1
|
Wang S, Jiang Q, Liu Y, Zhang X, Huang Y, Zhang H. The Role of Immune Cells in Moyamoya Disease. Brain Sci 2025; 15:137. [PMID: 40002470 PMCID: PMC11852451 DOI: 10.3390/brainsci15020137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/23/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025] Open
Abstract
Moyamoya disease (MMD) is a rare progressive cerebrovascular disorder characterized by the stenosis or occlusion of the terminal segments of the internal carotid arteries, leading to the development of abnormal collateral vascular networks. These networks are a compensatory mechanism for reduced blood flow to the brain. Despite extensive research, the exact etiology of MMD remains unknown, although recent studies suggest that immune system dysfunction plays a critical role in its pathogenesis. In particular, the involvement of immune cells such as T cells, macrophages, and dendritic cells has been increasingly recognized. These immune cells contribute to the inflammatory process and vascular remodeling observed in MMD patients, further complicating the disease's progression. Inflammation and immune-mediated damage to the vessel walls may accelerate the narrowing and occlusion of arteries, exacerbating ischemic events in the brain. Additionally, studies have revealed that certain genetic and environmental factors can influence immune system activation in MMD, linking these pathways to disease development. This review aims to provide a comprehensive overview of the immune mechanisms at play in MMD, focusing on how immune cells participate in vascular injury and remodeling. Understanding these immunological processes may offer new therapeutic targets to halt or reverse disease progression, potentially leading to more effective treatment strategies for MMD.
Collapse
Affiliation(s)
- Sheng Wang
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan 430030, China; (S.W.); (Q.J.); (Y.L.); (X.Z.); (Y.H.)
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qian Jiang
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan 430030, China; (S.W.); (Q.J.); (Y.L.); (X.Z.); (Y.H.)
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuan Liu
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan 430030, China; (S.W.); (Q.J.); (Y.L.); (X.Z.); (Y.H.)
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xincheng Zhang
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan 430030, China; (S.W.); (Q.J.); (Y.L.); (X.Z.); (Y.H.)
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yimin Huang
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan 430030, China; (S.W.); (Q.J.); (Y.L.); (X.Z.); (Y.H.)
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Huaqiu Zhang
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan 430030, China; (S.W.); (Q.J.); (Y.L.); (X.Z.); (Y.H.)
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
2
|
Totoń-Żurańska J, Mikolajczyk TP, Saju B, Guzik TJ. Vascular remodelling in cardiovascular diseases: hypertension, oxidation, and inflammation. Clin Sci (Lond) 2024; 138:817-850. [PMID: 38920058 DOI: 10.1042/cs20220797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 06/08/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024]
Abstract
Optimal vascular structure and function are essential for maintaining the physiological functions of the cardiovascular system. Vascular remodelling involves changes in vessel structure, including its size, shape, cellular and molecular composition. These changes result from multiple risk factors and may be compensatory adaptations to sustain blood vessel function. They occur in diverse cardiovascular pathologies, from hypertension to heart failure and atherosclerosis. Dynamic changes in the endothelium, fibroblasts, smooth muscle cells, pericytes or other vascular wall cells underlie remodelling. In addition, immune cells, including macrophages and lymphocytes, may infiltrate vessels and initiate inflammatory signalling. They contribute to a dynamic interplay between cell proliferation, apoptosis, migration, inflammation, and extracellular matrix reorganisation, all critical mechanisms of vascular remodelling. Molecular pathways underlying these processes include growth factors (e.g., vascular endothelial growth factor and platelet-derived growth factor), inflammatory cytokines (e.g., interleukin-1β and tumour necrosis factor-α), reactive oxygen species, and signalling pathways, such as Rho/ROCK, MAPK, and TGF-β/Smad, related to nitric oxide and superoxide biology. MicroRNAs and long noncoding RNAs are crucial epigenetic regulators of gene expression in vascular remodelling. We evaluate these pathways for potential therapeutic targeting from a clinical translational perspective. In summary, vascular remodelling, a coordinated modification of vascular structure and function, is crucial in cardiovascular disease pathology.
Collapse
Affiliation(s)
- Justyna Totoń-Żurańska
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland
| | - Tomasz P Mikolajczyk
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland
- Department of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Blessy Saju
- BHF Centre for Research Excellence, Centre for Cardiovascular Sciences, The University of Edinburgh, Edinburgh, U.K
| | - Tomasz J Guzik
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland
- Department of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
- BHF Centre for Research Excellence, Centre for Cardiovascular Sciences, The University of Edinburgh, Edinburgh, U.K
| |
Collapse
|
3
|
Srinivas B, Alluri K, Rhaleb NE, Belmadani S, Matrougui K. Role of plasmacytoid dendritic cells in vascular dysfunction in mice with renovascular hypertension. Heliyon 2024; 10:e31799. [PMID: 38882290 PMCID: PMC11176769 DOI: 10.1016/j.heliyon.2024.e31799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/18/2024] Open
Abstract
Endothelial dysfunction and inflammation are clinically significant risk factors for cardiovascular diseases in hypertension. Although immune cells play a role in hypertension, the impact of plasmacytoid dendritic cells in established renovascular hypertension-induced cardiovascular complications is not fully understood. We investigated plasmacytoid dendritic cells' contribution to arterial endothelial dysfunction and inflammation in renovascular hypertension. A two-kidney one-clip (2K1C) model for four weeks in both male and female mice was used to induce renovascular hypertension. We treated mice with or without anti-PDCA-1 antibodies for one week to deplete the plasmacytoid dendritic cells. Renovascular hypertension causes cardiac hypertrophy, lung edema, and microvascular endothelial dysfunction associated with inflammation induction in mice. Moreover, renovascular hypertension affects the profile of immune cells, including dendritic cells and macrophages, with variations between male and female mice. Interestingly, the depletion of plasmacytoid dendritic cells significantly reduces blood pressure, cardiac hypertrophy, lung edema, inflammation, and oxidative stress and improves microvascular endothelial function via the endoplasmic reticulum (ER) stress, autophagy, and mTOR-dependent mechanisms. Plasmacytoid dendritic cells significantly contribute to the development of cardiovascular complications in renovascular hypertension by modulating immune cells, inflammation, oxidative stress, and ER stress.
Collapse
Affiliation(s)
- Balaji Srinivas
- Eastern Virginia Medical School, Department of Physiological Sciences, 800 W Olney Rd, Norfolk, VA 23501, USA
| | - Kiran Alluri
- Eastern Virginia Medical School, Department of Physiological Sciences, 800 W Olney Rd, Norfolk, VA 23501, USA
| | - Nour-Eddine Rhaleb
- Department of Internal Medicine, Hypertension and Vascular Research Division, Henry Ford Hospital, Detroit, MI 48202, USA
- Department of Physiology, Wayne State University, Detroit, MI 48201, USA
| | - Souad Belmadani
- Eastern Virginia Medical School, Department of Physiological Sciences, 800 W Olney Rd, Norfolk, VA 23501, USA
| | - Khalid Matrougui
- Eastern Virginia Medical School, Department of Physiological Sciences, 800 W Olney Rd, Norfolk, VA 23501, USA
| |
Collapse
|
4
|
Rizzoni D, De Ciuceis C, Szczepaniak P, Paradis P, Schiffrin EL, Guzik TJ. Immune System and Microvascular Remodeling in Humans. Hypertension 2022; 79:691-705. [PMID: 35098718 DOI: 10.1161/hypertensionaha.121.17955] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Low-grade inflammatory processes and related oxidative stress may have a key role in the pathogenesis of hypertension and hypertension-mediated organ damage. Innate immune cells, such as neutrophils, dendritic cells, monocytes/macrophages, as well as unconventional T lymphocytes like γδ T cells contribute to hypertension and may trigger vascular inflammation. Adaptive immunity has been demonstrated to participate in elevation of blood pressure and in vascular and kidney injury. In particular, effector T lymphocytes (Th1, Th2, and Th17) may play a relevant role in promoting hypertension and microvascular remodeling, whereas T-regulatory lymphocytes may have a protective role. Effector cytokines produced by these immune cells lead to increased oxidative stress, endothelial dysfunction and contribute to target organ damage in hypertension. A possible role of immune cell subpopulations in the development and regression of microvascular remodeling has also been proposed in humans with hypertension. The present review summarizes the key immune mechanisms that may participate in the pathophysiology of hypertension-mediated inflammation and vascular remodeling; advances in this field may provide the basis for novel therapeutics for hypertension.
Collapse
Affiliation(s)
- Damiano Rizzoni
- Clinica Medica, Department of Clinical and Experimental Sciences, University of Brescia, Italy (D.R., C.D.C.).,Division of Medicine, Spedali Civili di Brescia, Montichiari, Italy (D.R.)
| | - Carolina De Ciuceis
- Clinica Medica, Department of Clinical and Experimental Sciences, University of Brescia, Italy (D.R., C.D.C.)
| | - Piotr Szczepaniak
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (P.S., T.J.G.).,Department of Medicine, Jagiellonian University Medical College, Krakow, Poland (P.S., T.J.G.)
| | - Pierre Paradis
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research, Montreal, Québec, Canada (P.P., E.L.S.)
| | - Ernesto L Schiffrin
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research, Montreal, Québec, Canada (P.P., E.L.S.).,Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, Québec, Canada (E.L.S.)
| | - Tomasz J Guzik
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (P.S., T.J.G.).,Department of Medicine, Jagiellonian University Medical College, Krakow, Poland (P.S., T.J.G.)
| |
Collapse
|
5
|
Ding YN, Wang HY, Chen HZ, Liu DP. Targeting senescent cells for vascular aging and related diseases. J Mol Cell Cardiol 2021; 162:43-52. [PMID: 34437878 DOI: 10.1016/j.yjmcc.2021.08.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/08/2021] [Accepted: 08/17/2021] [Indexed: 01/10/2023]
Abstract
Cardiovascular diseases are a serious threat to human health, especially in the elderly. Vascular aging makes people more susceptible to cardiovascular diseases due to significant dysfunction or senescence of vascular cells and maladaptation of vascular structure and function; moreover, vascular aging is currently viewed as a modifiable cardiovascular risk factor. To emphasize the relationship between senescent cells and vascular aging, we first summarize the roles of senescent vascular cells (endothelial cells, smooth muscle cells and immune cells) in the vascular aging process and inducers that contribute to cellular senescence. Then, we present potential strategies for directly targeting senescent cells (senotherapy) or preventively targeting senescence inducers (senoprevention) to delay vascular aging and the development of age-related vascular diseases. Finally, based on recent research, we note some important questions that still need to be addressed in the future.
Collapse
Affiliation(s)
- Yang-Nan Ding
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, People's Republic of China
| | - Hui-Yu Wang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, People's Republic of China
| | - Hou-Zao Chen
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, People's Republic of China.
| | - De-Pei Liu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, People's Republic of China.
| |
Collapse
|
6
|
Abstract
: Hypertension is a worldwide known cause of morbidity and mortality in the elderly and is a major risk factor for cardiovascular complications such as stroke, myocardial infarction, renal complications and heart failure. Although the mechanisms of hypertension remain largely unknown, a recent new concept is that aortic stiffening is a cause of hypertension in middle-aged and older individuals, which highlighted the importance of aortic stiffening in the development of age-related hypertension. Understanding the pathogenesis of aortic stiffness therefore became one of the important approaches to preventing and controlling hypertension. This review discusses the recent progress of the potential causes of aortic stiffening and its implication on the pathogenesis of hypertension, in terms of aging, inflammation, metabolic syndromes, neuroendocrine and the interaction among these causes.
Collapse
Affiliation(s)
- John O. ONUH
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA, USA, 30303
| | - Hongyu QIU
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA, USA, 30303
| |
Collapse
|
7
|
Maloberti A, Vallerio P, Triglione N, Occhi L, Panzeri F, Bassi I, Pansera F, Piccinelli E, Peretti A, Garatti L, Palazzini M, Sun J, Grasso E, Giannattasio C. Vascular Aging and Disease of the Large Vessels: Role of Inflammation. High Blood Press Cardiovasc Prev 2019; 26:175-182. [DOI: 10.1007/s40292-019-00318-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 04/25/2019] [Indexed: 11/25/2022] Open
|
8
|
Radwan E, Mali V, Haddox S, El-Noweihi A, Mandour M, Ren J, Belmadani S, Matrougui K. Treg cells depletion is a mechanism that drives microvascular dysfunction in mice with established hypertension. Biochim Biophys Acta Mol Basis Dis 2018; 1865:403-412. [PMID: 30414897 DOI: 10.1016/j.bbadis.2018.10.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 10/10/2018] [Accepted: 10/26/2018] [Indexed: 10/27/2022]
Abstract
BACKGROUND Microvascular dysfunction is a major complication in hypertensive patients. We previously reported that CD4+CD25+ T regulatory cells (Treg) play an important preventive role in hypertension-induced vascular dysfunction. However, whether Treg cells therapy and autophagy inhibition could rescue Treg cells survival and microvascular function in established hypertension is an important question that remained unanswered. METHODS & RESULTS Here we showed that Treg cells from mice model of established hypertension displayed an enhanced apoptotic rate, which was rescued with Treg cells transfer and autophagy inhibition. We also showed increased autophagy in mesenteric resistance artery (MRA) in mice with established hypertension. Importantly, the inhibition of autophagy or one single transfer of Treg cells into mice with established hypertension improved the microvascular function independently of high blood pressure. The protection involves the modulation of interleukin-10 (IL-10), inflammation, endoplasmic reticulum (ER) stress, oxidative stress, Akt, and eNOS. CONCLUSIONS The present study suggests that Treg cells survival is regulated by autophagy. Also, Treg cells as a cellular therapy aimed at rescuing the microvascular function through an autophagy-dependent mechanism and independently of arterial blood pressure lowering effects. Because our mouse model of established hypertension mimics the clinical situation, our results have the potential for new therapeutic approaches that involve the manipulation of Treg cells and autophagy to overcome established hypertension-induced cardiovascular complications.
Collapse
Affiliation(s)
- Eman Radwan
- Department of Physiological Sciences, EVMS, Norfolk, VA 23501, USA; Department of Medical Biochemistry, Assiut University, Egypt
| | - Vishal Mali
- Department of Physiological Sciences, EVMS, Norfolk, VA 23501, USA
| | - Samuel Haddox
- Department of Physiological Sciences, EVMS, Norfolk, VA 23501, USA
| | | | - Manal Mandour
- Department of Medical Biochemistry, Assiut University, Egypt
| | - Jun Ren
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | - Souad Belmadani
- Department of Physiological Sciences, EVMS, Norfolk, VA 23501, USA
| | - Khalid Matrougui
- Department of Physiological Sciences, EVMS, Norfolk, VA 23501, USA.
| |
Collapse
|
9
|
Lacolley P, Regnault V, Segers P, Laurent S. Vascular Smooth Muscle Cells and Arterial Stiffening: Relevance in Development, Aging, and Disease. Physiol Rev 2017; 97:1555-1617. [DOI: 10.1152/physrev.00003.2017] [Citation(s) in RCA: 332] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 05/15/2017] [Accepted: 05/26/2017] [Indexed: 12/18/2022] Open
Abstract
The cushioning function of large arteries encompasses distension during systole and recoil during diastole which transforms pulsatile flow into a steady flow in the microcirculation. Arterial stiffness, the inverse of distensibility, has been implicated in various etiologies of chronic common and monogenic cardiovascular diseases and is a major cause of morbidity and mortality globally. The first components that contribute to arterial stiffening are extracellular matrix (ECM) proteins that support the mechanical load, while the second important components are vascular smooth muscle cells (VSMCs), which not only regulate actomyosin interactions for contraction but mediate also mechanotransduction in cell-ECM homeostasis. Eventually, VSMC plasticity and signaling in both conductance and resistance arteries are highly relevant to the physiology of normal and early vascular aging. This review summarizes current concepts of central pressure and tensile pulsatile circumferential stress as key mechanical determinants of arterial wall remodeling, cell-ECM interactions depending mainly on the architecture of cytoskeletal proteins and focal adhesion, the large/small arteries cross-talk that gives rise to target organ damage, and inflammatory pathways leading to calcification or atherosclerosis. We further speculate on the contribution of cellular stiffness along the arterial tree to vascular wall stiffness. In addition, this review provides the latest advances in the identification of gene variants affecting arterial stiffening. Now that important hemodynamic and molecular mechanisms of arterial stiffness have been elucidated, and the complex interplay between ECM, cells, and sensors identified, further research should study their potential to halt or to reverse the development of arterial stiffness.
Collapse
Affiliation(s)
- Patrick Lacolley
- INSERM, U1116, Vandœuvre-lès-Nancy, France; Université de Lorraine, Nancy, France; IBiTech-bioMMeda, Department of Electronics and Information Systems, Ghent University, Gent, Belgium; Department of Pharmacology, European Georges Pompidou Hospital, Assistance Publique Hôpitaux de Paris, France; PARCC INSERM, UMR 970, Paris, France; and University Paris Descartes, Paris, France
| | - Véronique Regnault
- INSERM, U1116, Vandœuvre-lès-Nancy, France; Université de Lorraine, Nancy, France; IBiTech-bioMMeda, Department of Electronics and Information Systems, Ghent University, Gent, Belgium; Department of Pharmacology, European Georges Pompidou Hospital, Assistance Publique Hôpitaux de Paris, France; PARCC INSERM, UMR 970, Paris, France; and University Paris Descartes, Paris, France
| | - Patrick Segers
- INSERM, U1116, Vandœuvre-lès-Nancy, France; Université de Lorraine, Nancy, France; IBiTech-bioMMeda, Department of Electronics and Information Systems, Ghent University, Gent, Belgium; Department of Pharmacology, European Georges Pompidou Hospital, Assistance Publique Hôpitaux de Paris, France; PARCC INSERM, UMR 970, Paris, France; and University Paris Descartes, Paris, France
| | - Stéphane Laurent
- INSERM, U1116, Vandœuvre-lès-Nancy, France; Université de Lorraine, Nancy, France; IBiTech-bioMMeda, Department of Electronics and Information Systems, Ghent University, Gent, Belgium; Department of Pharmacology, European Georges Pompidou Hospital, Assistance Publique Hôpitaux de Paris, France; PARCC INSERM, UMR 970, Paris, France; and University Paris Descartes, Paris, France
| |
Collapse
|
10
|
De Ciuceis C, Agabiti-Rosei C, Rossini C, Airò P, Scarsi M, Tincani A, Tiberio GAM, Piantoni S, Porteri E, Solaini L, Duse S, Semeraro F, Petroboni B, Mori L, Castellano M, Gavazzi A, Agabiti-Rosei E, Rizzoni D. Relationship between different subpopulations of circulating CD4+ T lymphocytes and microvascular or systemic oxidative stress in humans. Blood Press 2017; 26:237-245. [PMID: 28276721 DOI: 10.1080/08037051.2017.1292395] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 02/04/2017] [Accepted: 02/04/2017] [Indexed: 10/20/2022]
Abstract
BACKGROUND AND OBJECTIVE Different components of the immune system, including innate and adaptive immunity (T effector lymphocytes and T regulatory lymphocytes - TREGs) may be involved in the development of hypertension, vascular injury and inflammation. However, no data are presently available in humans about possible relationships between T-lymphocyte subtypes and microvascular oxidative stress. Our objective was to investigate possible relationships between T-lymphocyte subtypes and systemic and microvascular oxidative stress in a population of normotensive subjects and hypertensive patients. PATIENTS AND METHODS In the present study we enrolled 24 normotensive subjects and 12 hypertensive patients undergoing an elective surgical intervention. No sign of local or systemic inflammation was present. All patients underwent a biopsy of subcutaneous fat during surgery. A peripheral blood sample was obtained before surgery for assessment of T lymphocyte subpopulations by flow cytometry and circulating indices of oxidative stress. RESULTS A significant direct correlation was observed between Th1 lymphocytes and reactive oxygen species (ROS) production (mainly in microvessels). Additionally, significant inverse correlations were observed between ROS and total TREGs, or TREGs subtypes. Significant correlations were detected between circulating indices of oxidative stress/inflammation and indices of microvascular morphology/Th1 and Th17 lymphocytes. In addition, a significant inverse correlation was detected between TREGs in subcutaneous small vessels and C reactive protein. CONCLUSIONS Our data suggest that TREG lymphocytes may be protective against microvascular damage, probably because of their anti-oxidant properties, while Th1-Th17 lymphocytes seem to exert an opposite effect, confirming an involvement of adaptive immune system in microvascular damage.
Collapse
Affiliation(s)
- Carolina De Ciuceis
- a Department of Clinical and Experimental Sciences, Clinica Medica, University of Brescia , Brescia , Italy
| | - Claudia Agabiti-Rosei
- a Department of Clinical and Experimental Sciences, Clinica Medica, University of Brescia , Brescia , Italy
| | - Claudia Rossini
- a Department of Clinical and Experimental Sciences, Clinica Medica, University of Brescia , Brescia , Italy
| | - Paolo Airò
- b Chair of Rheumatology, Department of Clinical and Experimental Sciences , University of Brescia , Brescia , Italy
| | - Mirko Scarsi
- b Chair of Rheumatology, Department of Clinical and Experimental Sciences , University of Brescia , Brescia , Italy
| | - Angela Tincani
- b Chair of Rheumatology, Department of Clinical and Experimental Sciences , University of Brescia , Brescia , Italy
| | | | - Silvia Piantoni
- b Chair of Rheumatology, Department of Clinical and Experimental Sciences , University of Brescia , Brescia , Italy
| | - Enzo Porteri
- a Department of Clinical and Experimental Sciences, Clinica Medica, University of Brescia , Brescia , Italy
| | - Leonardo Solaini
- c Department of Clinical and Experimental Sciences, Clinica Chirurgica, University of Brescia , Brescia , Italy
| | - Sarah Duse
- d Department of Medical and Surgical Specialties, Radiological Specialties and Public Health, Chair of Ophthalmology , University of Brescia , Brescia , Italy
| | - Francesco Semeraro
- d Department of Medical and Surgical Specialties, Radiological Specialties and Public Health, Chair of Ophthalmology , University of Brescia , Brescia , Italy
| | - Beatrice Petroboni
- a Department of Clinical and Experimental Sciences, Clinica Medica, University of Brescia , Brescia , Italy
| | - Luigi Mori
- a Department of Clinical and Experimental Sciences, Clinica Medica, University of Brescia , Brescia , Italy
| | - Maurizio Castellano
- a Department of Clinical and Experimental Sciences, Clinica Medica, University of Brescia , Brescia , Italy
| | - Alice Gavazzi
- a Department of Clinical and Experimental Sciences, Clinica Medica, University of Brescia , Brescia , Italy
| | - Enrico Agabiti-Rosei
- a Department of Clinical and Experimental Sciences, Clinica Medica, University of Brescia , Brescia , Italy
| | - Damiano Rizzoni
- a Department of Clinical and Experimental Sciences, Clinica Medica, University of Brescia , Brescia , Italy
- e Division of Medicine , Istituto Clinico Città di Brescia , Brescia , Italy
| |
Collapse
|
11
|
De Ciuceis C, Rossini C, Airò P, Scarsi M, Tincani A, Tiberio GAM, Piantoni S, Porteri E, Solaini L, Duse S, Semeraro F, Petroboni B, Mori L, Castellano M, Gavazzi A, Agabiti Rosei C, Agabiti Rosei E, Rizzoni D. Relationship Between Different Subpopulations of Circulating CD4+ T-lymphocytes and Microvascular Structural Alterations in Humans. Am J Hypertens 2017; 30:51-60. [PMID: 27653031 DOI: 10.1093/ajh/hpw102] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 07/18/2016] [Accepted: 08/04/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Different components of the immune system, including innate and adaptive immunity (T-effector lymphocytes and T-regulatory lymphocytes-TREGs) may be involved in the development of hypertension. In addition, it was demonstrated in animal models that TREGs may prevent angiotensin II-induced hypertension and vascular injury/inflammation. However, no data are presently available in humans about possible relationships between T-lymphocyte subtypes and microvascular structural alterations. METHODS For this purpose, in the present study, we enrolled 24 normotensive subjects and 12 hypertensive patients undergoing an elective surgical intervention. No sign of local or systemic inflammation was present. All patients underwent a biopsy of subcutaneous fat during surgery. Subcutaneous small resistance arteries were dissected and mounted on a wire myograph and the media to lumen ratio (M/L) was calculated. In addition, retinal arteriolar structure was evaluated noninvasively by scanning laser Doppler flowmetry. Capillary density in the nailfold, dorsum of the finger, and forearm were evaluated by videomicroscopy. A peripheral blood sample was obtained before surgery for assessment of T-lymphocyte subpopulations by flow cytometry. RESULTS Significant negative correlations were observed between indices of microvascular structure (M/L of subcutaneous small arteries and wall to lumen ratio of retinal arterioles) and circulating TREG lymphocytes. A direct correlation was observed between M/L of subcutaneous small arteries and circulating Th17 lymphocytes. In addition, total capillary density was correlated with a TREG effector memory subpopulation. CONCLUSION Our data suggest that some lymphocyte subpopulations may be related to microvascular remodeling, confirming previous animal data, and opening therapeutic possibilities.
Collapse
Affiliation(s)
- Carolina De Ciuceis
- Clinica Medica, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Claudia Rossini
- Clinica Medica, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Paolo Airò
- Clinica Chirurgica, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Mirko Scarsi
- Clinica Chirurgica, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Angela Tincani
- Clinica Chirurgica, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | | | - Silvia Piantoni
- Clinica Chirurgica, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Enzo Porteri
- Clinica Medica, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Leonardo Solaini
- Institute of Rheumatology, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Sarah Duse
- Institute of Ophthalmology, University of Brescia, Brescia, Italy
| | | | - Beatrice Petroboni
- Clinica Medica, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Luigi Mori
- Clinica Medica, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Maurizio Castellano
- Clinica Medica, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Alice Gavazzi
- Clinica Medica, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Claudia Agabiti Rosei
- Clinica Medica, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Enrico Agabiti Rosei
- Clinica Medica, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Damiano Rizzoni
- Clinica Medica, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy;
- Istituto Clinico Città di Brescia, Division of Medicine, Brescia, Italy
| |
Collapse
|
12
|
Morris BJ, Chen R, Donlon TA, Evans DS, Tranah GJ, Parimi N, Ehret GB, Newton-Cheh C, Seto T, Willcox DC, Masaki KH, Kamide K, Ryuno H, Oguro R, Nakama C, Kabayama M, Yamamoto K, Sugimoto K, Ikebe K, Masui Y, Arai Y, Ishizaki T, Gondo Y, Rakugi H, Willcox BJ. Association Analysis of FOXO3 Longevity Variants With Blood Pressure and Essential Hypertension. Am J Hypertens 2016; 29:1292-1300. [PMID: 26476085 PMCID: PMC5055732 DOI: 10.1093/ajh/hpv171] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 08/14/2015] [Accepted: 09/29/2015] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The minor alleles of 3 FOXO3 single nucleotide polymorphisms (SNPs)- rs2802292 , rs2253310 , and rs2802288 -are associated with human longevity. The aim of the present study was to test these SNPs for association with blood pressure (BP) and essential hypertension (EHT). METHODS In a primary study involving Americans of Japanese ancestry drawn from the Family Blood Pressure Program II we genotyped 411 female and 432 male subjects aged 40-79 years and tested for statistical association by contingency table analysis and generalized linear models that included logistic regression adjusting for sibling correlation in the data set. Replication of rs2802292 with EHT was attempted in Japanese SONIC study subjects and of each SNP in a meta-analysis of genome-wide association studies of BP in individuals of European ancestry. RESULTS In Americans of Japanese ancestry, women homozygous for the longevity-associated (minor) allele of each FOXO3 SNP had 6mm Hg lower systolic BP and 3mm Hg lower diastolic BP compared with major allele homozygotes (Bonferroni corrected P < 0.05 and >0.05, respectively). Frequencies of minor allele homozygotes were 3.3-3.9% in women with EHT compared with 9.5-9.6% in normotensive women ( P = 0.03-0.04; haplotype analysis P = 0.0002). No association with BP or EHT was evident in males. An association with EHT was seen for the minor allele of rs2802292 in the Japanese SONIC cohort ( P = 0.03), while in European subjects the minor allele of each SNP was associated with higher systolic and diastolic BP. CONCLUSION Longevity-associated FOXO3 variants may be associated with lower BP and EHT in Japanese women.
Collapse
Affiliation(s)
| | - Randi Chen
- Honolulu Heart Program (HHP)/Honolulu-Asia Aging Study (HAAS), Department of Research, Kuakini Medical Center, Honolulu, Hawaii
| | - Timothy A. Donlon
- Honolulu Heart Program (HHP)/Honolulu-Asia Aging Study (HAAS), Department of Research, Kuakini Medical Center, Honolulu, Hawaii
| | - Daniel S. Evans
- California Pacific Medical Center Research Institute, San Francisco, California
| | - Gregory J. Tranah
- California Pacific Medical Center Research Institute, San Francisco, California
| | - Neeta Parimi
- California Pacific Medical Center Research Institute, San Francisco, California
| | - Georg B. Ehret
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Christopher Newton-Cheh
- Massachusetts General Hospital, Harvard Medical School, Broad Institute of Harvard and MIT, Boston, Massachusetts
| | - Todd Seto
- Department of Cardiology, The Queen’s Medical Center, Honolulu, Hawaii
| | - D. Craig Willcox
- Honolulu Heart Program (HHP)/Honolulu-Asia Aging Study (HAAS), Department of Research, Kuakini Medical Center, Honolulu, Hawaii
- Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
- Department of Human Welfare, Okinawa International University, Okinawa, Japan
| | - Kamal H. Masaki
- Honolulu Heart Program (HHP)/Honolulu-Asia Aging Study (HAAS), Department of Research, Kuakini Medical Center, Honolulu, Hawaii
- Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
| | - Kei Kamide
- Department of Health Science and
- Department of Geriatric Medicine and Nephrology, Osaka University, Graduate School of Medicine, Suita, Japan
| | | | - Ryosuke Oguro
- Department of Geriatric Medicine and Nephrology, Osaka University, Graduate School of Medicine, Suita, Japan
| | - Chikako Nakama
- Department of Geriatric Medicine and Nephrology, Osaka University, Graduate School of Medicine, Suita, Japan
| | | | - Koichi Yamamoto
- Department of Geriatric Medicine and Nephrology, Osaka University, Graduate School of Medicine, Suita, Japan
| | - Ken Sugimoto
- Department of Geriatric Medicine and Nephrology, Osaka University, Graduate School of Medicine, Suita, Japan
| | - Kazunori Ikebe
- Department of Prosthodontics, Gerodontology and Oral Rehabilitation, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Yukie Masui
- Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | | | - Tatsuro Ishizaki
- Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Yasuyuki Gondo
- Department of Clinical Thanatology and Geriatric Behavioral Science, Osaka University Graduate School of Human Sciences, Suita, Japan
| | - Hiromi Rakugi
- Department of Geriatric Medicine and Nephrology, Osaka University, Graduate School of Medicine, Suita, Japan
| | - Bradley J. Willcox
- Honolulu Heart Program (HHP)/Honolulu-Asia Aging Study (HAAS), Department of Research, Kuakini Medical Center, Honolulu, Hawaii
- Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
| |
Collapse
|
13
|
Abstract
Pathophysiological studies have extensively investigated the structural factor in hypertension, including large and small artery remodeling and functional changes. Here, we review the recent literature on the alterations in small and large arteries in hypertension. We discuss the possible mechanisms underlying these abnormalities and we explain how they accompany and often precede hypertension. Finally, we propose an integrated pathophysiological approach to better understand how the cross-talk between large and small artery changes interacts in pressure wave transmission, exaggerates cardiac, brain and kidney damage, and lead to cardiovascular and renal complications. We focus on patients with essential hypertension because this is the most prevalent form of hypertension, and describe other forms of hypertension only for contrasting their characteristics with those of uncomplicated essential hypertension.
Collapse
Affiliation(s)
- Stéphane Laurent
- From the Department of Pharmacology, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France (S.L., P.B.); Université Paris-Descartes, Paris, France (S.L., P.B.); and INSERM U 970, Paris, France (S.L., P.B.).
| | - Pierre Boutouyrie
- From the Department of Pharmacology, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France (S.L., P.B.); Université Paris-Descartes, Paris, France (S.L., P.B.); and INSERM U 970, Paris, France (S.L., P.B.)
| |
Collapse
|
14
|
Ferrario CM, Schiffrin EL. Role of mineralocorticoid receptor antagonists in cardiovascular disease. Circ Res 2015; 116:206-13. [PMID: 25552697 PMCID: PMC4283558 DOI: 10.1161/circresaha.116.302706] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 10/08/2014] [Indexed: 12/23/2022]
Abstract
Aldosterone exerts its best known sodium homeostasis actions by controlling sodium excretion at the level of the distal tubules via activation of the apical epithelial sodium channel and the basolateral Na(+)/K(+)ATPase pump. Recently, this mineralocorticoid hormone has been demonstrated to act on the heart and blood vessels. Excess release of aldosterone in relation to the salt status induces both genomic and nongenomic effects that by promoting endothelial dysfunction, and vascular and cardiorenal adverse remodeling, contribute to the target organ damage found in hypertension, heart failure, myocardial infarction, and chronic renal failure. Mineralocorticoid receptor blockers have been shown to be highly effective in resistant hypertension and to slow down heart failure progression, and in experimental animals, the development of atherosclerosis. Blockade of the action of aldosterone and potentially other mineralocorticoid steroids has been increasingly demonstrated to be an extremely beneficial therapy in different forms of cardiovascular disease. This review provides a summary of the knowledge that exists on aldosterone actions in the cardiovascular system and, in providing the translational impact of this knowledge to the clinical arena, illustrates how much more needs to be achieved in exploring the use of mineralocorticoid receptor blockers in less advanced stages of heart, renal, and vascular disease.
Collapse
Affiliation(s)
- Carlos M Ferrario
- From the Hypertension Translational Research Laboratory, Departments of Surgery, Internal Medicine-Nephrology, and Physiology-Pharmacology, Wake Forest University Health Science Center, Winston Salem, NC (C.M.F.); and Department of Medicine and Lady Davis Institute for Medical Research, SMBD-Jewish General Hospital, McGill University, Montreal, PQ, Canada (E.L.S.).
| | - Ernesto L Schiffrin
- From the Hypertension Translational Research Laboratory, Departments of Surgery, Internal Medicine-Nephrology, and Physiology-Pharmacology, Wake Forest University Health Science Center, Winston Salem, NC (C.M.F.); and Department of Medicine and Lady Davis Institute for Medical Research, SMBD-Jewish General Hospital, McGill University, Montreal, PQ, Canada (E.L.S.)
| |
Collapse
|
15
|
Bene NC, Alcaide P, Wortis HH, Jaffe IZ. Mineralocorticoid receptors in immune cells: emerging role in cardiovascular disease. Steroids 2014; 91:38-45. [PMID: 24769248 PMCID: PMC4205205 DOI: 10.1016/j.steroids.2014.04.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 03/24/2014] [Accepted: 04/09/2014] [Indexed: 12/14/2022]
Abstract
Mineralocorticoid receptors (MRs) contribute to the pathophysiology of hypertension and cardiovascular disease in humans. As such, MR antagonists improve cardiovascular outcomes but the molecular mechanisms remain unclear. The actions of the MR in the kidney to increase blood pressure are well known, but the recent identification of MRs in immune cells has led to novel discoveries in the pathogenesis of cardiovascular disease that are reviewed here. MR regulates macrophage activation to the pro-inflammatory M1 phenotype and this process contributes to the pathogenesis of cardiovascular fibrosis in response to hypertension and to outcomes in mouse models of stroke. T lymphocytes have recently been implicated in the development of hypertension and cardiovascular fibrosis in mouse models. MR activation in vivo promotes T lymphocyte differentiation to the pro-inflammatory Th1 and Th17 subsets while decreasing the number of anti-inflammatory T regulatory lymphocytes. The mechanism likely involves activation of MR in antigen presenting dendritic cells that subsequently regulate Th1/Th17 polarization by production of cytokines. Alteration of the balance between T helper and T regulatory lymphocytes contributes to the pathogenesis of hypertension and atherosclerosis and the associated complications. B lymphocytes also express the MR and specific B lymphocyte-derived antibodies modulate the progression of atherosclerosis. However, the role of MR in B lymphocyte function remains to be explored. Overall, recent studies of MR in immune cells have identified new mechanisms by which MR activation may contribute to the pathogenesis of organ damage in patients with cardiovascular risk factors. Conversely, inhibition of leukocyte MR may contribute to the protective effects of MR antagonist drugs in cardiovascular patients. Further understanding of the role of MR in leukocyte function could yield novel drug targets for cardiovascular disease.
Collapse
Affiliation(s)
| | - Pilar Alcaide
- Tufts University School of Medicine, Boston, MA, USA; Sackler School of Graduate Biomedical Sciences, Boston, MA, USA; Tufts Medical Center, Molecular Cardiology Research Institute, Boston, MA, USA
| | - Henry H Wortis
- Tufts University School of Medicine, Boston, MA, USA; Sackler School of Graduate Biomedical Sciences, Boston, MA, USA
| | - Iris Z Jaffe
- Tufts University School of Medicine, Boston, MA, USA; Sackler School of Graduate Biomedical Sciences, Boston, MA, USA; Tufts Medical Center, Molecular Cardiology Research Institute, Boston, MA, USA.
| |
Collapse
|
16
|
Liew G, Wang JJ, Rochtchina E, Wong TY, Mitchell P. Complete blood count and retinal vessel calibers. PLoS One 2014; 9:e102230. [PMID: 25036459 PMCID: PMC4103855 DOI: 10.1371/journal.pone.0102230] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 06/16/2014] [Indexed: 11/18/2022] Open
Abstract
Objective The influence of hematological indices such as complete blood count on microcirculation is poorly understood. Retinal microvasculature can be directly visualized and vessel calibers are associated with a range of ocular and systemic diseases. We examined the association of complete blood count with retinal vessel calibers. Methods Cross-sectional population-based Blue Mountains Eye Study, n = 3009, aged 49+ years. Complete blood count was measured from fasting blood samples taken at baseline examination, 1992–4. Retinal arteriolar and venular calibers were measured from digitized retinal photographs using a validated semi-automated computer program. Results All analyses adjusted for age, sex, systolic blood pressure, diabetes, smoking and fellow vessel caliber. Higher hematocrit, white cell count and platelet count were associated with narrower arteriolar caliber (p = 0.02, 0.03 and 0.001 respectively), while higher hemoglobin, hematocrit, red cell count, white cell count and platelet count were associated with wider venular caliber (p<0.0001 for all). Each quintile increase in hematocrit, white cell count and platelet count was associated with approximately 0.5 µm narrower arteriolar caliber; whereas each quintile increase in all of the complete blood count components was associated with approximately 1–2 µm wider venular caliber. Conclusions These associations show that elevated levels of hematological indices can have adverse effects on the microcirculation.
Collapse
Affiliation(s)
- Gerald Liew
- Centre for Vision Research, University of Sydney, Sydney, New South Wales, Australia
- Centre for Eye Research Australia, University of Melbourne, Melbourne, Victoria, Australia
| | - Jie Jin Wang
- Centre for Vision Research, University of Sydney, Sydney, New South Wales, Australia
- Centre for Eye Research Australia, University of Melbourne, Melbourne, Victoria, Australia
- * E-mail:
| | - Elena Rochtchina
- Centre for Vision Research, University of Sydney, Sydney, New South Wales, Australia
| | - Tien Yin Wong
- Centre for Eye Research Australia, University of Melbourne, Melbourne, Victoria, Australia
- Singapore Eye Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Paul Mitchell
- Centre for Vision Research, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
17
|
Tuna BG, Schoorl MJ, Bakker EN, de Vos J, VanBavel E. Smooth Muscle Contractile Plasticity in Rat Mesenteric Small Arteries: Sensitivity to Specific Vasoconstrictors, Distension and Inflammatory Cytokines. J Vasc Res 2013; 50:249-62. [DOI: 10.1159/000353292] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 04/16/2013] [Indexed: 01/06/2023] Open
|
18
|
Simonsen U, Aalkjaer C. Small artery structure and function: a dual interaction with many players. Basic Clin Pharmacol Toxicol 2011; 110:2-4. [PMID: 22151731 DOI: 10.1111/j.1742-7843.2011.00837.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|