1
|
Pandey M, Ojha D, Bansal S, Rode AB, Chawla G. From bench side to clinic: Potential and challenges of RNA vaccines and therapeutics in infectious diseases. Mol Aspects Med 2021; 81:101003. [PMID: 34332771 DOI: 10.1016/j.mam.2021.101003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/27/2021] [Accepted: 07/16/2021] [Indexed: 12/14/2022]
Abstract
The functional and structural versatility of Ribonucleic acids (RNAs) makes them ideal candidates for overcoming the limitations imposed by small molecule-based drugs. Hence, RNA-based biopharmaceuticals such as messenger RNA (mRNA) vaccines, antisense oligonucleotides (ASOs), small interfering RNAs (siRNAs), microRNA mimics, anti-miRNA oligonucleotides (AMOs), aptamers, riboswitches, and CRISPR-Cas9 are emerging as vital tools for the treatment and prophylaxis of many infectious diseases. Some of the major challenges to overcome in the area of RNA-based therapeutics have been the instability of single-stranded RNAs, delivery to the diseased cell, and immunogenicity. However, recent advancements in the delivery systems of in vitro transcribed mRNA and chemical modifications for protection against nucleases and reducing the toxicity of RNA have facilitated the entry of several exogenous RNAs into clinical trials. In this review, we provide an overview of RNA-based vaccines and therapeutics, their production, delivery, current advancements, and future translational potential in treating infectious diseases.
Collapse
Affiliation(s)
- Manish Pandey
- RNA Biology Laboratory, Regional Centre for Biotechnology, Faridabad, 121001, India
| | - Divya Ojha
- Laboratory of Synthetic Biology, Regional Centre for Biotechnology, Faridabad, 121001, India
| | - Sakshi Bansal
- RNA Biology Laboratory, Regional Centre for Biotechnology, Faridabad, 121001, India
| | - Ambadas B Rode
- Laboratory of Synthetic Biology, Regional Centre for Biotechnology, Faridabad, 121001, India.
| | - Geetanjali Chawla
- RNA Biology Laboratory, Regional Centre for Biotechnology, Faridabad, 121001, India.
| |
Collapse
|
2
|
AlMalki WH, Shahid I, Abdalla AN, Johargy AK, Ahmed M, Hassan S. Consensus small interfering RNA targeted to stem-loops II and III of IRES structure of 5' UTR effectively inhibits virus replication and translation of HCV sub-genotype 4a isolates from Saudi Arabia. Saudi J Biol Sci 2021; 28:1109-1122. [PMID: 33424405 PMCID: PMC7785429 DOI: 10.1016/j.sjbs.2020.11.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 12/12/2022] Open
Abstract
Being the most conserved region of all hepatitis C virus (HCV) genotypes and sub-genotypes, the 5′ untranslated region (5′ UTR) of HCV genome signifies it’s importance as a potential target for anti-mRNA based treatment strategies like RNA interference. The advent and approval of first small interference RNA (siRNA) -based treatment of hereditary transthyretin-mediated amyloidosis for clinical use has raised the hopes to test this approach against highly susceptible viruses like HCV. We investigated the antiviral potential of consensus siRNAs targeted to stem-loops (SLs) II and III nucleotide motifs of internal ribosome entry site (IRES) structure within 5′ UTR of HCV sub-genotype 4a isolates from the Saudi population. siRNA inhibitory effects on viral replication and translation of full-length HCV genome were determined in a competent, persistent, and reproducible Huh-7 cell culture system maintained for one month. Maximal inhibition of RNA transcript levels of HCV-IRES clones and silencing of viral replication and translation of full-length virus genome was demonstrated by siRNAs targeted to SL-III nucleotide motifs of IRES in Huh-7 cells. siRNA Usi-169 decreased 5′ UTR RNA transcript levels of HCV-IRES clones up to 75% (P < 0.001) at 24 h post-transfection and 80% (P < 0.001) at 48 h treatment in Huh-7 cells. 5′ UTR-tagged GFP protein expression was significantly decreased from 70 to 80% in Huh-7 cells co-transfected with constructed vectors (i.e. pCR3.1/GFP/5′ UTR) and siRNA Usi-169 at 24 h and 48 h time-span. Viral replication was inhibited by more than 90% (P < 0.001) and HCV core (C) and hypervariable envelope glycoproteins (E1 and E2) expression was also significantly degraded by intracytoplasmic siRNA Usi-169 activity in persistent Huh-7 cell culture system. The findings unveil that siRNAs targeted to 5′ UTR-IRES of HCV sub-genotype 4a Saudi isolates show potent silencing of HCV replication and blocking of viral translation in a persistent in-vitro Huh-7 tissue culture system. Furthermore, we also elucidated that siRNA silencing of viral mRNA not only inhibits viral replication but also blocks viral translation. The results suggest that siRNA potent antiviral activity should be considered as an effective anti-mRNA based treatment strategies for further in-vivo investigations against less studied and harder-to-treat HCV sub-genotype 4a isolates in Saudi Arabia.
Collapse
Affiliation(s)
- Waleed H AlMalki
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Al-Abidiyah, P.O. Box 13578, Postal Code 21955, Saudi Arabia
| | - Imran Shahid
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Al-Abidiyah, P.O. Box 13578, Postal Code 21955, Saudi Arabia.,Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Al-abidiyah, P.O. Box 13578, Makkah Postal Code 21955, Saudi Arabia
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Al-Abidiyah, P.O. Box 13578, Postal Code 21955, Saudi Arabia
| | - Ayman K Johargy
- Medical Microbiology Department, Faculty of Medicine, Umm Al-Qura University, Al-abidiyah, P.O. Box 13578, Makkah Postal Code 21955, Saudi Arabia
| | - Muhammad Ahmed
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Al-Abidiyah, P.O. Box 13578, Postal Code 21955, Saudi Arabia
| | - Sajida Hassan
- Viral Hepatitis Program, Laboratory of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
3
|
Shahid I, Almalki WH, Ibrahim MM, Alghamdi SA, Mukhtar MH, Almalki SSR, Alkahtani SA, Alhaidari MS. Characterization of In vitro inhibitory effects of consensus short interference RNAs against non-structural 5B gene of hepatitis C virus 1a genotype. Indian J Med Microbiol 2019; 36:494-503. [PMID: 30880695 DOI: 10.4103/ijmm.ijmm_17_146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Purpose Chronic hepatitis C has infected approximately 170 million people worldwide. The novel direct-acting antivirals have proven their clinical efficacy to treat hepatitis C infection but still very expensive and beyond the financial range of most infected patients in low income and even resource replete nations. This study was conducted to establish an in vitro stable human hepatoma 7 (Huh-7) cell culture system with consistent expression of the non-structural 5B (NS5B) protein of hepatitis C virus (HCV) 1a genotype and to explore inhibitory effects of sequence-specific short interference RNA (siRNA) targeting NS5B in stable cell clones, and against viral replication in serum-inoculated Huh-7 cells. Materials and Methods In vitro stable Huh-7 cells with persistent expression of NS5B protein was produced under gentamycin (G418) selection. siRNAs inhibitory effects were determined by analysing NS5B expression at mRNA and protein level through reverse transcription-polymerase chain reaction (PCR), quantitative real-time PCR, and Western blot, respectively. Statistical significance of data (NS5B gene suppression) was performed using SPSS software (version 16.0, SPSS Inc.). Results siRNAs directed against NS5B gene significantly decreased NS5B expression at mRNA and protein levels in stable Huh-7 cells, and a vivid decrease in viral replication was also exhibited in serum-infected Huh-7 cells. Conclusions Stable Huh-7 cells persistently expressing NS5B protein should be helpful for molecular pathogenesis of HCV infection and development of anti-HCV drug screening assays. The siRNA was effective against NS5B and could be considered as an adjuvant therapy along with other promising anti-HCV regimens.
Collapse
Affiliation(s)
- Imran Shahid
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al Qura University, Makkah, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al Qura University, Makkah, Saudi Arabia
| | - Munjed M Ibrahim
- Department of Pharmaceutical Chemistry, College of Pharmacy, Umm Al Qura University, Makkah, Saudi Arabia
| | - Sultan Ahmad Alghamdi
- Infection Control Department, King Fahd Hospital, Ministry of Health, Jeddah, Saudi Arabia
| | - Mohammed H Mukhtar
- Department of Biochemistry, College of Medicine, Umm Al-Qura Univeristy, Makkah, Saudi Arabia
| | - Shaia Saleh R Almalki
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Al Baha University, Al Baha, Saudi Arabia
| | - Saad Ahmed Alkahtani
- Department of Clinical Pharmacy, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Mohammad S Alhaidari
- Pharmaceutical Care Department, King Fahad Hospital, Ministry of Health, Madinah, Saudi Arabia
| |
Collapse
|
4
|
Shahid I, AlMalki WH, AlRabia MW, Mukhtar MH, Almalki SSR, Alkahtani SA, Ashgar SS, Faidah HS, Hafeez MH. In vitro inhibitory analysis of consensus siRNAs against NS3 gene of hepatitis C virus 1a genotype. ASIAN PAC J TROP MED 2017; 10:701-709. [PMID: 28870347 DOI: 10.1016/j.apjtm.2017.07.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 05/25/2017] [Accepted: 06/20/2017] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE To explore inhibitory effects of genome-specific, chemically synthesized siRNAs (small interference RNA) against NS3 gene of hepatitis C virus (HCV) 1a genotype in stable Huh-7 (human hepatoma) cells as well as against viral replication in serum-inoculated Huh-7 cells. METHODS Stable Huh-7 cells persistently expressing NS3 gene were produced under antibiotic gentamycin (G418) selection. The cell clones resistant to 1000 μg antibiotic concentration (G418) were picked as stable cell clones. The NS3 gene expression in stable cell clone was confirmed by RT-PCR and Western blotting. siRNA cell cytotoxicity was determined by MTT cell proliferation assay. Stable cell lines were transfected with sequence specific siRNAs and their inhibitory effects were determined by RT-PCR, real-time PCR and Western blotting. The viral replication inhibition by siRNAs in serum inoculated Huh-7 cells was determined by real-time PCR. RESULTS RT-PCR and Western blot analysis confirmed NS3 gene and protein expression in stable cell lines on day 10, 20 and 30 post transfection. MTT cell proliferation assay revealed that at most concentrated dose tested (50 nmol/L), siRNA had no cytotoxic effects on Huh-7 cells and cell proliferation remained unaffected. As demonstrated by the siRNA time-dependent inhibitory analysis, siRNA NS3-is44 showed maximum inhibition of NS3 gene in stable Huh-7 cell clones at 24 (80%, P = 0.013) and 48 h (75%, P = 0.002) post transfection. The impact of siRNAs on virus replication in serum inoculated Huh-7 cells also demonstrated significant decrease in viral copy number, where siRNA NS3-is44 exhibited 70% (P < 0.05) viral RNA reduction as compared to NS3-is33, which showed a 64% (P < 0.05) decrease in viral copy number. siRNA synergism (NS3-is33 + NS3-is44) decreased viral load by 84% (P < 0.05) as compared to individual inhibition by each siRNA (i.e., 64%-70% (P < 0.05)) in serum-inoculated cells. Synthetic siRNAs mixture (NS5B-is88 + NS3-is33) targeting different region of HCV genome (NS5B and NS3) also decreased HCV viral load by 85% (P < 0.05) as compared to siRNA inhibitory effects alone (70% and 64% respectively, P < 0.05). CONCLUSIONS siRNAs directed against NS3 gene significantly decreased mRNA and protein expression in stable cell clones. Viral replication was also vividly decreased in serum infected Huh-7 cells. Stable Huh-7 cells expressing NS3 gene is helpful to develop anti-hepatitis C drug screening assays. siRNA therapeutic potential along with other anti-HCV agents can be considered against hepatitis C.
Collapse
Affiliation(s)
- Imran Shahid
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al Qura University, P.O. Box 13578, Makkah, Saudi Arabia.
| | - Waleed Hassan AlMalki
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al Qura University, P.O. Box 13578, Makkah, Saudi Arabia
| | - Mohammed Wanees AlRabia
- Department of Medical Microbiology, College of Medicine, King Abdul Aziz University, Jeddah, Saudi Arabia
| | - Mohammed Hasan Mukhtar
- Department of Biochemistry, Faculty of Medicine, Umm Al Qura University, Makkah, Saudi Arabia
| | - Shaia Saleh R Almalki
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Albaha University, Albaha, Saudi Arabia
| | | | - Sami S Ashgar
- Department of Microbiology, College of Medicine, Umm Al Qura University, P.O. Box. 13765, Makkah, Saudi Arabia
| | - Hani S Faidah
- Department of Microbiology, College of Medicine, Umm Al Qura University, P.O. Box. 13765, Makkah, Saudi Arabia
| | - Muhammad Hassan Hafeez
- Department of Gastroenterology and Hepatology, Fatima Memorial College of Medicine and Dentistry, Shadman, Lahore 54000, Pakistan
| |
Collapse
|
5
|
Potent Intracellular Knock-Down of Influenza A Virus M2 Gene Transcript by DNAzymes Considerably Reduces Viral Replication in Host Cells. Mol Biotechnol 2016; 57:836-45. [PMID: 26021603 DOI: 10.1007/s12033-015-9876-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Influenza A virus has been known to be an important respiratory pathogen and cause of several epidemics and devastating pandemics leading to loss of life and resources across the globe. The M2 ion channel protein is highly conserved and essentially required during the trafficking, assembly, and budding processes of virus, thus an attractive target for designing antiviral drugs. We designed several 10-23 DNAzymes (Dz) targeting different regions of the M2 gene and analyzed their ability to specifically cleave the target RNA in both cell-free system as well as in cell culture using transient transfections. Dz114, among several others, directed against the predicted single-stranded bulge regions showed 70% inhibition of M2 gene expression validated by PCR and Western blot analysis. The activity was dependent on Mg(2+) (10-50 mM) in a dose-dependent manner. The mutant-Dz against M2 gene showed no down-regulation thereby illustrating high level of specificity of designed Dz114 towards the target RNA. Our findings suggest that Dz may be used as potential inhibitor of viral RNA replication and can be explored further for development of an effective therapeutic agent against influenza infection. These catalytic nucleic acid molecules may further be investigated as an alternative to the traditional influenza vaccines that require annual formulation.
Collapse
|
6
|
Komar AA, Hatzoglou M. Exploring Internal Ribosome Entry Sites as Therapeutic Targets. Front Oncol 2015; 5:233. [PMID: 26539410 PMCID: PMC4611151 DOI: 10.3389/fonc.2015.00233] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 10/05/2015] [Indexed: 12/12/2022] Open
Abstract
Initiation of eukaryotic mRNA translation may proceed via several different routes, each requiring a different subset of factors and relying on different and specific interactions between the mRNA and the ribosome. Two modes predominate: (i) so-called cap-dependent initiation, which requires all canonical initiation factors and is responsible for about 95–97% of all initiation events in eukaryotic cells; and (ii) cap-independent internal initiation, which requires a reduced subset of initiation factors and accounts for up to 5% of the remaining initiation events. Internal initiation relies on the presence of so-called internal ribosome entry site (IRES) elements in the 5′ UTRs of some viral and cellular mRNAs. These elements (often possessing complex secondary and tertiary structures) promote efficient interaction of the mRNA with the 40S ribosome and allow for internal ribosome entry. Internal initiation of translation of specific mRNAs may contribute to development of severe disease and pathological states, such as hepatitis C and cancer. Therefore, this cellular mechanism represents an attractive target for pharmacological modulation. The purpose of this review is to provide insight into current strategies used to target viral and cellular IRESs and discuss the physiological consequences (and potential therapeutic implications) of abrogation/modulation of IRES-mediated translation.
Collapse
Affiliation(s)
- Anton A Komar
- Department of Biological, Geological and Environmental Sciences, Center for Gene Regulation in Health and Disease, Cleveland State University , Cleveland, OH , USA
| | - Maria Hatzoglou
- Department of Pharmacology, School of Medicine, Case Western Reserve University , Cleveland, OH , USA
| |
Collapse
|
7
|
Nawtaisong P, Fraser ME, Carter JR, Fraser MJ. Trans-splicing group I intron targeting hepatitis C virus IRES mediates cell death upon viral infection in Huh7.5 cells. Virology 2015; 481:223-34. [PMID: 25840398 DOI: 10.1016/j.virol.2015.02.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 11/25/2014] [Accepted: 02/09/2015] [Indexed: 01/17/2023]
Abstract
The HCV-IRES sequence is vital for both protein translation and genome replication and serves as a potential target for anti-HCV therapy. We constructed a series of anti-HCV group I introns (αHCV-GrpIs) to attack conserved target sites within the HCV IRES. These αHCV-GrpIs were designed to mediate a trans-splicing reaction that replaces the viral RNA genome downstream of the 5' splice site with a 3' exon that encodes an apoptosis-inducing gene. Pro-active forms of the apoptosis inducing genes BID, Caspase 3, Caspase 8, or tBax were modified by incorporation of the HCV NS5A/5B cleavage sequence in place of their respective endogenous cleavage sites to ensure that only HCV infected cells would undergo apoptosis following splicing and expression. Huh7.5 cells transfected with each intron were challenged at MOI 0.1 with HCV-Jc1FLAG2 which expresses a Gaussia Luciferase (GLuc) marker. Virus-containing supernatants were then assayed for GLuc expression as a measure of viral replication inhibition. Cellular extracts were analyzed for the presence of correct splice products by RT-PCR and DNA sequencing. We also measured levels of Caspase 3 activity as a means of quantifying apoptotic cell death. Each of these αHCV-GrpI introns was able to correctly splice their 3' apoptotic exons onto the virus RNA genome at the targeted Uracil, and resulted in greater than 80% suppression of the GLuc marker. A more pronounced suppression effect was observed with TCID₅₀ virus titrations, which demonstrated that these αHCV-GrpIs were able to suppress viral replication by more than 2 logs, or greater than 99%. Robust activation of the apoptotic factor within the challenged cells was evidenced by a significant increase of Caspase 3 activity upon viral infection compared to non-challenged cells. This novel genetic intervention tool may prove beneficial in certain HCV subjects.
Collapse
Affiliation(s)
- Pruksa Nawtaisong
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Mark E Fraser
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, United States
| | - James R Carter
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Malcolm J Fraser
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, United States.
| |
Collapse
|
8
|
Shahid I, AlMalki WH, R. Almalki SS, AlTurkestany IM, AlGhamdi HA, AlMenshawi SA. Inhibition of Hepatitis C Virus Genotype 1a Non-Structural Proteins by Small Interference RNA in Human Hepatoma Cell Lines. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/pp.2015.611053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Deep Sequencing Insights in Therapeutic shRNA Processing and siRNA Target Cleavage Precision. MOLECULAR THERAPY. NUCLEIC ACIDS 2014; 3:e145. [PMID: 24496437 PMCID: PMC3951910 DOI: 10.1038/mtna.2013.73] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 11/29/2013] [Indexed: 01/17/2023]
Abstract
TT-034 (PF-05095808) is a recombinant adeno-associated virus serotype 8 (AAV8) agent expressing three short hairpin RNA (shRNA) pro-drugs that target the hepatitis C virus (HCV) RNA genome. The cytosolic enzyme Dicer cleaves each shRNA into multiple, potentially active small interfering RNA (siRNA) drugs. Using next-generation sequencing (NGS) to identify and characterize active shRNAs maturation products, we observed that each TT-034–encoded shRNA could be processed into as many as 95 separate siRNA strands. Few of these appeared active as determined by Sanger 5′ RNA Ligase-Mediated Rapid Amplification of cDNA Ends (5-RACE) and through synthetic shRNA and siRNA analogue studies. Moreover, NGS scrutiny applied on 5-RACE products (RACE-seq) suggested that synthetic siRNAs could direct cleavage in not one, but up to five separate positions on targeted RNA, in a sequence-dependent manner. These data support an on-target mechanism of action for TT-034 without cytotoxicity and question the accepted precision of substrate processing by the key RNA interference (RNAi) enzymes Dicer and siRNA-induced silencing complex (siRISC).
Collapse
|
10
|
Lee CH, Kim JH, Lee SW. Prospects for nucleic acid-based therapeutics against hepatitis C virus. World J Gastroenterol 2013; 19:8949-8962. [PMID: 24379620 PMCID: PMC3870548 DOI: 10.3748/wjg.v19.i47.8949] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 11/10/2013] [Accepted: 11/30/2013] [Indexed: 02/06/2023] Open
Abstract
In this review, we discuss recent advances in nucleic acid-based therapeutic technologies that target hepatitis C virus (HCV) infection. Because the HCV genome is present exclusively in RNA form during replication, various nucleic acid-based therapeutic approaches targeting the HCV genome, such as ribozymes, aptamers, siRNAs, and antisense oligonucleotides, have been suggested as potential tools against HCV. Nucleic acids are potentially immunogenic and typically require a delivery tool to be utilized as therapeutics. These limitations have hampered the clinical development of nucleic acid-based therapeutics. However, despite these limitations, nucleic acid-based therapeutics has clinical value due to their great specificity, easy and large-scale synthesis with chemical methods, and pharmaceutical flexibility. Moreover, nucleic acid therapeutics are expected to broaden the range of targetable molecules essential for the HCV replication cycle, and therefore they may prove to be more effective than existing therapeutics, such as interferon-α and ribavirin combination therapy. This review focuses on the current status and future prospects of ribozymes, aptamers, siRNAs, and antisense oligonucleotides as therapeutic reagents against HCV.
Collapse
|
11
|
Dibrov SM, Parsons J, Carnevali M, Zhou S, Rynearson KD, Ding K, Garcia Sega E, Brunn ND, Boerneke MA, Castaldi MP, Hermann T. Hepatitis C virus translation inhibitors targeting the internal ribosomal entry site. J Med Chem 2013; 57:1694-707. [PMID: 24138284 DOI: 10.1021/jm401312n] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The internal ribosome entry site (IRES) in the 5' untranslated region (UTR) of the hepatitis C virus (HCV) genome initiates translation of the viral polyprotein precursor. The unique structure and high sequence conservation of the 5' UTR render the IRES RNA a potential target for the development of selective viral translation inhibitors. Here, we provide an overview of approaches to block HCV IRES function by nucleic acid, peptide, and small molecule ligands. Emphasis will be given to the IRES subdomain IIa, which currently is the most advanced target for small molecule inhibitors of HCV translation. The subdomain IIa behaves as an RNA conformational switch. Selective ligands act as translation inhibitors by locking the conformation of the RNA switch. We review synthetic procedures for inhibitors as well as structural and functional studies of the subdomain IIa target and its ligand complexes.
Collapse
Affiliation(s)
- Sergey M Dibrov
- Department of Chemistry and Biochemistry, University of California, San Diego , 9500 Gilman Drive, La Jolla, California 92093, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Kumar B, Kumar P, Rajput R, Saxena L, Daga MK, Khanna M. Sequence-Specific Cleavage of BM2 Gene Transcript of Influenza B Virus by 10-23 Catalytic Motif Containing DNA Enzymes Significantly Inhibits Viral RNA Translation and Replication. Nucleic Acid Ther 2013; 23:355-62. [DOI: 10.1089/nat.2013.0432] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Binod Kumar
- Department of Respiratory Virology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Prashant Kumar
- Department of Respiratory Virology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Roopali Rajput
- Department of Respiratory Virology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Latika Saxena
- Department of Respiratory Virology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Mradul K. Daga
- Department of Medicine, Maulana Azad Medical College and Lok Nayak Hospital, New Delhi, India
| | - Madhu Khanna
- Department of Respiratory Virology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| |
Collapse
|
13
|
Lisowski L, Elazar M, Chu K, Glenn JS, Kay MA. The anti-genomic (negative) strand of Hepatitis C Virus is not targetable by shRNA. Nucleic Acids Res 2013; 41:3688-98. [PMID: 23396439 PMCID: PMC3616702 DOI: 10.1093/nar/gkt068] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Hepatitis C Virus (HCV) and other plus-strand RNA viruses typically require the generation of a small number of negative genomes (20–100× lower than the positive genomes) for replication, making the less-abundant antigenome an attractive target for RNA interference(RNAi)-based therapy. Because of the complementarity of duplex short hairpin RNA/small interfering RNA (shRNA/siRNAs) with both genomic and anti-genomic viral RNA strands, and the potential of both shRNA strands to become part of the targeting complexes, preclinical RNAi studies cannot distinguish which viral strand is actually targeted in infected cells. Here, we addressed the question whether the negative HCV genome was bioaccessible to RNAi. We first screened for the most active shRNA molecules against the most conserved regions in the HCV genome, which were then used to generate asymmetric anti-HCV shRNAs that produce biologically active RNAi specifically directed against the genomic or antigenomic HCV sequences. Using this simple but powerful and effective method to screen for shRNA strand selectivity, we demonstrate that the antigenomic strand of HCV is not a viable RNAi target during HCV replication. These findings provide new insights into HCV biology and have important implications for the design of more effective and safer antiviral RNAi strategies seeking to target HCV and other viruses with similar replicative strategies.
Collapse
Affiliation(s)
- Leszek Lisowski
- Department of Pediatrics, School of Medicine, Stanford University, 269 Pasteur Drive, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
14
|
All for one, one for all: new combinatorial RNAi therapies combat hepatitis C virus evolution. Mol Ther 2013; 20:1661-3. [PMID: 22945230 DOI: 10.1038/mt.2012.173] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
15
|
Romero-López C, Berzal-Herranz B, Gómez J, Berzal-Herranz A. An engineered inhibitor RNA that efficiently interferes with hepatitis C virus translation and replication. Antiviral Res 2012; 94:131-138. [PMID: 22426470 DOI: 10.1016/j.antiviral.2012.02.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 01/25/2012] [Accepted: 02/28/2012] [Indexed: 02/08/2023]
Abstract
Hepatitis C virus (HCV) translation is mediated by a highly conserved internal ribosome entry site (IRES), mainly located at the 5'untranslatable region (5'UTR) of the viral genome. Viral protein synthesis clearly differs from that used by most cellular mRNAs, rendering the IRES an attractive target for novel antiviral compounds. The engineering of RNA compounds is an effective strategy for targeting conserved functional regions in viral RNA genomes. The present work analyses the anti-HCV potential of HH363-24, an in vitro selected molecule composed of a catalytic RNA cleaving domain with an extension at the 3' end that acts as aptamer for the viral 5'UTR. The engineered HH363-24 efficiently cleaved the HCV genome and bound to the essential IIId domain of the IRES region. This action interfered with the proper assembly of the translationally active ribosomal particles 48S and 80S, likely leading to effective inhibition of the IRES function in a hepatic cell line. HH363-24 also efficiently reduced HCV RNA levels up to 70% in a subgenomic replicon system. These findings provide new insights into the development of potential therapeutic strategies based on RNA molecules targeting genomic RNA structural domains and highlight the feasibility of generating novel engineered RNAs as potent antiviral agents.
Collapse
Affiliation(s)
- Cristina Romero-López
- Instituto de Parasitología y Biomedicina "López-Neyra", IPBLN-CSIC, Parque Tecnológico de Ciencias de la Salud, Armilla, Granada, Spain
| | | | | | | |
Collapse
|
16
|
Johnston BH, Ge Q. Design of Synthetic shRNAs for Targeting Hepatitis C: A New Approach to Antiviral Therapeutics. FROM NUCLEIC ACIDS SEQUENCES TO MOLECULAR MEDICINE 2012. [PMCID: PMC7138429 DOI: 10.1007/978-3-642-27426-8_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Small hairpin RNAs (shRNAs) are widely used as gene silencing tools and typically consist of a duplex stem of 19–29 bp, a loop, and often a dinucleotide overhang at the 3′ end. Like siRNAs, shRNAs show promise as potential therapeutic agents due to their high level of specificity and potency, although effective delivery to target tissues remains a challenge. Algorithms used to predict siRNA performance are frequently used to design shRNAs as well. However, the differences between these two kinds of RNAi mediators indicate that the factors affecting target gene silencing will not be the same for siRNAs and shRNAs. Stem and loop lengths, structures of the termini, the identity of nucleotides adjacent to and near the loop, and the position of the guide (antisense) strand all affect the efficacy of shRNAs. In addition, shRNAs with 19-bp or shorter stem lengths are processed and function differently than those with longer stems. In this review, we describe studies of targeting the hepatitis C virus that have provided guidelines for an optimal design for short (19 bp) shRNAs (sshRNAs) that are highly potent, stable in biological fluids, and have minimal immunostimulatory properties.
Collapse
|
17
|
Ashfaq UA, Yousaf MZ, Aslam M, Ejaz R, Jahan S, Ullah O. siRNAs: potential therapeutic agents against hepatitis C virus. Virol J 2011; 8:276. [PMID: 21645341 PMCID: PMC3118364 DOI: 10.1186/1743-422x-8-276] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Accepted: 06/06/2011] [Indexed: 12/13/2022] Open
Abstract
Hepatitis C virus is a major cause of chronic liver diseases which can lead to permanent liver damage, hepatocellular carcinoma and death. The presently available treatment with interferon plus ribavirin, has limited benefits due to adverse side effects such as anemia, depression and "flu-like" symptoms. Needless to mention, the effectiveness of interferon therapy is predominantly, if not exclusively, limited to virus type 3a and 3b whereas in Europe and North America the majority of viral type is 1a and 2a. Due to the limited efficiency of current therapy, RNA interference (RNAi) a novel regulatory and powerful silencing approach for molecular therapeutics through a sequence-specific RNA degradation process represents an alternative option. Several reports have indicated the efficiency and specificity of synthetic and vector based siRNAs inhibiting HCV replication. In the present review, we focused that combination of siRNAs against virus and host genes will be a better option to treat HCV.
Collapse
Affiliation(s)
- Usman A Ashfaq
- Division of Molecular Medicine, National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan.
| | | | | | | | | | | |
Collapse
|
18
|
Koornneef A, van Logtenstein R, Timmermans E, Pisas L, Blits B, Abad X, Fortes P, Petry H, Konstantinova P, Ritsema T. AAV-mediated in vivo knockdown of luciferase using combinatorial RNAi and U1i. Gene Ther 2011; 18:929-35. [PMID: 21472008 PMCID: PMC3169806 DOI: 10.1038/gt.2011.41] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
RNA interference (RNAi) has been successfully employed for specific inhibition of gene expression; however, safety and delivery of RNAi remain critical issues. We investigated the combinatorial use of RNAi and U1 interference (U1i). U1i is a gene-silencing technique that acts on the pre-mRNA by preventing polyadenylation. RNAi and U1i have distinct mechanisms of action in different cellular compartments and their combined effect allows usage of minimal doses, thereby avoiding toxicity while retaining high target inhibition. As a proof of concept, we investigated knockdown of the firefly luciferase reporter gene by combinatorial use of RNAi and U1i, and evaluated their inhibitory potential both in vitro and in vivo. Co-transfection of RNAi and U1i constructs showed additive reduction of luciferase expression up to 95% in vitro. We attained similar knockdown when RNAi and U1i constructs were hydrodynamically transfected into murine liver, demonstrating for the first time successful in vivo application of U1i. Moreover, we demonstrated long-term gene silencing by AAV-mediated transduction of murine muscle with RNAi/U1i constructs targeting firefly luciferase. In conclusion, these results provide a proof of principle for the combinatorial use of RNAi and U1i to enhance target gene knockdown in vivo.
Collapse
Affiliation(s)
- A Koornneef
- Department of Research and Development, Amsterdam Molecular Therapeutics, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
RNAi as a new therapeutic strategy against HCV. Biotechnol Adv 2010; 28:27-34. [PMID: 19729057 DOI: 10.1016/j.biotechadv.2009.08.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 08/18/2009] [Accepted: 08/20/2009] [Indexed: 12/23/2022]
Abstract
Hepatitis C virus is a major cause of liver associated diseases all over the world. Irrespective of the significant advances in the current therapy, drugs and vaccines are restricted with many factors such as toxicity, complexity, cost and resistance. New technologies particularly RNA interference (RNAi) mediated by small interfering RNA (siRNA) have become more and more interesting and effective therapeutic entities to silence pathogenic gene products associated with disease, including cancer, viral infections and autoimmune disorders. RNAi works at a posttranscriptional level by targeting mRNA as a mean for inhibiting the synthesis of the encoded protein. Several reports have indicated the efficiency and specificity of synthetic and vector based siRNAs inhibiting HCV replication. In the present review, we focused on the recent development in the potential use and issues regarding siRNA as a therapy for HCV.
Collapse
|
20
|
Romero-López C, Díaz-González R, Barroso-delJesus A, Berzal-Herranz A. Inhibition of hepatitis C virus replication and internal ribosome entry site-dependent translation by an RNA molecule. J Gen Virol 2009; 90:1659-1669. [PMID: 19264618 DOI: 10.1099/vir.0.008821-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Hepatitis C virus (HCV) protein synthesis is mediated by a highly conserved internal ribosome entry site (IRES), mostly located at the 5' untranslatable region (UTR) of the viral genome. The translation mechanism is different from that used by cellular cap-mRNAs, making IRESs an attractive target site for new antiviral drugs. The present work characterizes a chimeric RNA molecule (HH363-50) composed of two inhibitors: a hammerhead ribozyme targeting position 363 of the HCV genome and an aptamer directed towards the essential stem-loop structure in domain IV of the IRES region (which contains the translation start codon). The inhibitor RNA interferes with the formation of a translationally active complex, stalling its progression at the level of 80S particle formation. This action is likely related to the effective and specific blocking of HCV IRES-dependent translation achieved in Huh-7 cells. The inhibitor HH363-50 also reduces HCV RNA levels in a subgenomic replicon system. The present findings suggest that HH363-50 could be an effective anti-HCV compound and highlight the possibilities of antiviral agents based on RNA molecules.
Collapse
Affiliation(s)
- Cristina Romero-López
- Instituto de Parasitología y Biomedicina 'López-Neyra', CSIC, Parque Tecnológico de Ciencias de la Salud, Avda del Conocimiento s/n, Armilla, 18100 Granada, Spain
| | - Raquel Díaz-González
- Instituto de Parasitología y Biomedicina 'López-Neyra', CSIC, Parque Tecnológico de Ciencias de la Salud, Avda del Conocimiento s/n, Armilla, 18100 Granada, Spain
| | - Alicia Barroso-delJesus
- Instituto de Parasitología y Biomedicina 'López-Neyra', CSIC, Parque Tecnológico de Ciencias de la Salud, Avda del Conocimiento s/n, Armilla, 18100 Granada, Spain
| | - Alfredo Berzal-Herranz
- Instituto de Parasitología y Biomedicina 'López-Neyra', CSIC, Parque Tecnológico de Ciencias de la Salud, Avda del Conocimiento s/n, Armilla, 18100 Granada, Spain
| |
Collapse
|
21
|
Wang Y, Mao S, Li B, Tan P, Feng D, Wen J. Treatment of hepatitis C virus core-positive hepatocytes with the transfer of recombinant caspase-3 using the 2',5'-oligoadenylate synthetase gene promoter. Acta Biochim Biophys Sin (Shanghai) 2009; 41:554-60. [PMID: 19578719 DOI: 10.1093/abbs/gmp044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Hepatitis C virus (HCV) infection is a leading cause of liver-related morbidity and mortality throughout the world. There is no vaccine available and current therapy is only partially effective. Since HCV infects only a minority of hepatocytes, we hypothesized that induction of apoptosis might be a promising approach for the treatment of hepatitis C. In the present study, recombinant caspase-3 gene (re-caspase-3) was used because it has the ability to induce apoptosis that is independent of the initiator caspases. An HCV-specific promoter is required to regulate the cytotoxic caspase-3 expression in HCV-infected cells. It has been reported that HCV core protein can specifically activate the 2',5'-oligoadenylate synthetase (OAS) gene promoter in human hepatocytes. Therefore, we constructed an expression vector consisting of the re-caspase-3 under the OAS gene promoter (pGL3-OAS-re-caspase-3) and then investigated its effect on HCV core-positive liver cells. It was found that the pGL3-OAS-re-caspase-3 construct induced apoptosis in HCV core-positive liver cells, but not in normal liver cells. These results strongly suggested that the transfer of the re-caspase-3 gene under the OAS promoter was a novel targeting approach for the treatment of HCV infection.
Collapse
Affiliation(s)
- Ying Wang
- Department of Pathology, Basic Medical College, Central South University, Changsha 410078, China
| | | | | | | | | | | |
Collapse
|
22
|
Cellular models for the screening and development of anti-hepatitis C virus agents. Pharmacol Ther 2009; 124:1-22. [PMID: 19555718 DOI: 10.1016/j.pharmthera.2009.05.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Accepted: 05/19/2009] [Indexed: 12/24/2022]
Abstract
Investigations on the biology of hepatitis C virus (HCV) have been hampered by the lack of small animal models. Efforts have therefore been directed to designing practical and robust cellular models of human origin able to support HCV replication and production in a reproducible, reliable and consistent manner. Many different models based on different forms of virions and hepatoma or other cell types have been described including virus-like particles, pseudotyped particles, subgenomic and full length replicons, virion productive replicons, immortalised hepatocytes, fetal and adult primary human hepatocytes. This review focuses on these different cellular models, their advantages and disadvantages at the biological and experimental levels, and their respective use for evaluating the effect of antiviral molecules on different steps of HCV biology including virus entry, replication, particles generation and excretion, as well as on the modulation by the virus of the host cell response to infection.
Collapse
|
23
|
Roy S, Gupta N, Subramanian N, Mondal T, Banerjea AC, Das S. Sequence-specific cleavage of hepatitis C virus RNA by DNAzymes: inhibition of viral RNA translation and replication. J Gen Virol 2008; 89:1579-1586. [PMID: 18559927 DOI: 10.1099/vir.0.83650-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
DNAzyme (Dz) molecules have been shown to be highly efficient inhibitors of virus replication. Hepatitis C virus RNA translation is mediated by an internal ribosome entry site (IRES) element located mostly in the 5' untranslated region (UTR), the mechanism of which is fundamentally different from cap-dependent translation of cellular mRNAs, and thus an attractive target for designing antiviral drugs. Inhibition of HCV IRES-mediated translation has drastic consequences for the replication of viral RNA as well. We have designed several Dzs, targeting different regions of HCV IRES specific for 1b and also sequences conserved across genotypes. The RNA cleavage and translation inhibitory activities of these molecules were tested in a cell-free system and in cell culture using transient transfections. The majority of Dzs efficiently inhibited HCV IRES-mediated translation. However, these Dz molecules did not show significant inhibition of coxsackievirus B3 IRES-mediated translation or cap-dependent translation of reporter gene, showing high level of specificity towards target RNA. Also, Northern blot hybridization analysis showed significant cleavage of HCV IRES by the Dz molecules in Huh7 cells transiently transfected with the HCV-FLuc monocistronic construct. Interestingly, one of the Dzs was more effective against genotype1b, whereas the other showed significant inhibition of viral RNA replication in Huh7 cells harbouring a HCV 2a monocistronic replicon. As expected, mutant-Dz failed to cleave RNA and inhibit HCV RNA translation, showing the specificity of inhibition. Taken together, these findings suggest that the Dz molecule can be used as selective and effective inhibitor of HCV RNA replication, which can be explored further for development of a potent therapeutic agent against HCV infection.
Collapse
Affiliation(s)
- Swagata Roy
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore-560012, India
| | - Nidhi Gupta
- National Institute of Immunology, Department of Virology, New Delhi-110067, India
| | - Nithya Subramanian
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore-560012, India
| | - Tanmoy Mondal
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore-560012, India
| | | | - Saumitra Das
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore-560012, India
| |
Collapse
|
24
|
Discovery and characterization of substituted diphenyl heterocyclic compounds as potent and selective inhibitors of hepatitis C virus replication. Antimicrob Agents Chemother 2008; 52:1419-29. [PMID: 18227176 DOI: 10.1128/aac.00525-07] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A novel small-molecule inhibitor, referred to here as R706, was discovered in a high-throughput screen of chemical libraries against Huh-7-derived replicon cells carrying autonomously replicating subgenomic RNA of hepatitis C virus (HCV). R706 was highly potent in blocking HCV RNA replication as measured by real-time reverse transcription-PCR and Western blotting of R706-treated replicon cells. Structure-activity iterations of the R706 series yielded a lead compound, R803, that was more potent and highly specific for HCV replication, with no significant inhibitory activity against a panel of HCV-related positive-stranded RNA viruses. Furthermore, HCV genotype 1 replicons displayed markedly higher sensitivity to R803 treatment than a genotype 2a-derived replicon. In addition, R803 was tested by a panel of biochemical and cell-based assays for on-target and off-target activities, and the data suggested that the compound had a therapeutic window close to 100-fold, while its exact mechanism of action remained elusive. We found that R803 was more effective than alpha interferon (IFN-alpha) at blocking HCV RNA replication in the replicon model. In combination studies, R803 showed a weak synergistic effect with IFN-alpha/ribavirin but only additive effects with a protease inhibitor and an allosteric inhibitor of RNA-dependent RNA polymerase (20). We conclude that R803 and related heterocyclic compounds constitute a new class of HCV-specific inhibitors that could potentially be developed as a treatment for HCV infection.
Collapse
|
25
|
Manns MP, Foster GR, Rockstroh JK, Zeuzem S, Zoulim F, Houghton M. The way forward in HCV treatment--finding the right path. Nat Rev Drug Discov 2007; 6:991-1000. [PMID: 18049473 DOI: 10.1038/nrd2411] [Citation(s) in RCA: 218] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Infection with the hepatitis C virus (HCV) represents an important health-care problem worldwide. The prevalence of HCV-related disease is increasing, and no vaccine is yet available. Since the identification of HCV as the causative agent of non-A, non-B hepatitis, treatment has progressed rapidly, but morbidity and mortality rates are still predicted to rise. Novel, more efficacious and tolerable therapies are urgently needed, and a greater understanding of the viral life cycle has led to an increase in the number of possible targets for antiviral intervention. Here we review the specific challenges posed by HCV, and recent developments in the design of vaccines and novel antiviral agents.
Collapse
Affiliation(s)
- Michael P Manns
- Department of Gastroenterology, Hepatology and Endocrinology, Medical School of Hannover, Hannover, Germany.
| | | | | | | | | | | |
Collapse
|
26
|
Chen Y, Cheng G, Mahato RI. RNAi for treating hepatitis B viral infection. Pharm Res 2007; 25:72-86. [PMID: 18074201 PMCID: PMC2217617 DOI: 10.1007/s11095-007-9504-0] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Accepted: 11/14/2007] [Indexed: 12/18/2022]
Abstract
Chronic hepatitis B virus (HBV) infection is one of the leading causes of liver cirrhosis and hepatocellular carcinoma (HCC). Current treatment strategies of HBV infection including the use of interferon (IFN)-α and nucleotide analogues such as lamivudine and adefovir have met with only partial success. Therefore, it is necessary to develop more effective antiviral therapies that can clear HBV infection with fewer side effects. RNA interference (RNAi), by which a small interfering RNA (siRNA) induces the gene silence at a post-transcriptional level, has the potential of treating HBV infection. The successful use of chemically synthesized siRNA, endogenous expression of small hairpin RNA (shRNA) or microRNA (miRNA) to silence the target gene make this technology towards a potentially rational therapeutics for HBV infection. However, several challenges including poor siRNA stability, inefficient cellular uptake, widespread biodistribution and non-specific effects need to be overcome. In this review, we discuss several strategies for improving the anti-HBV therapeutic efficacy of siRNAs, while avoiding their off-target effects and immunostimulation. There is an in-depth discussion on the (1) mechanisms of RNAi, (2) methods for siRNA/shRNA production, (3) barriers to RNAi-based therapies, and (4) delivery strategies of siRNA for treating HBV infection.
Collapse
Affiliation(s)
- Yong Chen
- Huai-An 4th People’s Hospital, Jiangsu, China
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 19 S Manassas Street, Memphis, Tennessee 38103 USA
| | - Guofeng Cheng
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 19 S Manassas Street, Memphis, Tennessee 38103 USA
| | - Ram I. Mahato
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 19 S Manassas Street, Memphis, Tennessee 38103 USA
| |
Collapse
|
27
|
Volarevic M, Smolic R, Wu CH, Wu GY. Potential role of RNAi in the treatment of HCV infection. Expert Rev Anti Infect Ther 2007; 5:823-31. [PMID: 17914916 DOI: 10.1586/14787210.5.5.823] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Chronic HCV infection is a leading cause of chronic hepatitis and its sequelae, liver cirrhosis and hepatocellular carcinoma. Current therapeutic options are limited, associated with significant adverse effects and costly. Accordingly, there is strong impetus to develop novel therapeutic strategies that act through alternate mechanisms. RNAi has been widely used for the analysis of gene function and represents a potentially promising approach for the treatment of HCV infection. siRNAs are short RNA duplexes approximately 21 nts long. When introduced into mammalian cells, siRNA can silence specific gene expression. Although efficient suppression of HCV replicon RNA in cell culture has been demonstrated with siRNAs, there is much work to be done to improve delivery, limit off-target effects and minimize development of virus resistance. Here, we review the use of RNAi as a tool to inhibit HCV gene expression and discuss the potential advantages and obstacles for this new potential therapeutic approach against HCV infection.
Collapse
Affiliation(s)
- Martina Volarevic
- University of Connecticut Health Center, Department of Medicine, Division of Gastroenterology-Hepatology 263 Farmington Avenue, Farmington, CT 06030-1845, USA.
| | | | | | | |
Collapse
|
28
|
Watanabe T, Umehara T, Kohara M. Therapeutic application of RNA interference for hepatitis C virus. Adv Drug Deliv Rev 2007; 59:1263-76. [PMID: 17822803 DOI: 10.1016/j.addr.2007.03.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Accepted: 03/01/2007] [Indexed: 12/23/2022]
Abstract
RNA interference (RNAi) is a sequence-specific post-transcriptional gene silencing by double-stranded RNA. Because the phenomenon is conserved and ubiquitous in mammalian cells, RNAi has considerable therapeutic potential for human pathogenic gene products. Recent studies have demonstrated the clinical potential of logically designed small interfering RNA (siRNA). However, there are still obstacles in using RNAi as an antiviral therapy, particularly for hepatitis C virus (HCV) that displays a high rate of mutation. Furthermore, delivery is also an important obstacle for siRNA based gene therapy. This paper presents the potential applications and the hurdles facing anti-HCV siRNA drugs. The present review provides insight into the feasible therapeutic strategies of siRNA technology, and its potential for silencing genes associated with HCV disease.
Collapse
Affiliation(s)
- Tsunamasa Watanabe
- Department of Microbiology and Cell Biology, The Tokyo Metropolitan Institute of Medical Science, 3-18-22, Honkomagome, Bunkyo-ku, Tokyo 113-8613, Japan
| | | | | |
Collapse
|
29
|
Pawlotsky JM, Chevaliez S, McHutchison JG. The hepatitis C virus life cycle as a target for new antiviral therapies. Gastroenterology 2007; 132:1979-98. [PMID: 17484890 DOI: 10.1053/j.gastro.2007.03.116] [Citation(s) in RCA: 223] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Accepted: 03/23/2007] [Indexed: 12/11/2022]
Abstract
The burden of disease consequent to hepatitis C virus (HCV) infection has been well described and is expected to increase dramatically over the next decade. Current approved antiviral therapies are effective in eradicating the virus in approximately 50% of infected patients. However, pegylated interferon and ribavirin-based therapy is costly, prolonged, associated with significant adverse effects, and not deemed suitable for many HCV-infected patients. As such, there is a clear and pressing need for the development of additional agents that act through alternate or different mechanisms, in the hope that such regimens could lead to enhanced response rates more broadly applicable to patients with hepatitis C infection. Recent basic science enhancements in HCV cell culture systems and replication assays have led to a broadening of our understanding of many of the mechanisms of HCV replication and, therefore, potential novel antiviral targets. In this article, we have attempted to highlight important new information as it relates to our understanding of the HCV life cycle. These steps broadly encompass viral attachment, entry, and fusion; viral RNA translation; posttranslational processing; HCV replication; and viral assembly and release. In each of these areas, we present up-to-date knowledge of the relevant aspects of that component of the viral life cycle and then describe the preclinical and clinical development targets and pathways being explored in the translational and clinical settings.
Collapse
Affiliation(s)
- Jean-Michel Pawlotsky
- French National Reference Center for Viral Hepatitis B, C, and delta, Department of Virology, Hôpital Henri Mondor, Université Paris 12, Créteil, France.
| | | | | |
Collapse
|
30
|
Smith RM, Smolic R, Volarevic M, Wu GY. Positional effects and strand preference of RNA interference against hepatitis C virus target sequences. J Viral Hepat 2007; 14:194-212. [PMID: 17305886 DOI: 10.1111/j.1365-2893.2006.00794.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The hepatitis C virus (HCV) 3'-untranslated region (UTR) and negative-strand RNA sequences contribute cis-acting functions essential to viral RNA replication. Although efficient suppression of HCV replicon RNA in cell culture has been demonstrated with small interfering RNAs (siRNAs) directed against various sequences in the 5' UTR and coding regions, data regarding siRNA targeting of the 3' UTR have been lacking. Furthermore, it has not been definitively shown whether the active constructs, identified to date, exert their effect exclusively via suppression of the replicon positive strand, negative strand or some combination of both strands. In the present study, we assayed inhibitory activity of various siRNAs targeting the 3' UTR by transient transfection in a subgenomic replicon cell culture model. A survey of 13 candidate target sites in the 3'-UTR X sequence indicated a uniformly low activity of siRNA constructs against the steady-state level of replicon. In contrast, the majority of these same siRNAs exhibited high activity against HCV X sequences of either polarity when these targets were presented in the context of a mammalian polymerase II mRNA transcript. Transfection of siRNAs directed against other regions of the replicon revealed differences in the magnitude of inhibitory effects against positive-strand and negative-strand target sites. Strand preference of siRNA activity was further demonstrated through the introduction of base-pair-destabilizing mutations that promote strand-specific targeting. The results suggest that the HCV positive-strand 5' UTR and coding region are efficiently and directly targeted by siRNA, whereas the 3' UTR and the entire negative strand are relatively resistant to RNA interference.
Collapse
Affiliation(s)
- R M Smith
- Division of Gastroenterology-Hepatology, Department of Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | | | | | | |
Collapse
|
31
|
Abstract
The ability to use double-stranded RNA to inhibit gene expression sequence-specifically (RNA interference, or RNAi) is currently revolutionizing science and medicine alike. Numerous pre-clinical studies are evaluating RNAi as a novel therapeutic modality in the battle against gain-of-function autosomal dominant diseases, cancer, and viral infections. One emerging concern is that RNAi mono-therapies might ultimately fail to control viruses that can escape silencing by mutation and/or RNAi suppression. Thus, sophisticated strategies are being developed that aim to avert viral resistance by combining RNAi effectors with each other or with further gene expression inhibitors. Several reports already validate this new concept of “combinatorial RNAi” (coRNAi) and illustrate its versatility by describing co-expression of RNAi triggers directed against single or multiple, viral or cellular, targets. Other studies document the successful delivery of these triggers with additional RNA- or protein-based silencers. Moreover, vectors have been engineered to blend RNAi-mediated gene inhibition with conventional gene replacement strategies. Collectively, these efforts open up exciting new therapeutic avenues but could also augment the inherent risks of RNAi technology, including immune responses, off-targeting, and oversaturation of endogenous pathways. Here, we critically review all coRNAi strategies and discuss the requirements for their transition into clinical application.
Collapse
Affiliation(s)
- Dirk Grimm
- Departments of Pediatrics and Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Mark A Kay
- Departments of Pediatrics and Genetics, Stanford University School of Medicine, Stanford, California, USA
- Departments of Pediatrics and Genetics, Stanford University School of Medicine, Room G305, Grant Building, 300 Pasteur Drive, Stanford, California 94305, USA
| |
Collapse
|
32
|
Kanda T, Steele R, Ray R, Ray RB. Small interfering RNA targeted to hepatitis C virus 5' nontranslated region exerts potent antiviral effect. J Virol 2006; 81:669-76. [PMID: 17079316 PMCID: PMC1797438 DOI: 10.1128/jvi.01496-06] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Hepatitis C virus (HCV) is a major cause of cirrhosis and hepatocellular carcinoma. Interferon alone or together with ribavirin is the only therapy for HCV infection; however, a significant number of HCV-infected individuals do not respond to this treatment. Therefore, the development of new therapeutic options against HCV is a matter of urgency. In the present study, we have examined vectors carrying short hairpin RNA (shRNA) targeting the 5' nontranslated conserved region of the HCV genome for inhibition of virus replication. Initially, three sequences were selected, and all three shRNAs (psh-53, psh-274, and psh-375) suppressed HCV internal ribosome entry site (IRES)-mediated translation to different degrees in Huh-7 cells. Next, we introduced siRNA into Huh-7.5 cells persistently infected with HCV genotype 2a (JFH1). The most efficient inhibition of JFH1 replication was observed with psh-274, targeted to the portion from subdomain IIId to IIIe of the IRES. Subsequently, Huh-7.5 cells stably expressing psh-274 further displayed a significant reduction in HCV JFH1 replication. The effect of psh-274 on cell-culture-grown HCV genotype 1a (H77) was also evaluated, and inhibition of virus replication and infectivity titers was observed. In the absence of a cell-culture-grown HCV genotype 1b, the effects of psh-274 on subgenomic and full-length replicons were examined, and efficient inhibition of genome replication was observed. Therefore, we have identified a conserved sequence targeted to the HCV genome that can inhibit replication of different genotypes, suggesting the potential of siRNA as an additional therapeutic modality against HCV infection.
Collapse
Affiliation(s)
- Tatsuo Kanda
- Departments of Pathology, Saint Louis University, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
33
|
Beltran A, Liu Y, Parikh S, Temple B, Blancafort P. Interrogating genomes with combinatorial artificial transcription factor libraries: asking zinc finger questions. Assay Drug Dev Technol 2006; 4:317-31. [PMID: 16834537 DOI: 10.1089/adt.2006.4.317] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Artificial transcription factors (ATFs) are proteins designed to specifically bind and regulate genes. Because of their DNA-binding selectivity and modular organization, arrays of zinc finger (ZF) domains have traditionally been used to build the ATF's DNA-binding domains. ATFs have been designed and constructed to regulate a variety of therapeutic targets. Recently, novel combinatorial technologies have been developed to induce expression of any gene of interest or to modify cellular phenotypes. Large repertoires of ATFs have been generated by recombination of all available sequence-specific ZF lexicons. These libraries comprise millions of ATFs with unique DNA-binding specificities. The ATFs are produced by combinatorial assembly of three- and six-ZF building blocks and are linked to activator or repressor domains. Upon delivery into a cell population, any gene in the human genome can potentially be regulated. ATF library members generate genome-wide, experimental perturbations of gene expression, resulting in a phenotypically diverse population, or cellular library. A variety of phenotypic screenings can be applied to select for cells exhibiting a phenotype of interest. The ATFs are then used as genetic probes to identify the targeted genes responsible for the phenotypic switch. In this review we will summarize several applications of ATF library screenings in gene discovery, biotechnology, and disease therapeutics.
Collapse
Affiliation(s)
- Adriana Beltran
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | |
Collapse
|
34
|
Trepanier JB, Tanner JE, Alfieri C. Oligonucleotide-Based Therapeutic Options against Hepatitis C Virus Infection. Antivir Ther 2006. [DOI: 10.1177/135965350601100315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The hepatitis C virus (HCV) is the cause of a silent pandemic that, due to the chronic nature of the disease and the absence of curative therapy, continues to claim an ever-increasing number of lives. Current antiviral regimens have proven largely unsatisfactory for patients with HCV drug-resistant genotypes. It is therefore important to explore alternative therapeutic stratagems whose mode of action allows them to bypass viral resistance. Antisense oligonucleotides, ribozymes, small interfering RNAs, aptamers and deoxyribozymes constitute classes of oligonucleotide-based compounds designed to target highly conserved or functionally crucial regions contained within the HCV genome. The therapeutic expectation for such compounds is the elimination of HCV from infected individuals. Progress in oligonucleotide-based HCV antivirals towards clinical application depends on development of nucleotide designs that bolster efficacy while minimizing toxicity, improvement in liver-targeting delivery systems, and refinement of small-animal models for preclinical testing.
Collapse
Affiliation(s)
- Janie B Trepanier
- Sainte-Justine Hospital Research Centre, and the Department of Microbiology and Immunology, Université de Montréal, Montréal, Québec, Canada
| | | | - Caroline Alfieri
- Sainte-Justine Hospital Research Centre, and the Department of Microbiology and Immunology, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
35
|
McHutchison JG, Bartenschlager R, Patel K, Pawlotsky JM. The face of future hepatitis C antiviral drug development: recent biological and virologic advances and their translation to drug development and clinical practice. J Hepatol 2006; 44:411-21. [PMID: 16364491 DOI: 10.1016/j.jhep.2005.12.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- John G McHutchison
- Division of Gastroenterology, Duke Clinical Research Institute, Duke University Medical Centre, 2400 Pratt Street, Room 0311, Terrace Level, Durham, NC 27707, USA.
| | | | | | | |
Collapse
|