1
|
Severyukhina MS, Ojomoko LO, Shelukhina IV, Kudryavtsev DS, Kryukova EV, Epifanova LA, Denisova DA, Averin AS, Ismailova AM, Shaykhutdinova ER, Dyachenko IA, Egorova NS, Murashev AN, Tsetlin VI, Utkin YN. Non-conventional toxin WTX and its disulfide-fixed synthetic fragments: Interaction with nicotinic acetylcholine receptors and reduction of blood pressure. Int J Biol Macromol 2025; 288:138626. [PMID: 39667465 DOI: 10.1016/j.ijbiomac.2024.138626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
Non-conventional snake venom toxins, such as WTX from the cobra Naja kaouthia, are three-finger proteins containing a fifth disulfide bond in the N-terminal polypeptide loop I and inhibiting α7 and muscle-type nicotinic acetylcholine receptors (nAChRs). Because the central polypeptide loop II of non-conventional toxins plays an important role in their biological activity, we synthesized several WTX loop II fragments with two cysteine residues added at the N- and C-termini and oxidized to form a disulfide bond. The inhibition by peptides of several nAChRs subtypes was investigated using different methods and the effects of peptides on the rat arterial pressure and heart rate were analyzed. The synthetic fragments inhibited α7 and muscle-type nAChRs more potently than WTX. We showed for the first time that WTX and its fragments inhibited α9α10 as well as neuronal α3β2 and α4β2 nAChRs, again the synthetic fragments being more potent than WTX. The loop II fragments reduced blood pressure more potently than WTX in normotensive, awake rats. In connection with this, the WTX cardiovascular effects were analyzed and it was found that toxin very weakly affected parameters of papillary muscle contractions with no influence on aortic ring contractility. The observed effects were not so significant to explain the decrease in BP, the hemodynamic effects of WTX appearing not to result from direct influence on the myocardium and blood vessels. The synthetic fragments of the N- and C-terminal loops I and III were inactive in all tests. Thus, both in inhibition of all analyzed nAChR subtypes and in reduction of blood pressure, fragments of the central loop II were more active than WTX. This appears to be a first indication for three-finger proteins that the fragments of the central loop II are more active than the native toxin.
Collapse
Affiliation(s)
- Maria S Severyukhina
- Biological Testing Laboratory, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Prospekt Nauki, 142290 Pushchino, Russia; PushchGENI - Branch of BIOTECH University, 3 Prospekt Nauki, 142290 Pushchino, Russia
| | - Lucy O Ojomoko
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklay Str., 117997 Moscow, Russia
| | - Irina V Shelukhina
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklay Str., 117997 Moscow, Russia
| | - Denis S Kudryavtsev
- PushchGENI - Branch of BIOTECH University, 3 Prospekt Nauki, 142290 Pushchino, Russia
| | - Elena V Kryukova
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklay Str., 117997 Moscow, Russia
| | - Lybov A Epifanova
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklay Str., 117997 Moscow, Russia
| | - Daria A Denisova
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklay Str., 117997 Moscow, Russia
| | - Alexey S Averin
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, 1111 Highland Ave., Madison, WI 53705, USA
| | - Alina M Ismailova
- Biological Testing Laboratory, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Prospekt Nauki, 142290 Pushchino, Russia; PushchGENI - Branch of BIOTECH University, 3 Prospekt Nauki, 142290 Pushchino, Russia
| | - Elvira R Shaykhutdinova
- Biological Testing Laboratory, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Prospekt Nauki, 142290 Pushchino, Russia; PushchGENI - Branch of BIOTECH University, 3 Prospekt Nauki, 142290 Pushchino, Russia
| | - Igor A Dyachenko
- Biological Testing Laboratory, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Prospekt Nauki, 142290 Pushchino, Russia
| | - Natalya S Egorova
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklay Str., 117997 Moscow, Russia
| | - Arkady N Murashev
- Biological Testing Laboratory, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Prospekt Nauki, 142290 Pushchino, Russia
| | - Victor I Tsetlin
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklay Str., 117997 Moscow, Russia
| | - Yuri N Utkin
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklay Str., 117997 Moscow, Russia.
| |
Collapse
|
2
|
Tao Y, Sun Y, Jiang X, Tao J, Zhang Y. The Role of Alpha-7 Nicotinic Acetylcholine Receptors in Pain: Potential Therapeutic Implications. Curr Neuropharmacol 2025; 23:129-144. [PMID: 38808717 PMCID: PMC11793049 DOI: 10.2174/1570159x22666240528161117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/21/2024] [Accepted: 01/21/2024] [Indexed: 05/30/2024] Open
Abstract
Chronic pain represents a prevalent and costly medical challenge globally. Nicotinic acetylcholine receptors (nAChRs), one type of ligand-gated ion channels found extensively in both the central and peripheral nervous systems, have emerged as promising therapeutic targets for chronic pain. Although there are currently no FDA-approved analgesics specifically targeting nAChRs, accumulating preclinical and clinical evidence suggest that selective ligands for alpha 7 (α7) nAChRs show potential for treating chronic pain, boasting a reduced incidence of side effects compared with other nicotinic receptor types. The recent structural resolution of human α7 nAChRs has confirmed their negative association with heightened pain, providing a valuable foundation for the development of targeted medications. This review presents a comprehensive overview, encompassing insights into the roles of α7 nAChRs derived from structural and functional studies, recent advancements in pharmacology, and investigations into their involvement in the pathophysiology of chronic pain. Moreover, the review addresses the variability in analgesic effects based on the type of receptor agonist and highlights the current research limitations. As such, this review offers potential therapeutic approaches for the development of innovative strategies for chronic pain management.
Collapse
Affiliation(s)
- Yu Tao
- Clinical Research Center of Neurological Disease, Department of Geriatrics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, P.R. China
- Department of Physiology and Neurobiology, Centre for Ion Channelopathy, Medical College of Soochow University, Suzhou 215123, P.R. China
| | - Yufang Sun
- Department of Physiology and Neurobiology, Centre for Ion Channelopathy, Medical College of Soochow University, Suzhou 215123, P.R. China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou 215123, P.R. China
| | - Xinghong Jiang
- Department of Physiology and Neurobiology, Centre for Ion Channelopathy, Medical College of Soochow University, Suzhou 215123, P.R. China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou 215123, P.R. China
| | - Jin Tao
- Department of Physiology and Neurobiology, Centre for Ion Channelopathy, Medical College of Soochow University, Suzhou 215123, P.R. China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou 215123, P.R. China
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, P.R. China
| | - Yuan Zhang
- Clinical Research Center of Neurological Disease, Department of Geriatrics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, P.R. China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou 215123, P.R. China
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, P.R. China
| |
Collapse
|
3
|
Severyukhina MS, Ismailova AM, Shaykhutdinova ER, Dyachenko IA, Egorova NS, Murashev AN, Tsetlin VI, Utkin YN. Synthetic Peptide Fragments of the Wtx Toxin Reduce Blood Pressure in Rats under General Anesthesia. DOKL BIOCHEM BIOPHYS 2023; 513:319-323. [PMID: 37700213 PMCID: PMC10808285 DOI: 10.1134/s1607672923700497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/29/2023] [Accepted: 07/29/2023] [Indexed: 09/14/2023]
Abstract
Previously, it was shown that the non-conventional toxin WTX from the venom of the cobra Naja kaouthia, when administered intravenously, caused a decrease in blood pressure (BP) and an increase in heart rate (HR) in rats [13]. To identify the site of the toxin molecule responsible for these effects, we studied the influence of synthetic peptide fragments of the WTX on BP and HR in normotensive male Sprague-Dawley rats under general anesthesia induced by Telazol and Xylazine. It was found that peptides corresponding to the WTX central polypeptide loop, stabilized by a disulfide bond, at intravenous injection at concentrations from 0.1 to 1.0 mg/mL caused a dose-dependent decrease in BP, with the HR increasing only in the first 5-10 min after administration. Thus, WTX fragments corresponding to the central polypeptide loop reproduce the decrease in blood pressure caused by the toxin.
Collapse
Affiliation(s)
- M S Severyukhina
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Russia
- Pushchino State Natural-Science Institute, Pushchino, Russia
| | - A M Ismailova
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Russia
| | - E R Shaykhutdinova
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Russia
| | - I A Dyachenko
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Russia
| | - N S Egorova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - A N Murashev
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Russia
| | - V I Tsetlin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Yu N Utkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
4
|
Tsetlin V, Shelukhina I, Kozlov S, Kasheverov I. Fifty Years of Animal Toxin Research at the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS. Int J Mol Sci 2023; 24:13884. [PMID: 37762187 PMCID: PMC10530976 DOI: 10.3390/ijms241813884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
This review covers briefly the work carried out at our institute (IBCh), in many cases in collaboration with other Russian and foreign laboratories, for the last 50 years. It discusses the discoveries and studies of various animal toxins, including protein and peptide neurotoxins acting on the nicotinic acetylcholine receptors (nAChRs) and on other ion channels. Among the achievements are the determination of the primary structures of the α-bungarotoxin-like three-finger toxins (TFTs), covalently bound dimeric TFTs, glycosylated cytotoxin, inhibitory cystine knot toxins (ICK), modular ICKs, and such giant molecules as latrotoxins and peptide neurotoxins from the snake, as well as from other animal venoms. For a number of toxins, spatial structures were determined, mostly by 1H-NMR spectroscopy. Using this method in combination with molecular modeling, the molecular mechanisms of the interactions of several toxins with lipid membranes were established. In more detail are presented the results of recent years, among which are the discovery of α-bungarotoxin analogs distinguishing the two binding sites in the muscle-type nAChR, long-chain α-neurotoxins interacting with α9α10 nAChRs and with GABA-A receptors, and the strong antiviral effects of dimeric phospholipases A2. A summary of the toxins obtained from arthropod venoms includes only highly cited works describing the molecules' success story, which is associated with IBCh. In marine animals, versatile toxins in terms of structure and molecular targets were discovered, and careful work on α-conotoxins differing in specificity for individual nAChR subtypes gave information about their binding sites.
Collapse
Affiliation(s)
- Victor Tsetlin
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklay Str., 117997 Moscow, Russia; (I.S.); (I.K.)
| | - Irina Shelukhina
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklay Str., 117997 Moscow, Russia; (I.S.); (I.K.)
| | - Sergey Kozlov
- Department of Molecular Neurobiology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklay Str., 117997 Moscow, Russia;
| | - Igor Kasheverov
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklay Str., 117997 Moscow, Russia; (I.S.); (I.K.)
| |
Collapse
|
5
|
Shenkarev ZO, Chesnokov YM, Zaigraev MM, Chugunov AO, Kulbatskii DS, Kocharovskaya MV, Paramonov AS, Bychkov ML, Shulepko MA, Nolde DE, Kamyshinsky RA, Yablokov EO, Ivanov AS, Kirpichnikov MP, Lyukmanova EN. Membrane-mediated interaction of non-conventional snake three-finger toxins with nicotinic acetylcholine receptors. Commun Biol 2022; 5:1344. [PMID: 36477694 PMCID: PMC9729238 DOI: 10.1038/s42003-022-04308-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Nicotinic acetylcholine receptor of α7 type (α7-nAChR) presented in the nervous and immune systems and epithelium is a promising therapeutic target for cognitive disfunctions and cancer treatment. Weak toxin from Naja kaouthia venom (WTX) is a non-conventional three-finger neurotoxin, targeting α7-nAChR with weak affinity. There are no data on interaction mode of non-conventional neurotoxins with nAChRs. Using α-bungarotoxin (classical three-finger neurotoxin with high affinity to α7-nAChR), we showed applicability of cryo-EM to study complexes of α7-nAChR extracellular ligand-binding domain (α7-ECD) with toxins. Using cryo-EM structure of the α7-ECD/WTX complex, together with NMR data on membrane active site in the WTX molecule and mutagenesis data, we reconstruct the structure of α7-nAChR/WTX complex in the membrane environment. WTX interacts at the entrance to the orthosteric site located at the receptor intersubunit interface and simultaneously forms the contacts with the membrane surface. WTX interaction mode with α7-nAChR significantly differs from α-bungarotoxin's one, which does not contact the membrane. Our study reveals the important role of the membrane for interaction of non-conventional neurotoxins with the nicotinic receptors.
Collapse
Affiliation(s)
- Zakhar O. Shenkarev
- grid.418853.30000 0004 0440 1573Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow, 117997 Russia ,grid.18763.3b0000000092721542Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), Institutsky Lane 9, Dolgoprudny, Moscow, 141701 Russia
| | - Yuri M. Chesnokov
- grid.18919.380000000406204151National Research Center “Kurchatov Institute”, Academic Kurchatov Sq. 1, Moscow, 123182 Russia ,grid.435159.f0000 0001 1941 7461Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, Leninsky Prospect 59, Moscow, 119333 Russia
| | - Maxim M. Zaigraev
- grid.418853.30000 0004 0440 1573Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow, 117997 Russia ,grid.18763.3b0000000092721542Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), Institutsky Lane 9, Dolgoprudny, Moscow, 141701 Russia
| | - Anton O. Chugunov
- grid.418853.30000 0004 0440 1573Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow, 117997 Russia ,grid.18763.3b0000000092721542Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), Institutsky Lane 9, Dolgoprudny, Moscow, 141701 Russia ,grid.410682.90000 0004 0578 2005National Research University Higher School of Economics, Myasnitskaya Str. 20, Moscow, 101000 Russia
| | - Dmitrii S. Kulbatskii
- grid.418853.30000 0004 0440 1573Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow, 117997 Russia
| | - Milita V. Kocharovskaya
- grid.418853.30000 0004 0440 1573Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow, 117997 Russia ,grid.18763.3b0000000092721542Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), Institutsky Lane 9, Dolgoprudny, Moscow, 141701 Russia
| | - Alexander S. Paramonov
- grid.418853.30000 0004 0440 1573Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow, 117997 Russia
| | - Maxim L. Bychkov
- grid.418853.30000 0004 0440 1573Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow, 117997 Russia
| | - Mikhail A. Shulepko
- grid.418853.30000 0004 0440 1573Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow, 117997 Russia
| | - Dmitry E. Nolde
- grid.418853.30000 0004 0440 1573Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow, 117997 Russia ,grid.410682.90000 0004 0578 2005National Research University Higher School of Economics, Myasnitskaya Str. 20, Moscow, 101000 Russia
| | - Roman A. Kamyshinsky
- grid.18919.380000000406204151National Research Center “Kurchatov Institute”, Academic Kurchatov Sq. 1, Moscow, 123182 Russia ,grid.435159.f0000 0001 1941 7461Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, Leninsky Prospect 59, Moscow, 119333 Russia
| | - Evgeniy O. Yablokov
- grid.418846.70000 0000 8607 342XInstitute of Biomedical Chemistry, Pogodinskaya 10k8, Moscow, 119121 Russia
| | - Alexey S. Ivanov
- grid.418846.70000 0000 8607 342XInstitute of Biomedical Chemistry, Pogodinskaya 10k8, Moscow, 119121 Russia
| | - Mikhail P. Kirpichnikov
- grid.418853.30000 0004 0440 1573Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow, 117997 Russia ,grid.14476.300000 0001 2342 9668Interdisciplinary Scientific and Educational School of Moscow University “Molecular Technologies of the Living Systems and Synthetic Biology”, Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow, 119234 Russia
| | - Ekaterina N. Lyukmanova
- grid.418853.30000 0004 0440 1573Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow, 117997 Russia ,grid.18763.3b0000000092721542Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), Institutsky Lane 9, Dolgoprudny, Moscow, 141701 Russia ,grid.14476.300000 0001 2342 9668Interdisciplinary Scientific and Educational School of Moscow University “Molecular Technologies of the Living Systems and Synthetic Biology”, Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow, 119234 Russia
| |
Collapse
|
6
|
Zhang ZY, Lv Y, Wu W, Yan C, Tang CY, Peng C, Li JT. The structural and functional divergence of a neglected three-finger toxin subfamily in lethal elapids. Cell Rep 2022; 40:111079. [PMID: 35830808 DOI: 10.1016/j.celrep.2022.111079] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 05/04/2022] [Accepted: 06/20/2022] [Indexed: 11/24/2022] Open
Abstract
Bungarus multicinctus is a widely distributed and medically important elapid snake that produces lethal neurotoxic venom. To study and enhance existing antivenom, we explore the complete repertoire of its toxin genes based on de novo chromosome-level assembly and multi-tissue transcriptome data. Comparative genomic analyses suggest that the three-finger toxin family (3FTX) may evolve through the neofunctionalization of flanking LY6E. A long-neglected 3FTX subfamily (i.e., MKA-3FTX) is also investigated. Only one MKA-3FTX gene, which evolves a different protein conformation, is under positive selection and actively transcribed in the venom gland, functioning as a major toxin effector together with MKT-3FTX subfamily homologs. Furthermore, this lethal snake may acquire self-resistance to its β-bungarotoxin via amino acid replacements on fast-evolving KCNA2. This study provides valuable resources for further evolutionary and structure-function studies of snake toxins, which are fundamental for the development of effective antivenoms and drug candidates.
Collapse
Affiliation(s)
- Zhi-Yi Zhang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China
| | - Yunyun Lv
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China; College of Life Science, Neijiang Normal University, Neijiang, Sichuan 641100, China
| | - Wei Wu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Chaochao Yan
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China
| | - Chen-Yang Tang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China
| | - Changjun Peng
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Jia-Tang Li
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China; University of Chinese Academy of Sciences, Beijing 101408, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.
| |
Collapse
|
7
|
Bekbossynova A, Zharylgap A, Filchakova O. Venom-Derived Neurotoxins Targeting Nicotinic Acetylcholine Receptors. Molecules 2021; 26:molecules26113373. [PMID: 34204855 PMCID: PMC8199771 DOI: 10.3390/molecules26113373] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 01/02/2023] Open
Abstract
Acetylcholine was the first neurotransmitter described. The receptors targeted by acetylcholine are found within organisms spanning different phyla and position themselves as very attractive targets for predation, as well as for defense. Venoms of snakes within the Elapidae family, as well as those of marine snails within the Conus genus, are particularly rich in proteins and peptides that target nicotinic acetylcholine receptors (nAChRs). Such compounds are invaluable tools for research seeking to understand the structure and function of the cholinergic system. Proteins and peptides of venomous origin targeting nAChR demonstrate high affinity and good selectivity. This review aims at providing an overview of the toxins targeting nAChRs found within venoms of different animals, as well as their activities and the structural determinants important for receptor binding.
Collapse
|
8
|
Assessing the Binding of Venoms from Aquatic Elapids to the Nicotinic Acetylcholine Receptor Orthosteric Site of Different Prey Models. Int J Mol Sci 2020; 21:ijms21197377. [PMID: 33036249 PMCID: PMC7583753 DOI: 10.3390/ijms21197377] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/25/2020] [Accepted: 10/02/2020] [Indexed: 01/19/2023] Open
Abstract
The evolution of an aquatic lifestyle from land dwelling venomous elapids is a radical ecological modification, bringing about many evolutionary changes from morphology to diet. Diet is an important ecological facet which can play a key role in regulating functional traits such as venom composition and prey-specific targeting of venom. In addition to predating upon novel prey (e.g., fish, fish eggs and invertebrates), the venoms of aquatic elapids also face the challenge of increased prey-escape potential in the aquatic environment. Thus, despite the independent radiation into an aquatic niche on four separate occasions, the venoms of aquatic elapids are evolving under convergent selection pressures. Utilising a biolayer interferometry binding assay, this study set out to elucidate whether crude venoms from representative aquatic elapids were target-specific to the orthosteric site of postsynaptic nicotinic acetylcholine receptor mimotopes of fish compared to other terrestrial prey types. Representatives of the four aquatic lineages were: aquatic coral snakes representative was Micrurus surinamensis;, sea kraits representative was Laticauda colubrina; sea snakes representatives were two Aipysurus spp. and eight Hydrophis spp; and water cobras representative was Naja annulata. No prey-specific differences in crude venom binding were observed from any species tested, except for Aipysurus laevis, which showed slight evidence of prey-potency differences. For Hydrophis caerulescens, H. peronii, H. schistosus and M. surinamensis, there was a lack of binding to the orthosteric site of any target lineage. Subsequent testing on the in vitro chick-biventer cervicis muscle preparation suggested that, while the venoms of these species bound postsynaptically, they bound to allosteric sites rather than orthosteric. Allosteric binding is potentially a weaker but faster-acting form of neurotoxicity and we hypothesise that the switch to allosteric binding is likely due to selection pressures related to prey-escape potential. This research has potentially opened up the possibility of a new functional class of toxins which have never been assessed previously while shedding light on the selection pressures shaping venom evolution.
Collapse
|
9
|
Paramonov AS, Kocharovskaya MV, Tsarev AV, Kulbatskii DS, Loktyushov EV, Shulepko MA, Kirpichnikov MP, Lyukmanova EN, Shenkarev ZO. Structural Diversity and Dynamics of Human Three-Finger Proteins Acting on Nicotinic Acetylcholine Receptors. Int J Mol Sci 2020; 21:E7280. [PMID: 33019770 PMCID: PMC7582953 DOI: 10.3390/ijms21197280] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/26/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022] Open
Abstract
Ly-6/uPAR or three-finger proteins (TFPs) contain a disulfide-stabilized β-structural core and three protruding loops (fingers). In mammals, TFPs have been found in epithelium and the nervous, endocrine, reproductive, and immune systems. Here, using heteronuclear NMR, we determined the three-dimensional (3D) structure and backbone dynamics of the epithelial secreted protein SLURP-1 and soluble domains of GPI-anchored TFPs from the brain (Lynx2, Lypd6, Lypd6b) acting on nicotinic acetylcholine receptors (nAChRs). Results were compared with the data about human TFPs Lynx1 and SLURP-2 and snake α-neurotoxins WTX and NTII. Two different topologies of the β-structure were revealed: one large antiparallel β-sheet in Lypd6 and Lypd6b, and two β-sheets in other proteins. α-Helical segments were found in the loops I/III of Lynx2, Lypd6, and Lypd6b. Differences in the surface distribution of charged and hydrophobic groups indicated significant differences in a mode of TFPs/nAChR interactions. TFPs showed significant conformational plasticity: the loops were highly mobile at picosecond-nanosecond timescale, while the β-structural regions demonstrated microsecond-millisecond motions. SLURP-1 had the largest plasticity and characterized by the unordered loops II/III and cis-trans isomerization of the Tyr39-Pro40 bond. In conclusion, plasticity could be an important feature of TFPs adapting their structures for optimal interaction with the different conformational states of nAChRs.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/chemistry
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Amino Acid Sequence
- Antigens, Ly/chemistry
- Antigens, Ly/genetics
- Antigens, Ly/metabolism
- Binding Sites
- Cloning, Molecular
- Elapid Venoms/chemistry
- Elapid Venoms/metabolism
- Escherichia coli/genetics
- Escherichia coli/metabolism
- GPI-Linked Proteins/chemistry
- GPI-Linked Proteins/genetics
- GPI-Linked Proteins/metabolism
- Gene Expression
- Genetic Vectors/chemistry
- Genetic Vectors/metabolism
- Humans
- Hydrophobic and Hydrophilic Interactions
- Models, Molecular
- Neuropeptides/chemistry
- Neuropeptides/genetics
- Neuropeptides/metabolism
- Nuclear Magnetic Resonance, Biomolecular
- Protein Binding
- Protein Conformation, alpha-Helical
- Protein Conformation, beta-Strand
- Protein Interaction Domains and Motifs
- Protein Isoforms/chemistry
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Receptors, Nicotinic/chemistry
- Receptors, Nicotinic/genetics
- Receptors, Nicotinic/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Sequence Alignment
- Sequence Homology, Amino Acid
- Urokinase-Type Plasminogen Activator/chemistry
- Urokinase-Type Plasminogen Activator/genetics
- Urokinase-Type Plasminogen Activator/metabolism
Collapse
Affiliation(s)
- Alexander S. Paramonov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia; (A.S.P.); (M.V.K.); (A.V.T.); (D.S.K.); (E.V.L.); (M.A.S.); (M.P.K.)
| | - Milita V. Kocharovskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia; (A.S.P.); (M.V.K.); (A.V.T.); (D.S.K.); (E.V.L.); (M.A.S.); (M.P.K.)
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), 141701 Dolgoprudny, Moscow Region, Russia
| | - Andrey V. Tsarev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia; (A.S.P.); (M.V.K.); (A.V.T.); (D.S.K.); (E.V.L.); (M.A.S.); (M.P.K.)
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), 141701 Dolgoprudny, Moscow Region, Russia
| | - Dmitrii S. Kulbatskii
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia; (A.S.P.); (M.V.K.); (A.V.T.); (D.S.K.); (E.V.L.); (M.A.S.); (M.P.K.)
| | - Eugene V. Loktyushov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia; (A.S.P.); (M.V.K.); (A.V.T.); (D.S.K.); (E.V.L.); (M.A.S.); (M.P.K.)
| | - Mikhail A. Shulepko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia; (A.S.P.); (M.V.K.); (A.V.T.); (D.S.K.); (E.V.L.); (M.A.S.); (M.P.K.)
| | - Mikhail P. Kirpichnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia; (A.S.P.); (M.V.K.); (A.V.T.); (D.S.K.); (E.V.L.); (M.A.S.); (M.P.K.)
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Ekaterina N. Lyukmanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia; (A.S.P.); (M.V.K.); (A.V.T.); (D.S.K.); (E.V.L.); (M.A.S.); (M.P.K.)
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), 141701 Dolgoprudny, Moscow Region, Russia
| | - Zakhar O. Shenkarev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia; (A.S.P.); (M.V.K.); (A.V.T.); (D.S.K.); (E.V.L.); (M.A.S.); (M.P.K.)
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), 141701 Dolgoprudny, Moscow Region, Russia
| |
Collapse
|
10
|
Babenko VV, Ziganshin RH, Weise C, Dyachenko I, Shaykhutdinova E, Murashev AN, Zhmak M, Starkov V, Hoang AN, Tsetlin V, Utkin Y. Novel Bradykinin-Potentiating Peptides and Three-Finger Toxins from Viper Venom: Combined NGS Venom Gland Transcriptomics and Quantitative Venom Proteomics of the Azemiops feae Viper. Biomedicines 2020; 8:biomedicines8080249. [PMID: 32731454 PMCID: PMC7460416 DOI: 10.3390/biomedicines8080249] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 01/22/2023] Open
Abstract
Feae's viper Azemipos feae belongs to the Azemiopinae subfamily of the Viperidae family. The effects of Viperidae venoms are mostly coagulopathic with limited neurotoxicity manifested by phospholipases A2. From A. feae venom, we have earlier isolated azemiopsin, a novel neurotoxin inhibiting the nicotinic acetylcholine receptor. To characterize other A. feae toxins, we applied label-free quantitative proteomics, which revealed 120 unique proteins, the most abundant being serine proteinases and phospholipases A2. In total, toxins representing 14 families were identified, among which bradykinin-potentiating peptides with unique amino acid sequences possessed biological activity in vivo. The proteomic analysis revealed also basal (commonly known as non-conventional) three-finger toxins belonging to the group of those possessing neurotoxic activity. This is the first indication of the presence of three-finger neurotoxins in viper venom. In parallel, the transcriptomic analysis of venom gland performed by Illumina next-generation sequencing further revealed 206 putative venom transcripts. Together, the study unveiled the venom proteome and venom gland transciptome of A. feae, which in general resemble those of other snakes from the Viperidae family. However, new toxins not found earlier in viper venom and including three-finger toxins and unusual bradykinin-potentiating peptides were discovered.
Collapse
Affiliation(s)
- Vladislav V. Babenko
- Federal Research and Clinical Centre of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia;
| | - Rustam H. Ziganshin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (R.H.Z.); (M.Z.); (V.S.); (V.T.)
| | - Christoph Weise
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany;
| | - Igor Dyachenko
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, 142290 Moscow Region, Russia; (I.D.); (E.S.); (A.N.M.)
| | - Elvira Shaykhutdinova
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, 142290 Moscow Region, Russia; (I.D.); (E.S.); (A.N.M.)
| | - Arkady N. Murashev
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, 142290 Moscow Region, Russia; (I.D.); (E.S.); (A.N.M.)
| | - Maxim Zhmak
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (R.H.Z.); (M.Z.); (V.S.); (V.T.)
| | - Vladislav Starkov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (R.H.Z.); (M.Z.); (V.S.); (V.T.)
| | - Anh Ngoc Hoang
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City 700000, Vietnam;
| | - Victor Tsetlin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (R.H.Z.); (M.Z.); (V.S.); (V.T.)
| | - Yuri Utkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (R.H.Z.); (M.Z.); (V.S.); (V.T.)
- Correspondence: or ; Tel.: +7-495-336-6522
| |
Collapse
|
11
|
Nirthanan S. Snake three-finger α-neurotoxins and nicotinic acetylcholine receptors: molecules, mechanisms and medicine. Biochem Pharmacol 2020; 181:114168. [PMID: 32710970 DOI: 10.1016/j.bcp.2020.114168] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 12/13/2022]
Abstract
Snake venom three-finger α-neurotoxins (α-3FNTx) act on postsynaptic nicotinic acetylcholine receptors (nAChRs) at the neuromuscular junction (NMJ) to produce skeletal muscle paralysis. The discovery of the archetypal α-bungarotoxin (α-BgTx), almost six decades ago, exponentially expanded our knowledge of membrane receptors and ion channels. This included the localisation, isolation and characterization of the first receptor (nAChR); and by extension, the pathophysiology and pharmacology of neuromuscular transmission and associated pathologies such as myasthenia gravis, as well as our understanding of the role of α-3FNTxs in snakebite envenomation leading to novel concepts of targeted treatment. Subsequent studies on a variety of animal venoms have yielded a plethora of novel toxins that have revolutionized molecular biomedicine and advanced drug discovery from bench to bedside. This review provides an overview of nAChRs and their subtypes, classification of α-3FNTxs and the challenges of typifying an increasing arsenal of structurally and functionally unique toxins, and the three-finger protein (3FP) fold in the context of the uPAR/Ly6/CD59/snake toxin superfamily. The pharmacology of snake α-3FNTxs including their mechanisms of neuromuscular blockade, variations in reversibility of nAChR interactions, specificity for nAChR subtypes or for distinct ligand-binding interfaces within a subtype and the role of α-3FNTxs in neurotoxic envenomation are also detailed. Lastly, a reconciliation of structure-function relationships between α-3FNTx and nAChRs, derived from historical mutational and biochemical studies and emerging atomic level structures of nAChR models in complex with α-3FNTxs is discussed.
Collapse
Affiliation(s)
- Selvanayagam Nirthanan
- School of Medical Science, Griffith Health Group, Griffith University, Gold Coast, Queensland, Australia.
| |
Collapse
|
12
|
Tsetlin VI, Kasheverov IE, Utkin YN. Three-finger proteins from snakes and humans acting on nicotinic receptors: Old and new. J Neurochem 2020; 158:1223-1235. [PMID: 32648941 DOI: 10.1111/jnc.15123] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 06/25/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022]
Abstract
The first toxin to give rise to the three-finger protein (TFP) family was α-bungarotoxin (α-Bgt) from Bungarus multicinctus krait venom. α-Bgt was crucial for research on nicotinic acetylcholine receptors (nAChRs), and in this Review article we focus on present data for snake venom TFPs and those of the Ly6/uPAR family from mammalians (membrane-bound Lynx1 and secreted SLURP-1) interacting with nAChRs. Recently isolated from Bungarus candidus venom, αδ-bungarotoxins differ from α-Bgt: they bind more reversibly and distinguish two binding sites in Torpedo californica nAChR. Naja kaouthia α-cobratoxin, classical blocker of nAChRs, was shown to inhibit certain GABA-A receptor subtypes, whereas α-cobratoxin dimer with 2 intermolecular disulfides has a novel type of 3D structure. Non-conventional toxin WTX has additional 5th disulfide not in the central loop, as α-Bgt, but in the N-terminal loop, like all Ly6/uPAR proteins, and inhibits α7 and Torpedo nAChRs. A water-soluble form of Lynx1, ws-Lynx1, was expressed in E. coli, its 1 H-NMR structure and binding to several nAChRs determined. For SLURP-1, similar information was obtained with its recombinant analogue rSLURP-1. A common feature of ws-Lynx1, rSLURP-1, and WTX is their activity against nAChRs and muscarinic acetylcholine receptors. Synthetic SLURP-1, identical to the natural protein, demonstrated some differences from rSLURP-1 in distinguishing nAChR subtypes. The loop II fragment of the Lynx1 was synthesized having the same µM affinity for the Torpedo nAChR as ws-Lynx1. This review illustrates the productivity of parallel research of nAChR interactions with the two TFP groups.
Collapse
Affiliation(s)
- Victor I Tsetlin
- Department of Molecular Neuroimmune Signalling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation.,PhysBio of MePhi, Moscow, Russian Federation
| | - Igor E Kasheverov
- Department of Molecular Neuroimmune Signalling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation.,Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, Russian Federation
| | - Yuri N Utkin
- Department of Molecular Neuroimmune Signalling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
13
|
Peng X, Dai Z, Wang X. Comparative proteomic analysis to probe into the differences in protein expression profiles and toxicity bases of Latrodectus tredecimguttatus spiderlings and adult spiders. Comp Biochem Physiol C Toxicol Pharmacol 2020; 232:108762. [PMID: 32251727 DOI: 10.1016/j.cbpc.2020.108762] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/26/2020] [Accepted: 03/31/2020] [Indexed: 02/02/2023]
Abstract
The early reports and our previous work confirmed the existence of the toxic proteinaceous components in the body of the L. tredecimguttatus newborn and adult spiders. For revealing the differences in the protein expression profiles and toxicity bases of the spiders at different developmental stages, the spiderling and adult spider proteins were comparatively analyzed using a proteomic strategy. Totals of 429 and 958 proteins were identified from the spiderlings and adult spiders, respectively, with 239 proteins being identified from both of them. Although some similarities between the spiderling and adult spider proteomes exist, there are obvious differences between the two proteomes in size, complexity, molecular weight (MW) distribution, acid-base property, and hydropathicity, etc. Gene ontology (GO) analysis demonstrates that, comparing based on the percentages of proteins, the spiderling and adult spider proteins have generally similar distribution profiles with respect to the subcellular localization, molecular function and biological process. However, there are still some differences between these two sets of proteins in some classifications of the three GO categories. For the adult spiders, latrotoxins together with other toxins and toxin-like proteins, etc. constitute their toxicity basis, whereas the toxicity of the spiderlings depends mainly on the synergistic action of atypical latrotoxins and toxin-like proteins, most of which are different from those of the adult spiders, demonstrating that the spiders at different developmental stages have largely different toxicity mechanisms.
Collapse
Affiliation(s)
- Xiaozhen Peng
- Key Laboratory of Protein Chemistry and Developmental Biology of the Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China; College of Laboratory Medicine, Hunan University of Medicine, Huaihua 418000, Hunan, China
| | - Zhipan Dai
- Key Laboratory of Protein Chemistry and Developmental Biology of the Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China
| | - Xianchun Wang
- Key Laboratory of Protein Chemistry and Developmental Biology of the Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China.
| |
Collapse
|
14
|
Modahl CM, Brahma RK, Koh CY, Shioi N, Kini RM. Omics Technologies for Profiling Toxin Diversity and Evolution in Snake Venom: Impacts on the Discovery of Therapeutic and Diagnostic Agents. Annu Rev Anim Biosci 2019; 8:91-116. [PMID: 31702940 DOI: 10.1146/annurev-animal-021419-083626] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Snake venoms are primarily composed of proteins and peptides, and these toxins have developed high selectivity to their biological targets. This makes venoms interesting for exploration into protein evolution and structure-function relationships. A single venom protein superfamily can exhibit a variety of pharmacological effects; these variations in activity originate from differences in functional sites, domains, posttranslational modifications, and the formations of toxin complexes. In this review, we discuss examples of how the major venom protein superfamilies have diversified, as well as how newer technologies in the omics fields, such as genomics, transcriptomics, and proteomics, can be used to characterize both known and unknown toxins.Because toxins are bioactive molecules with a rich diversity of activities, they can be useful as therapeutic and diagnostic agents, and successful examples of toxin applications in these areas are also reviewed. With the current rapid pace of technology, snake venom research and its applications will only continue to expand.
Collapse
Affiliation(s)
- Cassandra M Modahl
- Protein Science Lab, Department of Biological Sciences, University of Singapore, Singapore 119077; , ,
| | - Rajeev Kungur Brahma
- Protein Science Lab, Department of Biological Sciences, University of Singapore, Singapore 119077; , ,
| | - Cho Yeow Koh
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077;
| | - Narumi Shioi
- Protein Science Lab, Department of Biological Sciences, University of Singapore, Singapore 119077; , , .,Department of Chemistry, Faculty of Science, Fukuoka University, Fukuoka 814-0180, Japan;
| | - R Manjunatha Kini
- Protein Science Lab, Department of Biological Sciences, University of Singapore, Singapore 119077; , ,
| |
Collapse
|
15
|
Deka A, Gogoi A, Das D, Purkayastha J, Doley R. Proteomics of Naja kaouthia venom from North East India and assessment of Indian polyvalent antivenom by third generation antivenomics. J Proteomics 2019; 207:103463. [DOI: 10.1016/j.jprot.2019.103463] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/15/2019] [Accepted: 07/21/2019] [Indexed: 11/25/2022]
|
16
|
Muratspahić E, Freissmuth M, Gruber CW. Nature-Derived Peptides: A Growing Niche for GPCR Ligand Discovery. Trends Pharmacol Sci 2019; 40:309-326. [PMID: 30955896 DOI: 10.1016/j.tips.2019.03.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/26/2019] [Accepted: 03/06/2019] [Indexed: 12/11/2022]
Abstract
G protein-coupled receptors (GPCRs) represent important drug targets, as they regulate pivotal physiological processes and they have proved to be readily druggable. Natural products have been and continue to be amongst the most valuable sources for drug discovery and development. Here, we surveyed small molecules and (poly-)peptides derived from plants, animals, fungi, and bacteria, which modulate GPCR signaling. Among naturally occurring compounds, peptides from plants, cone-snails, snakes, spiders, scorpions, fungi, and bacteria are of particular interest as lead compounds for the development of GPCR ligands, since they cover a chemical space, which differs from that of synthetic small molecules. Peptides, however, face challenges, some of which can be overcome by studying plant-derived compounds. We argue here that the opportunities outweigh the challenges.
Collapse
Affiliation(s)
- Edin Muratspahić
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Austria
| | - Michael Freissmuth
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Austria; Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center for Physiology and Pharmacology, Medical University of Vienna, Austria
| | - Christian W Gruber
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Austria.
| |
Collapse
|
17
|
Vasilyeva NA, Loktyushov EV, Bychkov ML, Shenkarev ZO, Lyukmanova EN. Three-Finger Proteins from the Ly6/uPAR Family: Functional Diversity within One Structural Motif. BIOCHEMISTRY (MOSCOW) 2018. [PMID: 29523067 DOI: 10.1134/s0006297917130090] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The discovery in higher animals of proteins from the Ly6/uPAR family, which have structural homology with snake "three-finger" neurotoxins, has generated great interest in these molecules and their role in the functioning of the organism. These proteins have been found in the nervous, immune, endocrine, and reproductive systems of mammals. There are two types of the Ly6/uPAR proteins: those associated with the cell membrane by GPI-anchor and secreted ones. For some of them (Lynx1, SLURP-1, SLURP-2, Lypd6), as well as for snake α-neurotoxins, the target of action is nicotinic acetylcholine receptors, which are widely represented in the central and peripheral nervous systems, and in many other tissues, including epithelial cells and the immune system. However, the targets of most proteins from the Ly6/uPAR family and the mechanism of their action remain unknown. This review presents data on the structural and functional properties of the Ly6/uPAR proteins, which reveal a variety of functions within a single structural motif.
Collapse
Affiliation(s)
- N A Vasilyeva
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia.
| | | | | | | | | |
Collapse
|
18
|
Dutertre S, Nicke A, Tsetlin VI. Nicotinic acetylcholine receptor inhibitors derived from snake and snail venoms. Neuropharmacology 2017. [PMID: 28623170 DOI: 10.1016/j.neuropharm.2017.06.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The nicotinic acetylcholine receptor (nAChR) represents the prototype of ligand-gated ion channels. It is vital for neuromuscular transmission and an important regulator of neurotransmission. A variety of toxic compounds derived from diverse species target this receptor and have been of elemental importance in basic and applied research. They enabled milestone discoveries in pharmacology and biochemistry ranging from the original formulation of the receptor concept, the first isolation and structural analysis of a receptor protein (the nAChR) to the identification, localization, and differentiation of its diverse subtypes and their validation as a target for therapeutic intervention. Among the venom-derived compounds, α-neurotoxins and α-conotoxins provide the largest families and still represent indispensable pharmacological tools. Application of modified α-neurotoxins provided substantial structural and functional details of the nAChR long before high resolution structures were available. α-bungarotoxin represents not only a standard pharmacological tool and label in nAChR research but also for unrelated proteins tagged with a minimal α-bungarotoxin binding motif. A major advantage of α-conotoxins is their smaller size, as well as superior selectivity for diverse nAChR subtypes that allows their development into ligands with optimized pharmacological and chemical properties and potentially novel drugs. In the following, these two groups of nAChR antagonists will be described focusing on their respective roles in the structural and functional characterization of nAChRs and their development into research tools. In addition, we provide a comparative overview of the diverse α-conotoxin selectivities that can serve as a practical guide for both structure activity studies and subtype classification. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.'
Collapse
Affiliation(s)
- Sébastien Dutertre
- Institut des Biomolécules Max Mousseron, UMR 5247, Université Montpellier - CNRS, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - Annette Nicke
- Walther Straub Institute for Pharmacology and Toxicology, Ludwig-Maximilians-Universität, Nußbaumstr. 26, 80336 Munich, Germany.
| | - Victor I Tsetlin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya str.16/10, Moscow 117999, Russian Federation
| |
Collapse
|
19
|
Tan KY, Tan CH, Sim SM, Fung SY, Tan NH. Geographical venom variations of the Southeast Asian monocled cobra (Naja kaouthia): venom-induced neuromuscular depression and antivenom neutralization. Comp Biochem Physiol C Toxicol Pharmacol 2016; 185-186:77-86. [PMID: 26972756 DOI: 10.1016/j.cbpc.2016.03.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/06/2016] [Accepted: 03/09/2016] [Indexed: 11/30/2022]
Abstract
The Southeast Asian monocled cobras (Naja kaouthia) exhibit geographical variations in their venom proteomes, especially on the composition of neurotoxins. This study compared the neuromuscular depressant activity of the venoms of N. kaouthia from Malaysia (NK-M), Thailand (NK-T) and Vietnam (NK-V), and the neutralization of neurotoxicity by a monospecific antivenom. On chick biventer cervicis nerve-muscle preparation, all venoms abolished the indirect twitches, with NK-T venom being the most potent (shortest t90, time to 90% twitch inhibition), followed by NK-V and NK-M. Acetylcholine and carbachol failed to reverse the blockade, indicating irreversible/pseudo-irreversible post-synaptic neuromuscular blockade. KCl restored the twitches variably (NK-M preparation being the least responsive), consistent with different degree of muscle damage. The findings support that NK-T venom has the most abundant curarimimetic alpha-neurotoxins, while NK-M venom contains more tissue-damaging cytotoxins. Pre-incubation of tissue with N. kaouthia monovalent antivenom (NKMAV) prevented venom-induced twitch depression, with the NK-T preparation needing the largest antivenom dose. NKMAV added after the onset of neuromuscular depression could only halt the inhibitory progression but failed to restore full contraction. The findings highlight the urgency of early antivenom administration to sequester as much circulating neurotoxins as possible, thereby hastening toxin elimination from the circulation. In envenomed mice, NKMAV administered upon the first neurological sign neutralized the neurotoxic effect, with the slowest full recovery noticed in the NK-T group. This is consistent with the high abundance of neurotoxins in the NK-T venom, implying that a larger amount or repeated dosing of NKMAV may be required in NK-T envenomation.
Collapse
Affiliation(s)
- Kae Yi Tan
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Choo Hock Tan
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Si Mui Sim
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Shin Yee Fung
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Nget Hong Tan
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
20
|
Lyukmanova EN, Shulepko MA, Shenkarev ZO, Kasheverov IE, Chugunov AO, Kulbatskii DS, Myshkin MY, Utkin YN, Efremov RG, Tsetlin VI, Arseniev AS, Kirpichnikov MP, Dolgikh DA. Central loop of non-conventional toxin WTX from Naja kaouthia is important for interaction with nicotinic acetylcholine receptors. Toxicon 2016; 119:274-9. [PMID: 27343701 DOI: 10.1016/j.toxicon.2016.06.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/09/2016] [Accepted: 06/21/2016] [Indexed: 10/21/2022]
Abstract
'Three-finger' toxin WTX from Naja kaouthia interacts with nicotinic and muscarinic acetylcholine receptors (nAChRs and mAChRs). Mutagenesis and competition experiments with (125)I-α-bungarotoxin revealed that Arg31 and Arg32 residues from the WTX loop II are important for binding to Torpedo californica and human α7 nAChRs. Computer modeling suggested that loop II occupies the orthosteric binding site at α7 nAChR. The similar toxin interface was previously described as a major determinant of allosteric interactions with mAChRs.
Collapse
Affiliation(s)
- Ekaterina N Lyukmanova
- Lomonosov Moscow State University, Leninskie Gori 1, Moscow 119234, Russian Federation; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya Street 16/10, Moscow 117997, Russian Federation.
| | - Mikhail A Shulepko
- Lomonosov Moscow State University, Leninskie Gori 1, Moscow 119234, Russian Federation; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya Street 16/10, Moscow 117997, Russian Federation
| | - Zakhar O Shenkarev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya Street 16/10, Moscow 117997, Russian Federation; Moscow Institute of Physics and Technology, Institutskiy Pereulok 9, Dolgoprudny, Moscow Region 141700, Russian Federation
| | - Igor E Kasheverov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya Street 16/10, Moscow 117997, Russian Federation
| | - Anton O Chugunov
- Lomonosov Moscow State University, Leninskie Gori 1, Moscow 119234, Russian Federation; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya Street 16/10, Moscow 117997, Russian Federation
| | - Dmitrii S Kulbatskii
- Lomonosov Moscow State University, Leninskie Gori 1, Moscow 119234, Russian Federation; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya Street 16/10, Moscow 117997, Russian Federation
| | - Mikhail Yu Myshkin
- Lomonosov Moscow State University, Leninskie Gori 1, Moscow 119234, Russian Federation; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya Street 16/10, Moscow 117997, Russian Federation
| | - Yuri N Utkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya Street 16/10, Moscow 117997, Russian Federation
| | - Roman G Efremov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya Street 16/10, Moscow 117997, Russian Federation; National Research University Higher School of Economics, Myasnitskaya ul. 20, 101000 Moscow, Russian Federation; Moscow Institute of Physics and Technology, Institutskiy Pereulok 9, Dolgoprudny, Moscow Region 141700, Russian Federation
| | - Victor I Tsetlin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya Street 16/10, Moscow 117997, Russian Federation
| | - Alexander S Arseniev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya Street 16/10, Moscow 117997, Russian Federation; Moscow Institute of Physics and Technology, Institutskiy Pereulok 9, Dolgoprudny, Moscow Region 141700, Russian Federation
| | - Mikhail P Kirpichnikov
- Lomonosov Moscow State University, Leninskie Gori 1, Moscow 119234, Russian Federation; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya Street 16/10, Moscow 117997, Russian Federation
| | - Dmitry A Dolgikh
- Lomonosov Moscow State University, Leninskie Gori 1, Moscow 119234, Russian Federation; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya Street 16/10, Moscow 117997, Russian Federation
| |
Collapse
|
21
|
Modahl CM, Mukherjee AK, Mackessy SP. An analysis of venom ontogeny and prey-specific toxicity in the Monocled Cobra (Naja kaouthia). Toxicon 2016; 119:8-20. [PMID: 27163885 DOI: 10.1016/j.toxicon.2016.04.049] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 04/25/2016] [Accepted: 04/28/2016] [Indexed: 10/21/2022]
Abstract
Venoms of snakes of the family Elapidae (cobras, kraits, mambas, and relatives) are predominantly composed of numerous phospholipases A2 (PLA2s) and three-finger toxins (3FTxs), some of which are lethal while others are not significantly toxic. Currently, the only identified prey-specific toxins are several nonconventional 3FTxs, and given the large diversity of 3FTxs within Monocled Cobra (Naja kaouthia) venom, it was hypothesized that several 3FTxs, previously found to be non-toxic or weakly toxic 3FTxs in murine models, could potentially be toxic towards non-murine prey. Additionally, it was hypothesized that ontogenetic dietary shifts will be correlated with observable changes in specific 3FTx isoform abundance. Adult and juvenile N. kaouthia venom composition was investigated using ion-exchange FPLC, 1D and 2D SDS-PAGE, mass spectrometry, and various enzymatic and LD50 assays. Alpha-cobratoxin (α-elapitoxin) was the only significantly toxic (LD50 < 1 μg/g) 3FTx found in N. kaouthia venom and was equally toxic toward both lizard and mouse models. The abundance and diversity of 3FTxs and most enzyme activities did not vary between adult and juvenile cobra venoms; however, total venom PLA2 activity and specific PLA2 isoforms did vary, with juveniles lacking several of the least acidic PLA2s, and these differences could have both biological (related to predation) and clinical (antivenom efficacy) implications. Nevertheless, the ubiquitous presence of α-cobratoxin in both adult and juvenile cobra venoms, with high toxicity toward both reptiles and mammals, represents a venom compositional strategy wherein a single potent toxin effectively immobilizes a variety of prey types encountered across life history stages.
Collapse
Affiliation(s)
- Cassandra M Modahl
- School of Biological Sciences, University of Northern Colorado, 501 20th St., Greeley, CO 80639-0017, USA
| | - Ashis K Mukherjee
- School of Biological Sciences, University of Northern Colorado, 501 20th St., Greeley, CO 80639-0017, USA; Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, 784028 Assam, India
| | - Stephen P Mackessy
- School of Biological Sciences, University of Northern Colorado, 501 20th St., Greeley, CO 80639-0017, USA.
| |
Collapse
|
22
|
Lyukmanova EN, Shulepko MA, Kudryavtsev D, Bychkov ML, Kulbatskii DS, Kasheverov IE, Astapova MV, Feofanov AV, Thomsen MS, Mikkelsen JD, Shenkarev ZO, Tsetlin VI, Dolgikh DA, Kirpichnikov MP. Human Secreted Ly-6/uPAR Related Protein-1 (SLURP-1) Is a Selective Allosteric Antagonist of α7 Nicotinic Acetylcholine Receptor. PLoS One 2016; 11:e0149733. [PMID: 26905431 PMCID: PMC4764493 DOI: 10.1371/journal.pone.0149733] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 02/04/2016] [Indexed: 11/28/2022] Open
Abstract
SLURP-1 is a secreted toxin-like Ly-6/uPAR protein found in epithelium, sensory neurons and immune cells. Point mutations in the slurp-1 gene cause the autosomal inflammation skin disease Mal de Meleda. SLURP-1 is considered an autocrine/paracrine hormone that regulates growth and differentiation of keratinocytes and controls inflammation and malignant cell transformation. The majority of previous studies of SLURP-1 have been made using fusion constructs containing, in addition to the native protein, extra polypeptide sequences. Here we describe the activity and pharmacological profile of a recombinant analogue of human SLURP-1 (rSLURP-1) differing from the native protein only by one additional N-terminal Met residue. rSLURP-1 significantly inhibited proliferation (up to ~ 40%, EC50 ~ 4 nM) of human oral keratinocytes (Het-1A cells). Application of mecamylamine and atropine,—non-selective inhibitors of nicotinic acetylcholine receptors (nAChRs) and muscarinic acetylcholine receptors, respectively, and anti-α7-nAChRs antibodies revealed α7 type nAChRs as an rSLURP-1 target in keratinocytes. Using affinity purification from human cortical extracts, we confirmed that rSLURP-1 binds selectively to the α7-nAChRs. Exposure of Xenopus oocytes expressing α7-nAChRs to rSLURP-1 caused a significant non-competitive inhibition of the response to acetylcholine (up to ~ 70%, IC50 ~ 1 μM). It was shown that rSLURP-1 binds to α7-nAChRs overexpressed in GH4Cl cells, but does not compete with 125I-α-bungarotoxin for binding to the receptor. These findings imply an allosteric antagonist-like mode of SLURP-1 interaction with α7-nAChRs outside the classical ligand-binding site. Contrary to rSLURP-1, other inhibitors of α7-nAChRs (mecamylamine, α-bungarotoxin and Lynx1) did not suppress the proliferation of keratinocytes. Moreover, the co-application of α-bungarotoxin with rSLURP-1 did not influence antiproliferative activity of the latter. This supports the hypothesis that the antiproliferative activity of SLURP-1 is related to ‘metabotropic’ signaling pathway through α7-nAChR, that activates intracellular signaling cascades without opening the receptor channel.
Collapse
Affiliation(s)
- Ekaterina N. Lyukmanova
- Biological Department, Lomonosov Moscow State University, Moscow, Russian Federation
- Department of Bioengineering, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
- * E-mail:
| | - Mikhail A. Shulepko
- Biological Department, Lomonosov Moscow State University, Moscow, Russian Federation
- Department of Bioengineering, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Denis Kudryavtsev
- Department of Molecular Basics of Neurosignalling, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Maxim L. Bychkov
- Biological Department, Lomonosov Moscow State University, Moscow, Russian Federation
- Department of Bioengineering, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Dmitrii S. Kulbatskii
- Biological Department, Lomonosov Moscow State University, Moscow, Russian Federation
- Department of Bioengineering, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Igor E. Kasheverov
- Department of Molecular Basics of Neurosignalling, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Maria V. Astapova
- Department of Structural Biology, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Alexey V. Feofanov
- Biological Department, Lomonosov Moscow State University, Moscow, Russian Federation
- Department of Structural Biology, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Morten S. Thomsen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- Neurobiology Research Unit, University Hospital, Copenhagen, Copenhagen, Denmark
| | - Jens D. Mikkelsen
- Neurobiology Research Unit, University Hospital, Copenhagen, Copenhagen, Denmark
| | - Zakhar O. Shenkarev
- Biological Department, Lomonosov Moscow State University, Moscow, Russian Federation
- Department of Structural Biology, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
- Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow Region, Russian Federation
| | - Victor I. Tsetlin
- Department of Molecular Basics of Neurosignalling, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Dmitry A. Dolgikh
- Biological Department, Lomonosov Moscow State University, Moscow, Russian Federation
- Department of Bioengineering, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Mikhail P. Kirpichnikov
- Biological Department, Lomonosov Moscow State University, Moscow, Russian Federation
- Department of Bioengineering, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
23
|
Lyukmanova EN, Shenkarev ZO, Shulepko MA, Paramonov AS, Chugunov AO, Janickova H, Dolejsi E, Dolezal V, Utkin YN, Tsetlin VI, Arseniev AS, Efremov RG, Dolgikh DA, Kirpichnikov MP. Structural Insight into Specificity of Interactions between Nonconventional Three-finger Weak Toxin from Naja kaouthia (WTX) and Muscarinic Acetylcholine Receptors. J Biol Chem 2015; 290:23616-30. [PMID: 26242733 PMCID: PMC4583006 DOI: 10.1074/jbc.m115.656595] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 07/29/2015] [Indexed: 11/06/2022] Open
Abstract
Weak toxin from Naja kaouthia (WTX) belongs to the group of nonconventional "three-finger" snake neurotoxins. It irreversibly inhibits nicotinic acetylcholine receptors and allosterically interacts with muscarinic acetylcholine receptors (mAChRs). Using site-directed mutagenesis, NMR spectroscopy, and computer modeling, we investigated the recombinant mutant WTX analogue (rWTX) which, compared with the native toxin, has an additional N-terminal methionine residue. In comparison with the wild-type toxin, rWTX demonstrated an altered pharmacological profile, decreased binding of orthosteric antagonist N-methylscopolamine to human M1- and M2-mAChRs, and increased antagonist binding to M3-mAChR. Positively charged arginine residues located in the flexible loop II were found to be crucial for rWTX interactions with all types of mAChR. Computer modeling suggested that the rWTX loop II protrudes to the M1-mAChR allosteric ligand-binding site blocking the entrance to the orthosteric site. In contrast, toxin interacts with M3-mAChR by loop II without penetration into the allosteric site. Data obtained provide new structural insight into the target-specific allosteric regulation of mAChRs by "three-finger" snake neurotoxins.
Collapse
Affiliation(s)
- Ekaterina N Lyukmanova
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, 117997 Moscow, Russia, the Lomonosov Moscow State University, 119991 Moscow, Russia,
| | - Zakhar O Shenkarev
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, 117997 Moscow, Russia, the Lomonosov Moscow State University, 119991 Moscow, Russia, the Moscow Institute of Physics and Technology, Institutskiy Pereulok 9, Dolgoprudny, Moscow Region 141700, Russian
| | - Mikhail A Shulepko
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, 117997 Moscow, Russia, the Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Alexander S Paramonov
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, 117997 Moscow, Russia, the Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Anton O Chugunov
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, 117997 Moscow, Russia, the Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Helena Janickova
- the Institute of Physiology, Academy of Sciences of the Czech Republic (Public Research Institution), 14220 Prague, Czech Republic, and
| | - Eva Dolejsi
- the Institute of Physiology, Academy of Sciences of the Czech Republic (Public Research Institution), 14220 Prague, Czech Republic, and
| | - Vladimir Dolezal
- the Institute of Physiology, Academy of Sciences of the Czech Republic (Public Research Institution), 14220 Prague, Czech Republic, and
| | - Yuri N Utkin
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, 117997 Moscow, Russia
| | - Victor I Tsetlin
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, 117997 Moscow, Russia
| | - Alexander S Arseniev
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, 117997 Moscow, Russia, the Moscow Institute of Physics and Technology, Institutskiy Pereulok 9, Dolgoprudny, Moscow Region 141700, Russian
| | - Roman G Efremov
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, 117997 Moscow, Russia, the Moscow Institute of Physics and Technology, Institutskiy Pereulok 9, Dolgoprudny, Moscow Region 141700, Russian
| | - Dmitry A Dolgikh
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, 117997 Moscow, Russia, the Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Mikhail P Kirpichnikov
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, 117997 Moscow, Russia, the Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
24
|
Kudryavtsev DS, Shelukhina IV, Son LV, Ojomoko LO, Kryukova EV, Lyukmanova EN, Zhmak MN, Dolgikh DA, Ivanov IA, Kasheverov IE, Starkov VG, Ramerstorfer J, Sieghart W, Tsetlin VI, Utkin YN. Neurotoxins from snake venoms and α-conotoxin ImI inhibit functionally active ionotropic γ-aminobutyric acid (GABA) receptors. J Biol Chem 2015; 290:22747-22758. [PMID: 26221036 PMCID: PMC4566246 DOI: 10.1074/jbc.m115.648824] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 07/20/2015] [Indexed: 12/16/2022] Open
Abstract
Ionotropic receptors of γ-aminobutyric acid (GABAAR) regulate neuronal inhibition and are targeted by benzodiazepines and general anesthetics. We show that a fluorescent derivative of α-cobratoxin (α-Ctx), belonging to the family of three-finger toxins from snake venoms, specifically stained the α1β3γ2 receptor; and at 10 μm α-Ctx completely blocked GABA-induced currents in this receptor expressed in Xenopus oocytes (IC50 = 236 nm) and less potently inhibited α1β2γ2 ≈ α2β2γ2 > α5β2γ2 > α2β3γ2 and α1β3δ GABAARs. The α1β3γ2 receptor was also inhibited by some other three-finger toxins, long α-neurotoxin Ls III and nonconventional toxin WTX. α-Conotoxin ImI displayed inhibitory activity as well. Electrophysiology experiments showed mixed competitive and noncompetitive α-Ctx action. Fluorescent α-Ctx, however, could be displaced by muscimol indicating that most of the α-Ctx-binding sites overlap with the orthosteric sites at the β/α subunit interface. Modeling and molecular dynamic studies indicated that α-Ctx or α-bungarotoxin seem to interact with GABAAR in a way similar to their interaction with the acetylcholine-binding protein or the ligand-binding domain of nicotinic receptors. This was supported by mutagenesis studies and experiments with α-conotoxin ImI and a chimeric Naja oxiana α-neurotoxin indicating that the major role in α-Ctx binding to GABAAR is played by the tip of its central loop II accommodating under loop C of the receptors.
Collapse
Affiliation(s)
- Denis S Kudryavtsev
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russia
| | - Irina V Shelukhina
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russia
| | - Lina V Son
- the Moscow Institute of Physics and Technology, Institutsky Per. 9, Dolgoprudny, Moscow Region 141700, Russia
| | - Lucy O Ojomoko
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russia
| | - Elena V Kryukova
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russia
| | - Ekaterina N Lyukmanova
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russia, the Lomonosov Moscow State University, Moscow 119991, Russia, and
| | - Maxim N Zhmak
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russia, the Syneuro OOO, ul. Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Dmitry A Dolgikh
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russia, the Lomonosov Moscow State University, Moscow 119991, Russia, and
| | - Igor A Ivanov
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russia
| | - Igor E Kasheverov
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russia
| | - Vladislav G Starkov
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russia
| | - Joachim Ramerstorfer
- the Department of Molecular Neurosciences, Center for Brain Research, Medical University Vienna, A-1090 Vienna, Austria
| | - Werner Sieghart
- the Department of Molecular Neurosciences, Center for Brain Research, Medical University Vienna, A-1090 Vienna, Austria
| | - Victor I Tsetlin
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russia
| | - Yuri N Utkin
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russia,
| |
Collapse
|
25
|
Natural compounds interacting with nicotinic acetylcholine receptors: from low-molecular weight ones to peptides and proteins. Toxins (Basel) 2015; 7:1683-701. [PMID: 26008231 PMCID: PMC4448168 DOI: 10.3390/toxins7051683] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 05/07/2015] [Indexed: 12/16/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) fulfill a variety of functions making identification and analysis of nAChR subtypes a challenging task. Traditional instruments for nAChR research are d-tubocurarine, snake venom protein α-bungarotoxin (α-Bgt), and α-conotoxins, neurotoxic peptides from Conus snails. Various new compounds of different structural classes also interacting with nAChRs have been recently identified. Among the low-molecular weight compounds are alkaloids pibocin, varacin and makaluvamines C and G. 6-Bromohypaphorine from the mollusk Hermissenda crassicornis does not bind to Torpedo nAChR but behaves as an agonist on human α7 nAChR. To get more selective α-conotoxins, computer modeling of their complexes with acetylcholine-binding proteins and distinct nAChRs was used. Several novel three-finger neurotoxins targeting nAChRs were described and α-Bgt inhibition of GABA-A receptors was discovered. Information on the mechanisms of nAChR interactions with the three-finger proteins of the Ly6 family was found. Snake venom phospholipases A2 were recently found to inhibit different nAChR subtypes. Blocking of nAChRs in Lymnaea stagnalis neurons was shown for venom C-type lectin-like proteins, appearing to be the largest molecules capable to interact with the receptor. A huge nAChR molecule sensible to conformational rearrangements accommodates diverse binding sites recognizable by structurally very different compounds.
Collapse
|
26
|
Three-finger snake neurotoxins and Ly6 proteins targeting nicotinic acetylcholine receptors: pharmacological tools and endogenous modulators. Trends Pharmacol Sci 2014; 36:109-23. [PMID: 25528970 DOI: 10.1016/j.tips.2014.11.003] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/04/2014] [Accepted: 11/10/2014] [Indexed: 02/07/2023]
Abstract
Snake venom neurotoxins and lymphocyte antigen 6 (Ly6) proteins, most of the latter being membrane tethered by a glycosylphosphatidylinositol (GPI) anchor, have a variety of biological activities, but their three-finger (3F) folding combines them in one Ly6/neurotoxin family. Subsets of two groups, represented by α-neurotoxins and Lynx1, respectively, interact with nicotinic acetylcholine receptors (nAChR) and, hence, are of therapeutic interest for the treatment of neurodegenerative diseases, pain, and cancer. Information on the mechanisms of action and 3D structure of the binding sites, which is required for drug design, is available from the 3D structure of α-neurotoxin complexes with nAChR models. Here, I compare the structural and functional features of α-neurotoxins versus Lynx1 and its homologs to get a clearer picture of Lynx1-nAChR interactions that is necessary for fundamental science and practical applications.
Collapse
|
27
|
Lyukmanova EN, Shulepko MA, Buldakova SL, Kasheverov IE, Shenkarev ZO, Reshetnikov RV, Filkin SY, Kudryavtsev DS, Ojomoko LO, Kryukova EV, Dolgikh DA, Kirpichnikov MP, Bregestovski PD, Tsetlin VI. Water-soluble LYNX1 residues important for interaction with muscle-type and/or neuronal nicotinic receptors. J Biol Chem 2013; 288:15888-99. [PMID: 23585571 DOI: 10.1074/jbc.m112.436576] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human LYNX1, belonging to the Ly6/neurotoxin family of three-finger proteins, is membrane-tethered with a glycosylphosphatidylinositol anchor and modulates the activity of nicotinic acetylcholine receptors (nAChR). Recent preparation of LYNX1 as an individual protein in the form of water-soluble domain lacking glycosylphosphatidylinositol anchor (ws-LYNX1; Lyukmanova, E. N., Shenkarev, Z. O., Shulepko, M. A., Mineev, K. S., D'Hoedt, D., Kasheverov, I. E., Filkin, S. Y., Krivolapova, A. P., Janickova, H., Dolezal, V., Dolgikh, D. A., Arseniev, A. S., Bertrand, D., Tsetlin, V. I., and Kirpichnikov, M. P. (2011) NMR structure and action on nicotinic acetylcholine receptors of water-soluble domain of human LYNX1. J. Biol. Chem. 286, 10618-10627) revealed the attachment at the agonist-binding site in the acetylcholine-binding protein (AChBP) and muscle nAChR but outside it, in the neuronal nAChRs. Here, we obtained a series of ws-LYNX1 mutants (T35A, P36A, T37A, R38A, K40A, Y54A, Y57A, K59A) and examined by radioligand analysis or patch clamp technique their interaction with the AChBP, Torpedo californica nAChR and chimeric receptor composed of the α7 nAChR extracellular ligand-binding domain and the transmembrane domain of α1 glycine receptor (α7-GlyR). Against AChBP, there was either no change in activity (T35A, T37A), slight decrease (K40A, K59A), and even enhancement for the rest mutants (most pronounced for P36A and R38A). With both receptors, many mutants lost inhibitory activity, but the increased inhibition was observed for P36A at α7-GlyR. Thus, there are subtype-specific and common ws-LYNX1 residues recognizing distinct targets. Because ws-LYNX1 was inactive against glycine receptor, its "non-classical" binding sites on α7 nAChR should be within the extracellular domain. Micromolar affinities and fast washout rates measured for ws-LYNX1 and its mutants are in contrast to nanomolar affinities and irreversibility of binding for α-bungarotoxin and similar snake α-neurotoxins also targeting α7 nAChR. This distinction may underlie their different actions, i.e. nAChRs modulation versus irreversible inhibition, for these two types of three-finger proteins.
Collapse
Affiliation(s)
- Ekaterina N Lyukmanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, 117997 Moscow, Russia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Näreoja K, Näsman J. Selective targeting of G-protein-coupled receptor subtypes with venom peptides. Acta Physiol (Oxf) 2012; 204:186-201. [PMID: 21481193 DOI: 10.1111/j.1748-1716.2011.02305.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The G-protein-coupled receptor (GPCR) family is one of the largest gene superfamilies with approx. 370 members responding to endogenous ligands in humans and a roughly equal amount of receptors sensitive to external stimuli from the surrounding. A number of receptors from this superfamily are well recognized targets for medical treatment of various disease conditions, whereas for many others the potential medical benefit of interference is still obscure. A general problem associated with GPCR research and therapeutics is the insufficient specificity of available ligands to differentiate between closely homologous receptor subtypes. In this context, venom peptides could make a significant contribution to the development of more specific drugs. Venoms from certain animals specialized in biochemical hunting contain a mixture of molecules that are directed towards a variety of membrane proteins. Peptide toxins isolated from these mixtures usually exhibit high specificity for their targets. Muscarinic toxins found from mamba snakes attracted much attention during the 1990s. These are 65-66 amino acid long peptides with a structural three-finger folding similar to the α-neurotoxins and they target the muscarinic acetylcholine receptors in a subtype-selective manner. Recently, several members of the three-finger toxins from mamba snakes as well as conotoxins from marine cone snails have been shown to selectively interact with subtypes of adrenergic receptors. In this review, we will discuss the GPCR-directed peptide toxins found from different venoms and how some of these can be useful in exploring specific roles of receptor subtypes.
Collapse
Affiliation(s)
- K Näreoja
- Department of Biosciences, Biochemistry, Åbo Akademi University, Turku, Finland
| | | |
Collapse
|
29
|
Osipov AV, Rucktooa P, Kasheverov IE, Filkin SY, Starkov VG, Andreeva TV, Sixma TK, Bertrand D, Utkin YN, Tsetlin VI. Dimeric α-cobratoxin X-ray structure: localization of intermolecular disulfides and possible mode of binding to nicotinic acetylcholine receptors. J Biol Chem 2012; 287:6725-34. [PMID: 22223648 DOI: 10.1074/jbc.m111.322313] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In Naja kaouthia cobra venom, we have earlier discovered a covalent dimeric form of α-cobratoxin (αCT-αCT) with two intermolecular disulfides, but we could not determine their positions. Here, we report the αCT-αCT crystal structure at 1.94 Å where intermolecular disulfides are identified between Cys(3) in one protomer and Cys(20) of the second, and vice versa. All remaining intramolecular disulfides, including the additional bridge between Cys(26) and Cys(30) in the central loops II, have the same positions as in monomeric α-cobratoxin. The three-finger fold is essentially preserved in each protomer, but the arrangement of the αCT-αCT dimer differs from those of noncovalent crystallographic dimers of three-finger toxins (TFT) or from the κ-bungarotoxin solution structure. Selective reduction of Cys(26)-Cys(30) in one protomer does not affect the activity against the α7 nicotinic acetylcholine receptor (nAChR), whereas its reduction in both protomers almost prevents α7 nAChR recognition. On the contrary, reduction of one or both Cys(26)-Cys(30) disulfides in αCT-αCT considerably potentiates inhibition of the α3β2 nAChR by the toxin. The heteromeric dimer of α-cobratoxin and cytotoxin has an activity similar to that of αCT-αCT against the α7 nAChR and is more active against α3β2 nAChRs. Our results demonstrate that at least one Cys(26)-Cys(30) disulfide in covalent TFT dimers, similar to the monomeric TFTs, is essential for their recognition by α7 nAChR, although it is less important for interaction of covalent TFT dimers with the α3β2 nAChR.
Collapse
Affiliation(s)
- Alexey V Osipov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
da Silva DC, de Medeiros WAA, Batista IDFC, Pimenta DC, Lebrun I, Abdalla FMF, Sandoval MRL. Characterization of a new muscarinic toxin from the venom of the Brazilian coral snake Micrurus lemniscatus in rat hippocampus. Life Sci 2011; 89:931-8. [PMID: 22005021 DOI: 10.1016/j.lfs.2011.09.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 08/08/2011] [Accepted: 09/28/2011] [Indexed: 11/29/2022]
Abstract
AIMS We have isolated a new muscarinic protein (MT-Mlα) from the venom of the Brazilian coral snake Micrurus lemniscatus. MAIN METHODS This small protein, which had a molecular mass of 7,048Da, shared high sequence homology with three-finger proteins that act on cholinergic receptors. The first 12 amino acid residues of the N-terminal sequence were determined to be: Leu-Ile-Cys-Phe-Ile-Cys-Phe-Ser-Pro-Thr-Ala-His. KEY FINDINGS The MT-Mlα was able to displace the [(3)H]QNB binding in the hippocampus of rats. The binding curve in competition experiments with MT-Mlα was indicative of two types of [(3)H]QNB-binding site with pK(i) values of 9.08±0.67 and 6.17±0.19, n=4, suggesting that various muscarinic acetylcholine receptor (mAChR) subtypes may be the target proteins of MT-Mlα. The MT-Mlα and the M(1) antagonist pirenzepine caused a dose-dependent block on total [(3)H]inositol phosphate accumulation induced by carbachol. The IC(50) values for MT-Mlα and pirenzepine were, respectively, 33.1 and 2.26 nM. Taken together, these studies indicate that the MT-Mlα has antagonist effect on mAChRs in rat hippocampus. SIGNIFICANCE The results of the present study show, for the first time, that mAChRs function is drastically affected by MT-Mlα since it not only has affinity for mAChRs but also has the ability to inhibit mAChRs.
Collapse
|
31
|
Servent D, Blanchet G, Mourier G, Marquer C, Marcon E, Fruchart-Gaillard C. Muscarinic toxins. Toxicon 2011; 58:455-63. [PMID: 21906611 DOI: 10.1016/j.toxicon.2011.08.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 07/12/2011] [Accepted: 08/08/2011] [Indexed: 12/15/2022]
Abstract
Muscarinic toxins isolated from the venom of Dendroaspis snakes may interact with a high affinity, large selectivity and various functional properties with muscarinic receptors. Therefore, these toxins are invaluable tools for studying the physiological role, molecular functioning and structural organization of the five subtypes of these G-Protein Coupled Receptors. We review the data on the most relevant results dealing with the isolation/identification, mode of action, structure/function and exploitation of these toxins and finally highlight the unresolved issues related to their pharmacological studies.
Collapse
Affiliation(s)
- Denis Servent
- CEA, Institute of Biology and Technology, Service d'Ingénierie Moléculaire des Protéines, Gif-sur-Yvette 91191, France.
| | | | | | | | | | | |
Collapse
|
32
|
Lyukmanova EN, Shenkarev ZO, Shulepko MA, Mineev KS, D'Hoedt D, Kasheverov IE, Filkin SY, Krivolapova AP, Janickova H, Dolezal V, Dolgikh DA, Arseniev AS, Bertrand D, Tsetlin VI, Kirpichnikov MP. NMR structure and action on nicotinic acetylcholine receptors of water-soluble domain of human LYNX1. J Biol Chem 2011; 286:10618-27. [PMID: 21252236 PMCID: PMC3060513 DOI: 10.1074/jbc.m110.189100] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 12/20/2010] [Indexed: 12/26/2022] Open
Abstract
Discovery of proteins expressed in the central nervous system sharing the three-finger structure with snake α-neurotoxins provoked much interest to their role in brain functions. Prototoxin LYNX1, having homology both to Ly6 proteins and three-finger neurotoxins, is the first identified member of this family membrane-tethered by a GPI anchor, which considerably complicates in vitro studies. We report for the first time the NMR spatial structure for the water-soluble domain of human LYNX1 lacking a GPI anchor (ws-LYNX1) and its concentration-dependent activity on nicotinic acetylcholine receptors (nAChRs). At 5-30 μM, ws-LYNX1 competed with (125)I-α-bungarotoxin for binding to the acetylcholine-binding proteins (AChBPs) and to Torpedo nAChR. Exposure of Xenopus oocytes expressing α7 nAChRs to 1 μM ws-LYNX1 enhanced the response to acetylcholine, but no effect was detected on α4β2 and α3β2 nAChRs. Increasing ws-LYNX1 concentration to 10 μM caused a modest inhibition of these three nAChR subtypes. A common feature for ws-LYNX1 and LYNX1 is a decrease of nAChR sensitivity to high concentrations of acetylcholine. NMR and functional analysis both demonstrate that ws-LYNX1 is an appropriate model to shed light on the mechanism of LYNX1 action. Computer modeling, based on ws-LYNX1 NMR structure and AChBP x-ray structure, revealed a possible mode of ws-LYNX1 binding.
Collapse
Affiliation(s)
- Ekaterina N. Lyukmanova
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, 117997 Moscow, Russia
| | - Zakhar O. Shenkarev
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, 117997 Moscow, Russia
| | - Mikhail A. Shulepko
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, 117997 Moscow, Russia
| | - Konstantin S. Mineev
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, 117997 Moscow, Russia
| | - Dieter D'Hoedt
- the Department of Neuroscience, Centre Medical Universitaire, 1 Rue Michel Servet, 1211 Geneva 4, Switzerland
| | - Igor E. Kasheverov
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, 117997 Moscow, Russia
| | - Sergey Yu. Filkin
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, 117997 Moscow, Russia
| | - Alexandra P. Krivolapova
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, 117997 Moscow, Russia
| | - Helena Janickova
- the Institute of Physiology, Academy of Sciences of the Czech Republic, 14220 Prague, Czech Republic, and
| | - Vladimir Dolezal
- the Institute of Physiology, Academy of Sciences of the Czech Republic, 14220 Prague, Czech Republic, and
| | - Dmitry A. Dolgikh
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, 117997 Moscow, Russia
- Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Alexander S. Arseniev
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, 117997 Moscow, Russia
| | - Daniel Bertrand
- the Department of Neuroscience, Centre Medical Universitaire, 1 Rue Michel Servet, 1211 Geneva 4, Switzerland
| | - Victor I. Tsetlin
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, 117997 Moscow, Russia
| | - Mikhail P. Kirpichnikov
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, 117997 Moscow, Russia
- Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
33
|
Kini RM, Doley R. Structure, function and evolution of three-finger toxins: mini proteins with multiple targets. Toxicon 2010; 56:855-67. [PMID: 20670641 DOI: 10.1016/j.toxicon.2010.07.010] [Citation(s) in RCA: 272] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 07/19/2010] [Indexed: 12/15/2022]
Abstract
Snake venoms are complex mixtures of pharmacologically active peptides and proteins. These protein toxins belong to a small number of superfamilies of proteins. Three-finger toxins belong to a superfamily of non-enzymatic proteins found in all families of snakes. They have a common structure of three beta-stranded loops extending from a central core containing all four conserved disulphide bonds. Despite the common scaffold, they bind to different receptors/acceptors and exhibit a wide variety of biological effects. Thus, the structure-function relationships of this group of toxins are complicated and challenging. Studies have shown that the functional sites in these 'sibling' toxins are located on various segments of the molecular surface. Targeting to a wide variety of receptors and ion channels and hence distinct functions in this group of mini proteins is achieved through a combination of accelerated rate of exchange of segments as well as point mutations in exons. In this review, we describe the structural and functional diversity, structure-function relationships and evolution of this group of snake venom toxins.
Collapse
Affiliation(s)
- R Manjunatha Kini
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore.
| | | |
Collapse
|