1
|
Diacou R, Nandigrami P, Fiser A, Liu W, Ashery-Padan R, Cvekl A. Cell fate decisions, transcription factors and signaling during early retinal development. Prog Retin Eye Res 2022; 91:101093. [PMID: 35817658 PMCID: PMC9669153 DOI: 10.1016/j.preteyeres.2022.101093] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 12/30/2022]
Abstract
The development of the vertebrate eyes is a complex process starting from anterior-posterior and dorso-ventral patterning of the anterior neural tube, resulting in the formation of the eye field. Symmetrical separation of the eye field at the anterior neural plate is followed by two symmetrical evaginations to generate a pair of optic vesicles. Next, reciprocal invagination of the optic vesicles with surface ectoderm-derived lens placodes generates double-layered optic cups. The inner and outer layers of the optic cups develop into the neural retina and retinal pigment epithelium (RPE), respectively. In vitro produced retinal tissues, called retinal organoids, are formed from human pluripotent stem cells, mimicking major steps of retinal differentiation in vivo. This review article summarizes recent progress in our understanding of early eye development, focusing on the formation the eye field, optic vesicles, and early optic cups. Recent single-cell transcriptomic studies are integrated with classical in vivo genetic and functional studies to uncover a range of cellular mechanisms underlying early eye development. The functions of signal transduction pathways and lineage-specific DNA-binding transcription factors are dissected to explain cell-specific regulatory mechanisms underlying cell fate determination during early eye development. The functions of homeodomain (HD) transcription factors Otx2, Pax6, Lhx2, Six3 and Six6, which are required for early eye development, are discussed in detail. Comprehensive understanding of the mechanisms of early eye development provides insight into the molecular and cellular basis of developmental ocular anomalies, such as optic cup coloboma. Lastly, modeling human development and inherited retinal diseases using stem cell-derived retinal organoids generates opportunities to discover novel therapies for retinal diseases.
Collapse
Affiliation(s)
- Raven Diacou
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Prithviraj Nandigrami
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Andras Fiser
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Wei Liu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Ruth Ashery-Padan
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Ales Cvekl
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
2
|
Yu H, Rubinstein M, Low MJ. Developmental single-cell transcriptomics of hypothalamic POMC neurons reveal the genetic trajectories of multiple neuropeptidergic phenotypes. eLife 2022; 11:e72883. [PMID: 35044906 PMCID: PMC8806186 DOI: 10.7554/elife.72883] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 01/18/2022] [Indexed: 11/21/2022] Open
Abstract
Proopiomelanocortin (POMC) neurons of the hypothalamic arcuate nucleus are essential to regulate food intake and energy balance. However, the ontogenetic transcriptional programs that specify the identity and functioning of these neurons are poorly understood. Here, we use single-cell RNA-sequencing (scRNA-seq) to define the transcriptomes characterizing Pomc-expressing cells in the developing hypothalamus and translating ribosome affinity purification with RNA-sequencing (TRAP-seq) to analyze the subsequent translatomes of mature POMC neurons. Our data showed that Pomc-expressing neurons give rise to multiple developmental pathways expressing different levels of Pomc and unique combinations of transcription factors. The predominant cluster, featured by high levels of Pomc and Prdm12 transcripts, represents the canonical arcuate POMC neurons. Additional cell clusters expressing medium or low levels of Pomc mature into different neuronal phenotypes featured by distinct sets of transcription factors, neuropeptides, processing enzymes, cell surface, and nuclear receptors. We conclude that the genetic programs specifying the identity and differentiation of arcuate POMC neurons are diverse and generate a heterogeneous repertoire of neuronal phenotypes early in development that continue to mature postnatally.
Collapse
Affiliation(s)
- Hui Yu
- Department of Molecular and Integrative Physiology, University of Michigan Medical SchoolAnn ArborUnited States
| | - Marcelo Rubinstein
- Department of Molecular and Integrative Physiology, University of Michigan Medical SchoolAnn ArborUnited States
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y TécnicasBuenos AiresArgentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos AiresBuenos AiresArgentina
| | - Malcolm J Low
- Department of Molecular and Integrative Physiology, University of Michigan Medical SchoolAnn ArborUnited States
| |
Collapse
|
3
|
Bevacqua RJ, Lam JY, Peiris H, Whitener RL, Kim S, Gu X, Friedlander MSH, Kim SK. SIX2 and SIX3 coordinately regulate functional maturity and fate of human pancreatic β cells. Genes Dev 2021; 35:234-249. [PMID: 33446570 PMCID: PMC7849364 DOI: 10.1101/gad.342378.120] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 12/08/2020] [Indexed: 12/16/2022]
Abstract
The physiological functions of many vital tissues and organs continue to mature after birth, but the genetic mechanisms governing this postnatal maturation remain an unsolved mystery. Human pancreatic β cells produce and secrete insulin in response to physiological cues like glucose, and these hallmark functions improve in the years after birth. This coincides with expression of the transcription factors SIX2 and SIX3, whose functions in native human β cells remain unknown. Here, we show that shRNA-mediated SIX2 or SIX3 suppression in human pancreatic adult islets impairs insulin secretion. However, transcriptome studies revealed that SIX2 and SIX3 regulate distinct targets. Loss of SIX2 markedly impaired expression of genes governing β-cell insulin processing and output, glucose sensing, and electrophysiology, while SIX3 loss led to inappropriate expression of genes normally expressed in fetal β cells, adult α cells, and other non-β cells. Chromatin accessibility studies identified genes directly regulated by SIX2. Moreover, β cells from diabetic humans with impaired insulin secretion also had reduced SIX2 transcript levels. Revealing how SIX2 and SIX3 govern functional maturation and maintain developmental fate in native human β cells should advance β-cell replacement and other therapeutic strategies for diabetes.
Collapse
Affiliation(s)
- Romina J Bevacqua
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Jonathan Y Lam
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Heshan Peiris
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Robert L Whitener
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Seokho Kim
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Xueying Gu
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Mollie S H Friedlander
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Seung K Kim
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA
- Department of Medicine (Endocrinology), Stanford University School of Medicine, Stanford, California 94305, USA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
4
|
Ogawa Y, Shiraki T, Kojima D, Fukada Y. Homeobox transcription factor Six7 governs expression of green opsin genes in zebrafish. Proc Biol Sci 2016; 282:20150659. [PMID: 26180064 DOI: 10.1098/rspb.2015.0659] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Colour discrimination in vertebrates requires cone photoreceptor cells in the retina, and high-acuity colour vision is endowed by a set of four cone subtypes expressing UV-, blue-, green- and red-sensitive opsins. Previous studies identified transcription factors governing cone photoreceptor development in mice, although loss of blue and green opsin genes in the evolution of mammals make it difficult to understand how high-acuity colour vision was organized during evolution and development. Zebrafish (Danio rerio) represents a valuable vertebrate model for studying colour vision as it retains all the four ancestral vertebrate cone subtypes. Here, by RT-qPCR and in situ hybridization analysis, we found that sine oculis homeobox homolog 7 (six7), a transcription factor widely conserved in ray-finned fish, is expressed predominantly in the cone photoreceptors in zebrafish at both the larval and the adult stages. TAL effector nuclease-based six7 knock-out revealed its roles in expression of green, red and blue cone opsin genes. Most prominently, the six7 deficiency caused a loss of expression of all the green opsins at both the larval and adult stages. six7 is indispensable for the development and/or maintenance of the green cones.
Collapse
Affiliation(s)
- Yohey Ogawa
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tomoya Shiraki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Daisuke Kojima
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yoshitaka Fukada
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
5
|
Beccari L, Marco-Ferreres R, Tabanera N, Manfredi A, Souren M, Wittbrodt B, Conte I, Wittbrodt J, Bovolenta P. A trans-Regulatory Code for the Forebrain Expression of Six3.2 in the Medaka Fish. J Biol Chem 2015; 290:26927-26942. [PMID: 26378230 PMCID: PMC4646366 DOI: 10.1074/jbc.m115.681254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/11/2015] [Indexed: 12/16/2022] Open
Abstract
A well integrated and hierarchically organized gene regulatory network is responsible for the progressive specification of the forebrain. The transcription factor Six3 is one of the central components of this network. As such, Six3 regulates several components of the network, but its upstream regulators are still poorly characterized. Here we have systematically identified such regulators, taking advantage of the detailed functional characterization of the regulatory region of the medaka fish Six3.2 ortholog and of a time/cost-effective trans-regulatory screening, which complemented and overcame the limitations of in silico prediction approaches. The candidates resulting from this search were validated with dose-response luciferase assays and expression pattern criteria. Reconfirmed candidates with a matching expression pattern were also tested with chromatin immunoprecipitation and functional studies. Our results confirm the previously proposed direct regulation of Pax6 and further demonstrate that Msx2 and Pbx1 are bona fide direct regulators of early Six3.2 distribution in distinct domains of the medaka fish forebrain. They also point to other transcription factors, including Tcf3, as additional regulators of different spatial-temporal domains of Six3.2 expression. The activity of these regulators is discussed in the context of the gene regulatory network proposed for the specification of the forebrain.
Collapse
Affiliation(s)
- Leonardo Beccari
- Centro de Biología Molecular "Severo Ochoa," Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, c/ Nicolas Cabrera 1, Madrid 28049, Spain,; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), c/ Nicolas Cabrera 1, Madrid 28049, Spain; Instituto Cajal, Consejo Superior de Investigaciones Científicas, Avda. Dr. Arce 37, Madrid, 28002, Spain,.
| | - Raquel Marco-Ferreres
- Centro de Biología Molecular "Severo Ochoa," Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, c/ Nicolas Cabrera 1, Madrid 28049, Spain,; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), c/ Nicolas Cabrera 1, Madrid 28049, Spain; Instituto Cajal, Consejo Superior de Investigaciones Científicas, Avda. Dr. Arce 37, Madrid, 28002, Spain
| | - Noemi Tabanera
- Centro de Biología Molecular "Severo Ochoa," Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, c/ Nicolas Cabrera 1, Madrid 28049, Spain,; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), c/ Nicolas Cabrera 1, Madrid 28049, Spain; Instituto Cajal, Consejo Superior de Investigaciones Científicas, Avda. Dr. Arce 37, Madrid, 28002, Spain
| | - Anna Manfredi
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Avda. Dr. Arce 37, Madrid, 28002, Spain
| | - Marcel Souren
- the Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Beate Wittbrodt
- the Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Ivan Conte
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Avda. Dr. Arce 37, Madrid, 28002, Spain,; the Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, Pozzuoli, Naples, 80078, Italy
| | - Jochen Wittbrodt
- the Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Paola Bovolenta
- Centro de Biología Molecular "Severo Ochoa," Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, c/ Nicolas Cabrera 1, Madrid 28049, Spain,; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), c/ Nicolas Cabrera 1, Madrid 28049, Spain; Instituto Cajal, Consejo Superior de Investigaciones Científicas, Avda. Dr. Arce 37, Madrid, 28002, Spain,.
| |
Collapse
|
6
|
Monteiro CB, Costa MF, Reguenga C, Lima D, Castro DS, Monteiro FA. Paired related homeobox protein-like 1 (Prrxl1) controls its own expression by a transcriptional autorepression mechanism. FEBS Lett 2014; 588:3475-82. [PMID: 25131932 DOI: 10.1016/j.febslet.2014.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 07/21/2014] [Accepted: 08/08/2014] [Indexed: 10/24/2022]
Abstract
The homeodomain factor paired related homeobox protein-like 1 (Prrxl1) is crucial for proper assembly of dorsal root ganglia (DRG)-dorsal spinal cord (SC) pain-sensing circuit. By performing chromatin immunoprecipitation with either embryonic DRG or dorsal SC, we identified two evolutionarily conserved regions (i.e. proximal promoter and intron 4) of Prrxl1 locus that show tissue-specific binding of Prrxl1. Transcriptional assays confirm the identified regions can mediate repression by Prrxl1, while gain-of-function studies in Prrxl1 expressing ND7/23 cells indicate Prrxl1 can down-regulate its own expression. Altogether, our results suggest that Prrxl1 uses distinct regulatory regions to repress its own expression in DRG and dorsal SC.
Collapse
Affiliation(s)
- César B Monteiro
- Departamento de Biologia Experimental, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal; Morfofisiologia do Sistema Somatosensitivo, IBMC - Instituto de Biologia Celular e Molecular, 4150-180 Porto, Portugal.
| | - Mariana F Costa
- Departamento de Biologia Experimental, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal; Morfofisiologia do Sistema Somatosensitivo, IBMC - Instituto de Biologia Celular e Molecular, 4150-180 Porto, Portugal.
| | - Carlos Reguenga
- Departamento de Biologia Experimental, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal; Morfofisiologia do Sistema Somatosensitivo, IBMC - Instituto de Biologia Celular e Molecular, 4150-180 Porto, Portugal.
| | - Deolinda Lima
- Departamento de Biologia Experimental, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal; Morfofisiologia do Sistema Somatosensitivo, IBMC - Instituto de Biologia Celular e Molecular, 4150-180 Porto, Portugal.
| | - Diogo S Castro
- Molecular Neurobiology, IGC - Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal.
| | - Filipe A Monteiro
- Departamento de Biologia Experimental, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal; Morfofisiologia do Sistema Somatosensitivo, IBMC - Instituto de Biologia Celular e Molecular, 4150-180 Porto, Portugal.
| |
Collapse
|
7
|
Xu PX. The EYA-SO/SIX complex in development and disease. Pediatr Nephrol 2013; 28:843-54. [PMID: 22806561 PMCID: PMC6592036 DOI: 10.1007/s00467-012-2246-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 06/10/2012] [Accepted: 06/12/2012] [Indexed: 10/28/2022]
Abstract
Eyes absent (EYA) and Sine oculis (SO/SIX) proteins function as transcriptional activation complexes and play essential roles in organogenesis during embryonic development in regulating cell proliferation and survival and coordination of particular differentiation programs. Mutations of the Eya and So/Six genes cause profound developmental defects in organisms as diverse as flies, frogs, fish, mice, and humans. EYA proteins also possess an intrinsic phosphatase activity, which is essential for normal development. Here, we review crucial roles of EYA and SO/SIX in development and disease in mice and humans.
Collapse
Affiliation(s)
- Pin-Xian Xu
- Department of Genetics and Genomic Sciences and Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY 10029, USA.
| |
Collapse
|
8
|
Carlin D, Sepich D, Grover VK, Cooper MK, Solnica-Krezel L, Inbal A. Six3 cooperates with Hedgehog signaling to specify ventral telencephalon by promoting early expression of Foxg1a and repressing Wnt signaling. Development 2012; 139:2614-24. [PMID: 22736245 PMCID: PMC3383232 DOI: 10.1242/dev.076018] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2012] [Indexed: 01/18/2023]
Abstract
Six3 exerts multiple functions in the development of anterior neural tissue of vertebrate embryos. Whereas complete loss of Six3 function in the mouse results in failure of forebrain formation, its hypomorphic mutations in human and mouse can promote holoprosencephaly (HPE), a forebrain malformation that results, at least in part, from abnormal telencephalon development. However, the roles of Six3 in telencephalon patterning and differentiation are not well understood. To address the role of Six3 in telencephalon development, we analyzed zebrafish embryos deficient in two out of three Six3-related genes, six3b and six7, representing a partial loss of Six3 function. We found that telencephalon forms in six3b;six7-deficient embryos; however, ventral telencephalic domains are smaller and dorsal domains are larger. Decreased cell proliferation or excess apoptosis cannot account for the ventral deficiency. Instead, six3b and six7 are required during early segmentation for specification of ventral progenitors, similar to the role of Hedgehog (Hh) signaling in telencephalon development. Unlike in mice, we observe that Hh signaling is not disrupted in embryos with reduced Six3 function. Furthermore, six3b overexpression is sufficient to compensate for loss of Hh signaling in isl1- but not nkx2.1b-positive cells, suggesting a novel Hh-independent role for Six3 in telencephalon patterning. We further find that Six3 promotes ventral telencephalic fates through transient regulation of foxg1a expression and repression of the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Dan Carlin
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Diane Sepich
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Vandana K. Grover
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Michael K. Cooper
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Lilianna Solnica-Krezel
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Adi Inbal
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
- Department of Medical Neurobiology, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| |
Collapse
|
9
|
Liu Y, Nandi S, Martel A, Antoun A, Ioshikhes I, Blais A. Discovery, optimization and validation of an optimal DNA-binding sequence for the Six1 homeodomain transcription factor. Nucleic Acids Res 2012; 40:8227-39. [PMID: 22730291 PMCID: PMC3458543 DOI: 10.1093/nar/gks587] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The Six1 transcription factor is a homeodomain protein involved in controlling gene expression during embryonic development. Six1 establishes gene expression profiles that enable skeletal myogenesis and nephrogenesis, among others. While several homeodomain factors have been extensively characterized with regards to their DNA-binding properties, relatively little is known of the properties of Six1. We have used the genomic binding profile of Six1 during the myogenic differentiation of myoblasts to obtain a better understanding of its preferences for recognizing certain DNA sequences. DNA sequence analyses on our genomic binding dataset, combined with biochemical characterization using binding assays, reveal that Six1 has a much broader DNA-binding sequence spectrum than had been previously determined. Moreover, using a position weight matrix optimization algorithm, we generated a highly sensitive and specific matrix that can be used to predict novel Six1-binding sites with highest accuracy. Furthermore, our results support the idea of a mode of DNA recognition by this factor where Six1 itself is sufficient for sequence discrimination, and where Six1 domains outside of its homeodomain contribute to binding site selection. Together, our results provide new light on the properties of this important transcription factor, and will enable more accurate modeling of Six1 function in bioinformatic studies.
Collapse
Affiliation(s)
- Yubing Liu
- Ottawa Institute of Systems Biology and Biochemistry, Microbiology and Immunology Department, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
10
|
Beccari L, Conte I, Cisneros E, Bovolenta P. Sox2-mediated differential activation of Six3.2 contributes to forebrain patterning. Development 2012; 139:151-64. [PMID: 22096077 DOI: 10.1242/dev.067660] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The vertebrate forebrain is patterned during gastrulation into telencephalic, retinal, hypothalamic and diencephalic primordia. Specification of each of these domains requires the concerted activity of combinations of transcription factors (TFs). Paradoxically, some of these factors are widely expressed in the forebrain, which raises the question of how they can mediate regional differences. To address this issue, we focused on the homeobox TF Six3.2. With genomic and functional approaches we demonstrate that, in medaka fish, Six3.2 regulates, in a concentration-dependent manner, telencephalic and retinal specification under the direct control of Sox2. Six3.2 and Sox2 have antagonistic functions in hypothalamic development. These activities are, in part, executed by Foxg1 and Rx3, which seem to be differentially and directly regulated by Six3.2 and Sox2. Together, these data delineate the mechanisms by which Six3.2 diversifies its activity in the forebrain and highlight a novel function for Sox2 as one of the main regulators of anterior forebrain development. They also demonstrate that graded levels of the same TF, probably operating in partially independent transcriptional networks, pattern the vertebrate forebrain along the anterior-posterior axis.
Collapse
Affiliation(s)
- Leonardo Beccari
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, c/Nicolas Cabrera 1, Madrid 28049, Spain
| | | | | | | |
Collapse
|