1
|
Tu L, Fang X, Yang Y, Yu M, Liu H, Liu H, Yin N, Bean JC, Conde KM, Wang M, Li Y, Ginnard OZ, Liu Q, Shi Y, Han J, Zhu Y, Fukuda M, Tong Q, Arenkiel B, Xue M, He Y, Wang C, Xu Y. Vestibular neurons link motion sickness, behavioural thermoregulation and metabolic balance in mice. Nat Metab 2025; 7:742-758. [PMID: 40119169 DOI: 10.1038/s42255-025-01234-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/06/2025] [Indexed: 03/24/2025]
Abstract
Motion sickness is associated with thermoregulation and metabolic control, but the underlying neural circuitry remains largely unknown. Here we show that neurons in the medial vestibular nuclei parvocellular part (MVePC) mediate the hypothermic responses induced by motion. Reactivation of motion-sensitive MVePC neurons recapitulates motion sickness in mice. We show that motion-activated neurons in the MVePC are glutamatergic (MVePCGlu), and that optogenetic stimulation of MVePCGlu neurons mimics motion-induced hypothermia by signalling to the lateral parabrachial nucleus (LPBN). Acute inhibition of MVePC-LPBN circuitry abrogates motion-induced hypothermia. Finally, we show that chronic inhibition of MVePCGlu neurons prevents diet-induced obesity and improves glucose homeostasis without suppressing food intake. Overall, these findings highlight MVePCGlu neurons as a potential target for motion-sickness treatment and obesity control.
Collapse
Affiliation(s)
- Longlong Tu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.
| | - Xing Fang
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Yongjie Yang
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Meng Yu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Hailan Liu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Hesong Liu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Na Yin
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Jonathan C Bean
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Kristine M Conde
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Mengjie Wang
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Yongxiang Li
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Olivia Z Ginnard
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Qingzhuo Liu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Yuhan Shi
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Junying Han
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Yi Zhu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Makoto Fukuda
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Qingchun Tong
- Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Benjamin Arenkiel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Mingshan Xue
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
| | - Yang He
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Chunmei Wang
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Yong Xu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
2
|
DeVuono MV, Venkatesan T, Hillard CJ. Endocannabinoid signaling in stress, nausea, and vomiting. Neurogastroenterol Motil 2025; 37:e14911. [PMID: 39223918 PMCID: PMC11872018 DOI: 10.1111/nmo.14911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 08/06/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Classical antiemetics that target the serotonin system may not be effective in treating certain nausea and vomiting conditions like cyclic vomiting syndrome (CVS) and cannabinoid hyperemesis syndrome (CHS). As a result, there is a need for better therapies to manage the symptoms of these disorders, including nausea, vomiting, and anxiety. Cannabis is often used for its purported antiemetic and anxiolytic effects, given regulation of these processes by the endocannabinoid system (ECS). However, there is considerable evidence that cannabinoids can also produce nausea and vomiting and increase anxiety in certain instances, especially at higher doses. This paradoxical effect of cannabinoids on nausea, vomiting, and anxiety may be due to the dysregulation of the ECS, altering how it maintains these processes and contributing to the pathophysiology of CVS or CHS. PURPOSE The purpose of this review is to highlight the involvement of the ECS in the regulation of stress, nausea, and vomiting. We discuss how prolonged cannabis use, such as in the case of CHS or heightened stress, can dysregulate the ECS and affect its modulation of these functions. The review also examines the evidence for the roles of ECS and stress systems' dysfunction in CVS and CHS to better understand the underlying mechanisms of these conditions.
Collapse
Affiliation(s)
- Marieka V. DeVuono
- Department of Anatomy and Cell BiologySchulich School of Medicine & Dentistry, Western UniversityLondonOntarioCanada
| | - Thangam Venkatesan
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal MedicineThe Ohio State University College of MedicineColumbusOhioUSA
| | - Cecilia J. Hillard
- Department of Pharmacology and Toxicology and Neuroscience Research CenterMedical College of WisconsinMilwaukeeWisconsinUSA
| |
Collapse
|
3
|
Rock EM, Parker LA. The Role of Cannabinoids and the Endocannabinoid System in the Treatment and Regulation of Nausea and Vomiting. Curr Top Behav Neurosci 2024. [PMID: 39739175 DOI: 10.1007/7854_2024_554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Despite using the recommended anti-emetic treatments, control of nausea and vomiting is still an unmet need for cancer patients undergoing chemotherapy treatment. Few properly controlled clinical trials have evaluated the potential of exogenously administered cannabinoids or manipulations of the endogenous cannabinoid (eCB) system to treat nausea and vomiting. In this chapter, we explore the pre-clinical and human clinical trial evidence for the potential of exogenous cannabinoids and manipulations of the eCB system to reduce nausea and vomiting. Although there are limited high-quality human clinical trials, pre-clinical evidence suggests that cannabinoids and manipulations of the eCB system have anti-nausea/anti-emetic potential. The pre-clinical anti-nausea/anti-emetic evidence highlights the need for further evaluation of cannabinoids and manipulations of eCBs and other fatty acid amides in clinical trials.
Collapse
Affiliation(s)
- Erin M Rock
- Department of Psychology and Collaborative Neuroscience Graduate Program, University of Guelph, Guelph, ON, Canada
| | - Linda A Parker
- Department of Psychology and Collaborative Neuroscience Graduate Program, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
4
|
Zhang FX, Xie XH, Guo ZX, Wang HD, Li H, Wu KLK, Chan YS, Li YQ. Evaluating proxies for motion sickness in rodent. IBRO Neurosci Rep 2023; 15:107-115. [PMID: 38204574 PMCID: PMC10776324 DOI: 10.1016/j.ibneur.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 06/29/2023] [Indexed: 01/12/2024] Open
Abstract
Motions sickness (MS) occurs when the brain receives conflicting sensory signals from vestibular, visual and proprioceptive systems about a person's ongoing position and/or motion in relation to space. MS is typified by symptoms such as nausea and emesis and implicates complex physiological aspects of sensations and sensorimotor reflexes. Use of animal models has been integral to unraveling the physiological causality of MS. The commonly used rodents (rat and mouse), albeit lacking vomiting reflex, reliably display phenotypic behaviors of pica (eating of non-nutritive substance) and conditioned taste aversion (CTAver) or avoidance (CTAvoi) which utilize neural substrates with pathways that cause gastrointestinal malaise akin to nausea/emesis. As such, rodent pica and CTAver/CTAvoi have been widely used as proxies for nausea/emesis in studies dealing with neural mechanisms of nausea/emesis and MS, as well as for evaluating therapeutics. This review presents the rationale and experimental evidence that support the use of pica and CTAver/CTAvoi as indices for nausea and emesis. Key experimental steps and cautions required when using rodent MS models are also discussed. Finally, future directions are suggested for studying MS with rodent pica and CTAver/CTAvoi models.
Collapse
Affiliation(s)
- Fu-Xing Zhang
- Department of Human Anatomy, Histology and Embryology & K.K. Leung Brain Research Centre, School of Basic Medicine, The Fourth Military Medical University, Xi’an, PR China
| | - Xiao-Hang Xie
- Department of Human Anatomy, Histology and Embryology & K.K. Leung Brain Research Centre, School of Basic Medicine, The Fourth Military Medical University, Xi’an, PR China
| | - Zi-Xin Guo
- Department of Human Anatomy, Histology and Embryology & K.K. Leung Brain Research Centre, School of Basic Medicine, The Fourth Military Medical University, Xi’an, PR China
| | - Hao-Dong Wang
- Department of Human Anatomy, Histology and Embryology & K.K. Leung Brain Research Centre, School of Basic Medicine, The Fourth Military Medical University, Xi’an, PR China
| | - Hui Li
- Department of Human Anatomy, Histology and Embryology & K.K. Leung Brain Research Centre, School of Basic Medicine, The Fourth Military Medical University, Xi’an, PR China
| | - Kenneth Lap Kei Wu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ying-Shing Chan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
| | - Yun-Qing Li
- Department of Human Anatomy, Histology and Embryology & K.K. Leung Brain Research Centre, School of Basic Medicine, The Fourth Military Medical University, Xi’an, PR China
| |
Collapse
|
5
|
Hasbi A, Madras BK, George SR. Endocannabinoid System and Exogenous Cannabinoids in Depression and Anxiety: A Review. Brain Sci 2023; 13:brainsci13020325. [PMID: 36831868 PMCID: PMC9953886 DOI: 10.3390/brainsci13020325] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023] Open
Abstract
Background: There is a growing liberalization of cannabis-based preparations for medical and recreational use. In multiple instances, anxiety and depression are cited as either a primary or a secondary reason for the use of cannabinoids. Aim: The purpose of this review is to explore the association between depression or anxiety and the dysregulation of the endogenous endocannabinoid system (ECS), as well as the use of phytocannabinoids and synthetic cannabinoids in the remediation of depression/anxiety symptoms. After a brief description of the constituents of cannabis, cannabinoid receptors and the endocannabinoid system, the most important evidence is presented for the involvement of cannabinoids in depression and anxiety both in human and from animal models of depression and anxiety. Finally, evidence is presented for the clinical use of cannabinoids to treat depression and anxiety. Conclusions: Although the common belief that cannabinoids, including cannabis, its main studied components-tetrahydrocannabinol (THC) and cannabidiol (CBD)-or other synthetic derivatives have been suggested to have a therapeutic role for certain mental health conditions, all recent systematic reviews that we report have concluded that the evidence that cannabinoids improve depressive and anxiety disorders is weak, of very-low-quality, and offers no guidance on the use of cannabinoids for mental health conditions within a regulatory framework. There is an urgent need for high-quality studies examining the effects of cannabinoids on mental disorders in general and depression/anxiety in particular, as well as the consequences of long-term use of these preparations due to possible risks such as addiction and even reversal of improvement.
Collapse
Affiliation(s)
- Ahmed Hasbi
- Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Correspondence: (A.H.); (S.R.G.)
| | - Bertha K. Madras
- McLean Hospital, Belmont, MA 02478, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| | - Susan R. George
- Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Correspondence: (A.H.); (S.R.G.)
| |
Collapse
|
6
|
DeVuono MV, La Caprara O, Petrie GN, Limebeer CL, Rock EM, Hill MN, Parker LA. Cannabidiol Interferes with Establishment of Δ 9-Tetrahydrocannabinol-Induced Nausea Through a 5-HT 1A Mechanism. Cannabis Cannabinoid Res 2022; 7:58-64. [PMID: 33998876 PMCID: PMC8864431 DOI: 10.1089/can.2020.0083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Introduction: Cannabinoid hyperemesis syndrome (CHS) is characterized by intense nausea and vomiting brought on by the use of high-dose Δ9-tetrahydrocannabinol (THC), the main psychotropic compound in cannabis. Cannabidiol (CBD), a nonpsychotropic compound found in cannabis, has been shown to interfere with some acute aversive effects of THC. In this study, we evaluated if CBD would interfere with THC-induced nausea through a 5-HT1A receptor mechanism as it has been shown to interfere with nausea produced by lithium chloride (LiCl). Since CHS has been attributed to a dysregulated stress response, we also evaluated if CBD would interfere with THC-induced increase in corticosterone (CORT). Materials and Methods: The potential of CBD (5 mg/kg, ip) to suppress THC-induced conditioned gaping (a measure of nausea) was evaluated in rats, as well as the potential of the 5-HT1A receptor antagonist, WAY-100635 (WAY; 0.1 mg/kg, ip), to reverse the suppression of THC-induced conditioned gaping by CBD. Last, the effect of CBD (5 mg/kg, ip) on THC-induced increase in serum CORT concentration was evaluated. Results: Pretreatment with CBD (5 mg/kg, ip) interfered with the establishment of THC-induced conditioned gaping (p=0.007, relative to vehicle [VEH] pretreatment), and this was reversed by pretreatment with 0.1 mg/kg WAY. This dose of WAY had no effect on gaping on its own. THC (10 mg/kg, ip) significantly increased serum CORT compared with VEH-treated rats (p=0.04). CBD (5 mg/kg, ip) pretreatment reversed the THC-induced increase in CORT. Conclusions: CBD attenuated THC-induced nausea as well as THC-induced elevation in CORT. The attenuation of THC-induced conditioned gaping by CBD was mediated by its action on 5-HT1A receptors, similar to that of LiCl-induced nausea.
Collapse
Affiliation(s)
- Marieka V. DeVuono
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, Canada
| | - Olivia La Caprara
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, Canada
| | - Gavin N. Petrie
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada.,Department of Psychiatry, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Cheryl L. Limebeer
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, Canada
| | - Erin M. Rock
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, Canada
| | - Matthew N. Hill
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada.,Department of Psychiatry, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Linda A. Parker
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, Canada.,*Address correspondence to: Linda A. Parker, PhD, Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON N1G 2W1, Canada,
| |
Collapse
|
7
|
Rock EM, Limebeer CL, Pertwee RG, Mechoulam R, Parker LA. Therapeutic Potential of Cannabidiol, Cannabidiolic Acid, and Cannabidiolic Acid Methyl Ester as Treatments for Nausea and Vomiting. Cannabis Cannabinoid Res 2021; 6:266-274. [PMID: 34115951 DOI: 10.1089/can.2021.0041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Introduction: Nausea and vomiting are the most distressing symptoms reported by oncology patients undergoing anticancer treatment. With the currently available treatments, vomiting and especially nausea remain problematic, highlighting the need for alternative treatments. Discussion: Here we review in vitro and in vivo evidence for the effectiveness of the nonpsychoactive cannabinoid cannabidiol (CBD) in managing nausea and vomiting. In addition, we also review the evidence for CBD's acidic precursor, cannabidiolic acid (CBDA), and a methylated version of CBDA (CBDA-ME) in these phenomena. Finally, we explore the potential role of CBD in the treatment of cannabinoid hyperemesis syndrome. Conclusions: CBD has demonstrated efficacy in reducing nausea and vomiting, with CBDA and CBDA-ME being more potent. The data suggest a need for these compounds to be evaluated in clinical trials for their ability to reduce nausea and/or vomiting.
Collapse
Affiliation(s)
- Erin M Rock
- Collaborative Neuroscience Program, Department of Psychology, University of Guelph, Guelph, Ontario, Canada
| | - Cheryl L Limebeer
- Collaborative Neuroscience Program, Department of Psychology, University of Guelph, Guelph, Ontario, Canada
| | - Roger G Pertwee
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Raphael Mechoulam
- Institute for Drug Research, Medical Faculty, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Linda A Parker
- Collaborative Neuroscience Program, Department of Psychology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
8
|
Rock EM, Parker LA. Constituents of Cannabis Sativa. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1264:1-13. [PMID: 33332000 DOI: 10.1007/978-3-030-57369-0_1] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Cannabis sativa plant has been used medicinally and recreationally for thousands of years, but recently only relatively some of its constituents have been identified. There are more than 550 chemical compounds in cannabis, with more than 100 phytocannabinoids being identified, including Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD). These phytocannabinoids work by binding to the cannabinoid receptors, as well as other receptor systems. Also within cannabis are the aromatic terpenes, more than 100 of which have been identified. Cannabis and its constituents have been indicated as therapeutic compounds in numerous medical conditions, such as pain, anxiety, epilepsy, nausea and vomiting, and post-traumatic stress disorder. This chapter provides an overview of some of the biological effects of a number of the cannabinoids and terpenes, as well as discussing their known mechanisms of action and evidence of potential therapeutic effects.
Collapse
Affiliation(s)
- Erin M Rock
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - Linda A Parker
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
9
|
DeVuono MV, Hrelja KM, Petrie GN, Limebeer CL, Rock EM, Hill MN, Parker LA. Nausea-Induced Conditioned Gaping Reactions in Rats Produced by High-Dose Synthetic Cannabinoid, JWH-018. Cannabis Cannabinoid Res 2020; 5:298-304. [PMID: 33381644 DOI: 10.1089/can.2019.0103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Introduction: Cannabinoid hyperemesis syndrome is becoming a more prominently reported side effect of cannabis containing high-dose Δ9-tetrahydrocannabinol (THC) and designer cannabinoid drugs such as "Spice." One active ingredient that has been found in "Spice" is 1-pentyl-3-(1-naphthoyl)indole (JWH-018), a synthetic full agonist of the cannabinoid 1 (CB1) receptor. In this study, we evaluated the potential of different doses of JWH-018 to produce conditioned gaping in rats, an index of nausea. Materials and Methods: Rats received 3 daily conditioning trials in which saccharin was paired with JWH-018 (0.0, 0.1, 1, and 3 mg/kg, intraperitoneal [i.p.]). Then the potential of pretreatment with the CB1 antagonist, rimonabant (SR), to prevent JWH-018-induced conditioned gaping was determined. To begin to understand the potential mechanism underlying JWH-018-induced nausea, serum collected from trunk blood was subjected to a corticosterone (CORT) analysis in rats receiving three daily injections with vehicle (VEH) or JWH-018 (3 mg/kg). Results: At doses of 1 and 3 mg/kg (i.p.), JWH-018 produced nausea-like conditioned gaping reactions. The conditioned gaping produced by 3 mg/kg JWH-018 was reversed by pretreatment with rimonabant, which did not modify gaping on its own. Treatment with JWH-018 elevated serum CORT levels compared to vehicle-treated rats. Conclusions: As we have previously reported with high-dose THC, JWH-018 produced conditioned gaping in rats, reflective of a nausea effect mediated by its action on CB1 receptors and accompanied by elevated CORT, reflective of hypothalamic-pituitary-adrenal (HPA) activation.
Collapse
Affiliation(s)
- Marieka V DeVuono
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, Canada
| | - Kelly M Hrelja
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, Canada
| | - Gavin N Petrie
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada.,Department of Psychiatry, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Cheryl L Limebeer
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, Canada
| | - Erin M Rock
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, Canada
| | - Matthew N Hill
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada.,Department of Psychiatry, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Linda A Parker
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, Canada
| |
Collapse
|
10
|
DeVuono MV, La Caprara O, Sullivan MT, Bath A, Petrie GN, Limebeer CL, Rock EM, Hill MN, Parker LA. Role of the stress response and the endocannabinoid system in Δ 9-tetrahydrocannabinol (THC)-induced nausea. Psychopharmacology (Berl) 2020; 237:2187-2199. [PMID: 32399633 DOI: 10.1007/s00213-020-05529-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/16/2020] [Indexed: 12/20/2022]
Abstract
RATIONALE Dysregulation of the endocannabinoid (eCB) system by high doses of Δ9-tetrahydrocannabinol (THC) is hypothesized to generate a dysfunctional hypothalamic-pituitary-adrenal (HPA) axis contributing to cannabinoid hyperemesis syndrome (CHS). OBJECTIVES AND METHODS Using the conditioned gaping model of nausea, we aimed to determine if pre-treatments that interfere with stress, or an anti-emetic drug, interfere with THC-induced nausea in male rats. The corticotropin-releasing hormone (CRH) antagonist, antalarmin, was given to inhibit the HPA axis during conditioning. Since eCBs inhibit stress, MJN110 (which elevates 2-arachidonylglycerol (2-AG)) and URB597 (which elevates anandamide (AEA)) were also tested. Propranolol (β-adrenergic antagonist) and WAY-100635 (5-HT1A antagonist) attenuate HPA activation by cannabinoids and, therefore, were assessed. In humans, CHS symptoms are not alleviated by anti-emetic drugs, such as ondansetron (5-HT3 antagonist); however, benzodiazepines are effective. Therefore, ondansetron and chlordiazepoxide were tested. To determine if HPA activation by THC is dose-dependent, corticosterone (CORT) was analyzed from serum of rats treated with 0.0, 0.5, or 10 mg/kg THC. RESULTS Antalarmin (10 and 20 mg/kg), MJN110 (10 mg/kg), URB597 (0.3 mg/kg), propranolol (2.5 and 5 mg/kg), WAY-100635 (0.5 mg/kg), and chlordiazepoxide (5 mg/kg) interfered with THC-induced conditioned gaping, but the anti-emetic ondansetron (0.1 and 0.01 mg/kg) did not. THC produced significantly higher CORT levels at 10 mg/kg than at 0.0 and 0.5 mg/kg THC. CONCLUSIONS Treatments that interfere with the stress response also inhibit THC-induced conditioned gaping, but a typical anti-emetic drug does not, supporting the hypothesis that THC-induced nausea, and CHS, is a result of a dysregulated stress response.
Collapse
Affiliation(s)
- Marieka V DeVuono
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Olivia La Caprara
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Megan T Sullivan
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Alexandra Bath
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Gavin N Petrie
- Departments of Cell Biology and, Anatomy and Psychiatry, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Cheryl L Limebeer
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Erin M Rock
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Matthew N Hill
- Departments of Cell Biology and, Anatomy and Psychiatry, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Linda A Parker
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
11
|
DeVuono MV, Parker LA. Cannabinoid Hyperemesis Syndrome: A Review of Potential Mechanisms. Cannabis Cannabinoid Res 2020; 5:132-144. [PMID: 32656345 PMCID: PMC7347072 DOI: 10.1089/can.2019.0059] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Introduction: Cannabinoids have long been known for their ability to treat nausea and vomiting. Recent reports, however, have highlighted the paradoxical proemetic effects of cannabinoids. Cannabinoid hyperemesis syndrome (CHS) is characterized by cyclical episodes of nausea and vomiting, accompanied by abdominal pain following prolonged, high-dose cannabis use, which is alleviated by hot baths and showers. Little is known about the cause of this syndrome. Discussion: Cannabinoids produce a biphasic effect on nausea and vomiting, with low doses having an antiemetic effect and high doses producing emesis. Presentation and treatment of CHS are similar to cyclical vomiting syndrome as well as chemotherapy-related anticipatory nausea and vomiting, suggesting that these phenomena may share mechanisms. The prevalence of CHS is not known because of the symptomatic overlap with other disorders and the lack of knowledge of the syndrome by the public and physicians. Treatment with typical antiemetic drugs is ineffective for CHS, but anxiolytic and sedative drugs, along with hot showers, seem to be consistently effective at reducing symptoms. The only known way to permanently end CHS, however, is abstinence from cannabinoids. Case studies and limited pre-clinical data on CHS indicate that prolonged high doses of the main psychotropic compound in cannabis, Δ9-tetrahydrocannabinol (THC), result in changes to the endocannabinoid system by acting on the cannabinoid 1 (CB1) receptor. These endocannabinoid system changes can dysregulate stress and anxiety responses, thermoregulation, the transient receptor potential vanilloid system, and several neurotransmitters systems, and are thus potential candidates for mediating the pathophysiology of CHS. Conclusions: Excessive cannabinoid administration disrupts the normal functioning of the endocannabinoid system, which may cause CHS. More clinical and pre-clinical research is needed to fully understand the underlying pathophysiology of this disorder and the negative consequences of prolonged high-dose cannabis use.
Collapse
Affiliation(s)
- Marieka V. DeVuono
- Department of Psychology and Collabortive Neuroscience Program, University of Guelph, Guelph, Canada
| | - Linda A. Parker
- Department of Psychology and Collabortive Neuroscience Program, University of Guelph, Guelph, Canada
| |
Collapse
|
12
|
DeVuono MV, Hrelja KM, Sabaziotis L, Rajna A, Rock EM, Limebeer CL, Mutch DM, Parker LA. Conditioned gaping produced by high dose Δ 9-tetrahydracannabinol: Dysregulation of the hypothalamic endocannabinoid system. Neuropharmacology 2018; 141:272-282. [PMID: 30195587 DOI: 10.1016/j.neuropharm.2018.08.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/24/2018] [Accepted: 08/28/2018] [Indexed: 11/17/2022]
Abstract
Δ9-tetrahydracannabinol (THC) is recognized as an effective treatment for nausea and vomiting via its action on the cannabinoid 1 (CB1) receptor. Paradoxically, there is evidence that THC can also produce nausea and vomiting. Using the conditioned gaping model of nausea in rats, we evaluated the ability of several doses of THC (0.0, 0.5, 5 and 10 mg/kg, i.p.) to produced conditioned gaping reactions. We then investigated the ability of the CB1 receptor antagonist, rimonabant, to block the establishment of THC-induced conditioned gaping. Real-time polymerase chain reaction (RT-PCR) was then used to investigate changes in endocannabinoid related genes in various brain regions in rats chronically treated with vehicle (VEH), 0.5 or 10 mg/kg THC. THC produced dose-dependent gaping, with 5 and 10 mg/kg producing significantly more gaping reactions than VEH or 0.5 mg/kg THC, a dose known to have anti-emetic properties. Pre-treatment with rimonabant reversed this effect, indicating that THC-induced conditioned gaping was CB1 receptor mediated. The RT-PCR analysis revealed an upregulation of genes for the degrading enzyme, monoacylglycerol lipase (MAGL), of the endocannabinoid, 2-arachidolyl glycerol (2-AG), in the hypothalamus of rats treated with 10 mg/kg THC. No changes in the expression of relevant genes were found in nausea (interoceptive insular cortex) or vomiting (dorsal vagal complex) related brain regions. These findings support the hypothesis that THC-induced nausea is a result of a dysregulated hypothalamic-pituitary-adrenal axis leading to an overactive stress response.
Collapse
Affiliation(s)
- Marieka V DeVuono
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, N1G 2W1, ON, Canada
| | - Kelly M Hrelja
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, N1G 2W1, ON, Canada
| | - Lauren Sabaziotis
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, N1G 2W1, ON, Canada
| | - Alex Rajna
- Department of Human Health and Nutritional Science, University of Guelph, Guelph, N1G 2W1, ON, Canada
| | - Erin M Rock
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, N1G 2W1, ON, Canada
| | - Cheryl L Limebeer
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, N1G 2W1, ON, Canada
| | - David M Mutch
- Department of Human Health and Nutritional Science, University of Guelph, Guelph, N1G 2W1, ON, Canada
| | - Linda A Parker
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, N1G 2W1, ON, Canada.
| |
Collapse
|
13
|
Javid FA, Afshin-Javid S, Horn CC. Further investigation of the effects of 5-hydroxytryptamine, 8-OH-DPAT and DOI to mediate contraction and relaxation responses in the intestine and emesis in Suncus murinus. Eur J Pharmacol 2018; 821:79-87. [PMID: 29277716 DOI: 10.1016/j.ejphar.2017.12.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/20/2017] [Accepted: 12/21/2017] [Indexed: 11/29/2022]
Abstract
5-HT receptors are implicated in many gastrointestinal disorders. However, the precise role of 5-HT in mediating GI responses in Suncus murnius is still unclear. Therefore in this study, the effects of 5-HT and its agonists were investigated in Suncus. The involvement of 5-HT2C receptors in mediating emesis was also investigated. The ability of 5-HT and its agonists/antagonists at 5-HT1A and 5-HT2 to modify GI motility was investigated in vitro and in vivo. WAY100635 (a 5-HT1A antagonist) inhibited the contraction response to 5-HT in the proximal segments without affecting the maximum response; whilst enhancing the contraction to 5-HT (>30.0nM) in the distal intestine. The selective 5-HT2A and 5-HT2B receptor antagonists MDL-100907 and RS-127445 attenuated 5-HT-induced contractions (<10.0µM) in the distal segments. RS-127445 also attenuated 5-HT-induced contractions in the central segments. The selective 5-HT2C receptor antagonist SB-242084, attenuated the responses to 5-HT (> 3.0nM) in the proximal and central but not the distal regions. 8-OH-DPAT-induced relaxation was resistant to the antagonism by 5-HT1A/7 antagonists. DOI in the presence of 5-HT1A/2A/2B/2C antagonists induced greater contraction responses (>1.0µM) in most tissues, whilst RS-127445, or SB-242084, reduced the responses to DOI (< 1.0µM) in some tissues. SB-242084 also suppressed emesis-induced by motion and intragastric CuSO4. In conclusion, within different regions of intestine, 5-HT2 receptors are differently involved in contraction and emetic responses and that 8-OH-DPAT induces relaxation via non-5-HT1A/7 receptors. Suncus could provide a model to investigate these diverse actions of 5-HT.
Collapse
Affiliation(s)
- Farideh A Javid
- Division of Pharmacy and Pharmaceutical Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK.
| | - Saeed Afshin-Javid
- College of Engineering Design and Physical Sciences Tower D -203, Brunel University London, Uxbridge UB8 3PH, UK
| | - Charles C Horn
- Biobehavioral Oncology Program, University of Pittsburgh Cancer Institute, United States; Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, University of Pittsburgh School of Medicine, United States; Department of Anesthesiology, University of Pittsburgh School of Medicine, United States; Center for Neuroscience, University of Pittsburgh, United States
| |
Collapse
|
14
|
Abstract
Humans swallow a great variety and often large amounts of chemicals as nutrients, incidental food additives and contaminants, drugs, and inhaled particles and chemicals, thus exposing the gastrointestinal tract to many potentially toxic substances. It serves as a barrier in many cases to protect other components of the body from such substances and infections. Fortunately, the gastrointestinal tract is remarkably robust and generally is able to withstand multiple daily assaults by the chemicals to which it is exposed. Some chemicals, however, can affect one or more aspects of the gastrointestinal tract to produce abnormal events that reflect toxicity. It is the purpose of this chapter to evaluate the mechanisms by which toxic chemicals produce their deleterious effects and to determine the consequences of the toxicity on integrity of gastrointestinal structure and function. Probably because of the intrinsic ability of the gastrointestinal tract to resist toxic chemicals, there is a paucity of data regarding gastrointestinal toxicology. It is therefore necessary in many cases to extrapolate toxic mechanisms from infectious processes, inflammatory conditions, ischemia, and other insults in addition to more conventional chemical sources of toxicity.
Collapse
|
15
|
Zhang LL, Wang JQ, Qi RR, Pan LL, Li M, Cai YL. Motion Sickness: Current Knowledge and Recent Advance. CNS Neurosci Ther 2015; 22:15-24. [PMID: 26452639 DOI: 10.1111/cns.12468] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 09/10/2015] [Accepted: 09/10/2015] [Indexed: 01/02/2023] Open
Abstract
Motion sickness (MS) is a common physiological response to real or virtual motion. Numerous studies have investigated the neurobiological mechanism and the control measures of MS. This review summarizes the current knowledge about pathogenesis and pathophysiology, prediction, evaluation, and countermeasures of MS. The sensory conflict hypothesis is the most widely accepted theory for MS. Both the hippocampus and vestibular cortex might play a role in forming internal model. The pathophysiology focuses on the visceral afference, thermoregulation and MS-related neuroendocrine. Single-nucleotide polymorphisms (SNPs) in some genes and epigenetic modulation might contribute to MS susceptibility and habituation. Questionnaires, heart rate variability (HRV) and electrogastrogram (EGG) are useful for diagnosing and evaluating MS. We also list MS medications to guide clinical practice. Repeated real motion exposure and combined visual-vestibular interaction training accelerate the progress of habituation. Behavioral and dietary countermeasures, as well as physiotherapy, are also effective in alleviating MS symptoms.
Collapse
Affiliation(s)
- Li-Li Zhang
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Jun-Qin Wang
- Department of Nautical Injury Prevention, Faculty of Navy Medicine, Second Military Medical University, Shanghai, China
| | - Rui-Rui Qi
- Department of Nautical Injury Prevention, Faculty of Navy Medicine, Second Military Medical University, Shanghai, China
| | - Lei-Lei Pan
- Department of Nautical Injury Prevention, Faculty of Navy Medicine, Second Military Medical University, Shanghai, China
| | - Min Li
- Department of Nautical Injury Prevention, Faculty of Navy Medicine, Second Military Medical University, Shanghai, China
| | - Yi-Ling Cai
- Department of Nautical Injury Prevention, Faculty of Navy Medicine, Second Military Medical University, Shanghai, China
| |
Collapse
|
16
|
Rock EM, Kopstick RL, Limebeer CL, Parker LA. Tetrahydrocannabinolic acid reduces nausea-induced conditioned gaping in rats and vomiting in Suncus murinus. Br J Pharmacol 2014; 170:641-8. [PMID: 23889598 DOI: 10.1111/bph.12316] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 07/05/2013] [Accepted: 07/19/2013] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE We evaluated the anti-emetic and anti-nausea properties of the acid precursor of Δ(9) -tetrahydrocannabinol (THC), tetrahydrocannabinolic acid (THCA), and determined its mechanism of action in these animal models. EXPERIMENTAL APPROACH We investigated the effect of THCA on lithium chloride- (LiCl) induced conditioned gaping (nausea-induced behaviour) to a flavour, and context (a model of anticipatory nausea) in rats, and on LiCl-induced vomiting in Suncus murinus. Furthermore, we investigated THCA's ability to induce hypothermia and suppress locomotion [rodent tasks to assess cannabinoid1 (CB1 ) receptor agonist-like activity], and measured plasma and brain THCA and THC levels. We also determined whether THCA's effect could be blocked by pretreatment with SR141716 (SR, a CB1 receptor antagonist). KEY RESULTS In rats, THCA (0.05 and/or 0.5 mg·kg(-1) ) suppressed LiCl-induced conditioned gaping to a flavour and context; the latter effect blocked by the CB1 receptor antagonist, SR, but not by the 5-hydroxytryptamine-1A receptor antagonist, WAY100635. In S. murinus, THCA (0.05 and 0.5 mg·kg(-1) ) reduced LiCl-induced vomiting, an effect that was reversed with SR. A comparatively low dose of THC (0.05 mg·kg(-1) ) did not suppress conditioned gaping to a LiCl-paired flavour or context. THCA did not induce hypothermia or reduce locomotion, indicating non-CB1 agonist-like effects. THCA, but not THC was detected in plasma samples. CONCLUSIONS AND IMPLICATIONS THCA potently reduced conditioned gaping in rats and vomiting in S. murinus, effects that were blocked by SR. These data suggest that THCA may be a more potent alternative to THC in the treatment of nausea and vomiting.
Collapse
Affiliation(s)
- E M Rock
- Department of Psychology, University of Guelph, Guelph, ON, Canada
| | | | | | | |
Collapse
|
17
|
Zheng Y, Wang XL, Mo FF, Li M. Dexamethasone alleviates motion sickness in rats in part by enhancing the endocannabinoid system. Eur J Pharmacol 2014; 727:99-105. [PMID: 24508383 DOI: 10.1016/j.ejphar.2014.01.047] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 01/22/2014] [Accepted: 01/24/2014] [Indexed: 01/09/2023]
Abstract
Low-dose dexamethasone has been widely used for the prevention of nausea and vomiting after chemotherapy and surgical procedures and to treat motion sickness due to its minimal adverse effects, but the mechanisms underlying its anti-motion sickness effects are poorly understood. Previous studies have demonstrated that the endocannabinoid system is suppressed by motion sickness but stimulated by dexamethasone. The aim of the present study was to determine whether dexamethasone has an anti-motion sickness effect in rats and to elucidate the mechanism of this action. We used HPLC-MS/MS to measure the plasma concentrations of anandamide and 2-arachidonoylglycerol+1-arachidonoylglycerol, and we employed real-time quantitative PCR (qRT-PCR) and/or Western blot analysis to assay the expression of N-acylphosphatidyl-ethanolamine hydrolyzing phospholipase D, sn-1-selective diacylglycerol lipase, fatty acid hydrolase, monoacylglycerol lipase and endocannabinoid CB1 receptor in the dorsal vagal complex and stomach of rats exposed to a motion sickness protocol. The results showed that dexamethasone lowered the motion sickness index and restored the levels of endogenous cannabinoids and the expression of the endocannabinoid CB1 receptor, which declined after the induction of motion sickness, in the dorsal vagal complex and stomach.
Collapse
Affiliation(s)
- Yan Zheng
- Department of Military Hygiene, Faculty of Naval Medicine, Second Military Medical University, 800 Xiang Yin Road, Shanghai, China; Department of Nutrition, Tong Ren Hospital Affiliated to Shanghai JiaoTong University School of Medicine, 1111 Xian Xia Road, Shanghai, China.
| | - Xiao-Li Wang
- Department of Military Hygiene, Faculty of Naval Medicine, Second Military Medical University, 800 Xiang Yin Road, Shanghai, China.
| | - Feng-Feng Mo
- Department of Military Hygiene, Faculty of Naval Medicine, Second Military Medical University, 800 Xiang Yin Road, Shanghai, China.
| | - Min Li
- Department of Military Hygiene, Faculty of Naval Medicine, Second Military Medical University, 800 Xiang Yin Road, Shanghai, China.
| |
Collapse
|
18
|
Horn CC, Meyers K, Oberlies N. Musk shrews selectively bred for motion sickness display increased anesthesia-induced vomiting. Physiol Behav 2013; 124:129-37. [PMID: 24239993 DOI: 10.1016/j.physbeh.2013.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 11/06/2013] [Indexed: 10/26/2022]
Abstract
Susceptibility to motion sickness is a predictor of postoperative nausea and vomiting, and studies in humans suggest that genetic factors determine sensitivity to motion sickness. The aim of the current study was to determine if a preclinical model could be selectively bred for motion-induced emesis and to assess a potential relationship to anesthesia-induced emesis. Musk shrews were tested for motion-induced emesis using a shaker plate (10min, 1Hz, and 4cm of lateral displacement). Animals were rank ordered for motion-induced emesis and selectively bred to produce high and low response strains. Shrews were also tested with nicotine (5mg/kg, sc), copper sulfate (CuSO4; 120mg/kg, ig), and isoflurane anesthesia (10min; 3%) to measure responses to a panel of emetic stimuli. High response strain shrews demonstrated significantly more emetic episodes to motion exposure compared to low response strain animals in the F1 and F2 generations. In F2 animals, there were no significant differences in total emetic responses or emetic latency between strains after nicotine injection or CuSO4 gavage. However, isoflurane exposure stimulated more emesis in F1 and F2 high versus low strain animals, which suggests a relationship between vestibular- and inhalational anesthesia-induced emesis. Overall, these results indicate genetic determinants of motion sickness in a preclinical model and a potential common mechanism for motion sickness and inhalational anesthesia-induced emesis. Future work may include genetic mapping of potential "emetic sensitivity genes" to develop novel therapies or diagnostics for patients with high risk of nausea and vomiting.
Collapse
Affiliation(s)
- Charles C Horn
- Biobehavioral Medicine in Oncology Program, Univ. of Pittsburgh Cancer Institute, Pittsburgh, PA, USA; Dept. of Medicine, Div. of Gastroenterology, Hepatology, and Nutrition, Univ. of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Dept. of Anesthesiology, Univ. of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Center for Neuroscience, Univ. of Pittsburgh, Pittsburgh, PA, USA.
| | | | | |
Collapse
|
19
|
Bolognini D, Rock EM, Cluny NL, Cascio MG, Limebeer CL, Duncan M, Stott CG, Javid FA, Parker LA, Pertwee RG. Cannabidiolic acid prevents vomiting in Suncus murinus and nausea-induced behaviour in rats by enhancing 5-HT1A receptor activation. Br J Pharmacol 2013; 168:1456-70. [PMID: 23121618 DOI: 10.1111/bph.12043] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 09/17/2012] [Accepted: 10/12/2012] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE To evaluate the ability of cannabidiolic acid (CBDA) to reduce nausea and vomiting and enhance 5-HT(1A) receptor activation in animal models. EXPERIMENTAL APPROACH We investigated the effect of CBDA on (i) lithium chloride (LiCl)-induced conditioned gaping to a flavour (nausea-induced behaviour) or a context (model of anticipatory nausea) in rats; (ii) saccharin palatability in rats; (iii) motion-, LiCl- or cisplatin-induced vomiting in house musk shrews (Suncus murinus); and (iv) rat brainstem 5-HT(1A) receptor activation by 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) and mouse whole brain CB(1) receptor activation by CP55940, using [³⁵S]GTPγS-binding assays. KEY RESULTS In shrews, CBDA (0.1 and/or 0.5 mg·kg⁻¹ i.p.) reduced toxin- and motion-induced vomiting, and increased the onset latency of the first motion-induced emetic episode. In rats, CBDA (0.01 and 0.1 mg·kg⁻¹ i.p.) suppressed LiCl- and context-induced conditioned gaping, effects that were blocked by the 5-HT(1A) receptor antagonist, WAY100635 (0.1 mg·kg⁻¹ i.p.), and, at 0.01 mg·kg⁻¹ i.p., enhanced saccharin palatability. CBDA-induced suppression of LiCl-induced conditioned gaping was unaffected by the CB₁ receptor antagonist, SR141716A (1 mg·kg⁻¹ i.p.). In vitro, CBDA (0.1-100 nM) increased the E(max) of 8-OH-DPAT. CONCLUSIONS AND IMPLICATIONS Compared with cannabidiol, CBDA displays significantly greater potency at inhibiting vomiting in shrews and nausea in rats, and at enhancing 5-HT(1A) receptor activation, an action that accounts for its ability to attenuate conditioned gaping in rats. Consequently, CBDA shows promise as a treatment for nausea and vomiting, including anticipatory nausea for which no specific therapy is currently available.
Collapse
Affiliation(s)
- D Bolognini
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Horn CC, Wang H, Estival L, Meyers K, Magnusson MS. Novel dynamic measures of emetic behavior in musk shrews. Auton Neurosci 2013; 179:60-7. [PMID: 23953843 DOI: 10.1016/j.autneu.2013.07.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 07/13/2013] [Accepted: 07/18/2013] [Indexed: 11/29/2022]
Abstract
The emetic reflex occurs as a pattern of motor responses produced by a network of neurons in the hindbrain. Despite an understanding of the sequence of motor outputs that form an emetic episode (EE), the variability in the dynamics of multiple EEs across time remains a mystery. Many clinical investigations rely on once a day patient recall of total amount of vomiting, and preclinical studies frequently report only the total number of EE per unit time. The aim of the current study was to develop novel temporal measures of emetic activation in a preclinical model. Male and female musk shrews were tested with prototypical emetic stimuli: motion exposure (1 Hz), nicotine (5 mg/kg, sc), and copper sulfate (120 mg/kg, ig). New emetic measures included duration (time from first to last episode), rate, standard deviation of the inter-episode interval (SD-I), and a survival analysis of emetic latency (analyzed with Cox regression). Behavioral patterns associated with emesis were also assessed using statistical temporal pattern (T-pattern) analysis to measure nausea-like behaviors (e.g., immobility). The emetic stimuli produced different levels of total EE number, duration, rate, and SD-I. A typical antiemetic, the neurokinin 1 receptor antagonist CP-99,994, suppressed the number of EEs but was less effective for reducing the duration or prolonging the emetic latency. Overall, the current study shows the use of novel dynamic behavioral measures to more comprehensively assess emesis and the impact of therapies.
Collapse
Affiliation(s)
- Charles C Horn
- Biobehavioral Medicine in Oncology Program, Univ. Pittsburgh Cancer Institute, Pittsburgh, PA, USA; Dept. Medicine: Div. Gastroenterology, Hepatology, and Nutrition, Univ. Pittsburgh School of Medicine, Pittsburgh, PA, USA; Dept. Anesthesiology, Univ. Pittsburgh School of Medicine, Pittsburgh, PA, USA; Center for Neuroscience, Univ. Pittsburgh, Pittsburgh, PA, USA.
| | | | | | | | | |
Collapse
|
21
|
Rock EM, Bolognini D, Limebeer CL, Cascio MG, Anavi-Goffer S, Fletcher PJ, Mechoulam R, Pertwee RG, Parker LA. Cannabidiol, a non-psychotropic component of cannabis, attenuates vomiting and nausea-like behaviour via indirect agonism of 5-HT(1A) somatodendritic autoreceptors in the dorsal raphe nucleus. Br J Pharmacol 2012; 165:2620-34. [PMID: 21827451 PMCID: PMC3423241 DOI: 10.1111/j.1476-5381.2011.01621.x] [Citation(s) in RCA: 173] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 07/04/2011] [Accepted: 07/15/2011] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE To evaluate the hypothesis that activation of somatodendritic 5-HT(1A) autoreceptors in the dorsal raphe nucleus (DRN) produces the anti-emetic/anti-nausea effects of cannabidiol (CBD), a primary non-psychoactive cannabinoid found in cannabis. EXPERIMENTAL APPROACH The potential of systemic and intra-DRN administration of 5-HT(1A) receptor antagonists, WAY100135 or WAY100635, to prevent the anti-emetic effect of CBD in shrews (Suncus murinus) and the anti-nausea-like effects of CBD (conditioned gaping) in rats were evaluated. Also, the ability of intra-DRN administration of CBD to produce anti-nausea-like effects (and reversal by systemic WAY100635) was assessed. In vitro studies evaluated the potential of CBD to directly target 5-HT(1A) receptors and to modify the ability of the 5-HT(1A) agonist, 8-OH-DPAT, to stimulate [(35) S]GTPγS binding in rat brainstem membranes. KEY RESULTS CBD suppressed nicotine-, lithium chloride (LiCl)- and cisplatin (20 mg·kg(-1) , but not 40 mg·kg(-1) )-induced vomiting in the S. murinus and LiCl-induced conditioned gaping in rats. Anti-emetic and anti-nausea-like effects of CBD were suppressed by WAY100135 and the latter by WAY100635. When administered to the DRN: (i) WAY100635 reversed anti-nausea-like effects of systemic CBD, and (ii) CBD suppressed nausea-like effects, an effect that was reversed by systemic WAY100635. CBD also displayed significant potency (in a bell-shaped dose-response curve) at enhancing the ability of 8-OH-DPAT to stimulate [(35) S]GTPγS binding to rat brainstem membranes in vitro. Systemically administered CBD and 8-OH-DPAT synergistically suppressed LiCl-induced conditioned gaping. CONCLUSIONS AND IMPLICATIONS These results suggest that CBD produced its anti-emetic/anti-nausea effects by indirect activation of the somatodendritic 5-HT(1A) autoreceptors in the DRN. LINKED ARTICLES This article is part of a themed section on Cannabinoids in Biology and Medicine. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.165.issue-8. To view Part I of Cannabinoids in Biology and Medicine visit http://dx.doi.org/10.1111/bph.2011.163.issue-7.
Collapse
Affiliation(s)
- E M Rock
- Department of Psychology and Neuroscience Graduate Program, University of Guelph, Guelph, ON, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Carbuto M, Sewell RA, Williams A, Forselius-Bielen K, Braley G, Elander J, Pittman B, Schnakenberg A, Bhakta S, Perry E, Ranganathan M, D'Souza DC. The safety of studies with intravenous Δ⁹-tetrahydrocannabinol in humans, with case histories. Psychopharmacology (Berl) 2012; 219:885-96. [PMID: 21845389 DOI: 10.1007/s00213-011-2417-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 07/13/2011] [Indexed: 12/19/2022]
Abstract
RATIONALE Delta-9-tetrahydrocannabinol (THC) is one of the few cannabinoid receptor ligands that can be used to probe the cannabinoid system in humans. Despite increasing interest in the cannabinoid receptor system, use of intravenous THC as a research tool has been limited by concerns about its abuse liability and psychoactive effects. OBJECTIVES This study aims to evaluate the safety of all intravenous THC studies conducted at this center for the past 13 years. METHODS Included were 11 studies with 266 subjects (14 schizophrenia patients and 252 healthy subjects, of whom 76 were frequent cannabis users), 351 active THC infusions, and 226 placebo infusions. Subjects were monitored for subjective and physical adverse events and followed up to 12 months beyond study participation. RESULTS There was one serious and 70 minor adverse events in 9.7% of subjects and 7.4% of infusions, with 8.5% occurring after the end of the test day. Nausea and dizziness were the most frequent side effects. Adverse events were more likely to be associated with faster infusion rates (2-5 min) and higher doses (>2.1 mg/70 kg). Of 149 subjects on whom long-term follow-up data were gathered, 94% reported either no change or a reduction in their desire to use cannabis in the post-study period, 18% stated that their cannabis use decreased, and 3% stated that it increased in the post-study period. CONCLUSIONS With careful subject selection and screening, risk to subjects is relatively low. Safeguards are generally sufficient and effective, reducing both the duration and severity of adverse events.
Collapse
Affiliation(s)
- Michelle Carbuto
- Psychiatry Service, VA Connecticut Healthcare System, 116A, VA Connecticut Healthcare System, 950 Campbell Avenue, West Haven, CT 06516, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Parker LA, Rock EM, Limebeer CL. Regulation of nausea and vomiting by cannabinoids. Br J Pharmacol 2011; 163:1411-22. [PMID: 21175589 PMCID: PMC3165951 DOI: 10.1111/j.1476-5381.2010.01176.x] [Citation(s) in RCA: 162] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 11/11/2010] [Accepted: 11/17/2010] [Indexed: 12/18/2022] Open
Abstract
Considerable evidence demonstrates that manipulation of the endocannabinoid system regulates nausea and vomiting in humans and other animals. The anti-emetic effect of cannabinoids has been shown across a wide variety of animals that are capable of vomiting in response to a toxic challenge. CB(1) agonism suppresses vomiting, which is reversed by CB(1) antagonism, and CB(1) inverse agonism promotes vomiting. Recently, evidence from animal experiments suggests that cannabinoids may be especially useful in treating the more difficult to control symptoms of nausea and anticipatory nausea in chemotherapy patients, which are less well controlled by the currently available conventional pharmaceutical agents. Although rats and mice are incapable of vomiting, they display a distinctive conditioned gaping response when re-exposed to cues (flavours or contexts) paired with a nauseating treatment. Cannabinoid agonists (Δ(9) -THC, HU-210) and the fatty acid amide hydrolase (FAAH) inhibitor, URB-597, suppress conditioned gaping reactions (nausea) in rats as they suppress vomiting in emetic species. Inverse agonists, but not neutral antagonists, of the CB(1) receptor promote nausea, and at subthreshold doses potentiate nausea produced by other toxins (LiCl). The primary non-psychoactive compound in cannabis, cannabidiol (CBD), also suppresses nausea and vomiting within a limited dose range. The anti-nausea/anti-emetic effects of CBD may be mediated by indirect activation of somatodendritic 5-HT(1A) receptors in the dorsal raphe nucleus; activation of these autoreceptors reduces the release of 5-HT in terminal forebrain regions. Preclinical research indicates that cannabinioids, including CBD, may be effective clinically for treating both nausea and vomiting produced by chemotherapy or other therapeutic treatments.
Collapse
Affiliation(s)
- Linda A Parker
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, Ontario, N1G 2W1, Canada. DA-9789
| | | | | |
Collapse
|
24
|
Tanasescu R, Rog D, Constantinescu CS. A drug discovery case history of ‘delta-9-tetrahydrocannabinol, cannabidiol’. Expert Opin Drug Discov 2011; 6:437-52. [DOI: 10.1517/17460441.2011.560935] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
25
|
Percie du Sert N, Ho WSV, Rudd JA, Andrews PLR. Cannabinoid-induced reduction in antral pacemaker frequency: a telemetric study in the ferret. Neurogastroenterol Motil 2010; 22:1257-66, e324. [PMID: 20731777 DOI: 10.1111/j.1365-2982.2010.01581.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND The gastric myoelectric activity (GMA) is the electrical pacesetter potential, which drives gastric motility. Cannabinoids have broad-spectrum antiemetic and antinauseant activity. Paradoxically, they inhibit intestinal peristalsis and reduce gastric motility but their effect on GMA remains unknown. METHODS Ferrets were surgically implanted with radiotelemetry transmitters to record GMA, body temperature and heart rate. The effect of WIN 55,212-2 (1 mg kg(-1), i.p.), an agonist at the cannabinoid type 1 and 2 receptors was examined in conscious, unrestrained ferrets. WIN 55,212-2 was also compared to the anandamide upregulator URB 597 (5 mg kg(-1), i.p.) for a potential to modulate the emetic response and behavioral changes induced by apomorphine (0.25 mg kg(-1), s.c.). KEY RESULTS WIN 55,212-2 decreased GMA frequency (8.1 ± 0.4 cpm, compared to 9.6 ± 0.1 cpm in vehicle-treated animals, n = 6, P < 0.01). Apomorphine induced 9.0 ± 1.6 emetic episodes, WIN 55,212-2 inhibited the emetic response (3.3 ± 1.0 episodes, n = 6, P < 0.05) but URB 597 had no effect (9.0 ± 1.5 episodes). Apomorphine-induced hyperactivity in vehicle-treated animals (6.5 ± 3.6-16.6 ± 4.9 active behavior counts, n = 6, P < 0.01), which was reduced by WIN 55,212-2 (5.0 ± 1.5 counts, n = 6, P < 0.05). CONCLUSIONS & INFERENCES WIN 55,212-2 demonstrated clear antiemetic efficacy, which extends the broad-spectrum antiemetic efficacy of cannabinoids to dopamine receptor agonists in the ferret. Our results, however, suggest a more limited spectrum of action for URB 597. WIN 55,212-2 decreased the frequency of the antral electrical pacemaker, which reveals new insights into the mechanism regulating the decrease in motility induced by cannabinoids.
Collapse
Affiliation(s)
- N Percie du Sert
- Division of Basic Medical Sciences, St George's University of London, London, UK.
| | | | | | | |
Collapse
|
26
|
Darmani NA. Mechanisms of Broad-Spectrum Antiemetic Efficacy of Cannabinoids against Chemotherapy-Induced Acute and Delayed Vomiting. Pharmaceuticals (Basel) 2010; 3:2930-2955. [PMID: 27713384 PMCID: PMC4034105 DOI: 10.3390/ph3092930] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 08/26/2010] [Accepted: 08/30/2010] [Indexed: 01/02/2023] Open
Abstract
Chemotherapy-induced nausea and vomiting (CINV) is a complex pathophysiological condition and consists of two phases. The conventional CINV neurotransmitter hypothesis suggests that the immediate phase is mainly due to release of serotonin (5-HT) from the enterochromaffin cells in the gastrointestinal tract (GIT), while the delayed phase is a consequence of release of substance P (SP) in the brainstem. However, more recent findings argue against this simplistic neurotransmitter and anatomical view of CINV. Revision of the hypothesis advocates a more complex, differential and overlapping involvement of several emetic neurotransmitters/modulators (e.g. dopamine, serotonin, substance P, prostaglandins and related arachidonic acid derived metabolites) in both phases of emesis occurring concomitantly in the brainstem and in the GIT enteric nervous system (ENS) [1]. No single antiemetic is currently available to completely prevent both phases of CINV. The standard antiemetic regimens include a 5-HT₃ antagonist plus dexamethasone for the prevention of acute emetic phase, combined with an NK1 receptor antagonist (e.g. aprepitant) for the delayed phase. Although NK1 antagonists behave in animals as broad-spectrum antiemetics against different emetogens including cisplatin-induced acute and delayed vomiting, by themselves they are not very effective against CINV in cancer patients. Cannabinoids such as D⁸-THC also behave as broad-spectrum antiemetics against diverse emetic stimuli as well as being effective against both phases of CINV in animals and patients. Potential side effects may limit the clinical utility of direct-acting cannabinoid agonists which could be avoided by the use of corresponding indirect-acting agonists. Cannabinoids (both phyto-derived and synthetic) behave as agonist antiemetics via the activation of cannabinoid CB₁ receptors in both the brainstem and the ENS emetic loci. An endocannabinoid antiemetic tone may exist since inverse CB₁ agonists (but not the corresponding silent antagonists) cause nausea and vomiting.
Collapse
Affiliation(s)
- Nissar A Darmani
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, USA.
| |
Collapse
|
27
|
Izzo AA, Sharkey KA. Cannabinoids and the gut: new developments and emerging concepts. Pharmacol Ther 2010; 126:21-38. [PMID: 20117132 DOI: 10.1016/j.pharmthera.2009.12.005] [Citation(s) in RCA: 309] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 12/24/2009] [Indexed: 12/11/2022]
Abstract
Cannabis has been used to treat gastrointestinal (GI) conditions that range from enteric infections and inflammatory conditions to disorders of motility, emesis and abdominal pain. The mechanistic basis of these treatments emerged after the discovery of Delta(9)-tetrahydrocannabinol as the major constituent of Cannabis. Further progress was made when the receptors for Delta(9)-tetrahydrocannabinol were identified as part of an endocannabinoid system, that consists of specific cannabinoid receptors, endogenous ligands and their biosynthetic and degradative enzymes. Anatomical, physiological and pharmacological studies have shown that the endocannabinoid system is widely distributed throughout the gut, with regional variation and organ-specific actions. It is involved in the regulation of food intake, nausea and emesis, gastric secretion and gastroprotection, GI motility, ion transport, visceral sensation, intestinal inflammation and cell proliferation in the gut. Cellular targets have been defined that include the enteric nervous system, epithelial and immune cells. Molecular targets of the endocannabinoid system include, in addition to the cannabinoid receptors, transient receptor potential vanilloid 1 receptors, peroxisome proliferator-activated receptor alpha receptors and the orphan G-protein coupled receptors, GPR55 and GPR119. Pharmacological agents that act on these targets have been shown in preclinical models to have therapeutic potential. Here, we discuss cannabinoid receptors and their localization in the gut, the proteins involved in endocannabinoid synthesis and degradation and the presence of endocannabinoids in the gut in health and disease. We focus on the pharmacological actions of cannabinoids in relation to GI disorders, highlighting recent data on genetic mutations in the endocannabinoid system in GI disease.
Collapse
Affiliation(s)
- Angelo A Izzo
- Department of Experimental Pharmacology, University of Naples Federico II and Endocannabinoid Research Group, Naples, Italy.
| | | |
Collapse
|
28
|
Darmani NA, Ray AP. Evidence for a re-evaluation of the neurochemical and anatomical bases of chemotherapy-induced vomiting. Chem Rev 2009; 109:3158-99. [PMID: 19522506 DOI: 10.1021/cr900117p] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Nissar A Darmani
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California 91766-1854, USA.
| | | |
Collapse
|
29
|
Non-psychotropic plant cannabinoids: new therapeutic opportunities from an ancient herb. Trends Pharmacol Sci 2009; 30:515-27. [PMID: 19729208 DOI: 10.1016/j.tips.2009.07.006] [Citation(s) in RCA: 566] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 07/09/2009] [Accepted: 07/13/2009] [Indexed: 12/12/2022]
Abstract
Delta(9)-tetrahydrocannabinol binds cannabinoid (CB(1) and CB(2)) receptors, which are activated by endogenous compounds (endocannabinoids) and are involved in a wide range of physiopathological processes (e.g. modulation of neurotransmitter release, regulation of pain perception, and of cardiovascular, gastrointestinal and liver functions). The well-known psychotropic effects of Delta(9)-tetrahydrocannabinol, which are mediated by activation of brain CB(1) receptors, have greatly limited its clinical use. However, the plant Cannabis contains many cannabinoids with weak or no psychoactivity that, therapeutically, might be more promising than Delta(9)-tetrahydrocannabinol. Here, we provide an overview of the recent pharmacological advances, novel mechanisms of action, and potential therapeutic applications of such non-psychotropic plant-derived cannabinoids. Special emphasis is given to cannabidiol, the possible applications of which have recently emerged in inflammation, diabetes, cancer, affective and neurodegenerative diseases, and to Delta(9)-tetrahydrocannabivarin, a novel CB(1) antagonist which exerts potentially useful actions in the treatment of epilepsy and obesity.
Collapse
|