1
|
Sawant-Basak A, Urva S, Mukker JK, Haertter S, Mariano D, Parasrampuria DA, Goteti K, Singh RSP, Chiney M, Liao MZ, Chang SS, Mehta R. Role of Clinical Pharmacology in Diversity and Inclusion in Global Drug Development: Current Practices and Industry Perspectives: White Paper. Clin Pharmacol Ther 2024; 116:902-913. [PMID: 38973127 DOI: 10.1002/cpt.3350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/24/2024] [Indexed: 07/09/2024]
Abstract
The 2022 United States Food and Drug Administration (US FDA) draft guidance on diversity plan (DP), which will be implemented through the Diversity Action Plans by December 2025, under the 21st Century Cures Act, marks a pivotal effort by the FDA to ensure that registrational studies adequately reflect the target patient populations based on diversity in demographics and baseline characteristics. This white paper represents the culminated efforts of the International Consortium of Quality and Innovation (IQ) Diversity and Inclusion (D&I) Working Group (WG) to assess the implementation of the draft FDA guidance by members of the IQ consortium in the discipline of clinical pharmacology (CP). This article describes current practices in the industry and emphasizes the tools and techniques of quantitative pharmacology that can be applied to support the inclusion of a diverse population during global drug development, to support diversity and inclusion of underrepresented patient populations, in multiregional clinical trials (MRCTs). It outlines strategic and technical recommendations to integrate demographics, including age, sex/gender, race/ethnicity, and comorbidities, in multiregional phase III registrational studies, through the application of quantitative pharmacology. Finally, this article discusses the challenges faced during global drug development, which may otherwise limit the enrollment of a broader, potentially diverse population in registrational trials. Based on the outcomes of the IQ survey that provided the current awareness of diversity planning, it is envisioned that in the future, industry efforts in the inclusion of previously underrepresented populations during global drug development will culminate in drug labels that apply to the intended patient populations at the time of new drug application or biologics license application rather than through post-marketing requirements.
Collapse
Affiliation(s)
- Aarti Sawant-Basak
- Clinical Pharmacology and Pharmacometrics, AstraZeneca, Waltham, MA, USA
| | - Shweta Urva
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, USA
| | - Jatinder Kaur Mukker
- EMD Serono Research and Development Institute, Inc., affiliated with Merck KGaA, Darmstadt, Germany., Billerica, Massachusetts, USA
| | | | - Dean Mariano
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, USA
| | | | - Kosalaram Goteti
- EMD Serono Research and Development Institute, Inc., affiliated with Merck KGaA, Darmstadt, Germany., Billerica, Massachusetts, USA
| | | | | | | | | | - Rashmi Mehta
- Clinical Pharmacology Modeling and Simulation, GSK PLC, Durham, North Carolina, USA
| |
Collapse
|
2
|
Lin C, Zhang S, Yang P, Zhang B, Guo W, Wu R, Liu Y, Wang J, Wu H, Cai H. Combination of UGT1A1 polymorphism and baseline plasma bilirubin levels in predicting the risk of antipsychotic-induced dyslipidemia in schizophrenia patients. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:52. [PMID: 38760414 PMCID: PMC11101411 DOI: 10.1038/s41537-024-00473-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/04/2024] [Indexed: 05/19/2024]
Abstract
The prolonged usage of atypical antipsychotic drugs (AAPD) among individuals with schizophrenia often leads to metabolic side effects such as dyslipidemia. These effects not only limit one's selection of AAPD but also significantly reduce compliance and quality of life of patients. Recent studies suggest that bilirubin plays a crucial role in maintaining lipid homeostasis and may be a potential pre-treatment biomarker for individuals with dyslipidemia. The present study included 644 schizophrenia patients from two centers. Demographic and clinical characteristics were collected at baseline and 4 weeks after admission to investigate the correlation between metabolites, episodes, usage of AAPDs, and occurrence of dyslipidemia. Besides, we explored the combined predictive value of genotypes and baseline bilirubin for dyslipidemia by employing multiple PCR targeted capture techniques to sequence two pathways: bilirubin metabolism-related genes and lipid metabolism-related genes. Our results indicated that there existed a negative correlation between the changes in bilirubin levels and triglyceride (TG) levels in patients with schizophrenia. Among three types of bilirubin, direct bilirubin in the baseline (DBIL-bl) proved to be the most effective in predicting dyslipidemia in the ROC analysis (AUC = 0.627, p < 0.001). Furthermore, the odds ratio from multinomial logistic regression analysis showed that UGT1A1*6 was a protective factor for dyslipidemia (ß = -12.868, p < 0.001). The combination of baseline DBIL and UGT1A1*6 significantly improved the performance in predicting dyslipidemia (AUC = 0.939, p < 0.001). Schizophrenia patients with UGT1A1*6 mutation and a certain level of baseline bilirubin may be more resistant to dyslipidemia and have more selections for AAPD than other patients.
Collapse
Affiliation(s)
- Chenquan Lin
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Shuangyang Zhang
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Ping Yang
- Department of Psychiatry, Hunan Brain Hospital, Changsha, China
| | - Bikui Zhang
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Wenbin Guo
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center on Mental Disorders, Changsha, China
| | - Renrong Wu
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center on Mental Disorders, Changsha, China
| | - Yong Liu
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center on Mental Disorders, Changsha, China
| | - Jianjian Wang
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center on Mental Disorders, Changsha, China
| | - Haishan Wu
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center on Mental Disorders, Changsha, China
| | - Hualin Cai
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China.
- Institute of Clinical Pharmacy, Central South University, Changsha, China.
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China.
- National Clinical Research Center on Mental Disorders, Changsha, China.
| |
Collapse
|
3
|
Sandoval P, Chuang BC, Fallon JK, Smith PC, Chowdhury SK, Griffin RJ, Xia CQ, Iwasaki S, Chothe PP. Sinusoidal Organic Anion-Transporting Polypeptide 1B1/1B3 and Bile Canalicular Multidrug Resistance-Associated Protein 2 Play an Essential Role in the Hepatobiliary Disposition of a Synthetic Cyclic Dinucleotide (STING Agonist). AAPS J 2022; 24:99. [PMID: 36123502 DOI: 10.1208/s12248-022-00745-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/11/2022] [Indexed: 01/18/2023] Open
Abstract
The liver is central to the elimination of many drugs from the body involving multiple processes and understanding of these processes is important to quantitively assess hepatic clearance of drugs. The synthetic STING (STimulator of INterferon Genes protein) agonist is a new class of drugs currently being evaluated in clinical trials as a potential anticancer therapy. In this study, we used ML00960317 (synthetic STING agonist) to investigate the hepatobiliary disposition of this novel molecular entity. A bile-duct cannulated (BDC) rat study indicated that biliary excretion is the major route of elimination for ML00960317 (84% of parent dose in bile). The human biliary clearance using in vitro sandwich cultured human hepatocyte model predicted significant biliary excretion of ML00960317 (biliary excretion index (BEI) of 47%). Moreover, the transport studies using transporter expressing cell lines, hepatocytes, and membrane vesicles indicated that ML00960317 is a robust substrate of OATP1B1, OATP1B3, and MRP2. Using relative expression factor approach, the combined contribution of OATP1B1 (fraction transported (ft) = 0.62) and OATP1B3 (ft = 0.31) was found to be 93% of the active uptake clearance of ML00960317 into the liver. Furthermore, OATP1B1 and OATP1B3-mediated uptake of ML00960317 was inhibited by rifampicin with IC50 of 6.5 and 2.3 μM, respectively indicating an in vivo DDI risk (R value of 1.5 and 2.5 for OATP1B1 and OATP1B3, respectively). These results highlighted an important role of OATP1B1, OATP1B3, and MRP2 in the hepatobiliary disposition of ML00960317. These pathways may act as rate-determining steps in the hepatic clearance of ML00960317 thus presenting clinical DDI risk.
Collapse
Affiliation(s)
- Philip Sandoval
- Global Drug Metabolism and Pharmacokinetics, Takeda Development Center Americas, Inc. (TDCA), 95 Hayden Avenue, Lexington, Massachusetts, 02421, USA
| | - Bei-Ching Chuang
- Global Drug Metabolism and Pharmacokinetics, Takeda Development Center Americas, Inc. (TDCA), 95 Hayden Avenue, Lexington, Massachusetts, 02421, USA
| | - John K Fallon
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Philip C Smith
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Swapan K Chowdhury
- Boston Pharmaceuticals, 55 Cambridge Parkway, Suite 400, Cambridge, Massachusetts, 02142, USA
| | - Robert J Griffin
- Global Drug Metabolism and Pharmacokinetics, Takeda Development Center Americas, Inc. (TDCA), 95 Hayden Avenue, Lexington, Massachusetts, 02421, USA
| | - Cindy Q Xia
- ReNAgade Therapeutics Management Co., 450 Kendall Street, Cambridge, Massachusetts, 02142, USA
| | - Shinji Iwasaki
- Drug Metabolism and Pharmacokinetics Research Laboratories, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chrome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Paresh P Chothe
- Global Drug Metabolism and Pharmacokinetics, Takeda Development Center Americas, Inc. (TDCA), 95 Hayden Avenue, Lexington, Massachusetts, 02421, USA.
| |
Collapse
|
4
|
Yee SW, Giacomini MM, Shen H, Humphreys WG, Horng H, Brian W, Lai Y, Kroetz DL, Giacomini KM. Organic Anion Transporter Polypeptide 1B1 Polymorphism Modulates the Extent of Drug-Drug Interaction and Associated Biomarker Levels in Healthy Volunteers. Clin Transl Sci 2019; 12:388-399. [PMID: 30982223 PMCID: PMC6662551 DOI: 10.1111/cts.12625] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 12/17/2018] [Indexed: 01/23/2023] Open
Abstract
Understanding transporter-mediated drug-drug interactions is an integral part of risk assessment in drug development. Recent studies support the use of hexadecanedioate (HDA), tetradecanedioate (TDA), coproporphyrin (CP)-I, and CP-III as clinical biomarkers for evaluating organic anion-transporting polypeptide (OATP)1B1 (SLCO1B1) inhibition. The current study investigated the effect of OATP1B1 genotype c.521T>C (OATP1B1-Val174Ala) on the extent of interaction between cyclosporin A (CsA) and pravastatin, and associated endogenous biomarkers of the transporter (HDA, TDA, CP-I, and CP-III), in 20 healthy volunteers. The results show that the levels of each clinical biomarker and pravastatin were significantly increased in plasma samples of the volunteers following administration of pravastatin plus CsA compared with pravastatin plus placebo. The overall fold change in the area under the concentration-time curve (AUC) and maximum plasma concentration (Cmax ) was similar among the four biomarkers (1.8-2.5-fold, paired t-test P value < 0.05) in individuals who were homozygotes or heterozygotes of the major allele, c.521T. However, the fold change in AUC and Cmax for HDA and TDA was significantly abolished in the subjects who were c.521-CC, whereas the respective fold change in AUC and Cmax for pravastatin and CP-I and CP-III were slightly weaker in individuals who were c.521-CC compared with c.521-TT/TC genotypes. In addition, this study provides the first evidence that SLCO1B1 c.521T>C genotype is significantly associated with CP-I but not CP-III levels. Overall, these results suggest that OATP1B1 genotype can modulate the effects of CsA on biomarker levels; the extent of modulation differs among the biomarkers.
Collapse
Affiliation(s)
- Sook Wah Yee
- Department of Bioengineering and Therapeutic SciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | | | - Hong Shen
- Department of Metabolism and PharmacokineticsBristol‐Myers Squibb Research and DevelopmentPrincetonNew JerseyUSA
| | - W. Griffith Humphreys
- Department of Metabolism and PharmacokineticsBristol‐Myers Squibb Research and DevelopmentPrincetonNew JerseyUSA
| | - Howard Horng
- Department of Bioengineering and Therapeutic SciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - William Brian
- Disposition Safety and Animal ResearchSanofi‐AventisGreat ValleyPennsylvaniaUSA
| | - Yurong Lai
- Drug Metabolism DepartmentGilead Sciences, Inc.Foster CityCaliforniaUSA
| | - Deanna L. Kroetz
- Department of Bioengineering and Therapeutic SciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Kathleen M. Giacomini
- Department of Bioengineering and Therapeutic SciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
| |
Collapse
|
5
|
Wu X, Gong C, Weinstock J, Cheng J, Hu S, Venners SA, Hsu YH, Wu S, Zha X, Jiang S, Li Y, Pan F, Xu X. Associations of the SLCO1B1 Polymorphisms With Hepatic Function, Baseline Lipid Levels, and Lipid-lowering Response to Simvastatin in Patients With Hyperlipidemia. Clin Appl Thromb Hemost 2018; 24:240S-247S. [PMID: 30336686 PMCID: PMC6714829 DOI: 10.1177/1076029618805863] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Our goal was to examine the associations of the 388A>G and 521T>C polymorphisms in
the solute carrier organic anion transporter 1B1 (SLCO1B1) gene with hepatic function,
baseline lipid levels, and the lipid-lowering efficiency of simvastatin. We recruited 542
patients with hyperlipidemia. The 388A>G and 521T>C polymorphisms were genotyped.
Serum alanine aminotransferase (ALT) and aspartate transaminase (AST), Serum triglyceride
(TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and
high-density lipoprotein cholesterol (HDL-C) levels were measured before and after an oral
20-mg dose of simvastatin. Individuals with the 388AA genotype had higher ALT and AST
levels than those with the 388AG or 388GG genotypes (P = .037 and P = .002, respectively).
Individuals with both the 388AA and the 521TT genotypes had the highest levels of ALT and
AST (P = .001 and P = .001, respectively). Moreover, we divided all patients into normal
and abnormal subgroups based on elevated ALT and AST values (≥ 40 U/L), participants in
the abnormal subgroup had a higher frequency of the 388A/521T haplotype and a lower
frequency of the 388G/521T haplotype compared to those in the normal subgroup. In
addition, compared to 388G allele and 521C allele carriers, individuals with the 388G
allele and 521TT genotype carriers had greater TC and LDL-C reduction in response to
simvastatin after 4 weeks of treatment. Our conclusion suggests that the interaction
between the SLCO1B1 388A>G and 521T>C polymorphisms could be an important genetic
determinant of hepatic function and the therapeutic efficiency of simvastatin in Chinese
patients with hyperlipidemia.
Collapse
Affiliation(s)
- Xiangyu Wu
- School of Life Sciences, Anhui University, Hefei, China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Chen Gong
- School of Life Sciences, Anhui University, Hefei, China
| | - Justin Weinstock
- Department of Statistics, University of Virginia, Charlottesville, VA, USA
| | - Jun Cheng
- School of Life Sciences, Anhui University, Hefei, China
| | - Shengnan Hu
- School of Life Sciences, Anhui University, Hefei, China
| | - Scott A Venners
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Yi-Hsiang Hsu
- Institute for Aging Research, HSL and Harvard Medical School, Boston, MA, USA.,Molecular and Integrative Physiological Sciences Program, Harvard School of Public Health, Boston, MA, USA
| | - Suwen Wu
- School of Life Sciences, Anhui University, Hefei, China
| | - Xiangdong Zha
- School of Life Sciences, Anhui University, Hefei, China
| | - Shanqun Jiang
- School of Life Sciences, Anhui University, Hefei, China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, China.,Institute of Biomedicine, Anhui Medical University, Hefei, China
| | - Yong Li
- School of Life Sciences, Anhui University, Hefei, China
| | - Faming Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Xiping Xu
- Institute of Biomedicine, Anhui Medical University, Hefei, China.,Renal Division, Nanfang Hospital, Southern Medical University, National Clinical Research Study Center for Kidney Disease, State Key Laboratory for Organ Failure Research, Guangzhou, China
| |
Collapse
|
6
|
CYP2C9 and OATP1B1 genetic polymorphisms affect the metabolism and transport of glimepiride and gliclazide. Sci Rep 2018; 8:10994. [PMID: 30030468 PMCID: PMC6054689 DOI: 10.1038/s41598-018-29351-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 07/10/2018] [Indexed: 02/02/2023] Open
Abstract
The therapeutic use of glimepiride and gliclazide shows substantial inter-individual variation in pharmacokinetics and pharmacodynamics in human populations, which might be caused by genetic differences among individuals. The aim of this study was to assess the effect of CYP2C9 and OATP1B1 genetic polymorphisms on the metabolism and transport of glimepiride and gliclazide. The uptake of glimepiride and gliclazide was measured in OATP1B1*1a, *5 and *15-HEK293T cells, and their metabolism was measured using CYP2C9*1, *2 and *3 recombinase by LC-MS. Glimepiride in OATP1B1*1a, *5 and *15-HEK293T cells had Vmax values of 155 ± 18.7, 80 ± 9.6, and 84.5 ± 8.2 pmol/min/mg, while gliclazide had Vmax values of 15.7 ± 4.6, 7.2 ± 2.5, and 8.7 ± 2.4 pmol/min/mg, respectively. The clearance of glimepiride and gliclazide in OATP1B1*5 and *15 was significantly reduced compared to the wild-type. Glimepiride in the presence of CYP2C9*1, *2 and *3 recombinase had Vmax values of 21.58 ± 7.78, 15.69 ± 5.59, and 9.17 ± 3.03 nmol/min/mg protein, while gliclazide had Vmax values of 15.73 ± 3.11, 10.53 ± 4.06, and 6.21 ± 2.94 nmol/min/mg protein, respectively. The clearance of glimepiride and gliclazide in CYP2C9*2 and *3 was significantly reduced compared to the wild-type. These findings collectively indicate that OATP1B1*5 and *15 and CYP2C9*2 and *3 have a significant effect on the transport and metabolism of glimepiride and gliclazide.
Collapse
|
7
|
Wang L, Collins C, Kelly EJ, Chu X, Ray AS, Salphati L, Xiao G, Lee C, Lai Y, Liao M, Mathias A, Evers R, Humphreys W, Hop CECA, Kumer SC, Unadkat JD. Transporter Expression in Liver Tissue from Subjects with Alcoholic or Hepatitis C Cirrhosis Quantified by Targeted Quantitative Proteomics. Drug Metab Dispos 2016; 44:1752-1758. [PMID: 27543206 PMCID: PMC5074470 DOI: 10.1124/dmd.116.071050] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 08/10/2016] [Indexed: 12/12/2022] Open
Abstract
Although data are available on the change of expression/activity of drug-metabolizing enzymes in liver cirrhosis patients, corresponding data on transporter protein expression are not available. Therefore, using quantitative targeted proteomics, we compared our previous data on noncirrhotic control livers (n = 36) with the protein expression of major hepatobiliary transporters, breast cancer resistance protein (BCRP), bile salt export pump (BSEP), multidrug and toxin extrusion protein 1 (MATE1), multidrug resistance-associated protein (MRP)2, MRP3, MRP4, sodium taurocholate-cotransporting polypeptide (NTCP), organic anion-transporting polypeptides (OATP)1B1, 1B3, 2B1, organic cation transporter 1 (OCT1), and P-glycoprotein (P-gp) in alcoholic (n = 27) and hepatitis C cirrhosis (n = 30) livers. Compared with control livers, the yield of membrane protein from alcoholic and hepatitis C cirrhosis livers was significantly reduced by 56 and 67%, respectively. The impact of liver cirrhosis on transporter protein expression was transporter-dependent. Generally, reduced protein expression (per gram of liver) was found in alcoholic cirrhosis livers versus control livers, with the exception that the expression of MRP3 was increased, whereas no change was observed for MATE1, MRP2, OATP2B1, and P-gp. In contrast, the impact of hepatitis C cirrhosis on protein expression of transporters (per gram of liver) was diverse, showing an increase (MATE1), decrease (BSEP, MRP2, NTCP, OATP1B3, OCT1, and P-gp), or no change (BCRP, MRP3, OATP1B1, and 2B1). The expression of hepatobiliary transporter protein differed in different diseases (alcoholic versus hepatitis C cirrhosis). Finally, incorporation of protein expression of OATP1B1 in alcoholic cirrhosis into the Simcyp physiologically based pharmacokinetics cirrhosis module improved prediction of the disposition of repaglinide in liver cirrhosis patients. These transporter expression data will be useful in the future to predict transporter-mediated drug disposition in liver cirrhosis patients.
Collapse
Affiliation(s)
- Li Wang
- Department of Pharmaceutics, University of Washington, Seattle, Washington (L.W., C.C., E.J.K., J.D.U.); Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Rahway, New Jersey (X.C.); Departments of Clinical Pharmacology and Drug Metabolism and Pharmacokinetics, Gilead Sciences, Inc., Foster City, California (A.S.R., A.M.); Drug Metabolism and Pharmacokinetics, Genentech, South San Francisco, California (L.S., C.E.C.A.H.); Preclinical PK and In Vitro ADME, Biogen, Cambridge, Massachusetts (G.X.); Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Ardea Biosciences, Inc., San Diego, California (C.L.); Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, New Jersey (Y.L.,W.H.); Takeda Pharmaceuticals International Co., Cambridge, Massachusetts (M.L.); Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Kenilworth, New Jersey (R.E.); Department of Surgery, University of Kansas Medical Center, Kansas City, Kansas (S.C.K.)
| | - Carol Collins
- Department of Pharmaceutics, University of Washington, Seattle, Washington (L.W., C.C., E.J.K., J.D.U.); Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Rahway, New Jersey (X.C.); Departments of Clinical Pharmacology and Drug Metabolism and Pharmacokinetics, Gilead Sciences, Inc., Foster City, California (A.S.R., A.M.); Drug Metabolism and Pharmacokinetics, Genentech, South San Francisco, California (L.S., C.E.C.A.H.); Preclinical PK and In Vitro ADME, Biogen, Cambridge, Massachusetts (G.X.); Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Ardea Biosciences, Inc., San Diego, California (C.L.); Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, New Jersey (Y.L.,W.H.); Takeda Pharmaceuticals International Co., Cambridge, Massachusetts (M.L.); Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Kenilworth, New Jersey (R.E.); Department of Surgery, University of Kansas Medical Center, Kansas City, Kansas (S.C.K.)
| | - Edward J Kelly
- Department of Pharmaceutics, University of Washington, Seattle, Washington (L.W., C.C., E.J.K., J.D.U.); Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Rahway, New Jersey (X.C.); Departments of Clinical Pharmacology and Drug Metabolism and Pharmacokinetics, Gilead Sciences, Inc., Foster City, California (A.S.R., A.M.); Drug Metabolism and Pharmacokinetics, Genentech, South San Francisco, California (L.S., C.E.C.A.H.); Preclinical PK and In Vitro ADME, Biogen, Cambridge, Massachusetts (G.X.); Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Ardea Biosciences, Inc., San Diego, California (C.L.); Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, New Jersey (Y.L.,W.H.); Takeda Pharmaceuticals International Co., Cambridge, Massachusetts (M.L.); Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Kenilworth, New Jersey (R.E.); Department of Surgery, University of Kansas Medical Center, Kansas City, Kansas (S.C.K.)
| | - Xiaoyan Chu
- Department of Pharmaceutics, University of Washington, Seattle, Washington (L.W., C.C., E.J.K., J.D.U.); Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Rahway, New Jersey (X.C.); Departments of Clinical Pharmacology and Drug Metabolism and Pharmacokinetics, Gilead Sciences, Inc., Foster City, California (A.S.R., A.M.); Drug Metabolism and Pharmacokinetics, Genentech, South San Francisco, California (L.S., C.E.C.A.H.); Preclinical PK and In Vitro ADME, Biogen, Cambridge, Massachusetts (G.X.); Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Ardea Biosciences, Inc., San Diego, California (C.L.); Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, New Jersey (Y.L.,W.H.); Takeda Pharmaceuticals International Co., Cambridge, Massachusetts (M.L.); Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Kenilworth, New Jersey (R.E.); Department of Surgery, University of Kansas Medical Center, Kansas City, Kansas (S.C.K.)
| | - Adrian S Ray
- Department of Pharmaceutics, University of Washington, Seattle, Washington (L.W., C.C., E.J.K., J.D.U.); Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Rahway, New Jersey (X.C.); Departments of Clinical Pharmacology and Drug Metabolism and Pharmacokinetics, Gilead Sciences, Inc., Foster City, California (A.S.R., A.M.); Drug Metabolism and Pharmacokinetics, Genentech, South San Francisco, California (L.S., C.E.C.A.H.); Preclinical PK and In Vitro ADME, Biogen, Cambridge, Massachusetts (G.X.); Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Ardea Biosciences, Inc., San Diego, California (C.L.); Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, New Jersey (Y.L.,W.H.); Takeda Pharmaceuticals International Co., Cambridge, Massachusetts (M.L.); Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Kenilworth, New Jersey (R.E.); Department of Surgery, University of Kansas Medical Center, Kansas City, Kansas (S.C.K.)
| | - Laurent Salphati
- Department of Pharmaceutics, University of Washington, Seattle, Washington (L.W., C.C., E.J.K., J.D.U.); Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Rahway, New Jersey (X.C.); Departments of Clinical Pharmacology and Drug Metabolism and Pharmacokinetics, Gilead Sciences, Inc., Foster City, California (A.S.R., A.M.); Drug Metabolism and Pharmacokinetics, Genentech, South San Francisco, California (L.S., C.E.C.A.H.); Preclinical PK and In Vitro ADME, Biogen, Cambridge, Massachusetts (G.X.); Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Ardea Biosciences, Inc., San Diego, California (C.L.); Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, New Jersey (Y.L.,W.H.); Takeda Pharmaceuticals International Co., Cambridge, Massachusetts (M.L.); Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Kenilworth, New Jersey (R.E.); Department of Surgery, University of Kansas Medical Center, Kansas City, Kansas (S.C.K.)
| | - Guangqing Xiao
- Department of Pharmaceutics, University of Washington, Seattle, Washington (L.W., C.C., E.J.K., J.D.U.); Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Rahway, New Jersey (X.C.); Departments of Clinical Pharmacology and Drug Metabolism and Pharmacokinetics, Gilead Sciences, Inc., Foster City, California (A.S.R., A.M.); Drug Metabolism and Pharmacokinetics, Genentech, South San Francisco, California (L.S., C.E.C.A.H.); Preclinical PK and In Vitro ADME, Biogen, Cambridge, Massachusetts (G.X.); Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Ardea Biosciences, Inc., San Diego, California (C.L.); Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, New Jersey (Y.L.,W.H.); Takeda Pharmaceuticals International Co., Cambridge, Massachusetts (M.L.); Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Kenilworth, New Jersey (R.E.); Department of Surgery, University of Kansas Medical Center, Kansas City, Kansas (S.C.K.)
| | - Caroline Lee
- Department of Pharmaceutics, University of Washington, Seattle, Washington (L.W., C.C., E.J.K., J.D.U.); Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Rahway, New Jersey (X.C.); Departments of Clinical Pharmacology and Drug Metabolism and Pharmacokinetics, Gilead Sciences, Inc., Foster City, California (A.S.R., A.M.); Drug Metabolism and Pharmacokinetics, Genentech, South San Francisco, California (L.S., C.E.C.A.H.); Preclinical PK and In Vitro ADME, Biogen, Cambridge, Massachusetts (G.X.); Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Ardea Biosciences, Inc., San Diego, California (C.L.); Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, New Jersey (Y.L.,W.H.); Takeda Pharmaceuticals International Co., Cambridge, Massachusetts (M.L.); Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Kenilworth, New Jersey (R.E.); Department of Surgery, University of Kansas Medical Center, Kansas City, Kansas (S.C.K.)
| | - Yurong Lai
- Department of Pharmaceutics, University of Washington, Seattle, Washington (L.W., C.C., E.J.K., J.D.U.); Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Rahway, New Jersey (X.C.); Departments of Clinical Pharmacology and Drug Metabolism and Pharmacokinetics, Gilead Sciences, Inc., Foster City, California (A.S.R., A.M.); Drug Metabolism and Pharmacokinetics, Genentech, South San Francisco, California (L.S., C.E.C.A.H.); Preclinical PK and In Vitro ADME, Biogen, Cambridge, Massachusetts (G.X.); Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Ardea Biosciences, Inc., San Diego, California (C.L.); Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, New Jersey (Y.L.,W.H.); Takeda Pharmaceuticals International Co., Cambridge, Massachusetts (M.L.); Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Kenilworth, New Jersey (R.E.); Department of Surgery, University of Kansas Medical Center, Kansas City, Kansas (S.C.K.)
| | - Mingxiang Liao
- Department of Pharmaceutics, University of Washington, Seattle, Washington (L.W., C.C., E.J.K., J.D.U.); Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Rahway, New Jersey (X.C.); Departments of Clinical Pharmacology and Drug Metabolism and Pharmacokinetics, Gilead Sciences, Inc., Foster City, California (A.S.R., A.M.); Drug Metabolism and Pharmacokinetics, Genentech, South San Francisco, California (L.S., C.E.C.A.H.); Preclinical PK and In Vitro ADME, Biogen, Cambridge, Massachusetts (G.X.); Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Ardea Biosciences, Inc., San Diego, California (C.L.); Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, New Jersey (Y.L.,W.H.); Takeda Pharmaceuticals International Co., Cambridge, Massachusetts (M.L.); Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Kenilworth, New Jersey (R.E.); Department of Surgery, University of Kansas Medical Center, Kansas City, Kansas (S.C.K.)
| | - Anita Mathias
- Department of Pharmaceutics, University of Washington, Seattle, Washington (L.W., C.C., E.J.K., J.D.U.); Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Rahway, New Jersey (X.C.); Departments of Clinical Pharmacology and Drug Metabolism and Pharmacokinetics, Gilead Sciences, Inc., Foster City, California (A.S.R., A.M.); Drug Metabolism and Pharmacokinetics, Genentech, South San Francisco, California (L.S., C.E.C.A.H.); Preclinical PK and In Vitro ADME, Biogen, Cambridge, Massachusetts (G.X.); Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Ardea Biosciences, Inc., San Diego, California (C.L.); Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, New Jersey (Y.L.,W.H.); Takeda Pharmaceuticals International Co., Cambridge, Massachusetts (M.L.); Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Kenilworth, New Jersey (R.E.); Department of Surgery, University of Kansas Medical Center, Kansas City, Kansas (S.C.K.)
| | - Raymond Evers
- Department of Pharmaceutics, University of Washington, Seattle, Washington (L.W., C.C., E.J.K., J.D.U.); Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Rahway, New Jersey (X.C.); Departments of Clinical Pharmacology and Drug Metabolism and Pharmacokinetics, Gilead Sciences, Inc., Foster City, California (A.S.R., A.M.); Drug Metabolism and Pharmacokinetics, Genentech, South San Francisco, California (L.S., C.E.C.A.H.); Preclinical PK and In Vitro ADME, Biogen, Cambridge, Massachusetts (G.X.); Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Ardea Biosciences, Inc., San Diego, California (C.L.); Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, New Jersey (Y.L.,W.H.); Takeda Pharmaceuticals International Co., Cambridge, Massachusetts (M.L.); Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Kenilworth, New Jersey (R.E.); Department of Surgery, University of Kansas Medical Center, Kansas City, Kansas (S.C.K.)
| | - William Humphreys
- Department of Pharmaceutics, University of Washington, Seattle, Washington (L.W., C.C., E.J.K., J.D.U.); Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Rahway, New Jersey (X.C.); Departments of Clinical Pharmacology and Drug Metabolism and Pharmacokinetics, Gilead Sciences, Inc., Foster City, California (A.S.R., A.M.); Drug Metabolism and Pharmacokinetics, Genentech, South San Francisco, California (L.S., C.E.C.A.H.); Preclinical PK and In Vitro ADME, Biogen, Cambridge, Massachusetts (G.X.); Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Ardea Biosciences, Inc., San Diego, California (C.L.); Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, New Jersey (Y.L.,W.H.); Takeda Pharmaceuticals International Co., Cambridge, Massachusetts (M.L.); Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Kenilworth, New Jersey (R.E.); Department of Surgery, University of Kansas Medical Center, Kansas City, Kansas (S.C.K.)
| | - Cornelis E C A Hop
- Department of Pharmaceutics, University of Washington, Seattle, Washington (L.W., C.C., E.J.K., J.D.U.); Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Rahway, New Jersey (X.C.); Departments of Clinical Pharmacology and Drug Metabolism and Pharmacokinetics, Gilead Sciences, Inc., Foster City, California (A.S.R., A.M.); Drug Metabolism and Pharmacokinetics, Genentech, South San Francisco, California (L.S., C.E.C.A.H.); Preclinical PK and In Vitro ADME, Biogen, Cambridge, Massachusetts (G.X.); Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Ardea Biosciences, Inc., San Diego, California (C.L.); Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, New Jersey (Y.L.,W.H.); Takeda Pharmaceuticals International Co., Cambridge, Massachusetts (M.L.); Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Kenilworth, New Jersey (R.E.); Department of Surgery, University of Kansas Medical Center, Kansas City, Kansas (S.C.K.)
| | - Sean C Kumer
- Department of Pharmaceutics, University of Washington, Seattle, Washington (L.W., C.C., E.J.K., J.D.U.); Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Rahway, New Jersey (X.C.); Departments of Clinical Pharmacology and Drug Metabolism and Pharmacokinetics, Gilead Sciences, Inc., Foster City, California (A.S.R., A.M.); Drug Metabolism and Pharmacokinetics, Genentech, South San Francisco, California (L.S., C.E.C.A.H.); Preclinical PK and In Vitro ADME, Biogen, Cambridge, Massachusetts (G.X.); Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Ardea Biosciences, Inc., San Diego, California (C.L.); Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, New Jersey (Y.L.,W.H.); Takeda Pharmaceuticals International Co., Cambridge, Massachusetts (M.L.); Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Kenilworth, New Jersey (R.E.); Department of Surgery, University of Kansas Medical Center, Kansas City, Kansas (S.C.K.)
| | - Jashvant D Unadkat
- Department of Pharmaceutics, University of Washington, Seattle, Washington (L.W., C.C., E.J.K., J.D.U.); Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Rahway, New Jersey (X.C.); Departments of Clinical Pharmacology and Drug Metabolism and Pharmacokinetics, Gilead Sciences, Inc., Foster City, California (A.S.R., A.M.); Drug Metabolism and Pharmacokinetics, Genentech, South San Francisco, California (L.S., C.E.C.A.H.); Preclinical PK and In Vitro ADME, Biogen, Cambridge, Massachusetts (G.X.); Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Ardea Biosciences, Inc., San Diego, California (C.L.); Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, New Jersey (Y.L.,W.H.); Takeda Pharmaceuticals International Co., Cambridge, Massachusetts (M.L.); Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Kenilworth, New Jersey (R.E.); Department of Surgery, University of Kansas Medical Center, Kansas City, Kansas (S.C.K.)
| |
Collapse
|
8
|
Hoosain N, Pearce B, Jacobs C, Benjeddou M. Mapping SLCO1B1 Genetic Variation for Global Precision Medicine in Understudied Regions in Africa: A Focus on Zulu and Cape Admixed Populations. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2016; 20:546-554. [PMID: 27631194 DOI: 10.1089/omi.2016.0115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The U.S. President Barack Obama has announced, in his State of the Union address on January 20, 2015, the Precision Medicine Initiative, a US$215-million program. For global precision medicine to become a reality, however, biological and environmental "variome" in previously understudied populations ought to be mapped and catalogued. Chief among the molecular targets that warrant global mapping is the organic anion-transporting polypeptide 1B1 (OATP1B1), encoded by solute carrier organic anion transporter family member 1B1 (SLCO1B1), a hepatic uptake transporter predominantly expressed in the basolateral side of hepatocytes. Human OATP1B1 plays a crucial role in the transport of a wide variety of substrates. This includes endogenous compounds such as bile salts as well as medicines, including benzylpenicillin, methotrexate, pravastatin, and rifampicin, and natural toxins microcystin and phalloidin. Genetic variations observed in the SLCO1B1 gene have been associated with altered in vitro and in vivo OATP1B1 transport activity, and consequently influencing patients' response to medicines, toxins, and susceptibility to common complex diseases. Well-characterized haplotypes, *5 (RS4149056C) and *15 (RS4149056T), have been associated with a strikingly reduced uptake of multiple OATP1B1 substrates, including estrone-3-sulfate, estradiol-17β-d-glucuronide, atorvastatin, cerivastatin, pravastatin, and rifampicin. In particular, RS4149056C is observed in 60% of the Cape admixed (CA) population and is associated with increased plasma concentrations of many statins as well as fexofenadine and repaglinide. We designed and optimized a SNaPshot minisequencing panel to characterize the variants of relevance for precision medicine in the clinic. We report here the first study on allele and genotype frequencies for 10 nonsynonymous, 4 synonymous, and 6 intronic single-nucleotide polymorphisms of SLCO1B1 in the Zulu and CA populations of South Africa. These variants are further contextualized here, in relation to their potential clinical relevance. These observations collectively contribute to current efforts to advance global precision medicine in understudied populations and resource-limited regions of the world.
Collapse
Affiliation(s)
- Nisreen Hoosain
- Pharmacogenetics Laboratory, Department of Biotechnology, Faculty of Natural Science, University of the Western Cape , Bellville, South Africa
| | - Brendon Pearce
- Pharmacogenetics Laboratory, Department of Biotechnology, Faculty of Natural Science, University of the Western Cape , Bellville, South Africa
| | - Clifford Jacobs
- Pharmacogenetics Laboratory, Department of Biotechnology, Faculty of Natural Science, University of the Western Cape , Bellville, South Africa
| | - Mongi Benjeddou
- Pharmacogenetics Laboratory, Department of Biotechnology, Faculty of Natural Science, University of the Western Cape , Bellville, South Africa
| |
Collapse
|
9
|
Tornio A, Neuvonen PJ, Niemi M, Backman JT. Role of gemfibrozil as an inhibitor of CYP2C8 and membrane transporters. Expert Opin Drug Metab Toxicol 2016; 13:83-95. [PMID: 27548563 DOI: 10.1080/17425255.2016.1227791] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Cytochrome P450 (CYP) 2C8 is a drug metabolizing enzyme of major importance. The lipid-lowering drug gemfibrozil has been identified as a strong inhibitor of CYP2C8 in vivo. This effect is due to mechanism-based inhibition of CYP2C8 by gemfibrozil 1-O-β-glucuronide. In vivo, gemfibrozil is a fairly selective CYP2C8 inhibitor, which lacks significant inhibitory effect on other CYP enzymes. Gemfibrozil can, however, have a smaller but clinically meaningful inhibitory effect on membrane transporters, such as organic anion transporting polypeptide 1B1 and organic anion transporter 3. Areas covered: This review describes the inhibitory effects of gemfibrozil on CYP enzymes and membrane transporters. The clinical drug interactions caused by gemfibrozil and the different mechanisms contributing to the interactions are reviewed in detail. Expert opinion: Gemfibrozil is a useful probe inhibitor of CYP2C8 in vivo, but its effect on membrane transporters has to be taken into account in study design and interpretation. Moreover, gemfibrozil could be used to boost the pharmacokinetics of CYP2C8 substrate drugs. Identification of gemfibrozil 1-O-β-glucuronide as a potent mechanism-based inhibitor of CYP2C8 has led to recognition of glucuronide metabolites as perpetrators of drug-drug interactions. Recently, also acyl glucuronide metabolites of clopidogrel and deleobuvir have been shown to strongly inhibit CYP2C8.
Collapse
Affiliation(s)
- Aleksi Tornio
- a Department of Clinical Pharmacology , University of Helsinki and Helsinki University Hospital , Helsinki , Finland
| | - Pertti J Neuvonen
- a Department of Clinical Pharmacology , University of Helsinki and Helsinki University Hospital , Helsinki , Finland
| | - Mikko Niemi
- a Department of Clinical Pharmacology , University of Helsinki and Helsinki University Hospital , Helsinki , Finland
| | - Janne T Backman
- a Department of Clinical Pharmacology , University of Helsinki and Helsinki University Hospital , Helsinki , Finland
| |
Collapse
|
10
|
Abstract
Personalized medicine aims at better targeting therapeutic intervention to the individual to maximize benefit and minimize harm. Type 2 diabetes (T2D) is a heterogeneous disease from a genetic, pathophysiological and clinical point of view. Thus, the response to any antidiabetic medication may considerably vary between individuals. Numerous glucose-lowering agents, with different mechanisms of action, have been developed, a diversified armamentarium that offers the possibility of a patient-centred therapeutic approach. In the current clinical practice, a personalized approach is only based upon phenotype, taking into account patient and disease individual characteristics. If this approach may help increase both efficacy and safety outcomes, there remains considerable room for improvement. In recent years, many efforts were taken to identify genetic and genotype SNP's (Single Nucleotide Polymorphism's) variants that influence the pharmacokinetics, pharmacodynamics, and ultimately the therapeutic response of oral glucose-lowering drugs. This approach mainly concerns metformin, sulphonylureas, meglitinides and thiazolidinediones, with only scarce data concerning gliptins and gliflozins yet. However, the contribution of pharmacogenetics and pharmacogenomics to personalized therapy still needs to mature greatly before routine clinical implementation is possible. This review discusses both opportunities and challenges of precision medicine and how this new paradigm may lead to a better individualized treatment of T2D.
Collapse
Affiliation(s)
- André J Scheen
- Division of Diabetes, Nutrition and Metabolic Disorders, Department of Medicine, CHU Liège, University of Liège, Liège, Belgium; Clinical Pharmacology Unit, CHU Liège, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, Liège, Belgium.
| |
Collapse
|
11
|
Dawed AY, Zhou K, Pearson ER. Pharmacogenetics in type 2 diabetes: influence on response to oral hypoglycemic agents. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2016; 9:17-29. [PMID: 27103840 PMCID: PMC4827904 DOI: 10.2147/pgpm.s84854] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Type 2 diabetes is one of the leading causes of morbidity and mortality, consuming a significant proportion of public health spending. Oral hypoglycemic agents (OHAs) are the frontline treatment approaches after lifestyle changes. However, huge interindividual variation in response to OHAs results in unnecessary treatment failure. In addition to nongenetic factors, genetic factors are thought to contribute to much of such variability, highlighting the importance of the potential of pharmacogenetics to improve therapeutic outcome. Despite the presence of conflicting results, significant progress has been made in an effort to identify the genetic markers associated with pharmacokinetics, pharmacodynamics, and ultimately therapeutic response and/or adverse outcomes to OHAs. As such, this article presents a comprehensive review of current knowledge on pharmacogenetics of OHAs and provides insights into knowledge gaps and future directions.
Collapse
Affiliation(s)
- Adem Yesuf Dawed
- Division of Cardiovascular and Diabetes Medicine, Medical Research Institute, University of Dundee, Dundee, Scotland, UK
| | - Kaixin Zhou
- Division of Cardiovascular and Diabetes Medicine, Medical Research Institute, University of Dundee, Dundee, Scotland, UK
| | - Ewan Robert Pearson
- Division of Cardiovascular and Diabetes Medicine, Medical Research Institute, University of Dundee, Dundee, Scotland, UK
| |
Collapse
|
12
|
Leonard CE, Bilker WB, Brensinger CM, Han X, Flory JH, Flockhart DA, Gagne JJ, Cardillo S, Hennessy S. Severe hypoglycemia in users of sulfonylurea antidiabetic agents and antihyperlipidemics. Clin Pharmacol Ther 2016; 99:538-47. [PMID: 26566262 DOI: 10.1002/cpt.297] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 11/07/2015] [Indexed: 12/15/2022]
Abstract
Drug-drug interactions causing severe hypoglycemia due to antidiabetic drugs is a major clinical and public health problem. We assessed whether sulfonylurea use with a statin or fibrate was associated with severe hypoglycemia. We conducted cohort studies of users of glyburide, glipizide, and glimepiride plus a statin or fibrate within a Medicaid population. The outcome was a validated, diagnosis-based algorithm for severe hypoglycemia. Among 592,872 persons newly exposed to a sulfonylurea+antihyperlipidemic, the incidence of severe hypoglycemia was 5.8/100 person-years. Adjusted hazard ratios (HRs) for sulfonylurea+statins were consistent with no association. Most overall HRs for sulfonylurea+fibrate were elevated, with sulfonylurea-specific adjusted HRs as large as 1.50 (95% confidence interval (CI): 1.24-1.81) for glyburide+gemfibrozil, 1.37 (95% CI: 1.11-1.69) for glipizide+gemfibrozil, and 1.63 (95% CI: 1.29-2.06) for glimepiride+fenofibrate. Concomitant therapy with a sulfonylurea and fibrate is associated with an often delayed increased rate of severe hypoglycemia.
Collapse
Affiliation(s)
- C E Leonard
- Center for Clinical Epidemiology and Biostatistics, Department of Biostatistics and Epidemiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Center for Pharmacoepidemiology Research and Training, Department of Biostatistics and Epidemiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - W B Bilker
- Center for Clinical Epidemiology and Biostatistics, Department of Biostatistics and Epidemiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Center for Pharmacoepidemiology Research and Training, Department of Biostatistics and Epidemiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - C M Brensinger
- Center for Clinical Epidemiology and Biostatistics, Department of Biostatistics and Epidemiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - X Han
- Center for Clinical Epidemiology and Biostatistics, Department of Biostatistics and Epidemiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Center for Pharmacoepidemiology Research and Training, Department of Biostatistics and Epidemiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - J H Flory
- Center for Pharmacoepidemiology Research and Training, Department of Biostatistics and Epidemiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Healthcare Policy and Research, Division of Comparative Effectiveness, Weill Cornell Medical College, New York, New York, USA
| | - D A Flockhart
- Center for Pharmacoepidemiology Research and Training, Department of Biostatistics and Epidemiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Medicine, Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - J J Gagne
- Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - S Cardillo
- Center for Pharmacoepidemiology Research and Training, Department of Biostatistics and Epidemiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - S Hennessy
- Center for Clinical Epidemiology and Biostatistics, Department of Biostatistics and Epidemiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Center for Pharmacoepidemiology Research and Training, Department of Biostatistics and Epidemiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
13
|
SLCO1B1 c.388A>G Polymorphism Is Associated with HDL-C Levels in Response to Atorvastatin in Chilean Individuals. Int J Mol Sci 2015; 16:20609-19. [PMID: 26334272 PMCID: PMC4613221 DOI: 10.3390/ijms160920609] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 08/20/2015] [Accepted: 08/25/2015] [Indexed: 11/24/2022] Open
Abstract
The use of statins as the preferred lipid-lowering therapy has clearly demonstrated its efficacy in the treatment of hypercholesterolemia, reducing also the risk of coronary events and cardiovascular disease mortality. In this study, we assessed single nucleotide polymorphisms (SNPs) in the SLCO1B1 gene and their effect on atorvastatin response. We included 129 Chilean hypercholesterolemic patients undergoing 10 mg/day of atorvastatin therapy during 4 weeks. Lipid profile was determined before and after drug administration. Genotyping of SLCO1B1 rs4149056 (c.521T>C) SNP was performed with allele-specific polymerase chain reaction, whilst polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was used for genotyping the SLCO1B1 rs2306283 (c.388A>G) variant. After statin therapy, concentrations of TC, LDL-C and TG had a decrease from baseline (p < 0.05). Also, HDL-C levels increased (p < 0.05). Minor allele frequencies for the rs2306283 and rs4149056 variants were 0.547 and 0.136, respectively. LDL-C response to atorvastatin was not associated with the SLCO1B1 rs4149056 nor the rs2306283 polymorphisms (p > 0.05). However, the latter SNP was associated with HDL-C variability after atorvastatin medication (p = 0.02). This study indicates that LDL-C reduction following atorvastatin therapy is not influenced by the SNPs evaluated. In addition, the polymorphism rs2306283 at the SLCO1B1 gene determines greater HDL-C concentrations in response to atorvastatin medication in Chilean hypercholesterolemic subjects.
Collapse
|
14
|
Zhang X, Pu Z, Ge J, Shen J, Yuan X, Xie H. Association of CYP2D6*10, OATP1B1 A388G, and OATP1B1 T521C polymorphisms and overall survival of breast cancer patients after tamoxifen therapy. Med Sci Monit 2015; 21:563-9. [PMID: 25701109 PMCID: PMC4345853 DOI: 10.12659/msm.893473] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background The global incidence of breast cancer is increasing, mainly due to the sharp rise in breast cancer incidence in Asia. The aim of this study was to evaluate the association of CYP2D6*10 (c.100C>T and c.1039C>T), OATP1B1 A388G, and OATP1B1 T521C polymorphisms with overall survival (OS) for hormone receptor (estrogen receptor or progesterone receptor)-positive tumors (ER+/PR+) breast cancer patients after adjuvant tamoxifen (TAM) therapy. Material/Method We included 296 invasive breast cancer patients with hormone receptor-positive tumors during the period 2002–2009. We collected patient data, including clinical features, TAM therapy, and survival status. Archived paraffin blocks from surgery were the source of tissue for genotyping. CYP2D6*10, OATP1B1 A388G, and T521C polymorphisms were detected by direct sequencing of genomic DNA. OS was assessed with Kaplan-Meier analysis, while the Cox proportional hazards model was used to implement multivariate tests for the prognostic significance. Results There was a significant difference in OS between OATP1B1 T521C wild-type and the mutant genotype C carrier (P=0.034). However, there was no difference in overall survival between wild-type and carrier groups for CYP2D6*10 (P=0.096) and OATP1B1 A388G (P=0.388), respectively. Conclusions These results suggest that the OATP1B1 T521C mutation may be an independent prognostic marker for breast cancer patients using TAM therapy.
Collapse
Affiliation(s)
- Xuefeng Zhang
- Department of Clinical Pharmacy, Yijishan Hospital of Wannan Medical College, Anhui Provincial Center for Clinical Drug Evaluation, Wuhu, Anhui, China (mainland)
| | - Zhichen Pu
- Department of Clinical Pharmacy, Yijishan Hospital of Wannan Medical College, Anhui Provincial Center for Clinical Drug Evaluation, Wuhu, Anhui, China (mainland)
| | - Jun Ge
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China (mainland)
| | - Jie Shen
- Department of Clinical Pharmacy, Yijishan Hospital of Wannan Medical College, Anhui Provincial Center for Clinical Drug Evaluation, Wuhu, Anhui, China (mainland)
| | - Xiaolong Yuan
- Department of Clinical Pharmacy, Yijishan Hospital of Wannan Medical College, Anhui Provincial Center for Clinical Drug Evaluation, Wuhu, Anhui, China (mainland)
| | - Haitang Xie
- Department of Clinical Pharmacy, Yijishan Hospital of Wannan Medical College, Anhui Provincial Center for Clinical Drug Evaluation, Wuhu, Anhui, China (mainland)
| |
Collapse
|
15
|
Saha R, Biswas S, Dey SK, Sen A, Roy M, Steele IM, Dey K, Ghosh A, Kumar S. Thermally induced single crystal to single crystal transformation leading to polymorphism. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 130:526-533. [PMID: 24813281 DOI: 10.1016/j.saa.2014.04.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 03/10/2014] [Accepted: 04/06/2014] [Indexed: 06/03/2023]
Abstract
The robust complex [La(1,10-phen)2(NO3)3] (1,10-phen=1,10-phenanthroline) exhibits thermally induced single crystal to single crystal transformation from one polymorphic phase to another. The complex crystallizes in monoclinic C2/c space group with C2 molecular symmetry at 293K while at 100K it shows P21/c space group with C1 molecular symmetry. Supramolecular investigation shows that at 100K the complex forms 2D achiral sheets whereas at 293K forms two different homochiral 2D sheets. Low temperature DSC analysis indicates that this structural transformation occurs at 246K and also this transformation is reversible in nature. We have shown that thermally induced coherent movement of ligands changes the molecular symmetry of the complex and leads to polymorphism. Photoluminescence property of complex has been studied in both solid state and in methanolic solution at room temperature. The effect of the presence low-lying LUMO orbital of π-character in the complex is elucidated by theoretical calculation using DFT method.
Collapse
Affiliation(s)
- Rajat Saha
- Department of Physics, Jadavpur University, Kolkata 700032, India
| | - Susobhan Biswas
- Department of Physics, Jadavpur University, Kolkata 700032, India
| | - Sanjoy Kumar Dey
- Department of Physics, Jadavpur University, Kolkata 700032, India; Department of Physics, NITMAS, 24-paragana(S) 743368, India
| | - Arijit Sen
- Department of Physics, Jadavpur University, Kolkata 700032, India
| | - Madhusudan Roy
- Applied Material Science Division, SINP, Kolkata 700064, India
| | - Ian M Steele
- Department of the Geophysical Sciences, The University of Chicago, USA
| | - Kamalendu Dey
- Department of Chemistry, University of Kalyani, Kalyani, Nadia, India. kdey_chem.@rediffmail.com
| | - Ashutosh Ghosh
- Department of Chemistry, University of Calcutta, Kolkata 700009, India.
| | - Sanjay Kumar
- Department of Physics, Jadavpur University, Kolkata 700032, India.
| |
Collapse
|
16
|
Tiwari V, Khokhar M. Mechanism of action of anti-hypercholesterolemia drugs and their resistance. Eur J Pharmacol 2014; 741:156-70. [PMID: 25151024 DOI: 10.1016/j.ejphar.2014.07.048] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Revised: 07/23/2014] [Accepted: 07/24/2014] [Indexed: 01/05/2023]
Abstract
Coronary artery disease is one of the leading causes of death worldwide. One of the significant causes of this disease is hypercholesterolemia which is the result of various genetic alterations that are associated with the accumulation of specific classes of lipoprotein particles in plasma. A number of drugs are used to treat hypercholesterolemia like statin, fibrate, bile acid sequestrants, niacin, ezetimibe, omega-3 fatty acids and natural extracts. It has been observed that these drugs show diverse response in different individuals. The present review explains the mechanism of action of these drugs as well as mechanism of its lesser effectiveness or resistance in some individuals. There are various identified genetic variations that are associated with diversity in the drugs response. Therefore, present study helps to understand the ethiology of drug mechanism and resistance developed against drugs used to treat hypercholesterolemia.
Collapse
Affiliation(s)
- Vishvanath Tiwari
- Department of Biochemistry, Central University of Rajasthan, Ajmer 305801, Rajasthan, India.
| | - Manoj Khokhar
- Department of Biochemistry, Central University of Rajasthan, Ajmer 305801, Rajasthan, India
| |
Collapse
|
17
|
Takeuchi K, Sugiura T, Matsubara K, Sato R, Shimizu T, Masuo Y, Horikawa M, Nakamichi N, Ishiwata N, Kato Y. Interaction of novel platelet-increasing agent eltrombopag with rosuvastatin via breast cancer resistance protein in humans. Drug Metab Dispos 2014; 42:726-34. [PMID: 24440960 DOI: 10.1124/dmd.113.054767] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Eltrombopag (ELT), an orally available thrombopoietin receptor agonist, is a substrate of organic anion transporting polypeptide 1B1 (OATP1B1), and coadministration of ELT increases the plasma concentration of rosuvastatin in humans. Since the pharmacokinetic mechanism(s) of the interaction is unknown, the present study aimed to clarify the drug interaction potential of ELT at transporters. The OATP1B1-mediated uptake of ELT was inhibited by several therapeutic agents used to treat lifestyle diseases. Among them, rosuvastatin was a potent inhibitor with an IC(50) of 0.05 µM, which corresponds to one-seventh of the calculated maximum unbound rosuvastatin concentration at the inlet to the liver. Nevertheless, a simulation study using a physiologically based pharmacokinetic model predicted that the effect of rosuvastatin on the pharmacokinetic profile of ELT in vivo would be minimal. On the other hand, ELT potently inhibited uptake of rosuvastatin by OATP1B1 and human hepatocytes, with an IC(50) of 0.1 µM. However, the results of the simulation study indicated that inhibition of OATP1B1 by ELT can only partially explain the clinically observed interaction with rosuvastatin. ELT also inhibited transcellular transport of rosuvastatin in MDCKII cells stably expressing breast cancer resistance protein (BCRP), and was found to be a substrate of BCRP. The interaction of ELT with rosuvastatin can be almost quantitatively explained on the assumption that intestinal secretion of rosuvastatin is essentially completely inhibited by ELT. These results suggest that BCRP in small intestine may be the major target for interaction between ELT and rosuvastatin in humans.
Collapse
Affiliation(s)
- Kazuya Takeuchi
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (K.T., T.S., K.M., R.S., T.S., Y.M., N.N., Y.K.); and Pharmaceutical Research Department, Biological Research Laboratories, Nissan Chemical Industries, Ltd., Saitama, Japan (K.T., M.H., N.I.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Macha S, Koenen R, Sennewald R, Schöne K, Hummel N, Riedmaier S, Woerle HJ, Salsali A, Broedl UC. Effect of Gemfibrozil, Rifampicin, or Probenecid on the Pharmacokinetics of the SGLT2 Inhibitor Empagliflozin in Healthy Volunteers. Clin Ther 2014; 36:280-90.e1. [DOI: 10.1016/j.clinthera.2014.01.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 12/20/2013] [Accepted: 01/07/2014] [Indexed: 11/25/2022]
|
19
|
Manolopoulos VG, Ragia G. Pharmacogenomics of Oral Antidiabetic Drugs. HANDBOOK OF PHARMACOGENOMICS AND STRATIFIED MEDICINE 2014:683-713. [DOI: 10.1016/b978-0-12-386882-4.00030-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
20
|
Badolo L, Bundgaard C, Garmer M, Jensen B. The role of hepatic transport and metabolism in the interactions between pravastatin or repaglinide and two rOatp inhibitors in rats. Eur J Pharm Sci 2013; 49:767-72. [PMID: 23648783 DOI: 10.1016/j.ejps.2013.04.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 04/02/2013] [Accepted: 04/25/2013] [Indexed: 01/20/2023]
Abstract
A change in the function or expression of hepatic drug transporters may have significant effect on the efficacy or safety of orally administered drugs. Although a number of clinical drug-drug interactions associated with hepatic transport proteins have been reported, in practice it is not always straightforward to discriminate other pathways (e.g. drug metabolism) from being involved in these interactions. The present study was designed to assess the interactions between organic anion transporting polypeptide (Oatp) substrates (pravastatin or repaglinide) and inhibitors (spironolactone or diphenhydramine) in vivo in rats. The mechanisms behind the interactions were then investigated using in vitro tools (isolated hepatocytes and rat liver microsomes). The results showed a significant increase in the systemic exposures of pravastatin (2.5-fold increase in AUC) and repaglinide (1.8-fold increase in AUC) after co-administration of spironolactone to rats. Diphenhydramine increased the AUC of repaglinide by 1.4-fold. The in vivo interactions observed in rats between Oatp substrates and inhibitors may a priori be classified as transport-mediated drug-drug interactions. However, mechanistic studies performed in vitro using both isolated rat hepatocytes and rat liver microsomes showed that the interaction between pravastatin and spironolactone may be solely linked to the inhibition of pravastatin uptake in liver. On the contrary, the inhibition of cytochrome P450 seemed to be the reason for the interactions observed between repaglinide and spironolactone. Although the function and structure of transport proteins may vary between rats and humans, the approach used in the present study can be applied to humans and help to understand the role of drug transport and drug metabolism in a given drug-drug interaction. This is important to predict and mitigate the risk of drug-drug interactions for a candidate drug in pre-clinical development, it is also important for the optimal design of drug-drug interactions studies in the clinic.
Collapse
Affiliation(s)
- Lassina Badolo
- Discovery DMPK, H. Lundbeck A/S, Copenhagen-Valby, Denmark.
| | | | | | | |
Collapse
|
21
|
Holstein A, Beil W, Kovacs P. CYP2C metabolism of oral antidiabetic drugs--impact on pharmacokinetics, drug interactions and pharmacogenetic aspects. Expert Opin Drug Metab Toxicol 2013; 8:1549-63. [PMID: 23153186 DOI: 10.1517/17425255.2012.722619] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The cytochrome P4502C enzymes account for the metabolism of approximately 20% of therapeutic drugs including certain oral antidiabetic drugs (OADs). AREAS COVERED This review focuses on the effect of CYP2C enzymes on metabolism of sulphonylureas (SUs), meglitinides, and thiazolidinediones (TZDs) discussing their impact on pharmacokinetics, drug interactions and toxicological profiles. Pharmacogenetic aspects reflecting individual gene variants and variable drug effects are also considered. EXPERT OPINION Genetic polymorphisms of CYP2C9 enzymes (*2/*2, *2/*3, *3/*3) influence the glycaemic response to SUs and impair their substrate metabolism. Restricted data from small-sized studies with heterogenous definitions of hypoglycaemia revealed no clear association between CYP2C9 genotypes and the risk of hypoglycaemia. Functional polymorphisms of CYP2C8- and CYP2C9 drug metabolizing genes affect markedly pharmacokinetics of meglitinides. Compared to wild-type carriers, patients treated with TZDs and carrying the common CYP2C8*3 and *4 variants showed a reduced glycaemic control. The strong CYP2C8 and OATP1B1 inhibitor gemfibrozil increases substantially the plasma concentrations of repaglinide and TZDs. Numerous metabolic drug interactions exist between SUs and commonly prescribed drugs, especially anti-infectives. The complex pharmacokinetic and pharmacogenetic properties and the unfavourable short and long term risk profile of glibenclamide and glimepiride raise the question whether their use can be justified any longer.
Collapse
Affiliation(s)
- Andreas Holstein
- Lippe-Detmold Hospital, First Department of Medicine, Röntgenstr. 18, Detmold, 32756, Germany.
| | | | | |
Collapse
|
22
|
van de Steeg E, Greupink R, Schreurs M, Nooijen IHG, Verhoeckx KCM, Hanemaaijer R, Ripken D, Monshouwer M, Vlaming MLH, DeGroot J, Verwei M, Russel FGM, Huisman MT, Wortelboer HM. Drug-drug interactions between rosuvastatin and oral antidiabetic drugs occurring at the level of OATP1B1. Drug Metab Dispos 2013; 41:592-601. [PMID: 23248200 DOI: 10.1124/dmd.112.049023] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Organic anion-transporting polypeptide 1B1 (OATP1B1) is an important hepatic uptake transporter, of which the polymorphic variant OATP1B1*15 (Asn130Asp and Val174Ala) has been associated with decreased transport activity. Rosuvastatin is an OATP1B1 substrate and often concomitantly prescribed with oral antidiabetics in the clinic. The aim of this study was to investigate possible drug-drug interactions between these drugs at the level of OATP1B1 and OATP1B1*15. We generated human embryonic kidney (HEK)293 cells stably overexpressing OATP1B1 or OATP1B1*15 that showed similar protein expression levels of OATP1B1 and OATP1B1*15 at the cell membrane as measured by liquid chromatography-tandem mass spectrometry. In HEK-OATP1B1*15 cells, the V(max) for OATP1B1-mediated transport of E(2)17β-G (estradiol 17β-d-glucuronide) was decreased >60%, whereas K(m) values (Michaelis constant) were comparable. Uptake of rosuvastatin in HEK-OATP1B1 cells (K(m) 13.1 ± 0.43 μM) was nearly absent in HEK-OATP1B1*15 cells. Interestingly, several oral antidiabetics (glyburide, glimepiride, troglitazone, pioglitazone, glipizide, gliclazide, and tolbutamide), but not metformin, were identified as significant inhibitors of the OATP1B1-mediated transport of rosuvastatin. The IC(50) values for inhibition of E(2)17β-G uptake were similar between OATP1B1 and OATP1B1*15. In conclusion, these studies indicate that several oral antidiabetic drugs affect the OATP1B1-mediated uptake of rosuvastatin in vitro. The next step will be to translate these data to the clinical situation, as it remains to be established whether the studied oral antidiabetics indeed affect the clinical pharmacokinetic profile of rosuvastatin in patients.
Collapse
Affiliation(s)
- E van de Steeg
- TNO, Utrechtseweg 48, P.O. Box 360, 3700 AJ Zeist, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Ozhan G, Kara M, Sari FM, Yanar HT, Alpertunga B. Influence of the functional polymorphisms in the organic anion transporting polypeptide 1B1 in the susceptibility to colorectal cancer. Genet Test Mol Biomarkers 2012; 17:214-8. [PMID: 23216274 DOI: 10.1089/gtmb.2012.0334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Colorectal cancer is an important cause of death throughout the world, and its etiology involves the interaction of genetic and environmental factors. Transporter proteins are important in protecting organs from xenobiotics or toxins. Organic anion-transporting polypeptide 1B1 (OATP1B1) plays role in hepatic uptake and clearance of albumin-bound amphipathic organic compounds, including endogen substances, drugs, or xenobiotics. The SLCO1B1 gene expressing OATP1B1 is highly polymorphic. Up to now, SLCO1BI variants were the focus of several investigations on drug pharmacokinetics and cancer susceptibility. However, no information has been available on association between SLCO1B1 and colorectal cancer risk. Therefore, the study aims to investigate the relationship between colorectal cancer and the functional common variants of SLCO1B1 (388 A>G, -11187 G>A, 521 T>C) and to estimate the prevalence of these variants in the Turkish population. To that end, the distributions of the variants were determined in 100 patients with colorectal cancer and 150 healthy volunteers. SLCO1B1 521 T>C was statistically significantly associated with colorectal cancer risk (odds ratio [OR]=2.66; 95% confidence interval [CI]=1.31-5.41; p=0.0057). In haplotype-based analysis, SLCO1B1 haplotype G(388)-T(11187)-T(521) might be associated with the development of colorectal cancer (OR=4.26; 95% CI=1.62-11.16; p=0.002). We believe that the findings may be beneficial to the development of efficacious preventive strategies and therapies for colorectal cancer.
Collapse
Affiliation(s)
- Gül Ozhan
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey.
| | | | | | | | | |
Collapse
|
24
|
Association of multidrug resistance-associated protein 2 single nucleotide polymorphism rs12762549 with the basal plasma levels of phase II metabolites of isoflavonoids in healthy Japanese individuals. Pharmacogenet Genomics 2012; 22:344-54. [DOI: 10.1097/fpc.0b013e3283517012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
25
|
Schipani A, Egan D, Dickinson L, Davies G, Boffito M, Youle M, Khoo SH, Back DJ, Owen A. Estimation of the effect of SLCO1B1 polymorphisms on lopinavir plasma concentration in HIV-infected adults. Antivir Ther 2012; 17:861-8. [PMID: 22477766 PMCID: PMC3443796 DOI: 10.3851/imp2095] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2011] [Indexed: 12/11/2022]
Abstract
BACKGROUND The organic anion transporting polypeptides (OATP)/SLCO family represents an important class of hepatic drug uptake transporters that mediate the sodium independent transport of a diverse range of amphipathic organic compounds, including the protease inhibitors. The SLCO1B1 521T>C (rs4149056) single nucleotide polymorphism (SNP) has been consistently associated with reduced transport activity in vivo, and we previously showed an association of this polymorphism with lopinavir plasma concentrations. The aim of this study was to develop a population pharmacokinetic (PK) model to quantify the impact of 521T>C. METHODS A population PK analysis was performed with 594 plasma samples from 375 patients receiving lopinavir/ritonavir. Non-linear mixed effects modelling was applied to explore the effects of SLCO1B1 521T>C and patient demographics. Simulations of the lopinavir concentration profile were performed with different dosing regimens considering the different alleles. RESULTS A one-compartment model with first-order absorption best described the data. Population clearance was 5.67 l/h with inter-patient variability of 37%. Body weight was the only demographic factor influencing clearance, which increased 0.5 l/h for every 10 kg increase. Homozygosity for the C allele was associated with a 37% lower clearance, and 14% for heterozygosity, which were statistically significant. CONCLUSIONS These data show an association between SLCO1B1 521T>C and lopinavir clearance. The association is likely to be mediated through reduced uptake by hepatocytes leading to higher plasma concentrations of lopinavir. Further studies are now required to confirm the association and to assess the influence of other polymorphisms in the SLCO family on lopinavir PK.
Collapse
Affiliation(s)
- Alessandro Schipani
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Deirdre Egan
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
- NIHR Biomedical Research Centre, Royal Liverpool & Broadgreen University Hospital Trust, Liverpool, UK
| | - Laura Dickinson
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
- NIHR Biomedical Research Centre, Royal Liverpool & Broadgreen University Hospital Trust, Liverpool, UK
| | - Gerry Davies
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Marta Boffito
- St Stephen’s Centre, Chelsea and Westminster Hospital NHS Foundation Trust, London, UK
| | - Mike Youle
- Department of HIV Medicine, Royal Free NHS Trust, London, UK
| | - Saye H. Khoo
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - David J. Back
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Andrew Owen
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| |
Collapse
|
26
|
Drug interactions with oral antidiabetic agents: pharmacokinetic mechanisms and clinical implications. Trends Pharmacol Sci 2012; 33:312-22. [PMID: 22475684 DOI: 10.1016/j.tips.2012.03.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 02/27/2012] [Accepted: 03/02/2012] [Indexed: 12/21/2022]
Abstract
There is a growing epidemic of type 2 diabetes (T2DM), and it is associated with various comorbidities. Patients with T2DM are usually treated with multiple drugs, and are therefore at an increased risk of harmful drug-drug interactions (DDIs). Several potentially life-threatening DDIs concerning oral antidiabetic drugs have been identified. This has mostly been initiated by case reports but, more recently, the understanding of their mechanisms has greatly increased. In this article, we review the pharmacokinetic DDIs concerning oral antidiabetics, including metformin, sulfonylureas, meglitinide analogs, thiazolidinediones and dipeptidyl peptidase-4 inhibitors, and the underlying mechanistic basis that can help to predict and prevent DDIs. In particular, the roles of membrane transporters and cytochrome P450 (CYP) enzymes in these DDIs are discussed.
Collapse
|
27
|
Neuvonen PJ. Towards Safer and More Predictable Drug Treatment - Reflections from Studies of the First BCPT Prize Awardee. Basic Clin Pharmacol Toxicol 2012; 110:207-18. [DOI: 10.1111/j.1742-7843.2012.00858.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Pertti J. Neuvonen
- Department of Clinical Pharmacology; University of Helsinki, and HUSLAB, Helsinki University Central Hospital; Helsinki; Finland
| |
Collapse
|
28
|
Manolopoulos VG, Ragia G, Tavridou A. Pharmacogenomics of oral antidiabetic medications: current data and pharmacoepigenomic perspective. Pharmacogenomics 2011; 12:1161-91. [PMID: 21843065 DOI: 10.2217/pgs.11.65] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is an increasingly prevalent disease. Several classes of drugs are currently available to treat T2DM patients; however, clinical response to these drugs often exhibits significant variation among individuals. For the oral antidiabetic drug classes of sulfonylureas, nonsulfonylurea insulin secretagogs, biguanides and thiazolidinediones, pharmacogenomic evidence has accumulated demonstrating an association between specific gene polymorphisms and interindividual variability in their therapeutic and adverse reaction effects. These polymorphisms are in genes of molecules involved in metabolism, transport and therapeutic mechanisms of the aforementioned drugs. Overall, it appears that pharmacogenomics has the potential to improve the management of T2DM and help clinicians in the effective prescribing of oral antidiabetic medications. Although pharmacogenomics can explain some of the heterogeneity in dose requirements, response and incidence of adverse effects of drugs between individuals, it is now clearly understood that much of the diversity in drug effects cannot be solely explained by studying the genomic diversity. Epigenomics, the field that focuses on nongenomic modifications that influence gene expression, may expand the scope of pharmacogenomics towards optimization of drug therapy. Therefore, pharmacoepigenomics, the combined analysis of genetic variations and epigenetic modifications, holds promise for the realization of personalized medicine. Although pharmacoepigenomics has so far been evaluated mainly in cancer pharmacotherapy, studies on epigenomic modifications during T2DM development provide useful data on the potential of pharmacoepigenomics to elucidate the mechanisms underlying interindividual response to oral antidiabetic treatment. In summary, the present article focuses on available data from pharmacogenomic studies of oral antidiabetic drugs and also provides an overview of T2DM epigenomic research, which has the potential to boost the development of pharmacoepigenomics in antidiabetic treatment.
Collapse
Affiliation(s)
- Vangelis G Manolopoulos
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Dragana Campus, 68100 Alexandroupolis, Greece.
| | | | | |
Collapse
|
29
|
Impact of genetic polymorphisms of cytochrome P450 2 C (CYP2C) enzymes on the drug metabolism and design of antidiabetics. Chem Biol Interact 2011; 194:159-67. [DOI: 10.1016/j.cbi.2011.08.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 08/26/2011] [Accepted: 08/29/2011] [Indexed: 01/01/2023]
|
30
|
Takeuchi K, Sugiura T, Umeda S, Matsubara K, Horikawa M, Nakamichi N, Silver DL, Ishiwata N, Kato Y. Pharmacokinetics and hepatic uptake of eltrombopag, a novel platelet-increasing agent. Drug Metab Dispos 2011; 39:1088-96. [PMID: 21422191 DOI: 10.1124/dmd.110.037960] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Eltrombopag (ELT) is a novel thrombopoietin receptor agonist for the treatment of idiopathic thrombocytopenic purpura. Previous reports indicate that ELT is mainly eliminated in the liver, although its pharmacokinetic profile has not yet been clarified in detail. The purpose of the present study is to investigate the overall elimination mechanism of ELT. After intravenous administration of ELT to rats, approximately 40% of unchanged ELT was excreted into the bile in 72 h, whereas less than 0.02% of the dose was excreted in urine, indicating that liver is the major elimination organ for ELT. The total clearance was much lower than the hepatic blood flow rate and comparable with hepatic uptake clearance obtained from integration plot analysis. Coadministration of rifampicin, an organic anion transporter inhibitor, reduced both total clearance and hepatic uptake clearance of ELT. These results suggest that hepatic uptake is the rate-limiting process in the overall elimination of ELT. To further characterize the uptake mechanism, uptake of ELT by freshly isolated mouse hepatocytes was examined. The ELT uptake showed concentration and energy dependence and was inhibited by various compounds, including not only organic anions but also organic cations. Hepatic uptake clearance in vivo was reduced by coadministration of an organic cation, tetrapentylammonium. Finally, uptake of ELT was observed in human embryonic kidney 293 cells transfected with human hepatic transporters organic anion-transporting polypeptide (OATP) 1B1 and OATP2B1 and organic cation transporter OCT1. These results suggest that multiple transporters, including organic anion transporters and organic cation transporters, are involved in hepatic ELT uptake.
Collapse
Affiliation(s)
- Kazuya Takeuchi
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Niemi M, Pasanen MK, Neuvonen PJ. Organic anion transporting polypeptide 1B1: a genetically polymorphic transporter of major importance for hepatic drug uptake. Pharmacol Rev 2011; 63:157-81. [PMID: 21245207 DOI: 10.1124/pr.110.002857] [Citation(s) in RCA: 473] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The importance of membrane transporters for drug pharmacokinetics has been increasingly recognized during the last decade. Organic anion transporting polypeptide 1B1 (OATP1B1) is a genetically polymorphic influx transporter expressed on the sinusoidal membrane of human hepatocytes, and it mediates the hepatic uptake of many endogenous compounds and xenobiotics. Recent studies have demonstrated that OATP1B1 plays a major, clinically important role in the hepatic uptake of many drugs. A common single-nucleotide variation (coding DNA c.521T>C, protein p.V174A, rs4149056) in the SLCO1B1 gene encoding OATP1B1 decreases the transporting activity of OATP1B1, resulting in markedly increased plasma concentrations of, for example, many statins, particularly of active simvastatin acid. The variant thereby enhances the risk of statin-induced myopathy and decreases the therapeutic indexes of statins. However, the effect of the SLCO1B1 c.521T>C variant is different on different statins. The same variant also markedly affects the pharmacokinetics of several other drugs. Furthermore, certain SLCO1B1 variants associated with an enhanced clearance of methotrexate increase the risk of gastrointestinal toxicity by methotrexate in the treatment of children with acute lymphoblastic leukemia. Certain drugs (e.g., cyclosporine) potently inhibit OATP1B1, causing clinically significant drug interactions. Thus, OATP1B1 plays a major role in the hepatic uptake of drugs, and genetic variants and drug interactions affecting OATP1B1 activity are important determinants of individual drug responses. In this article, we review the current knowledge about the expression, function, substrate characteristics, and pharmacogenetics of OATP1B1 as well as its role in drug interactions, in parts comparing with those of other hepatocyte-expressed organic anion transporting polypeptides, OATP1B3 and OATP2B1.
Collapse
Affiliation(s)
- Mikko Niemi
- Department of Clinical Pharmacology, University of Helsinki, PO Box 20, Helsinki, FI-00014, Finland.
| | | | | |
Collapse
|
32
|
He J, Qiu Z, Li N, Yu Y, Lu Y, Han D, Li T, Zhao D, Sun W, Fang F, Zheng J, Fan H, Chen X. Effects of SLCO1B1 polymorphisms on the pharmacokinetics and pharmacodynamics of repaglinide in healthy Chinese volunteers. Eur J Clin Pharmacol 2011; 67:701-7. [PMID: 21327909 DOI: 10.1007/s00228-011-0994-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 01/07/2011] [Indexed: 12/11/2022]
Abstract
PURPOSE Repaglinide is commonly used in the treatment of patients with type 2 diabetes mellitus to reduce postprandial hyperglycemia. The objective of this research was to study the effects of SLCO1B1 polymorphisms on the pharmacokinetics and pharmacodynamics of repaglinide in healthy Chinese volunteers. METHODS A total of 22 healthy young male participants were recruited from a pool of pharmacogenetically characterized participants genotyped for SLCO1B1, CYP3A4, and CYP2C8 SNPs by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Volunteers with CYP2C8*3 and CYP3A4*4 alleles were excluded from the clinical study. Then selected volunteers took part in the clinical pharmacokinetic study, receiving 2 mg repaglinide. RESULTS Healthy participants with SLCO1B1*1A/*1B or *1A/*1A genotype and SLCO1B1 *15/*1A or *5/*1A genotype had significantly higher AUC(0-∞) than participants with SLCO1B1*1B/*1B genotype, with the former showing an increase over the latter of 39.81 and 42.09%, respectively (P = 0.028, 0.032). The clearance in the former two genotype groups was significantly attenuated (by 27.39 and 28.55%, respectively) compared with individuals with SLCO1B1*1B/*1B genotype (P = 0.015, 0.019). No significant differences in blood glucose-lowering effect were observed among three genotype groups. CONCLUSIONS SLCO1B1*1B/*1B genotype is associated with reduced pharmacokinetic exposure after a single dose oral administration of 2 mg repaglinide, including decreased AUC(0-∞) and increased clearance of repaglinide. Moreover, this polymorphism of SLCO1B1 has significant influence on the pharmacokinetics of repaglinide, but no effects on its pharmacodynamics.
Collapse
Affiliation(s)
- Jiake He
- Center for Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Mailbox 210, #24 Tongjiaxiang, Nanjing, Jiangsu, 210009, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Pollex EK, Hutson JR. Genetic polymorphisms in placental transporters: implications for fetal drug exposure to oral antidiabetic agents. Expert Opin Drug Metab Toxicol 2011; 7:325-39. [DOI: 10.1517/17425255.2011.553188] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|