developmental disability or delay, although these genes are also supported in adolescent population samples. The present study used a systematic approach to test 14 of these candidate genes for association with reading assessed in late adulthood (two cohorts with mean ages of 70 and 79 years). Gene-sets (14 candidates, axon-guidance and neuron migration pathways) and individual SNPs within each gene of interest were tested for association using imputed data referenced to the 1000 genomes European panel. Using the results from the genome-wide association (GWA) meta-analysis of the two cohorts (N = 1217), a competitive gene-set analysis showed that the candidate gene-set was associated with the reading index (p = .016) at a family wise error rate corrected significance level. Neither axon guidance nor neuron migration pathways were significant. Whereas individual SNP associations within CYP19A1, DYX1C1, CNTNAP2 and DIP2A genes (p < .05) did not reach corrected significance their allelic effects were in the same direction as past available reports. These results suggest that reading skill in normal adults shares the same genetic substrate as reading in adolescents, and clinically disordered reading, and highlights the utility of adult samples to increase sample sizes in the genetic study of developmental disorders.
Collapse
|
45
|
Soteros BM, Cong Q, Palmer CR, Sia GM. Sociability and synapse subtype-specific defects in mice lacking SRPX2, a language-associated gene. PLoS One 2018; 13:e0199399. [PMID: 29920554 PMCID: PMC6007900 DOI: 10.1371/journal.pone.0199399] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/06/2018] [Indexed: 01/05/2023] Open
Abstract
The FoxP2 transcription factor and its target genes have been implicated in developmental brain diseases with a prominent language component, such as developmental verbal dyspraxia and specific language impairment. How FoxP2 affects neural circuitry development remains poorly understood. The sushi domain protein SRPX2 is a target of FoxP2, and mutations in SRPX2 are associated with language defects in humans. We have previously shown that SRPX2 is a synaptogenic protein that increases excitatory synapse density. Here we provide the first characterization of mice lacking the SRPX2 gene, and show that these mice exhibit defects in both neural circuitry and communication and social behaviors. Specifically, we show that mice lacking SRPX2 show a specific reduction in excitatory VGlut2 synapses in the cerebral cortex, while VGlut1 and inhibitory synapses were largely unaffected. SRPX2 KO mice also exhibit an abnormal ultrasonic vocalization ontogenetic profile in neonatal pups, and reduced preference for social novelty. These data demonstrate a functional role for SRPX2 during brain development, and further implicate FoxP2 and its targets in regulating the development of vocalization and social circuits.
Collapse
Affiliation(s)
- Breeanne M. Soteros
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States of America
| | - Qifei Cong
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States of America
| | - Christian R. Palmer
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, United States of America
| | - Gek-Ming Sia
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States of America
- * E-mail:
| |
Collapse
|
46
|
Progovac L, Rakhlin N, Angell W, Liddane R, Tang L, Ofen N. Diversity of Grammars and Their Diverging Evolutionary and Processing Paths: Evidence From Functional MRI Study of Serbian. Front Psychol 2018; 9:278. [PMID: 29559943 PMCID: PMC5845673 DOI: 10.3389/fpsyg.2018.00278] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 02/19/2018] [Indexed: 12/21/2022] Open
Abstract
We address the puzzle of "unity in diversity" in human languages by advocating the (minimal) common denominator for the diverse expressions of transitivity across human languages, consistent with the view that early in language evolution there was a modest beginning for syntax and that this beginning provided the foundation for the further elaboration of syntactic complexity. This study reports the results of a functional MRI experiment investigating differential patterns of brain activation during processing of sentences with minimal versus fuller syntactic structures. These structural layers have been postulated to represent different stages in the evolution of syntax, potentially engaging different brain networks. We focused on the Serbian "middles," analyzed as lacking the transitivity (vP) layer, contrasted with matched transitives, containing the transitivity layer. Our main hypothesis was that transitives will produce more activation in the syntactic (Broca's-Basal Ganglia) brain network, in comparison to more rudimentary middles. The participants (n = 14) were healthy adults (Mean age = 33.36; SD = 12.23), native speakers of Serbo-Croatian. The task consisted of reading a series of sentences (middles and transitives; n = 64) presented in blocks of 8, while being engaged in a detection of repetition task. We found that the processing of transitives, compared to middles, was associated with an increase in activation in the basal ganglia bilaterally. Although we did not find an effect in Broca's area, transitives, compared to middles, evoked greater activation in the precentral gyrus (BA 6), proposed to be part of the "Broca's complex." Our results add to the previous findings that Broca's area is not the sole center for syntactic processing, but rather is part of a larger circuit that involves subcortical structures. We discuss our results in the context of the recent findings concerning the gene-brain-language pathway involving mutations in FOXP2 that likely contributed to the enhancement of the frontal-striatal brain network, facilitating human capacity for complex syntax.
Collapse
Affiliation(s)
- Ljiljana Progovac
- Linguistics Program, Wayne State University, Detroit, MI, United States
- Department of English, Wayne State University, Detroit, MI, United States
| | - Natalia Rakhlin
- Communication Sciences and Disorders, Wayne State University, Detroit, MI, United States
| | - William Angell
- Linguistics Program, Wayne State University, Detroit, MI, United States
- Lifespan Cognitive Neuroscience Program, Institute of Gerontology, Wayne State University, Detroit, MI, United States
| | - Ryan Liddane
- Linguistics Program, Wayne State University, Detroit, MI, United States
- Lifespan Cognitive Neuroscience Program, Institute of Gerontology, Wayne State University, Detroit, MI, United States
| | - Lingfei Tang
- Department of Psychology, Wayne State University, Detroit, MI, United States
| | - Noa Ofen
- Lifespan Cognitive Neuroscience Program, Institute of Gerontology, Wayne State University, Detroit, MI, United States
- Department of Psychology, Wayne State University, Detroit, MI, United States
| |
Collapse
|
47
|
Rodenas-Cuadrado PM, Mengede J, Baas L, Devanna P, Schmid TA, Yartsev M, Firzlaff U, Vernes SC. Mapping the distribution of language related genes FoxP1, FoxP2, and CntnaP2 in the brains of vocal learning bat species. J Comp Neurol 2018; 526:1235-1266. [PMID: 29297931 PMCID: PMC5900884 DOI: 10.1002/cne.24385] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 11/07/2017] [Accepted: 11/27/2017] [Indexed: 11/17/2022]
Abstract
Genes including FOXP2, FOXP1, and CNTNAP2, have been implicated in human speech and language phenotypes, pointing to a role in the development of normal language‐related circuitry in the brain. Although speech and language are unique to humans a comparative approach is possible by addressing language‐relevant traits in animal systems. One such trait, vocal learning, represents an essential component of human spoken language, and is shared by cetaceans, pinnipeds, elephants, some birds and bats. Given their vocal learning abilities, gregarious nature, and reliance on vocalizations for social communication and navigation, bats represent an intriguing mammalian system in which to explore language‐relevant genes. We used immunohistochemistry to detail the distribution of FoxP2, FoxP1, and Cntnap2 proteins, accompanied by detailed cytoarchitectural histology in the brains of two vocal learning bat species; Phyllostomus discolor and Rousettus aegyptiacus. We show widespread expression of these genes, similar to what has been previously observed in other species, including humans. A striking difference was observed in the adult P. discolor bat, which showed low levels of FoxP2 expression in the cortex that contrasted with patterns found in rodents and nonhuman primates. We created an online, open‐access database within which all data can be browsed, searched, and high resolution images viewed to single cell resolution. The data presented herein reveal regions of interest in the bat brain and provide new opportunities to address the role of these language‐related genes in complex vocal‐motor and vocal learning behaviors in a mammalian model system.
Collapse
Affiliation(s)
- Pedro M Rodenas-Cuadrado
- Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, Nijmegen, 6500 AH, The Netherlands
| | - Janine Mengede
- Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, Nijmegen, 6500 AH, The Netherlands
| | - Laura Baas
- Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, Nijmegen, 6500 AH, The Netherlands
| | - Paolo Devanna
- Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, Nijmegen, 6500 AH, The Netherlands
| | - Tobias A Schmid
- Helen Wills Neuroscience Institute, UC Berkeley, Berkeley, California, 94720
| | - Michael Yartsev
- Helen Wills Neuroscience Institute, UC Berkeley, Berkeley, California, 94720.,Department of Bioengineering, UC Berkeley, 306 University of California, Berkeley, California, 94720
| | - Uwe Firzlaff
- Department Tierwissenschaften, Lehrstuhl für Zoologie, TU München, München, 85354, Germany
| | - Sonja C Vernes
- Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, Nijmegen, 6500 AH, The Netherlands.,Donders Centre for Cognitive Neuroimaging, Nijmegen, 6525 EN, The Netherlands
| |
Collapse
|
48
|
Newbury DF, Simpson NH, Thompson PA, Bishop DVM. Stage 1 Registered Report: Variation in neurodevelopmental outcomes in children with sex chromosome trisomies: protocol for a test of the double hit hypothesis. Wellcome Open Res 2018; 3:10. [PMID: 29744390 PMCID: PMC5904730 DOI: 10.12688/wellcomeopenres.13828.2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2018] [Indexed: 12/20/2022] Open
Abstract
Background: The presence of an extra sex chromosome is associated with an increased rate of neurodevelopmental difficulties involving language. Group averages, however, obscure a wide range of outcomes. Hypothesis: The 'double hit' hypothesis proposes that the adverse impact of the extra sex chromosome is amplified when genes that are expressed from the sex chromosomes interact with autosomal variants that usually have only mild effects.
Neuroligin-4 genes are expressed from X and Y chromosomes; they play an important role in synaptic development and have been implicated in neurodevelopment. We predict that the impact of an additional sex chromosome on neurodevelopment will be correlated with common autosomal variants involved in related synaptic functions. We describe here an analysis plan for testing this hypothesis using existing data. The analysis of genotype-phenotype associations will be conducted after this plan is published and peer-reviewed Methods: Neurodevelopmental data and DNA are available for 130 children with sex chromosome trisomies (SCTs: 42 girls with trisomy X, 43 boys with Klinefelter syndrome, and 45 boys with XYY). Children from a twin study using the same phenotype measures will form two comparison groups (Ns = 184 and 186). Three indicators of a neurodevelopment disorder phenotype will be used: (i) Standard score on a test of nonword repetition; (ii). A language factor score derived from a test battery; (iii) A general scale of neurodevelopmental challenges based on all available information. Autosomal genes were identified by literature search on the basis of prior association with (a) speech/language/reading phenotypes and (b) synaptic function. Preselected regions of two genes scoring high on both criteria,
CNTNAP2 and
NRXN1, will be tested for association with neurodevelopmental outcomes using Generalised Structural Component Analysis. We predict the association with one or both genes will be detectable in children with SCTs and stronger than in the comparison samples.
Collapse
Affiliation(s)
- Dianne F Newbury
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, Oxfordshire, OX3 0BP, UK
| | - Nuala H Simpson
- Department of Experimental Psychology, University of Oxford, Oxford, Oxfordshire, OX1 3UD, UK
| | - Paul A Thompson
- Department of Experimental Psychology, University of Oxford, Oxford, Oxfordshire, OX1 3UD, UK
| | - Dorothy V M Bishop
- Department of Experimental Psychology, University of Oxford, Oxford, Oxfordshire, OX1 3UD, UK
| |
Collapse
|
49
|
Newbury DF, Simpson NH, Thompson PA, Bishop DVM. Stage 1 Registered Report: Variation in neurodevelopmental outcomes in children with sex chromosome trisomies: protocol for a test of the double hit hypothesis. Wellcome Open Res 2018; 3:10. [PMID: 29744390 PMCID: PMC5904730 DOI: 10.12688/wellcomeopenres.13828.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2018] [Indexed: 02/28/2025] Open
Abstract
Background: The presence of an extra sex chromosome is associated with an increased rate of neurodevelopmental difficulties involving language. Group averages, however, obscure a wide range of outcomes. Hypothesis: The 'double hit' hypothesis proposes that the adverse impact of the extra sex chromosome is amplified when genes that are expressed from the sex chromosomes interact with autosomal variants that usually have only mild effects. Neuroligin-4 genes are expressed from X and Y chromosomes; they play an important role in synaptic development and have been implicated in neurodevelopment. We predict that the impact of an additional sex chromosome on neurodevelopment will be correlated with common autosomal variants involved in related synaptic functions. We describe here an analysis plan for testing this hypothesis using existing data. The analysis of genotype-phenotype associations will be conducted after this plan is published and peer-reviewed Methods: Neurodevelopmental data and DNA are available for 130 children with sex chromosome trisomies (SCTs: 42 girls with trisomy X, 43 boys with Klinefelter syndrome, and 45 boys with XYY). Children from a twin study using the same phenotype measures will form two comparison groups (Ns = 184 and 186). Three indicators of a neurodevelopment disorder phenotype will be used: (i) Standard score on a test of nonword repetition; (ii). A language factor score derived from a test battery; (iii) A general scale of neurodevelopmental challenges based on all available information. Autosomal genes were identified by literature search on the basis of prior association with (a) speech/language/reading phenotypes and (b) synaptic function. Preselected regions of two genes scoring high on both criteria, CNTNAP2 and NRXN1, will be tested for association with neurodevelopmental outcomes using Generalised Structural Component Analysis. We predict the association with one or both genes will be detectable in children with SCTs and stronger than in the comparison samples.
Collapse
Affiliation(s)
- Dianne F. Newbury
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, Oxfordshire, OX3 0BP, UK
| | - Nuala H. Simpson
- Department of Experimental Psychology, University of Oxford, Oxford, Oxfordshire, OX1 3UD, UK
| | - Paul A. Thompson
- Department of Experimental Psychology, University of Oxford, Oxford, Oxfordshire, OX1 3UD, UK
| | - Dorothy V. M. Bishop
- Department of Experimental Psychology, University of Oxford, Oxford, Oxfordshire, OX1 3UD, UK
| |
Collapse
|
50
|
Abstract
Sex chromosome aneuploidies comprise a relatively common group of chromosome disorders characterized by the loss or gain of one or more sex chromosomes. We discuss five of the better-known sex aneuploidies: Turner syndrome (XO), Klinefelter syndrome (XXY), trisomy X (XXX), XYY, and XXYY. Despite their prevalence in the general population, these disorders are underdiagnosed and the specific genetic mechanisms underlying their phenotypes are poorly understood. Although there is considerable variation between them in terms of associated functional impairment, each disorder has a characteristic physical, cognitive, and neurologic profile. The most common cause of sex chromosome aneuploidies is nondisjunction, which can occur during meiosis or during the early stages of postzygotic development. The loss or gain of genetic material can affect all daughter cells or it may be partial, leading to tissue mosaicism. In both typical and atypical sex chromosome karyotypes, there is random inactivation of all but one X chromosome. The mechanisms by which a phenotype results from sex chromosome aneuploidies are twofold: dosage imbalance arising from a small number of genes that escape inactivation, and their endocrinologic consequences.
Collapse
Affiliation(s)
- David Skuse
- Brain and Behaviour Science Unit, UCL Institute of Child Health, London, United Kingdom.
| | - Frida Printzlau
- Brain and Behaviour Science Unit, UCL Institute of Child Health, London, United Kingdom
| | - Jeanne Wolstencroft
- Brain and Behaviour Science Unit, UCL Institute of Child Health, London, United Kingdom
| |
Collapse
|