1
|
Kalyuzhnaya YN, Logvinov AK, Pashkevich SG, Golubova NV, Seryogina ES, Potapova EV, Dremin VV, Dunaev AV, Demyanenko SV. An Alternative Photothrombotic Model of Transient Ischemic Attack. Transl Stroke Res 2024:10.1007/s12975-024-01285-2. [PMID: 39069596 DOI: 10.1007/s12975-024-01285-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Animal models mimicking human transient ischemic attack (TIA) and cerebral microinfarcts are essential tools for studying their pathogenetic mechanisms and finding methods of their treatment. Despite its advantages, the model of single arteriole photothrombosis requires complex experimental equipment and highly invasive surgery, which may affect the results of further studies. Hence, to achieve high translational potential, we focused on developing a TIA model based on photothrombosis of arterioles to combine good reproducibility and low invasiveness. For the first time, noninvasive laser speckle contrast imaging (LSCI) was used to monitor blood flow in cerebral arterioles and reperfusion was achieved. We demonstrate that irradiation of mouse cerebral cortical arterioles using a 532-nm laser with a 1-mm-wide beam at 2.4 or 3.7 mW for 55 or 40 s, respectively, after 15 mg/kg intravenous Rose Bengal administration, induces similar ischemia-reperfusion lesions resulting in microinfarct formation. The model can be used to study the pathogenesis of spontaneously developing cerebral microinfarcts in neurodegeneration. Reducing the exposure times by 10 s while maintaining the same other parameters caused photothrombosis of the arteriole with reperfusion in less than 1 h. This mode of photodynamic exposure caused cellular and subcellular level ischemic changes in neurons and promoted the activation of astrocytes and microglia in the first day after irradiation, but not later, without the formation of microinfarcts. This mode of photodynamic exposure most accurately reproduced human TIA, characterized by the absence of microinfarcts.
Collapse
Affiliation(s)
- Y N Kalyuzhnaya
- Laboratory of Molecular Neuroscience, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachki Ave, Rostov-On-Don, 344090, Russia
| | - A K Logvinov
- Laboratory of Molecular Neuroscience, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachki Ave, Rostov-On-Don, 344090, Russia
| | - S G Pashkevich
- State Scientific Institution "Institute of Physiology, of the National Academy of Sciences of Belarus", Akademicheskaya Str., 28, 220072, Minsk, Belarus
| | - N V Golubova
- Research and Development Center of Biomedical Photonics, Orel State University, 95 Komsomolskaya St, Orel, 302026, Russia
| | - E S Seryogina
- Research and Development Center of Biomedical Photonics, Orel State University, 95 Komsomolskaya St, Orel, 302026, Russia
| | - E V Potapova
- Research and Development Center of Biomedical Photonics, Orel State University, 95 Komsomolskaya St, Orel, 302026, Russia
| | - V V Dremin
- Research and Development Center of Biomedical Photonics, Orel State University, 95 Komsomolskaya St, Orel, 302026, Russia
| | - A V Dunaev
- Research and Development Center of Biomedical Photonics, Orel State University, 95 Komsomolskaya St, Orel, 302026, Russia
| | - S V Demyanenko
- Laboratory of Molecular Neuroscience, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachki Ave, Rostov-On-Don, 344090, Russia.
| |
Collapse
|
2
|
Zeinali S, Sutton K, Zefreh MG, Mabbott N, Vervelde L. Discrimination of distinct chicken M cell subsets based on CSF1R expression. Sci Rep 2024; 14:8795. [PMID: 38627516 PMCID: PMC11021470 DOI: 10.1038/s41598-024-59368-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024] Open
Abstract
In mammals, a subset of follicle-associated epithelial (FAE) cells, known as M cells, conduct the transcytosis of antigens across the epithelium into the underlying lymphoid tissues. We previously revealed that M cells in the FAE of the chicken lung, bursa of Fabricius (bursa), and caecum based on the expression of CSF1R. Here, we applied RNA-seq analysis on highly enriched CSF1R-expressing bursal M cells to investigate their transcriptome and identify novel chicken M cell-associated genes. Our data show that, like mammalian M cells, those in the FAE of the chicken bursa also express SOX8, MARCKSL1, TNFAIP2 and PRNP. Immunohistochemical analysis also confirmed the expression of SOX8 in CSF1R-expressing cells in the lung, bursa, and caecum. However, we found that many other mammalian M cell-associated genes such as SPIB and GP2 were not expressed by chicken M cells or represented in the chicken genome. Instead, we show bursal M cells express high levels of related genes such as SPI1. Whereas our data show that bursal M cells expressed CSF1R-highly, the M cells in the small intestine lacked CSF1R and both expressed SOX8. This study offers insights into the transcriptome of chicken M cells, revealing the expression of CSF1R in M cells is tissue-specific.
Collapse
Affiliation(s)
- Safieh Zeinali
- Division of Immunology, The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Kate Sutton
- Division of Immunology, The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK.
| | - Masoud Ghaderi Zefreh
- Division of Genetics and Genomics, The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Neil Mabbott
- Division of Immunology, The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Lonneke Vervelde
- Division of Immunology, The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK.
| |
Collapse
|
3
|
Cao S, Yin Y, Hu H, Hong S, He W, Lv W, Liu R, Li Y, Yu S, Xiao H. CircGLIS3 inhibits thyroid cancer invasion and metastasis through miR-146b-3p/AIF1L axis. Cell Oncol (Dordr) 2023; 46:1777-1789. [PMID: 37610691 DOI: 10.1007/s13402-023-00845-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2023] [Indexed: 08/24/2023] Open
Abstract
PURPOSE Studies have shown that circRNA is involved in the occurrence and development of human cancers. However, it remains unclear that the contribution of circRNA in thyroid carcinoma and its role in the process of tumorigenesis. METHODS The expression profile of circRNA-miRNA-mRNA in thyroid carcinoma was detected by RNA sequencing and verified by qRT-PCR. The characteristics of circGLIS3 were verified by RNase R and actinomycin assays, subcellular fractionation, and fluorescence in situ hybridization. The functions of circGLIS3 and AIF1L were detected by wound healing, transwell, 3D culture and Western blot. RNA Immunoprecipitation (RIP), RNA pulldown and dual-luciferase reporter assays were used to verify the target genes of circGLIS3 and downstream miRNAs. Functional rescue experiments were performed by transfecting miRNA mimics or siRNA of target genes. Finally, metastatic mouse models were used to investigate circGLIS3 function in vivo. RESULTS In this study, we discovered a novel circRNA (has_circ_0007368, named as circGLIS3) by RNA sequencing. CircGLIS3 was down-regulated in thyroid carcinoma tissues and cells line, and was negatively associated with malignant clinical features of thyroid carcinoma. Functional studies found that circGLIS3 could inhibit the migration and invasion of thyroid carcinoma cells, and was related to the EMT process. Mechanistically, circGLIS3 can upregulate the expression of the AIF1L gene by acting as a miR-146b-3p sponge to inhibit the progression of thyroid carcinoma. CONCLUSION Our study identified circGLIS3 as a novel tumor suppressor in thyroid cancer, indicating the potential of circGLIS3 as a promising diagnostic and prognostic marker for thyroid cancer.
Collapse
Affiliation(s)
- Siting Cao
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Yali Yin
- Department of Endocrinology, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Huijuan Hu
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Shubin Hong
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Weiman He
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Weiming Lv
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Rengyun Liu
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yanbing Li
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Shuang Yu
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.
| | - Haipeng Xiao
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
4
|
Mun SA, Park J, Park KR, Lee Y, Kang JY, Park T, Jin M, Yang J, Jun CD, Eom SH. Structural and Biochemical Characterization of EFhd1/Swiprosin-2, an Actin-Binding Protein in Mitochondria. Front Cell Dev Biol 2021; 8:628222. [PMID: 33537316 PMCID: PMC7848108 DOI: 10.3389/fcell.2020.628222] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/21/2020] [Indexed: 12/21/2022] Open
Abstract
Ca2+ regulates several cellular functions, including signaling events, energy production, and cell survival. These cellular processes are mediated by Ca2+-binding proteins, such as EF-hand superfamily proteins. Among the EF-hand superfamily proteins, allograft inflammatory factor-1 (AIF-1) and swiprosin-1/EF-hand domain-containing protein 2 (EFhd2) are cytosolic actin-binding proteins. AIF-1 modulates the cytoskeleton and increases the migration of immune cells. EFhd2 is also a cytoskeletal protein implicated in immune cell activation and brain cell functions. EFhd1, a mitochondrial fraternal twin of EFhd2, mediates neuronal and pro-/pre-B cell differentiation and mitoflash activation. Although EFhd1 is important for maintaining mitochondrial morphology and energy synthesis, its mechanism of action remains unclear. Here, we report the crystal structure of the EFhd1 core domain comprising a C-terminus of a proline-rich region, two EF-hand domains, and a ligand mimic helix. Structural comparisons of EFhd1, EFhd2, and AIF-1 revealed similarities in their overall structures. In the structure of the EFhd1 core domain, two Zn2+ ions were observed at the interface of the crystal contact, suggesting the possibility of Zn2+-mediated multimerization. In addition, we found that EFhd1 has Ca2+-independent β-actin-binding and Ca2+-dependent β-actin-bundling activities. These findings suggest that EFhd1, an actin-binding and -bundling protein in the mitochondria, may contribute to the Ca2+-dependent regulation of mitochondrial morphology and energy synthesis.
Collapse
Affiliation(s)
- Sang A Mun
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, South Korea.,Steitz Center for Structural Biology, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Jongseo Park
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, South Korea.,Steitz Center for Structural Biology, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Kyoung Ryoung Park
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, South Korea.,Steitz Center for Structural Biology, Gwangju Institute of Science and Technology, Gwangju, South Korea.,NuclixBio, Seoul, South Korea
| | - Youngjin Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, South Korea.,Steitz Center for Structural Biology, Gwangju Institute of Science and Technology, Gwangju, South Korea.,Infection and Immunity Research Laboratory, Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Jung Youn Kang
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, South Korea.,Steitz Center for Structural Biology, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Taein Park
- Steitz Center for Structural Biology, Gwangju Institute of Science and Technology, Gwangju, South Korea.,Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Minwoo Jin
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, South Korea.,Steitz Center for Structural Biology, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Jihyeong Yang
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, South Korea.,Steitz Center for Structural Biology, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Chang-Duk Jun
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Soo Hyun Eom
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, South Korea.,Steitz Center for Structural Biology, Gwangju Institute of Science and Technology, Gwangju, South Korea.,Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, South Korea
| |
Collapse
|
5
|
Parikh D, Riascos-Bernal DF, Egaña-Gorroño L, Jayakumar S, Almonte V, Chinnasamy P, Sibinga NES. Allograft inflammatory factor-1-like is not essential for age dependent weight gain or HFD-induced obesity and glucose insensitivity. Sci Rep 2020; 10:3594. [PMID: 32107417 PMCID: PMC7046694 DOI: 10.1038/s41598-020-60433-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 02/04/2020] [Indexed: 01/01/2023] Open
Abstract
The allograft inflammatory factor (AIF) gene family consists of two identified paralogs – AIF1 and AIF1-like (AIF1L). The encoded proteins, AIF1 and AIF1L, are 80% similar in sequence and show conserved tertiary structure. While studies in human populations suggest links between AIF1 and metabolic diseases such as obesity and diabetes, such associations with AIF1L have not been reported. Drawing parallels based on structural similarity, we postulated that AIF1L might contribute to metabolic disorders, and studied it using mouse models. Here we report that AIF1L is expressed in major adipose depots and kidney but was not detectable in liver or skeletal muscle; in notable contrast to AIF1, AIF1L was also not found in spleen. Studies of AIF1L deficient mice showed no obvious postnatal developmental phenotype. In response to high fat diet (HFD) feeding for 6 or 18 weeks, WT and AIF1L deficient mice gained weight similarly, showed no differences in fat or lean mass accumulation, and displayed no changes in energy expenditure or systemic glucose handling. These findings indicate that AIF1L is not essential for the development of obesity or impaired glucose handling due to HFD, and advance understanding of this little-studied gene and its place in the AIF gene family.
Collapse
Affiliation(s)
- Dippal Parikh
- Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), and Department of Developmental and Molecular Biology. 1300 Morris Park Avenue, Bronx, New York, 10461, USA
| | - Dario F Riascos-Bernal
- Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), and Department of Developmental and Molecular Biology. 1300 Morris Park Avenue, Bronx, New York, 10461, USA
| | - Lander Egaña-Gorroño
- Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), and Department of Developmental and Molecular Biology. 1300 Morris Park Avenue, Bronx, New York, 10461, USA.,Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, NYU Langone Medical Center, New York, NY, 10016, USA
| | - Smitha Jayakumar
- Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), and Department of Developmental and Molecular Biology. 1300 Morris Park Avenue, Bronx, New York, 10461, USA
| | - Vanessa Almonte
- Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), and Department of Developmental and Molecular Biology. 1300 Morris Park Avenue, Bronx, New York, 10461, USA
| | - Prameladevi Chinnasamy
- Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), and Department of Developmental and Molecular Biology. 1300 Morris Park Avenue, Bronx, New York, 10461, USA
| | - Nicholas E S Sibinga
- Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), and Department of Developmental and Molecular Biology. 1300 Morris Park Avenue, Bronx, New York, 10461, USA.
| |
Collapse
|
6
|
He Y, Zhou S, Deng F, Zhao S, Chen W, Wang D, Chen X, Hou J, Zhang J, Zhang W, Ding L, Tang J, Zhou Z. Clinical and transcriptional signatures of human CD204 reveal an applicable marker for the protumor phenotype of tumor-associated macrophages in breast cancer. Aging (Albany NY) 2019; 11:10883-10901. [PMID: 31799941 PMCID: PMC6932883 DOI: 10.18632/aging.102490] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 11/17/2019] [Indexed: 12/14/2022]
Abstract
Background: Tumor-associated macrophages in human breast cancer are poorly understood. Specific tumor-associated macrophage-related molecular mechanisms among different intrinsic molecular subtypes remain unclear. Here, we have identified and explored the roles of the tumor-associated macrophages novel marker: CD204 in different subtypes of breast cancer. Results: CD204 was upregulated in four subtypes of breast cancer, and this was associated with poor survival outcomes. CD204 could promote tumor cell proliferation, migration, and invasion and was involved in immune system-related pathways among all subtypes. Special pathways in each subtype were also found. High CD204 mRNA expressions were associated with high proportions of protumor immune cell populations, and most immunoinhibitors positive correlated with CD204 expression in all subtypes. Conclusions: These findings contribute to a better understanding and managing the protumor phenotype of tumor-associated macrophages in different subtypes of breast cancer. Methods: The expression of CD204 and its clinical outcome were analyzed. The roles of CD204 in the regulation of tumor cell proliferation, migration, and invasion were studied. Potential pathways influenced by CD204 were displayed. Immune cell infiltration in different CD204 mRNA expression status and correlations between CD204 and immunoinhibitors were also analyzed.
Collapse
Affiliation(s)
- Yunjie He
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P.R. China
| | - Siying Zhou
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Fei Deng
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P.R. China
| | - Shujie Zhao
- Department of Orthopedic, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210019, P.R. China
| | - Wenquan Chen
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P.R. China
| | - Dandan Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P.R. China
| | - Xiu Chen
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P.R. China
| | - Juncheng Hou
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P.R. China
| | - Jian Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P.R. China
| | - Wei Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P.R. China
| | - Li Ding
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P.R. China
| | - Jinhai Tang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P.R. China
| | - Zuomin Zhou
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, P.R. China
| |
Collapse
|
7
|
Liu P, Li W, Hu Y, Jiang Y. Absence of AIF1L contributes to cell migration and a poor prognosis of breast cancer. Onco Targets Ther 2018; 11:5485-5498. [PMID: 30233209 PMCID: PMC6134948 DOI: 10.2147/ott.s165874] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Breast cancer is the most common fatal cancer in women worldwide. Previous studies have demonstrated that allograft inflammatory factor 1 like (AIF1L) plays a key role in mammary tumorigenesis, although the mechanism involved remains unclear. Purpose The purpose of this study was to assess the clinicopathological and prognostic significance of AIF1L expression levels and biological function in breast cancer. Patients and methods We used immunohistochemistry to detect the expression of AIF1L in breast cancer. We also analyzed the expression of AIF1L in breast cancer using the Cancer Genome Atlas (TCGA) cohort and the Cancer Cell Line Encyclopedia (CCLE). Furthermore, both in vitro assays were used to determine the effect of AIF1L on malignant behavior in breast cancer cells. Results We detected AIF1L expression in tissue microarrays through immunohistochemistry and found that protein expression was significantly lower in BC tissues (28.6%, 82/287) compared to tumor-adjacent tissues (58.3%, 28/48) (P=0.007). Kaplan-Meier survival analysis revealed that disease-specific survival in BC patients with low AIF1L protein expression was significantly poorer compared to normal controls (P=0.040). In the TCGA cohort, the AIF1L gene was downregulated and hypermethylated in tumor samples compared to normal controls. Bioinformatics analysis using CCLE predicted potential biological functions of AIF1L related to tight junctions, cell junctions and focal adhesion. Ectopic expression of AIF1L suppressed MDA-MB-231 migration and invasion. Further evidence confirmed that AIF1L overexpression suppressed cell spreading, altered cell shape and decreased protrusion formation, which was correlated with decreased focal adhesion kinase (FAK) and RhoA expression. Conclusion These findings suggest that AIF1L is a potential prognostic biomarker that plays a vital role in regulating the cytoskeleton in breast cancer.
Collapse
Affiliation(s)
- Peipei Liu
- Molecular Oncology Laboratory of Cancer Research Institute, The First Hospital of China Medical University, Shenyang, People's Republic of China,
| | - Wenhui Li
- Gastrointestinal Onco-Pathology Laboratory of Cancer Institute, The First Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Yuanyuan Hu
- Molecular Oncology Laboratory of Cancer Research Institute, The First Hospital of China Medical University, Shenyang, People's Republic of China,
| | - Youhong Jiang
- Molecular Oncology Laboratory of Cancer Research Institute, The First Hospital of China Medical University, Shenyang, People's Republic of China,
| |
Collapse
|
8
|
Yasuda-Yamahara M, Rogg M, Yamahara K, Maier JI, Huber TB, Schell C. AIF1L regulates actomyosin contractility and filopodial extensions in human podocytes. PLoS One 2018; 13:e0200487. [PMID: 30001384 PMCID: PMC6042786 DOI: 10.1371/journal.pone.0200487] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/27/2018] [Indexed: 11/17/2022] Open
Abstract
Podocytes are highly-specialized epithelial cells essentially required for the generation and the maintenance of the kidney filtration barrier. This elementary function is directly based on an elaborated cytoskeletal apparatus establishing a complex network of primary and secondary processes. Here, we identify the actin-bundling protein allograft-inflammatory-inhibitor 1 like (AIF1L) as a selectively expressed podocyte protein in vivo. We describe the distinct subcellular localization of AIF1L to actin stress fibers, focal adhesion complexes and the nuclear compartment of podocytes in vitro. Genetic deletion of AIF1L in immortalized human podocytes resulted in an increased formation of filopodial extensions and decreased actomyosin contractility. By the use of SILAC based quantitative proteomics analysis we describe the podocyte specific AIF1L interactome and identify several components of the actomyosin machinery such as MYL9 and UNC45A as potential AIF1L interaction partners. Together, these findings indicate an involvement of AIF1L in the stabilization of podocyte morphology by titrating actomyosin contractility and membrane dynamics.
Collapse
Affiliation(s)
- Mako Yasuda-Yamahara
- Department of Medicine IV, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Manuel Rogg
- Department of Medicine IV, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kosuke Yamahara
- Department of Medicine IV, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Jasmin I. Maier
- Department of Medicine IV, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute for Surgical Pathology, University Medical Center Freiburg, Freiburg, Germany
| | - Tobias B. Huber
- Department of Medicine IV, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- BIOSS Center for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Freiburg, Germany
- Department of Medicine III, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- * E-mail:
| | - Christoph Schell
- Department of Medicine IV, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute for Surgical Pathology, University Medical Center Freiburg, Freiburg, Germany
- Berta-Ottenstein Programme, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
9
|
Zhao YY, Lin YQ, Xu YO. Functional Identification of Allograft Inflammatory Factor 1-Like Gene in Luning Chicken. Anim Biotechnol 2018; 29:234-240. [PMID: 29035136 DOI: 10.1080/10495398.2017.1369096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Allograft inflammatory factor-1 (AIF-1) is an inflammation-related protein mainly produced by immune cells, such as monocyte/macrophages and activated T lymphocytes. It is essential for the survival and proinflammatory activity of immune cells. However, the function of AIF-1 in chicken still has not been defined. In the present study, AIF-1-like (AIF1L) gene was identified in Luning chicken. Bioinformatics analysis revealed that the molecular weight of the chicken AIF-1 protein was 16290.8 Da. AIF1L contained a Ca2+ binding EF hand and could interact with actin filament. Its transcript was found in all tested tissues including spleen, brain, heart, kidney, liver, thymus, bursa of Fabricius, lung, and a relative low-level expression was detected in leg muscle. Furthermore, AIF1L expression in peripheral blood lymphocyte was depressed in a dose-dependent manner with cadmium exposure and peripheral blood lymphocyte viability decrease displayed a similar pattern with AIF1L expression. The results indicated that newly identified chicken AIF1L might be associated with lymphocyte viability.
Collapse
Affiliation(s)
- Yan-Ying Zhao
- a College of Life Science and Technology , Southwest University for Nationalities , Chengdu , P. R. China
| | - Ya-Qiu Lin
- a College of Life Science and Technology , Southwest University for Nationalities , Chengdu , P. R. China
| | - Ya-Ou Xu
- a College of Life Science and Technology , Southwest University for Nationalities , Chengdu , P. R. China
| |
Collapse
|
10
|
Andrés-Benito P, Moreno J, Aso E, Povedano M, Ferrer I. Amyotrophic lateral sclerosis, gene deregulation in the anterior horn of the spinal cord and frontal cortex area 8: implications in frontotemporal lobar degeneration. Aging (Albany NY) 2017; 9:823-851. [PMID: 28283675 PMCID: PMC5391234 DOI: 10.18632/aging.101195] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 02/27/2017] [Indexed: 12/14/2022]
Abstract
Transcriptome arrays identifies 747 genes differentially expressed in the anterior horn of the spinal cord and 2,300 genes differentially expressed in frontal cortex area 8 in a single group of typical sALS cases without frontotemporal dementia compared with age-matched controls. Main up-regulated clusters in the anterior horn are related to inflammation and apoptosis; down-regulated clusters are linked to axoneme structures and protein synthesis. In contrast, up-regulated gene clusters in frontal cortex area 8 involve neurotransmission, synaptic proteins and vesicle trafficking, whereas main down-regulated genes cluster into oligodendrocyte function and myelin-related proteins. RT-qPCR validates the expression of 58 of 66 assessed genes from different clusters. The present results: a. reveal regional differences in de-regulated gene expression between the anterior horn of the spinal cord and frontal cortex area 8 in the same individuals suffering from sALS; b. validate and extend our knowledge about the complexity of the inflammatory response in the anterior horn of the spinal cord; and c. identify for the first time extensive gene up-regulation of neurotransmission and synaptic-related genes, together with significant down-regulation of oligodendrocyte- and myelin-related genes, as important contributors to the pathogenesis of frontal cortex alterations in the sALS/frontotemporal lobar degeneration spectrum complex at stages with no apparent cognitive impairment.
Collapse
Affiliation(s)
- Pol Andrés-Benito
- Institute of Neuropathology, Pathologic Anatomy Service, Bellvitge University Hospital, IDIBELL, Hospitalet de Llobregat, Spain
| | - Jesús Moreno
- Institute of Neuropathology, Pathologic Anatomy Service, Bellvitge University Hospital, IDIBELL, Hospitalet de Llobregat, Spain
| | - Ester Aso
- Institute of Neuropathology, Pathologic Anatomy Service, Bellvitge University Hospital, IDIBELL, Hospitalet de Llobregat, Spain
| | - Mónica Povedano
- Service of Neurology, Bellvitge University Hospital, Hospitalet de Llobregat, Spain
| | - Isidro Ferrer
- Institute of Neuropathology, Pathologic Anatomy Service, Bellvitge University Hospital, IDIBELL, Hospitalet de Llobregat, Spain
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Biomedical Network Research Center on Neurodegenerative Diseases (CIBERNED), Institute Carlos III, Hospitalet de Llobregat, Spain
| |
Collapse
|
11
|
Structural implications of Ca 2+-dependent actin-bundling function of human EFhd2/Swiprosin-1. Sci Rep 2016; 6:39095. [PMID: 27974828 PMCID: PMC5156911 DOI: 10.1038/srep39095] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 11/17/2016] [Indexed: 01/20/2023] Open
Abstract
EFhd2/Swiprosin-1 is a cytoskeletal Ca2+-binding protein implicated in Ca2+-dependent cell spreading and migration in epithelial cells. EFhd2 domain architecture includes an N-terminal disordered region, a PxxP motif, two EF-hands, a ligand mimic helix and a C-terminal coiled-coil domain. We reported previously that EFhd2 displays F-actin bundling activity in the presence of Ca2+ and this activity depends on the coiled-coil domain and direct interaction of the EFhd2 core region. However, the molecular mechanism for the regulation of F-actin binding and bundling by EFhd2 is unknown. Here, the Ca2+-bound crystal structure of the EFhd2 core region is presented and structures of mutants defective for Ca2+-binding are also described. These structures and biochemical analyses reveal that the F-actin bundling activity of EFhd2 depends on the structural rigidity of F-actin binding sites conferred by binding of the EF-hands to Ca2+. In the absence of Ca2+, the EFhd2 core region exhibits local conformational flexibility around the EF-hand domain and C-terminal linker, which retains F-actin binding activity but loses the ability to bundle F-actin. In addition, we establish that dimerisation of EFhd2 via the C-terminal coiled-coil domain, which is necessary for F-actin bundling, occurs through the parallel coiled-coil interaction.
Collapse
|
12
|
Zhang Y, Wang S, Li L. EF Hand Protein IBA2 Promotes Cell Proliferation in Breast Cancers via Transcriptional Control of Cyclin D1. Cancer Res 2016; 76:4535-45. [DOI: 10.1158/0008-5472.can-15-2927] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 05/03/2016] [Indexed: 11/16/2022]
|
13
|
Transcriptional Response to Acute Thermal Exposure in Juvenile Chinook Salmon Determined by RNAseq. G3-GENES GENOMES GENETICS 2015; 5:1335-49. [PMID: 25911227 PMCID: PMC4502368 DOI: 10.1534/g3.115.017699] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Thermal exposure is a serious and growing challenge facing fish species worldwide. Chinook salmon (Oncorhynchus tshawytscha) living in the southern portion of their native range are particularly likely to encounter warmer water due to a confluence of factors. River alterations have increased the likelihood that juveniles will be exposed to warm water temperatures during their freshwater life stage, which can negatively impact survival, growth, and development and pose a threat to dwindling salmon populations. To better understand how acute thermal exposure affects the biology of salmon, we performed a transcriptional analysis of gill tissue from Chinook salmon juveniles reared at 12° and exposed acutely to water temperatures ranging from ideal to potentially lethal (12° to 25°). Reverse-transcribed RNA libraries were sequenced on the Illumina HiSeq2000 platform and a de novo reference transcriptome was created. Differentially expressed transcripts were annotated using Blast2GO and relevant gene clusters were identified. In addition to a high degree of downregulation of a wide range of genes, we found upregulation of genes involved in protein folding/rescue, protein degradation, cell death, oxidative stress, metabolism, inflammation/immunity, transcription/translation, ion transport, cell cycle/growth, cell signaling, cellular trafficking, and structure/cytoskeleton. These results demonstrate the complex multi-modal cellular response to thermal stress in juvenile salmon.
Collapse
|
14
|
Chinnasamy P, Lutz SE, Riascos-Bernal DF, Jeganathan V, Casimiro I, Brosnan CF, Sibinga NES. Loss of Allograft Inflammatory Factor-1 Ameliorates Experimental Autoimmune Encephalomyelitis by Limiting Encephalitogenic CD4 T-Cell Expansion. Mol Med 2015; 21:233-41. [PMID: 25569805 DOI: 10.2119/molmed.2014.00264] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 12/30/2014] [Indexed: 12/14/2022] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE), an animal model of human multiple sclerosis (MS), is mediated by myelin-specific autoreactive T cells that cause inflammation and demyelination in the central nervous system (CNS), with significant contributions from activated microglia and macrophages. The molecular bases for expansion and activation of these cells, plus trafficking to the CNS for peripheral cells, are not fully understood. Allograft inflammatory factor-1 (Aif-1) (also known as ionized Ca(2+) binding adapter-1 [Iba-1]) is induced in leukocytes in MS and EAE; here we provide the first assessment of Aif-1 function in this setting. After myelin oligodendrocyte glycoprotein peptide (MOG35-55) immunization, Aif-1-deficient mice were less likely than controls to develop EAE and had less CNS leukocyte infiltration and demyelination; their spinal cords contained fewer CD4 T cells and microglia and more CD8 T cells. These mice also showed significantly less splenic CD4 T-cell expansion and activation, plus decreased proinflammatory cytokine expression. These findings identify Aif-1 as a potent molecule that promotes expansion and activation of CD4 T cells, plus elaboration of a proinflammatory cytokine milieu, in MOG35-55-induced EAE and as a potential therapeutic target in MS.
Collapse
Affiliation(s)
- Prameladevi Chinnasamy
- Department of Medicine (Cardiovascular Division), Albert Einstein College of Medicine, Bronx, New York, United States of America.,Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Sarah E Lutz
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Dario F Riascos-Bernal
- Department of Medicine (Cardiovascular Division), Albert Einstein College of Medicine, Bronx, New York, United States of America.,Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Venkatesh Jeganathan
- Center for Autoimmune and Musculoskeletal Disease, The Feinstein Institute of Medical Research, Manhasset, New York, United States of America
| | - Isabel Casimiro
- Department of Medicine (Cardiovascular Division), Albert Einstein College of Medicine, Bronx, New York, United States of America.,Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Celia F Brosnan
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Nicholas E S Sibinga
- Department of Medicine (Cardiovascular Division), Albert Einstein College of Medicine, Bronx, New York, United States of America.,Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America.,Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, New York, United States of America
| |
Collapse
|
15
|
Drago F, Sautière PE, Le Marrec-Croq F, Accorsi A, Van Camp C, Salzet M, Lefebvre C, Vizioli J. Microglia of medicinal leech (Hirudo medicinalis) express a specific activation marker homologous to vertebrate ionized calcium-binding adapter molecule 1 (Iba1/alias aif-1). Dev Neurobiol 2014; 74:987-1001. [PMID: 24723370 DOI: 10.1002/dneu.22179] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 04/07/2014] [Indexed: 01/13/2023]
Abstract
The Ionized calcium-Binding Adapter molecule 1 (Iba1), also known as Allograft Inflammatory Factor 1 (AIF-1), is a 17 kDa cytokine-inducible protein, produced by activated macrophages during chronic transplant rejection and inflammatory reactions in Vertebrates. In mammalian central nervous system (CNS), Iba1 is a sensitive marker associated with activated macrophages/microglia and is upregulated following neuronal death or brain lesions. The medicinal leech Hirudo medicinalis is able to regenerate its CNS after injury, leading to a complete functional repair. Similar to Vertebrates, leech neuroinflammatory processes are linked to microglia activation and recruitment at the lesion site. We identified a gene, named Hmiba1, coding a 17.8 kDa protein showing high similarity with Vertebrate AIF-1. The present work constitutes the first report on an Iba1 protein in the nervous system of an invertebrate. Immunochemistry and gene expression analyses showed that HmIba1, like its mammalian counterpart, is modulated in leech CNS by mechanical injury or chemical stimuli (ATP). We presently demonstrate that most of leech microglial cells migrating and accumulating at the lesion site specifically expressed the activation marker HmIba1. While the functional role of Iba1, whatever species, is still unclear in reactive microglia, this molecule appeared as a good selective marker of activated cells in leech and presents an interesting tool to investigate the functions of these cells during nerve repair events.
Collapse
Affiliation(s)
- Francesco Drago
- Université Lille 1, Laboratoire de Spectrométrie de Masse Biologique Fondamentale et Appliquée, EA4550, Villeneuve d'Ascq, 59655, France
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Horiuchi M, Wakayama K, Itoh A, Kawai K, Pleasure D, Ozato K, Itoh T. Interferon regulatory factor 8/interferon consensus sequence binding protein is a critical transcription factor for the physiological phenotype of microglia. J Neuroinflammation 2012; 9:227. [PMID: 23020843 PMCID: PMC3546867 DOI: 10.1186/1742-2094-9-227] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 08/13/2012] [Indexed: 01/15/2023] Open
Abstract
Background Recent fate-mapping studies establish that microglia, the resident mononuclear phagocytes of the CNS, are distinct in origin from the bone marrow-derived myeloid lineage. Interferon regulatory factor 8 (IRF8, also known as interferon consensus sequence binding protein) plays essential roles in development and function of the bone marrow-derived myeloid lineage. However, little is known about its roles in microglia. Methods The CNS tissues of IRF8-deficient mice were immunohistochemically analyzed. Pure microglia isolated from wild-type and IRF8-deficient mice were studied in vitro by proliferation, immunocytochemical and phagocytosis assays. Microglial response in vivo was compared between wild-type and IRF8-deficient mice in the cuprizon-induced demyelination model. Results Our analysis of IRF8-deficient mice revealed that, in contrast to compromised development of IRF8-deficient bone marrow myeloid lineage cells, development and colonization of microglia are not obviously affected by loss of IRF8. However, IRF8-deficient microglia demonstrate several defective phenotypes. In vivo, IRF8-deficient microglia have fewer elaborated processes with reduced expression of IBA1/AIF1 compared with wild-type microglia, suggesting a defective phenotype. IRF8-deficient microglia are significantly less proliferative in mixed glial cultures than wild-type microglia. Unlike IRF8-deficient bone marrow myeloid progenitors, exogenous macrophage colony stimulating factor (colony stimulating factor 1) (M-CSF (CSF1)) restores their proliferation in mixed glial cultures. In addition, IRF8-deficient microglia exhibit an exaggerated growth response to exogenous granulocyte-macrophage colony stimulating factor (colony stimulating factor 2) (GM-CSF (CSF2)) in the presence of other glial cells. IRF8-deficient microglia also demonstrate altered cytokine expressions in response to interferon-gamma and lipopolysaccharide in vitro. Moreover, the maximum phagocytic capacity of IRF8-deficient microglia is reduced, although their engulfment of zymosan particles is not overtly impaired. Defective scavenging activity of IRF8-deficient microglia was further confirmed in vivo in the cuprizone-induced demyelination model in mice. Conclusions This study is the first to demonstrate the essential contribution of IRF8-mediated transcription to a broad range of microglial phenotype. Microglia are distinct from the bone marrow myeloid lineage with respect to their dependence on IRF8-mediated transcription.
Collapse
Affiliation(s)
- Makoto Horiuchi
- Department of Neurology, University of California Davis, School of Medicine, 4860 Y Street, Sacramento, CA 95817, USA
| | | | | | | | | | | | | |
Collapse
|