1
|
Activation of GPR75 Signaling Pathway Contributes to the Effect of a 20-HETE Mimetic, 5,14-HEDGE, to Prevent Hypotensive and Tachycardic Responses to Lipopolysaccharide in a Rat Model of Septic Shock. J Cardiovasc Pharmacol 2022; 80:276-293. [PMID: 35323151 DOI: 10.1097/fjc.0000000000001265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/09/2022] [Indexed: 12/17/2022]
Abstract
ABSTRACT The orphan receptor, G protein-coupled receptor (GPR) 75, which has been shown to mediate various effects of 20-hydroxyeicosatetraenoic acid (20-HETE), is considered as a therapeutic target in the treatment of cardiovascular diseases in which changes in the production of 20-HETE play a key role in their pathogenesis. Our previous studies showed that 20-HETE mimetic, N -(20-hydroxyeicosa-5[Z],14[Z]-dienoyl)glycine (5,14-HEDGE), protects against vascular hyporeactivity, hypotension, tachycardia, and arterial inflammation induced by lipopolysaccharide (LPS) in rats. This study tested the hypothesis that the GPR75 signaling pathway mediates these effects of 5,14-HEDGE in response to systemic exposure to LPS. Mean arterial pressure reduced by 33 mm Hg, and heart rate increased by 102 beats/min at 4 hours following LPS injection. Coimmunoprecipitation studies demonstrated that (1) the dissociation of GPR75/Gα q/11 and GPR kinase interactor 1 (GIT1)/protein kinase C (PKC) α, the association of GPR75/GIT1, large conductance voltage and calcium-activated potassium subunit β (MaxiKβ)/PKCα, MaxiKβ/proto-oncogene tyrosine-protein kinase (c-Src), and epidermal growth factor receptor (EGFR)/c-Src, MaxiKβ, and EGFR tyrosine phosphorylation were decreased, and (2) the association of GIT1/c-Src was increased in the arterial tissues of rats treated with LPS. The LPS-induced changes were prevented by 5,14-HEDGE. N -[20-Hydroxyeicosa-6( Z ),15( Z )-dienoyl]glycine, a 20-HETE antagonist, reversed the effects of 5,14-HEDGE in the arterial tissues of LPS-treated rats. Thus, similar to 20-HETE, by binding to GPR75 and activating the Gα q/11 /PKCα/MaxiKβ, GIT1/PKCα/MaxiKβ, GIT1/c-Src/MaxiKβ, and GIT1/c-Src/EGFR signaling pathways, 5,14-HEDGE may exert its protective effects against LPS-induced hypotension and tachycardia associated with vascular hyporeactivity and arterial inflammation.
Collapse
|
2
|
Tunctan B, Senol SP, Temiz-Resitoglu M, Guden DS, Sahan-Firat S, Falck JR, Malik KU. Eicosanoids derived from cytochrome P450 pathway of arachidonic acid and inflammatory shock. Prostaglandins Other Lipid Mediat 2019; 145:106377. [PMID: 31586592 DOI: 10.1016/j.prostaglandins.2019.106377] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 09/06/2019] [Accepted: 09/18/2019] [Indexed: 12/14/2022]
Abstract
Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection. Septic shock, the most common form of vasodilatory shock, is a subset of sepsis in which circulatory and cellular/metabolic abnormalities are severe enough to increase mortality. Inflammatory shock constitutes the hallmark of sepsis, but also a final common pathway of any form of severe long-term tissue hypoperfusion. The pathogenesis of inflammatory shock seems to be due to circulating substances released by pathogens (e.g., bacterial endotoxins) and host immuno-inflammatory responses (e.g., changes in the production of histamine, bradykinin, serotonin, nitric oxide [NO], reactive nitrogen and oxygen species, and arachidonic acid [AA]-derived eicosanoids mainly through NO synthase, cyclooxygenase, and cytochrome P450 [CYP] pathways, and proinflammatory cytokine formation). Therefore, refractory hypotension to vasoconstrictors with end-organ hypoperfusion is a life threatening feature of inflammatory shock. This review summarizes the current knowledge regarding the role of eicosanoids derived from CYP pathway of AA in animal models of inflammatory shock syndromes with an emphasis on septic shock in addition to potential therapeutic strategies targeting specific CYP isoforms responsible for proinflammatory/anti-inflammatory mediator production.
Collapse
Affiliation(s)
- Bahar Tunctan
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Mersin, Turkey.
| | - Sefika Pinar Senol
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | | | - Demet Sinem Guden
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | - Seyhan Sahan-Firat
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | - John R Falck
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kafait U Malik
- Department of Pharmacology, College of Medicine, University of Tennessee, Center for Health Sciences, Memphis, TN, USA
| |
Collapse
|
3
|
Tunctan B, Kucukkavruk SP, Temiz-Resitoglu M, Guden DS, Sari AN, Sahan-Firat S. Bexarotene, a Selective RXRα Agonist, Reverses Hypotension Associated with Inflammation and Tissue Injury in a Rat Model of Septic Shock. Inflammation 2018; 41:337-355. [PMID: 29188497 DOI: 10.1007/s10753-017-0691-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors that can activate or inhibit the expression of many target genes by forming a heterodimer complex with the retinoid X receptor (RXR). The aim of this study was to investigate effects of bexarotene, a selective RXRα agonist, on the changes in renal, cardiac, hepatic, and pulmonary expression/activity of inducible nitric oxide synthase (iNOS) and cytochrome P450 (CYP) 4F6 in relation to PPARα/β/γ-RXRα heterodimer formation in a rat model of septic shock. Rats were injected with dimethyl sulfoxide or bexarotene 1 h after administration of saline or lipopolysaccharide (LPS). Mean arterial pressure (MAP) and heart rate (HR) were recorded from rats, which had received either saline or LPS before and after 1, 2, 3, and 4 h. Serum iNOS, LTB4, myeloperoxidase (MPO), and lactate dehydrogenase (LDH) levels as well as tissue iNOS and CYP4F6 mRNA expression in addition to PPARα/β/γ and RXRα proteins were measured. LPS-induced decrease in MAP and increase in HR were associated with a decrease in PPARα/β/γ-RXRα heterodimer formation and CYP4F6 mRNA expression. LPS also caused an increase in systemic iNOS, LTB4, MPO, and LDH levels as well as iNOS mRNA expression. Bexarotene at 0.1 mg/kg (i.p.) prevented the LPS-induced changes, except tachycardia. The results suggest that increased formation of PPARα/β/γ-RXRα heterodimers and CYP4F6 expression/activity in addition to decreased iNOS expression contributes to the beneficial effect of bexarotene to prevent the hypotension associated with inflammation and tissue injury during rat endotoxemia.
Collapse
Affiliation(s)
- Bahar Tunctan
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Yenisehir Campus, 33169, Mersin, Turkey.
| | - Sefika P Kucukkavruk
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Yenisehir Campus, 33169, Mersin, Turkey
| | - Meryem Temiz-Resitoglu
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Yenisehir Campus, 33169, Mersin, Turkey
| | - Demet S Guden
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Yenisehir Campus, 33169, Mersin, Turkey
| | - Ayse N Sari
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Yenisehir Campus, 33169, Mersin, Turkey
| | - Seyhan Sahan-Firat
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Yenisehir Campus, 33169, Mersin, Turkey
| |
Collapse
|
4
|
Wang JZ, Li SR, Li YL, Zhang YZ, Zhang T, Zhao CX, Yao CX, Du LF. Could Pin1 help us conquer essential hypertension at an earlier stage? A promising early-diagnostic biomarker and its therapeutic implications for the disease. Med Hypotheses 2013; 81:931-5. [DOI: 10.1016/j.mehy.2013.08.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 08/07/2013] [Accepted: 08/22/2013] [Indexed: 10/26/2022]
|
5
|
Tunctan B, Korkmaz B, Sari AN, Kacan M, Unsal D, Serin MS, Buharalioglu CK, Sahan-Firat S, Cuez T, Schunck WH, Manthati VL, Falck JR, Malik KU. Contribution of iNOS/sGC/PKG pathway, COX-2, CYP4A1, and gp91(phox) to the protective effect of 5,14-HEDGE, a 20-HETE mimetic, against vasodilation, hypotension, tachycardia, and inflammation in a rat model of septic shock. Nitric Oxide 2013; 33:18-41. [PMID: 23684565 DOI: 10.1016/j.niox.2013.05.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 04/23/2013] [Accepted: 05/07/2013] [Indexed: 01/08/2023]
Abstract
We have previously demonstrated that a stable synthetic analog of 20-hydroxyeicosatetraenoic acid (20-HETE), N-[20-hydroxyeicosa-5(Z),14(Z)-dienoyl]glycine (5,14-HEDGE), prevents vascular hyporeactivity, hypotension, tachycardia, and inflammation in rats treated with lipopolysaccharide (LPS) and mortality in endotoxemic mice. These changes were attributed to decreased production of inducible nitric oxide (NO) synthase (iNOS)-derived NO, cyclooxygenase (COX)-2-derived vasodilator prostanoids, and proinflammatory mediators associated with increased cyctochrome P450 (CYP) 4A1-derived 20-HETE and CYP2C23-dependent antiinflammatory mediator formation. The aim of this study was to determine whether decreased expression and activity of iNOS, soluble guanylyl cyclase (sGC), protein kinase G (PKG), COX-2, gp91(phox) (NOX2; a superoxide generating NOX enzyme), and peroxynitrite production associated with increased expression of COX-1 and CYP4A1 and 20-HETE formation in renal and cardiovascular tissues of rats contributes to the effect of 5,14-HEDGE to prevent vasodilation, hypotension, tachycardia, and inflammation in response to systemic administration of LPS. Mean arterial pressure fell by 28mmHg and heart rate rose by 47beats/min in LPS (10mg/kg, i.p.)-treated rats. Administration of LPS also increased mRNA and protein expression of iNOS and COX-2 associated with a decrease in COX-1 and CYP4A1 mRNA and protein expression. Increased NOS activity, iNOS-heat shock protein 90 complex formation (an index for iNOS activity), protein expression of phosphorylated vasodilator stimulated phosphoprotein (an index for PKG activity), gp91(phox), p47(phox) (NOXO2; organizer subunit of gp91(phox)), and nitrotyrosine (an index for peroxynitrite production) as well as cGMP (an index for sGC activity), 6-keto-PGF1α (a stable metabolite PGI2) and PGE2 levels (indexes for COX activity), and nitrotyrosine levels by LPS were also associated with decreased CYP hydroxylase activity as measured by 20-HETE formation from arachidonic acid in renal microsomes of LPS-treated rats. These effects of LPS, except iNOS mRNA and COX-1 protein expression, were prevented by 5,14-HEDGE (30mg/kg, s.c.; 1h after LPS). A competitive antagonist of vasoconstrictor effects of 20-HETE, 20-hydroxyeicosa-6(Z),15(Z)-dienoic acid (30mg/kg, s.c.; 1h after LPS) reversed the effects of 5,14-HEDGE, except iNOS and COX-1 mRNA and protein expression as well as expression of CYP4A1 mRNA. These results suggest that increased CYP4A1 expression and 20-HETE formation associated with suppression of iNOS/sGC/PKG pathway, COX-2, and gp91(phox) participate in the protective effect of 5,14-HEDGE against vasodilation, hypotension, tachycardia, and inflammation in the rat model of septic shock.
Collapse
Affiliation(s)
- Bahar Tunctan
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, 33169 Mersin, Turkey.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
5,14-HEDGE, a 20-HETE mimetic, reverses hypotension and improves survival in a rodent model of septic shock: contribution of soluble epoxide hydrolase, CYP2C23, MEK1/ERK1/2/IKKβ/IκB-α/NF-κB pathway, and proinflammatory cytokine formation. Prostaglandins Other Lipid Mediat 2013; 102-103:31-41. [PMID: 23454652 DOI: 10.1016/j.prostaglandins.2013.01.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 01/11/2013] [Accepted: 01/29/2013] [Indexed: 01/05/2023]
Abstract
We have previously demonstrated that a stable synthetic analog of 20-HETE, N-[20-hydroxyeicosa-5(Z),14(Z)-dienoyl]glycine (5,14-HEDGE), restores vascular reactivity, blood pressure, and heart rate in endotoxemic rats. The aim of this study was to determine whether decreased renal expression and activity of soluble epoxide hydrolase (sEH), MEK1, ERK1/2, IKKβ, IκB-α, and NF-κB as well as systemic and renal proinflammatory cytokine production associated with increased expression and activity of CYP2C23 contributes to the effect of 5,14-HEDGE to prevent hypotension, tachycardia, inflammation, and mortality in response to systemic administration of lipopolysaccharide (LPS). Blood pressure fell by 33 mmHg and heart rate rose by 57 beats/min in LPS (10 mg/kg, i.p.)-treated rats. Administration of LPS also increased mRNA and protein expression of sEH associated with a decrease in CYP2C23 mRNA and protein expression. Increased activity of sEH and p-MEK1, p-ERK1/2, p-IκB-α, NF-κB, and p-NF-κB protein levels as well as TNF-α and IL-8 production by LPS were also associated with a decreased activity of AA epoxygenases. These effects of LPS were prevented by 5,14-HEDGE (30 mg/kg, s.c.; 1 h after LPS). Treatment of endotoxemic mice with 5,14-HEDGE also raised the survival rate of animals from 84% to 98%. A competitive antagonist of vasoconstrictor effects of 20-HETE, 20-hydroxyeicosa-6(Z),15(Z)-dienoic acid, 20-HEDE (30 mg/kg, s.c.; 1 h after LPS) prevented the effects of 5,14-HEDGE on blood pressure, heart rate, expression and/or activity of sEH, CYP2C23, and ERK1/2 as well as TNF-α and IL-8 levels in rats treated with LPS. These results suggest that decreased expression and/or activity of sEH and MEK1/ERK1/2/IKKβ/IκB-α/NF-κB pathway as well as proinflammatory cytokine production associated with increased CYP2C23 expression and antiinflammatory mediator formation participate in the protective effect of 5,14-HEDGE against hypotension, tachycardia, inflammation, and mortality in the rodent model of septic shock.
Collapse
|
7
|
Tunctan B, Sari AN, Kacan M, Unsal D, Buharalioglu CK, Sahan-Firat S, Korkmaz B, Falck JR, Malik KU. NS-398 reverses hypotension in endotoxemic rats: contribution of eicosanoids, NO, and peroxynitrite. Prostaglandins Other Lipid Mediat 2012; 104-105:93-108. [PMID: 22975359 DOI: 10.1016/j.prostaglandins.2012.08.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 08/22/2012] [Accepted: 08/23/2012] [Indexed: 01/09/2023]
Abstract
We have previously demonstrated that inhibition of vasodilator prostanoids, PGI2 and PGE2, and nitric oxide (NO) synthesis by a selective cyclooxygenase-2 (COX-2) inhibitor, NS-398, restores blood pressure as a result of increased systemic and renal levels of 20-hydroxyeicosatetraenoic acid (20-HETE) in endotoxemic rats. The aim of this study was to further investigate the effects of NS-398 on the changes in expression and/or activity of COX-2, cytochrome P450 4A1 (CYP4A1), inducible NO synthase (iNOS), and peroxynitrite formation in serum, renal, cardiac, and/or vascular tissues of lipopolysaccharide (LPS)-treated rats. LPS (10mg/kg, i.p.)-induced decrease in blood pressure was associated with increased protein levels of COX-2, iNOS, and nitrotyrosine in kidney, heart, thoracic aorta, and superior mesenteric artery. The activities of COX-2 and iNOS as well as levels of PGI2, PGE2, and nitrotyrosine were also increased in the systemic circulation and renal, cardiac, and vascular tissues of LPS-treated rats. In contrast, renal, cardiac, and vascular CYP4A1 protein expression as well as systemic and tissue levels of 20-HETE were decreased in endotoxemic rats. These effects of LPS, except COX-2 protein expression, were prevented by NS-398 (10 mg/kg, i.p.), given 1h after injection of LPS. These data suggest that COX-2-derived vasodilator prostanoids, PGI2 and PGE2, produced during endotoxemia increase iNOS protein expression and activity as well as peroxynitrite formation resulting in decreased CYP4A1 protein expression and 20-HETE synthesis. Taken together, we concluded that an increase in 20-HETE levels associated with a decrease in the production of vasodilator prostanoids and NO participates in the effect of NS-398 to prevent hypotension in the rat model of septic shock.
Collapse
Affiliation(s)
- Bahar Tunctan
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Mersin, Turkey.
| | | | | | | | | | | | | | | | | |
Collapse
|