1
|
Gonzales J, Gulbransen BD. The Physiology of Enteric Glia. Annu Rev Physiol 2025; 87:353-380. [PMID: 39546562 DOI: 10.1146/annurev-physiol-022724-105016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Enteric glia are the partners of neurons in the enteric nervous system throughout the gastrointestinal tract. Roles fulfilled by enteric glia are diverse and contribute to maintaining intestinal homeostasis through interactions with neurons, immune cells, and the intestinal epithelium. Glial influences optimize physiological gut processes such as intestinal motility and epithelial barrier integrity through actions that regulate the microenvironment of the enteric nervous system, the activity of enteric neurons, intestinal epithelial functions, and immune response. Changes to glial phenotype in disease switch glial functions and contribute to intestinal inflammation, dysmotility, pain, neuroplasticity, and tumorigenesis. This review summarizes current concepts regarding the physiological roles of enteric glial cells and their potential contributions to gut disease. The discussion is focused on recent evidence that suggests important glial contributions to gastrointestinal health and pathophysiology.
Collapse
Affiliation(s)
- Jacques Gonzales
- Department of Physiology, Michigan State University, East Lansing, Michigan, USA;
| | - Brian D Gulbransen
- Department of Physiology, Michigan State University, East Lansing, Michigan, USA;
| |
Collapse
|
2
|
YONOICHI S, HARA Y, ISHIDA Y, SHODA A, KIMURA M, MURATA M, NUNOBIKI S, ITO M, YOSHIMOTO A, MANTANI Y, YOKOYAMA T, HIRANO T, IKENAKA Y, YOKOI Y, AYABE T, NAKAMURA K, HOSHI N. Effects of exposure to the neonicotinoid pesticide clothianidin on α-defensin secretion and gut microbiota in mice. J Vet Med Sci 2024; 86:277-284. [PMID: 38267031 PMCID: PMC10963084 DOI: 10.1292/jvms.23-0514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/15/2024] [Indexed: 01/26/2024] Open
Abstract
The mechanism by which the neonicotinoid pesticide clothianidin (CLO) disrupts the intestinal microbiota of experimental animals is unknown. We focused on α-defensins, which are regulators of the intestinal microbiota. Subchronic exposure to CLO induced dysbiosis and reduced short-chain fatty acid-producing bacteria in the intestinal microbiota of mice. Levels of cryptdin-1 (Crp1, a major α-defensin in mice) in feces and cecal contents were lower in the CLO-exposed groups than in control. In Crp1 immunostaining, Paneth cells in the jejunum and ileum of the no-observed-adverse-effect-level CLO-exposed group showed a stronger positive signal than control, likely due to the suppression of Crp1 release. Our results showed that CLO exposure suppresses α-defensin secretion from Paneth cells as part of the mechanism underlying CLO-induced dysbiosis.
Collapse
Affiliation(s)
- Sakura YONOICHI
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Yukako HARA
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Yuya ISHIDA
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Asuka SHODA
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Mako KIMURA
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Midori MURATA
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Sarika NUNOBIKI
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Makiko ITO
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Ayano YOSHIMOTO
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Youhei MANTANI
- Laboratory of Histophysiology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Toshifumi YOKOYAMA
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Tetsushi HIRANO
- Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Yoshinori IKENAKA
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
- Translational Research Unit, Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
- One Health Research Center, Hokkaido University, Hokkaido, Japan
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Yuki YOKOI
- Innate Immunity Laboratory, Department of Cell Biological Science, Faculty of Advanced Life Science, Hokkaido University Graduate School of Life Science,
Hokkaido, Japan
| | - Tokiyoshi AYABE
- Innate Immunity Laboratory, Department of Cell Biological Science, Faculty of Advanced Life Science, Hokkaido University Graduate School of Life Science,
Hokkaido, Japan
| | - Kiminori NAKAMURA
- Innate Immunity Laboratory, Department of Cell Biological Science, Faculty of Advanced Life Science, Hokkaido University Graduate School of Life Science,
Hokkaido, Japan
| | - Nobuhiko HOSHI
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| |
Collapse
|
3
|
Zhang W, Dong XY, Huang R. Gut Microbiota in Ischemic Stroke: Role of Gut Bacteria-Derived Metabolites. Transl Stroke Res 2023; 14:811-828. [PMID: 36279071 DOI: 10.1007/s12975-022-01096-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 09/05/2022] [Accepted: 10/07/2022] [Indexed: 11/30/2022]
Abstract
Ischemic stroke (IS) remains a leading cause of death and long-term disability globally. Several mechanisms including glutamate excitotoxicity, calcium overload, neuroinflammation, oxidative stress, mitochondrial damage, and apoptosis are known to be involved in the pathogenesis of IS, but the underlying pathophysiology mechanisms of IS are not fully clarified. During the past decade, gut microbiota were recognized as a key regulator to affect the health of the host either directly or via their metabolites. Recent studies indicate that gut bacterial dysbiosis is closely related to hypertension, diabetes, obesity, dyslipidemia, and metabolic syndrome, which are the main risk factors for cardiovascular diseases. Increasing evidence indicates that IS can lead to perturbation in gut microbiota and increased permeability of the gut mucosa, known as "leaky gut," resulting in endotoxemia and bacterial translocation. In turn, gut dysbiosis and impaired intestinal permeability can alter gut bacterial metabolite signaling profile from the gut to the brain. Microbiota-derived products and metabolites, such as short-chain fatty acids (SCFAs), bile acids (BAs), trimethylamine N-oxide (TMAO), lipopolysaccharides (LPS), and phenylacetylglutamine (PAGln) can exert beneficial or detrimental effects on various extraintestinal organs, including the brain, liver, and heart. These metabolites have been increasingly acknowledged as biomarkers and mediators of IS. However, the specific role of the gut bacterial metabolites in the context of stroke remains incompletely understood. In-depth studies on these products and metabolites may provide new insight for the development of novel therapeutics for IS.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiao Yu Dong
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Rui Huang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
4
|
Chen BN, Humenick A, Yew WP, Peterson RA, Wiklendt L, Dinning PG, Spencer NJ, Wattchow DA, Costa M, Brookes SJH. Types of Neurons in the Human Colonic Myenteric Plexus Identified by Multilayer Immunohistochemical Coding. Cell Mol Gastroenterol Hepatol 2023; 16:573-605. [PMID: 37355216 PMCID: PMC10469081 DOI: 10.1016/j.jcmgh.2023.06.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/26/2023]
Abstract
BACKGROUND AND AIMS Gut functions including motility, secretion, and blood flow are largely controlled by the enteric nervous system. Characterizing the different classes of enteric neurons in the human gut is an important step to understand how its circuitry is organized and how it is affected by disease. METHODS Using multiplexed immunohistochemistry, 12 discriminating antisera were applied to distinguish different classes of myenteric neurons in the human colon (2596 neurons, 12 patients) according to their chemical coding. All antisera were applied to every neuron, in multiple layers, separated by elutions. RESULTS A total of 164 combinations of immunohistochemical markers were present among the 2596 neurons, which could be divided into 20 classes, with statistical validation. Putative functions were ascribed for 4 classes of putative excitatory motor neurons (EMN1-4), 4 inhibitory motor neurons (IMN1-4), 3 ascending interneurons (AIN1-3), 6 descending interneurons (DIN1-6), 2 classes of multiaxonal sensory neurons (SN1-2), and a small, miscellaneous group (1.8% of total). Soma-dendritic morphology was analyzed, revealing 5 common shapes distributed differentially between the 20 classes. Distinctive baskets of axonal varicosities surrounded 45% of myenteric nerve cell bodies and were associated with close appositions, suggesting possible connectivity. Baskets of cholinergic terminals and several other types of baskets selectively targeted ascending interneurons and excitatory motor neurons but were significantly sparser around inhibitory motor neurons. CONCLUSIONS Using a simple immunohistochemical method, human myenteric neurons were shown to comprise multiple classes based on chemical coding and morphology and dense clusters of axonal varicosities were selectively associated with some classes.
Collapse
Affiliation(s)
- Bao Nan Chen
- Human Physiology, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Adam Humenick
- Human Physiology, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Wai Ping Yew
- Human Physiology, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Rochelle A Peterson
- Human Physiology, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Lukasz Wiklendt
- Human Physiology, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Phil G Dinning
- Human Physiology, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia; Colorectal Surgical Unit, Division of Surgery, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Nick J Spencer
- Human Physiology, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - David A Wattchow
- Colorectal Surgical Unit, Division of Surgery, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Marcello Costa
- Human Physiology, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Simon J H Brookes
- Human Physiology, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia.
| |
Collapse
|
5
|
Graven-Nielsen CS, Knoph CS, Okdahl T, Høyer KL, Krogh K, Hellström PM, Drewes AM. Opioids in the Treatment of Chronic Idiopathic Diarrhea in Humans—A Systematic Review and Treatment Guideline. J Clin Med 2023; 12:jcm12072488. [PMID: 37048572 PMCID: PMC10094889 DOI: 10.3390/jcm12072488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
In patients with chronic idiopathic diarrhea resistant to standard treatment, opioids are often used as rescue therapy. This systematic review investigated opioid effects on gut function in chronic diarrhea. PubMed and Embase were searched regarding effects of opioid agonists on the gastrointestinal tract in humans with chronic or experimentally induced diarrhea. A total of 1472 relevant articles were identified and, after thorough evaluation, 11 clinical trials were included. Generally, studies reported a reduction in stool frequency and an increase in transit time during treatment with the opioid receptor agonists loperamide, asimadoline, casokefamide, and codeine compared with placebo. Loperamide and diphenoxylate significantly improved stool consistency compared with placebo, whereas asimadoline showed no such effects. Compared with placebo, loperamide treatment caused less abdominal pain and urgency. Asimadoline showed no significant subjective improvements, but fedotozine was superior to placebo in reducing abdominal pain and bloating in selected patients. Only two relevant studies were published within the last 20 years, and standardized endpoint measures are lacking. Most trials included few participants, and further evidence is needed from larger, prospective studies. Likewise, consensus is needed to standardize endpoints for stool frequency, transit time, and consistency to conduct future meta-analyses on opioids in management of chronic idiopathic diarrhea.
Collapse
|
6
|
Jooss T, Zhang J, Zimmer B, Rezzonico-Jost T, Rissiek B, Felipe Pelczar P, Seehusen F, Koch-Nolte F, Magnus T, Zierler S, Huber S, Schemann M, Grassi F, Nicke A. Macrophages and glia are the dominant P2X7-expressing cell types in the gut nervous system-No evidence for the role of neuronal P2X7 receptors in colitis. Mucosal Immunol 2023; 16:180-193. [PMID: 36634819 DOI: 10.1016/j.mucimm.2022.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 11/29/2022] [Indexed: 01/11/2023]
Abstract
The blockade or deletion of the pro-inflammatory P2X7 receptor channel has been shown to reduce tissue damage and symptoms in models of inflammatory bowel disease, and P2X7 receptors on enteric neurons were suggested to mediate neuronal death and associated motility changes. Here, we used P2X7-specific antibodies and nanobodies, as well as a bacterial artificial chromosome transgenic P2X7-EGFP reporter mouse model and P2rx7-/- controls to perform a detailed analysis of cell type-specific P2X7 expression and possible overexpression effects in the enteric nervous system of the distal colon. In contrast to previous studies, we did not detect P2X7 in neurons but found dominant expression in glia and macrophages, which closely interact with the neurons. The overexpression of P2X7 per se did not induce significant pathological effects. Our data indicate that macrophages and/or glia account for P2X7-mediated neuronal damage in inflammatory bowel disease and provide a refined basis for the exploration of P2X7-based therapeutic strategies.
Collapse
Affiliation(s)
- Tina Jooss
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig Maximilian University, Munich, Germany
| | - Jiong Zhang
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig Maximilian University, Munich, Germany
| | - Béla Zimmer
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig Maximilian University, Munich, Germany
| | - Tanja Rezzonico-Jost
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Björn Rissiek
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Frauke Seehusen
- Laboratory for Animal Model Pathology (LAMP), Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tim Magnus
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Susanna Zierler
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig Maximilian University, Munich, Germany; Institute of Pharmacology, Medical Faculty, Johannes Kepler University Linz, Linz, Austria
| | - Samuel Huber
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Schemann
- Human Biology, Technical University Munich, Freising-Weihenstephan, Germany
| | - Fabio Grassi
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Annette Nicke
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig Maximilian University, Munich, Germany.
| |
Collapse
|
7
|
Computational simulations and Ca2+ imaging reveal that slow synaptic depolarizations (slow EPSPs) inhibit fast EPSP evoked action potentials for most of their time course in enteric neurons. PLoS Comput Biol 2022; 18:e1009717. [PMID: 35696419 PMCID: PMC9232139 DOI: 10.1371/journal.pcbi.1009717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 06/24/2022] [Accepted: 05/03/2022] [Indexed: 12/04/2022] Open
Abstract
Transmission between neurons in the extensive enteric neural networks of the gut involves synaptic potentials with vastly different time courses and underlying conductances. Most enteric neurons exhibit fast excitatory post-synaptic potentials (EPSPs) lasting 20–50 ms, but many also exhibit slow EPSPs that last up to 100 s. When large enough, slow EPSPs excite action potentials at the start of the slow depolarization, but how they affect action potentials evoked by fast EPSPs is unknown. Furthermore, two other sources of synaptic depolarization probably occur in enteric circuits, activated via GABAA or GABAC receptors; how these interact with other synaptic depolarizations is also unclear. We built a compartmental model of enteric neurons incorporating realistic voltage-dependent ion channels, then simulated fast EPSPs, slow EPSPs and GABAA or GABAC ligand-gated Cl- channels to explore these interactions. Model predictions were tested by imaging Ca2+ transients in myenteric neurons ex vivo as an indicator of their activity during synaptic interactions. The model could mimic firing of myenteric neurons in mouse colon evoked by depolarizing current during intracellular recording and the fast and slow EPSPs in these neurons. Subthreshold fast EPSPs evoked spikes during the rising phase of a slow EPSP, but suprathreshold fast EPSPs could not evoke spikes later in a slow EPSP. This predicted inhibition was confirmed by Ca2+ imaging in which stimuli that evoke slow EPSPs suppressed activity evoked by fast EPSPs in many myenteric neurons. The model also predicted that synchronous activation of GABAA receptors and fast EPSPs potentiated firing evoked by the latter, while synchronous activation of GABAC receptors with fast EPSPs, potentiated firing and then suppressed it. The results reveal that so-called slow EPSPs have a biphasic effect being likely to suppress fast EPSP evoked firing over very long periods, perhaps accounting for prolonged quiescent periods seen in enteric motor patterns. The gastrointestinal tract is the only organ with an extensive semi-autonomous nervous system that generates complex contraction patterns independently. Communication between neurons in this “enteric” nervous system is via depolarizing synaptic events with dramatically different time courses including fast synaptic potentials lasting around 20–50 ms and slow depolarizing synaptic potentials lasting for 10–120 s. Most neurons have both. We explored how slow synaptic depolarizations affect generation of action potentials by fast synaptic potentials using computational simulation of small networks of neurons implemented as compartmental models with realistic membrane ion channels. We found that slow synaptic depolarizations have biphasic effects; they initially make fast synaptic potentials more likely to trigger action potentials, but then actually prevent action potential generation by fast synaptic potentials with the inhibition lasting several 10s of seconds. We confirmed the inhibitory effects of the slow synaptic depolarizations using live Ca2+ imaging of enteric neurons from mouse colon in isolated tissue. Our results identify a novel form of synaptic inhibition in the enteric nervous system of the gut, which may account for the vastly differing time courses between signalling in individual gut neurons and rhythmic contractile patterns that often repeat at more than 60 s intervals.
Collapse
|
8
|
Peters K, Dahlgren D, Lennernäs H, Sjöblom M. Melatonin-Activated Receptor Signaling Pathways Mediate Protective Effects on Surfactant-Induced Increase in Jejunal Mucosal Permeability in Rats. Int J Mol Sci 2021; 22:10762. [PMID: 34639101 PMCID: PMC8509405 DOI: 10.3390/ijms221910762] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/01/2021] [Accepted: 10/02/2021] [Indexed: 12/22/2022] Open
Abstract
A well-functional intestinal mucosal barrier can be compromised as a result of various diseases, chemotherapy, radiation, and chemical exposures including surfactants. Currently, there are no approved drugs targeting a dysfunctional intestinal barrier, which emphasizes a significant medical need. One candidate drug reported to regulate intestinal mucosal permeability is melatonin. However, it is still unclear if its effect is primarily receptor mediated or antioxidative, and if it is associated with enteric neural pathways. The aim of this rat intestinal perfusion study was to investigate the mechanisms of melatonin and nicotinic acetylcholine receptors on the increase in intestinal mucosal clearance of 51Cr-labeled ethylenediaminetetraacetate induced by 15 min luminal exposure to the anionic surfactant, sodium dodecyl sulfate. Our results show that melatonin abolished the surfactant-induced increase in intestinal permeability and that this effect was inhibited by luzindole, a melatonin receptor antagonist. In addition, mecamylamine, an antagonist of nicotinic acetylcholine receptors, reduced the surfactant-induced increase in mucosal permeability, using a signaling pathway not influenced by melatonin receptor activation. In conclusion, our results support melatonin as a potentially potent candidate for the oral treatment of a compromised intestinal mucosal barrier, and that its protective effect is primarily receptor-mediated.
Collapse
Affiliation(s)
- Karsten Peters
- Department of Neuroscience, Gastrointestinal Physiology, Uppsala University, 751 24 Uppsala, Sweden;
- Department of Pharmaceutical Biosciences, Translational Drug Discovery and Development, Uppsala University, 752 37 Uppsala, Sweden; (D.D.); (H.L.)
| | - David Dahlgren
- Department of Pharmaceutical Biosciences, Translational Drug Discovery and Development, Uppsala University, 752 37 Uppsala, Sweden; (D.D.); (H.L.)
| | - Hans Lennernäs
- Department of Pharmaceutical Biosciences, Translational Drug Discovery and Development, Uppsala University, 752 37 Uppsala, Sweden; (D.D.); (H.L.)
| | - Markus Sjöblom
- Department of Neuroscience, Gastrointestinal Physiology, Uppsala University, 751 24 Uppsala, Sweden;
| |
Collapse
|
9
|
Margiotta JF, Smith-Edwards KM, Nestor-Kalinoski A, Davis BM, Albers KM, Howard MJ. Synaptic Components, Function and Modulation Characterized by GCaMP6f Ca 2+ Imaging in Mouse Cholinergic Myenteric Ganglion Neurons. Front Physiol 2021; 12:652714. [PMID: 34408655 PMCID: PMC8365335 DOI: 10.3389/fphys.2021.652714] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022] Open
Abstract
The peristaltic contraction and relaxation of intestinal circular and longitudinal smooth muscles is controlled by synaptic circuit elements that impinge upon phenotypically diverse neurons in the myenteric plexus. While electrophysiological studies provide useful information concerning the properties of such synaptic circuits, they typically involve tissue disruption and do not correlate circuit activity with biochemically defined neuronal phenotypes. To overcome these limitations, mice were engineered to express the sensitive, fast Ca2+ indicator GCaMP6f selectively in neurons that express the acetylcholine (ACh) biosynthetic enzyme choline acetyltransfarse (ChAT) thereby allowing rapid activity-driven changes in Ca2+ fluorescence to be observed without disrupting intrinsic connections, solely in cholinergic myenteric ganglion (MG) neurons. Experiments with selective receptor agonists and antagonists reveal that most mouse colonic cholinergic (i.e., GCaMP6f+/ChAT+) MG neurons express nicotinic ACh receptors (nAChRs), particularly the ganglionic subtype containing α3 and β4 subunits, and most express ionotropic serotonin receptors (5-HT3Rs). Cholinergic MG neurons also display small, spontaneous Ca2+ transients occurring at ≈ 0.2 Hz. Experiments with inhibitors of Na+ channel dependent impulses, presynaptic Ca2+ channels and postsynaptic receptor function reveal that the Ca2+ transients arise from impulse-driven presynaptic activity and subsequent activation of postsynaptic nAChRs or 5-HT3Rs. Electrical stimulation of axonal connectives to MG evoked Ca2+ responses in the neurons that similarly depended on nAChRs or/and 5-HT3Rs. Responses to single connective shocks had peak amplitudes and rise and decay times that were indistinguishable from the spontaneous Ca2+ transients and the largest fraction had brief synaptic delays consistent with activation by monosynaptic inputs. These results indicate that the spontaneous Ca2+ transients and stimulus evoked Ca2+ responses in MG neurons originate in circuits involving fast chemical synaptic transmission mediated by nAChRs or/and 5-HT3Rs. Experiments with an α7-nAChR agonist and antagonist, and with pituitary adenylate cyclase activating polypeptide (PACAP) reveal that the same synaptic circuits display extensive capacity for presynaptic modulation. Our use of non-invasive GCaMP6f/ChAT Ca2+ imaging in colon segments with intrinsic connections preserved, reveals an abundance of direct and modulatory synaptic influences on cholinergic MG neurons.
Collapse
Affiliation(s)
- Joseph F Margiotta
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, United States
| | - Kristen M Smith-Edwards
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Andrea Nestor-Kalinoski
- Department of Surgery, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, United States
| | - Brian M Davis
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Kathryn M Albers
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Marthe J Howard
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, United States
| |
Collapse
|
10
|
Michel K, Krüger D, Schäuffele S, Zeller F, Demir IE, Theisen J, Schemann M. Fast synaptic excitatory neurotransmission in the human submucosal plexus. Neurogastroenterol Motil 2021; 33:e14164. [PMID: 33960578 DOI: 10.1111/nmo.14164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/25/2021] [Accepted: 04/15/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Acetylcholine is the main excitatory neurotransmitter in the enteric nervous system (ENS) in all animal models examined so far. However, data for the human ENS is scarce. METHODS We used neuroimaging using voltage and calcium dyes, Ussing chamber, and immunohistochemistry to study fast synaptic neurotransmission in submucosal plexus neurons of the human gut. KEY RESULTS Electrical stimulation of intraganglionic fiber tracts led to fast excitatory postsynaptic potentials (fEPSPs) in 29 submucosal neurons which were all blocked by the nicotinic antagonist hexamethonium. The nicotinic agonist DMPP mimicked the effects of electrical stimulation and had excitatory effects on 56 of 73 neurons. The unselective NMDA antagonist MK-801 blocked fEPSPs in 14 out of 22 neurons as well as nicotine evoked spike discharge. In contrast, the application of NMDA showed only weak effects on excitability or calcium transients. This agreed with the finding that the specific NMDA antagonist D-APV reduced fEPSPs in only 1 out of 40 neurons. Application of AMPA or kainite had no effect in 41 neurons or evoked spike discharge in only one out of 41 neurons, respectively. Immunohistochemistry showed that 98.7 ± 2.4% of all submucosal neurons (n = 6 preparations, 1003 neurons) stained positive for the nicotinic receptor (α1 , α2 or α3 -subunit). Hexamethonium (200 µM) reduced nerve-evoked chloride secretion by 34.3 ± 18.6% (n = 14 patients), whereas D-APV had no effect. CONCLUSION & INFERENCE Acetylcholine is the most important mediator of fast excitatory postsynaptic transmission in human submucous plexus neurons whereas glutamatergic fEPSPs were rarely encountered.
Collapse
Affiliation(s)
- Klaus Michel
- Department of Human Biology, TU München, Freising, Germany
| | - Dagmar Krüger
- Department of Human Biology, TU München, Freising, Germany
| | | | - Florian Zeller
- Department of Surgery, Clinical Center Freising, Freising, Germany
| | | | - Jörg Theisen
- Department of Surgery, Klinikum Landkreis Erding, Erding, Germany
| | | |
Collapse
|
11
|
Upregulated nicotinic ACh receptor signaling contributes to intestinal stem cell function through activation of Hippo and Notch signaling pathways. Int Immunopharmacol 2020; 88:106984. [PMID: 33182055 DOI: 10.1016/j.intimp.2020.106984] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUNDS Recent studies have shown that various mammalian non-neuronal cells synthesize acetylcholine (ACh) in situ and operate cholinergic signaling via nicotinic and muscarinic ACh receptors (nAChRs and mAChRs). Understanding the mechanisms that control intestinal stem cell (ISC) function through activation of nAChR signaling is critical for developing therapeutic interventions for diseases such as inflammatory bowel disease (IBD). Previously, by conducting RNA sequencing (RNA-Seq) analysis using crypt-villus organoid cultures, we found that the Hippo signaling pathway, a stem cell regulating network, is upregulated in ISCs after treatment with nicotine. Here, we explored the roles of nAChR signaling through activation of the Hippo signaling pathway. METHODS RNA-Seq data were validated by quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis. β4-knock-in mice were generated, and experiments using the knock-in mice and their intestinal organoids were carried out. RESULTS RNA-Seq and qRT-PCR analyses demonstrated that the expression of YAP1/TAZ and Notch1/Dll1 was upregulated after treatment with nicotine. However, a nAChR antagonist, mecamylamine, strongly inhibited the expression of these genes. Notably, we found that in β4-knock-in mouse small intestines, expression of YAP1 and Notch1 was significantly reduced, but not that of TAZ and Dll1, suggesting that Hippo and Notch signaling pathways are putative targets for nAChR signaling. Furthermore, fluorescent signals were detected in Paneth cells that interact with ISCs at the crypt bottom, indicating an interaction between Paneth cells and ISCs via nAChR signaling through the activation of Hippo and Notch signaling pathways. CONCLUSION Our results indicate that upregulated nAChR signaling contributes to the maintenance of ISC activity and balances differentiation through activation of Hippo and Notch signaling pathways.
Collapse
|
12
|
Barrenschee M, Cossais F, Böttner M, Egberts JH, Becker T, Wedel T. Impaired Expression of Neuregulin 1 and Nicotinic Acetylcholine Receptor β4 Subunit in Diverticular Disease. Front Cell Neurosci 2019; 13:563. [PMID: 31920561 PMCID: PMC6930903 DOI: 10.3389/fncel.2019.00563] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 12/05/2019] [Indexed: 12/15/2022] Open
Abstract
Neuregulin 1 (NRG1) regulates the expression of the nicotinic acetylcholine receptor (nAChR) and is suggested to promote the survival and maintenance of the enteric nervous system (ENS), since deficiency of its corresponding receptor complex ErbB2/ErbB3 leads to postnatal colonic aganglionosis. As diverticular disease (DD) is associated with intestinal hypoganglionosis, the NRG1-ErbB2/ErbB3 system and the nAChR were studied in patients with DD and controls. Samples of tunica muscularis of the sigmoid colon from patients with DD (n = 8) and controls (n = 11) were assessed for mRNA expression of NRG1, ErbB2, and ErbB3 and the nAChR subunits α3, α5, α7, β2, and β4. Site-specific gene expression levels of the NRG1-ErbB2/3 system were determined in myenteric ganglia harvested by laser microdissection (LMD). Localization studies were performed by immunohistochemistry for the NRG1-ErbB2/3 system and nAChR subunit β4. Rat enteric nerve cell cultures were stimulated with NRG1 or glial-cell line derived neurotrophic factor (GDNF) for 6 days and mRNA expression of the aforementioned nAchR was measured. NRG1, ErbB3, and nAChR subunit β4 expression was significantly down-regulated in both the tunica muscularis and myenteric ganglia of patients with DD compared to controls, whereas mRNA expression of ErbB3 and nAChR subunits β2, α3, α5, and α7 remained unaltered. NRG1, ErbB3, and nAChR subunit β4 immunoreactive signals were reduced in neuronal somata and the neuropil of myenteric ganglia from patients with DD compared to control. nAChR subunit β4 exhibited also weaker immunoreactive signals in the tunica muscularis of patients with DD. NRG1 treatment but not GDNF treatment of enteric nerve cell cultures significantly enhanced mRNA expression of nAchR β4. The down-regulation of NRG1 and ErbB3 in myenteric ganglia of patients with DD supports the hypothesis that intestinal hypoganglionosis observed in DD may be attributed to a lack of neurotrophic factors. Regulation of nAChR subunit β4 by NRG1 and decreased nAChR β4 in patients with DD provide evidence that a lack of NRG1 may affect the composition of enteric neurotransmitter receptor subunits thus contributing to the intestinal motility disorders previously reported in DD.
Collapse
Affiliation(s)
- Martina Barrenschee
- Neurogastroenterology, Institute of Anatomy, Christian-Albrechts University of Kiel, Kiel, Germany
| | - François Cossais
- Neurogastroenterology, Institute of Anatomy, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Martina Böttner
- Neurogastroenterology, Institute of Anatomy, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Jan-Hendrik Egberts
- Department of General, Visceral-, Thoracic-, Transplantation-, and Pediatric Surgery, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Thomas Becker
- Department of General, Visceral-, Thoracic-, Transplantation-, and Pediatric Surgery, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Thilo Wedel
- Neurogastroenterology, Institute of Anatomy, Christian-Albrechts University of Kiel, Kiel, Germany
| |
Collapse
|
13
|
Grubišić V, Perez-Medina AL, Fried DE, Sévigny J, Robson SC, Galligan JJ, Gulbransen BD. NTPDase1 and -2 are expressed by distinct cellular compartments in the mouse colon and differentially impact colonic physiology and function after DSS colitis. Am J Physiol Gastrointest Liver Physiol 2019; 317:G314-G332. [PMID: 31188623 PMCID: PMC6774087 DOI: 10.1152/ajpgi.00104.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
ATP is both an important mediator of physiological gut functions such as motility and epithelial function, and a key danger signal that mediates cell death and tissue damage. The actions of extracellular ATP are regulated through the catalytic functions extracellular nucleoside triphosphate diphosphohydrolase-1 (NTPDase1), -2, -3, and -8, which ultimately generate nucleosides. Ectonucleotidases have distinct cellular associations, but the specific locations and functional roles of individual NTPDases in the intestine are still poorly understood. Here, we tested the hypothesis that differential and cell-selective regulation of purine hydrolysis by NTPDase1 and -2 plays important roles in gut physiology and disease. We studied Entpd1 and Entpd2 null mice in health and following colitis driven by 2% dextran sulfate sodium (DSS) administration using functional readouts of gut motility, epithelial barrier function, and neuromuscular communication. NTPDase1 is expressed by immune cells, and the ablation of Entpd1 altered glial numbers in the myenteric plexus. NTPDase2 is expressed by enteric glia, and the ablation of Entpd2 altered myenteric neuron numbers. Mice lacking either NTPDase1 or -2 exhibited decreased inhibitory neuromuscular transmission and altered components of inhibitory junction potentials. Ablation of Entpd2 increased gut permeability following inflammation. In conclusion, the location- and context-dependent extracellular nucleotide phosphohydrolysis by NTPDase1 and -2 substantially impacts gut function in health and disease.NEW & NOTEWORTHY Purines are important mediators of gastrointestinal physiology and pathophysiology. Nucleoside triphosphate diphosphohydrolases (NTPDases) regulate extracellular purines, but the roles of specific NTPDases in gut functions are poorly understood. Here, we used Entpd1- and Entpd2-deficient mice to show that the differential and cell-selective regulation of purine hydrolysis by NTPDase1 and -2 plays important roles in barrier function, gut motility, and neuromuscular communication in health and disease.
Collapse
Affiliation(s)
- Vladimir Grubišić
- 1Department of Physiology and Neuroscience Program, Michigan State University, East Lansing, Michigan
| | - Alberto L. Perez-Medina
- 2Department of Pharmacology and Toxicology and Neuroscience Program, Michigan State University, East Lansing, Michigan
| | - David E. Fried
- 1Department of Physiology and Neuroscience Program, Michigan State University, East Lansing, Michigan
| | - Jean Sévigny
- 3Centre de recherche du CHU de Québec–Université Laval, Québec City, Quebec, Canada,4Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Québec City, Quebec, Canada
| | - Simon C. Robson
- 5Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - James J. Galligan
- 2Department of Pharmacology and Toxicology and Neuroscience Program, Michigan State University, East Lansing, Michigan
| | - Brian D. Gulbransen
- 1Department of Physiology and Neuroscience Program, Michigan State University, East Lansing, Michigan
| |
Collapse
|
14
|
Broide RS, Winzer-Serhan UH, Chen Y, Leslie FM. Distribution of α7 Nicotinic Acetylcholine Receptor Subunit mRNA in the Developing Mouse. Front Neuroanat 2019; 13:76. [PMID: 31447654 PMCID: PMC6691102 DOI: 10.3389/fnana.2019.00076] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/12/2019] [Indexed: 01/10/2023] Open
Abstract
Homomeric α7 nicotinic acetylcholine receptors (nAChRs) are abundantly expressed in the central and peripheral nervous system (CNS and PNS, respectively), and spinal cord. In addition, expression and functional responses have been reported in non-neuronal tissue. In the nervous system, α7 nAChR subunit expression appears early during embryonic development and is often transiently upregulated, but little is known about their prenatal expression outside of the nervous system. For understanding potential short-term and long-term effects of gestational nicotine exposure, it is important to know the temporal and spatial expression of α7 nAChRs throughout the body. To that end, we studied the expression of α7 nAChR subunit mRNA using highly sensitive isotopic in situ hybridization in embryonic and neonatal whole-body mouse sections starting at gestational day 13. The results revealed expression of α7 mRNA as early as embryonic day 13 in the PNS, including dorsal root ganglia, parasympathetic and sympathetic ganglia, with the strongest expression in the superior cervical ganglion, and low to moderate levels were detected in brain and spinal cord, respectively, which rapidly increased in intensity with embryonic age. In addition, robust α7 mRNA expression was detected in the adrenal medulla, and low to moderate expression in selected peripheral tissues during embryonic development, potentially related to cells derived from the neural crest. Little or no mRNA expression was detected in thymus or spleen, sites of immune cell maturation. The results suggest that prenatal nicotine exposure could potentially affect the nervous system with limited effects in non-neural tissues.
Collapse
Affiliation(s)
- Ron S Broide
- Department of Pharmacology, University of California, Irvine, Irvine, CA, United States
| | - Ursula H Winzer-Serhan
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University College of Medicine, Bryan, TX, United States
| | - Yling Chen
- Department of Pharmacology, University of California, Irvine, Irvine, CA, United States
| | - Frances M Leslie
- Department of Pharmacology, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
15
|
Li Z, Hao MM, Van den Haute C, Baekelandt V, Boesmans W, Vanden Berghe P. Regional complexity in enteric neuron wiring reflects diversity of motility patterns in the mouse large intestine. eLife 2019; 8:42914. [PMID: 30747710 PMCID: PMC6391068 DOI: 10.7554/elife.42914] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 02/11/2019] [Indexed: 02/06/2023] Open
Abstract
The enteric nervous system controls a variety of gastrointestinal functions including intestinal motility. The minimal neuronal circuit necessary to direct peristalsis is well-characterized but several intestinal regions display also other motility patterns for which the underlying circuits and connectivity schemes that coordinate the transition between those patterns are poorly understood. We investigated whether in regions with a richer palette of motility patterns, the underlying nerve circuits reflect this complexity. Using Ca2+ imaging, we determined the location and response fingerprint of large populations of enteric neurons upon focal network stimulation. Complemented by neuronal tracing and volumetric reconstructions of synaptic contacts, this shows that the multifunctional proximal colon requires specific additional circuit components as compared to the distal colon, where peristalsis is the predominant motility pattern. Our study reveals that motility control is hard-wired in the enteric neural networks and that circuit complexity matches the motor pattern portfolio of specific intestinal regions.
Collapse
Affiliation(s)
- Zhiling Li
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven, Belgium
| | - Marlene M Hao
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Australia
| | - Chris Van den Haute
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Leuven, Belgium.,Leuven Viral Vector Core, KU Leuven, Leuven, Belgium
| | - Veerle Baekelandt
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Werend Boesmans
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven, Belgium.,Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands.,Biomedical Research Institute (BIOMED), Hasselt University, Hasselt, Belgium
| | - Pieter Vanden Berghe
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven, Belgium
| |
Collapse
|
16
|
Hibberd TJ, Travis L, Wiklendt L, Costa M, Brookes SJH, Hu H, Keating DJ, Spencer NJ. Synaptic activation of putative sensory neurons by hexamethonium-sensitive nerve pathways in mouse colon. Am J Physiol Gastrointest Liver Physiol 2018; 314:G53-G64. [PMID: 28935683 DOI: 10.1152/ajpgi.00234.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The gastrointestinal tract contains its own independent population of sensory neurons within the gut wall. These sensory neurons have been referred to as intrinsic primary afferent neurons (IPANs) and can be identified by immunoreactivity to calcitonin gene-related peptide (CGRP) in mice. A common feature of IPANs is a paucity of fast synaptic inputs observed during sharp microelectrode recordings. Whether this is observed using different recording techniques is of particular interest for understanding the physiology of these neurons and neural circuit modeling. Here, we imaged spontaneous and evoked activation of myenteric neurons in isolated whole preparations of mouse colon and correlated recordings with CGRP and nitric oxide synthase (NOS) immunoreactivity, post hoc. Calcium indicator fluo 4 was used for this purpose. Calcium responses were recorded in nerve cell bodies located 5-10 mm oral to transmural electrical nerve stimuli. A total of 618 recorded neurons were classified for CGRP or NOS immunoreactivity. Aboral electrical stimulation evoked short-latency calcium transients in the majority of myenteric neurons, including ~90% of CGRP-immunoreactive Dogiel type II neurons. Activation of Dogiel type II neurons had a time course consistent with fast synaptic transmission and was always abolished by hexamethonium (300 μM) and by low-calcium Krebs solution. The nicotinic receptor agonist 1,1-dimethyl-4-phenylpiperazinium iodide (during synaptic blockade) directly activated Dogiel type II neurons. The present study suggests that murine colonic Dogiel type II neurons receive prominent fast excitatory synaptic inputs from hexamethonium-sensitive neural pathways. NEW & NOTEWORTHY Myenteric neurons in isolated mouse colon were recorded using calcium imaging and then neurochemically defined. Short-latency calcium transients were detected in >90% of calcitonin gene-related peptide-immunoreactive neurons to electrical stimulation of hexamethonium-sensitive pathways. Putative sensory Dogiel type II calcitonin gene-related peptide-immunoreactive myenteric neurons may receive widespread fast synaptic inputs in mouse colon.
Collapse
Affiliation(s)
- Timothy J Hibberd
- Discipline of Human Physiology and Centre for Neuroscience, Flinders University , Adelaide South Australia
| | - Lee Travis
- Discipline of Human Physiology and Centre for Neuroscience, Flinders University , Adelaide South Australia
| | - Lukasz Wiklendt
- Discipline of Human Physiology and Centre for Neuroscience, Flinders University , Adelaide South Australia
| | - Marcello Costa
- Discipline of Human Physiology and Centre for Neuroscience, Flinders University , Adelaide South Australia
| | - Simon J H Brookes
- Discipline of Human Physiology and Centre for Neuroscience, Flinders University , Adelaide South Australia
| | - Hongzhen Hu
- Department of Anesthesiology, Washington University , Saint Louis, Missouri
| | - Damien J Keating
- Discipline of Human Physiology and Centre for Neuroscience, Flinders University , Adelaide South Australia
| | - Nick J Spencer
- Discipline of Human Physiology and Centre for Neuroscience, Flinders University , Adelaide South Australia
| |
Collapse
|
17
|
Villalobos-Hernández EC, Barajas-López C, Martínez-Salazar EA, Salgado-Delgado RC, Miranda-Morales M. Cholinergic signaling plasticity maintains viscerosensory responses during Aspiculuris tetraptera infection in mice small intestine. Auton Neurosci 2017. [PMID: 28641950 DOI: 10.1016/j.autneu.2017.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Intestinal parasites alter gastrointestinal (GI) functions like the cholinergic function. Aspiculuris tetraptera is a pinworm frequently observed in laboratory facilities, which infests the mice cecum and proximal colon. However, little is known about the impact of this infection on the GI sensitivity. Here, we investigated possible changes in spontaneous mesenteric nerve activity and on the mechanosensitivity function of worm-free regions of naturally infected mice with A. tetraptera. Infection increased the basal firing of mesenteric afferent nerves in jejunum. Our findings indicate that nicotinic but not muscarinic receptors, similarly affect spontaneous nerve firing in control and infected animals; these axons are mainly vagal. No difference between groups was observed on spontaneous activity after nicotinic receptor inhibition. However, and contrary to the control group, during infection, the muscarinic signaling was shown to be elevated during mechanosensory experiments. In conclusion, we showed for the first time that alterations induced by infection of the basal afferent activity were independent of the cholinergic function but changes in mechanosensitivity were mediated by muscarinic, but not nicotinic, receptors and specifically by high threshold nerve fibers (activated above 20mmHg), known to play a role in nociception. These plastic changes within the muscarinic signaling would function as a compensatory mechanism to maintain a full mechanosensory response and the excitability of nociceptors during infection. These changes indicate that pinworm colonic infection can target other tissues away from the colon.
Collapse
Affiliation(s)
- Egina C Villalobos-Hernández
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, San Luís Potosí, SLP, Mexico
| | - Carlos Barajas-López
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, San Luís Potosí, SLP, Mexico.
| | - Elizabeth A Martínez-Salazar
- Laboratorio de Colecciones Biológicas y Sistemática Molecular, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Mexico
| | | | | |
Collapse
|
18
|
Purinergic Signalling in the Gut. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 891:91-112. [PMID: 27379638 DOI: 10.1007/978-3-319-27592-5_10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The article will begin with the discovery of purinergic inhibitory neuromuscular transmission in the 1960s/1970s, the proposal for purinergic cotransmission in 1976 and the recognition that sympathetic nerves release adenosine 5'-triphosphate (ATP), noradrenaline and neuropeptide Y, while non-adrenergic, non-cholinergic inhibitory nerve cotransmitters are ATP, nitric oxide and vasoactive intestinal polypeptide in variable proportions in different regions of the gut. Later, purinergic synaptic transmission in the myenteric and submucosal plexuses was established and purinergic receptors expressed by both glial and interstitial cells. The focus will then be on purinergic mechanosensory transduction involving release of ATP from mucosal epithelial cells during distension to activate P2X3 receptors on submucosal sensory nerve endings. The responses of low threshold fibres mediate enteric reflex activity via intrinsic sensory nerves, while high threshold fibres initiate pain via extrinsic sensory nerves. Finally, the involvement of purinergic signalling in an animal model of colitis will be presented, showing that during distension there is increased ATP release, increased P2X3 receptor expression on calcitonin gene-related peptide-labelled sensory neurons and increased sensory nerve activity.
Collapse
|
19
|
Cuny H, Yu R, Tae HS, Kompella SN, Adams DJ. α-Conotoxins active at α3-containing nicotinic acetylcholine receptors and their molecular determinants for selective inhibition. Br J Pharmacol 2017; 175:1855-1868. [PMID: 28477355 DOI: 10.1111/bph.13852] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 04/13/2017] [Accepted: 04/24/2017] [Indexed: 01/22/2023] Open
Abstract
Neuronal α3-containing nicotinic acetylcholine receptors (nAChRs) in the peripheral nervous system (PNS) and non-neuronal tissues are implicated in a number of severe disease conditions ranging from cancer to cardiovascular diseases and chronic pain. However, despite the physiological characterization of mouse models and cell lines, the precise pathophysiology of nAChRs outside the CNS remains not well understood, in part because there is a lack of subtype-selective antagonists. α-Conotoxins isolated from cone snail venom exhibit characteristic individual selectivity profiles for nAChRs and, therefore, are excellent tools to study the determinants for nAChR-antagonist interactions. Given that human α3β4 subtype selective α-conotoxins are scarce and this is a major nAChR subtype in the PNS, the design of new peptides targeting this nAChR subtype is desirable. Recent studies using α-conotoxins RegIIA and AuIB, in combination with nAChR site-directed mutagenesis and computational modelling, have shed light onto specific nAChR residues, which determine the selectivity of the α-conotoxins for the human α3β2 and α3β4 subtypes. Publications describing the selectivity profile and binding sites of other α-conotoxins confirm that subtype-selective nAChR antagonists often work through common mechanisms by interacting with the same structural components and sites on the receptor. LINKED ARTICLES This article is part of a themed section on Nicotinic Acetylcholine Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.11/issuetoc.
Collapse
Affiliation(s)
- Hartmut Cuny
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW, Australia.,Victor Chang Cardiac Research Institute, Developmental and Stem Cell Biology Division, Sydney, NSW, Australia
| | - Rilei Yu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Han-Shen Tae
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW, Australia
| | - Shiva N Kompella
- Faculty of Pharmacy, University of Sydney, Sydney, NSW, Australia
| | - David J Adams
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
20
|
Fung C, Boesmans W, Cirillo C, Foong JPP, Bornstein JC, Vanden Berghe P. VPAC Receptor Subtypes Tune Purinergic Neuron-to-Glia Communication in the Murine Submucosal Plexus. Front Cell Neurosci 2017; 11:118. [PMID: 28487635 PMCID: PMC5403822 DOI: 10.3389/fncel.2017.00118] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 04/10/2017] [Indexed: 12/20/2022] Open
Abstract
The enteric nervous system (ENS) situated within the gastrointestinal tract comprises an intricate network of neurons and glia which together regulate intestinal function. The exact neuro-glial circuitry and the signaling molecules involved are yet to be fully elucidated. Vasoactive intestinal peptide (VIP) is one of the main neurotransmitters in the gut, and is important for regulating intestinal secretion and motility. However, the role of VIP and its VPAC receptors within the enteric circuitry is not well understood. We investigated this in the submucosal plexus of mouse jejunum using calcium (Ca2+)-imaging. Local VIP application induced Ca2+-transients primarily in neurons and these were inhibited by VPAC1- and VPAC2-antagonists (PG 99-269 and PG 99-465 respectively). These VIP-evoked neural Ca2+-transients were also inhibited by tetrodotoxin (TTX), indicating that they were secondary to action potential generation. Surprisingly, VIP induced Ca2+-transients in glia in the presence of the VPAC2 antagonist. Further, selective VPAC1 receptor activation with the agonist ([K15, R16, L27]VIP(1-7)/GRF(8-27)) predominantly evoked glial responses. However, VPAC1-immunoreactivity did not colocalize with the glial marker glial fibrillary acidic protein (GFAP). Rather, VPAC1 expression was found on cholinergic submucosal neurons and nerve fibers. This suggests that glial responses observed were secondary to neuronal activation. Trains of electrical stimuli were applied to fiber tracts to induce endogenous VIP release. Delayed glial responses were evoked when the VPAC2 antagonist was present. These findings support the presence of an intrinsic VIP/VPAC-initiated neuron-to-glia signaling pathway. VPAC1 agonist-evoked glial responses were inhibited by purinergic antagonists (PPADS and MRS2179), thus demonstrating the involvement of P2Y1 receptors. Collectively, we showed that neurally-released VIP can activate neurons expressing VPAC1 and/or VPAC2 receptors to modulate purine-release onto glia. Selective VPAC1 activation evokes a glial response, whereas VPAC2 receptors may act to inhibit this response. Thus, we identified a component of an enteric neuron-glia circuit that is fine-tuned by endogenous VIP acting through VPAC1- and VPAC2-mediated pathways.
Collapse
Affiliation(s)
- Candice Fung
- Department of Physiology, The University of MelbourneParkville, VIC, Australia.,Laboratory for Enteric Neuroscience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), KU LeuvenLeuven, Belgium
| | - Werend Boesmans
- Laboratory for Enteric Neuroscience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), KU LeuvenLeuven, Belgium
| | - Carla Cirillo
- Laboratory for Enteric Neuroscience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), KU LeuvenLeuven, Belgium
| | - Jaime P P Foong
- Department of Physiology, The University of MelbourneParkville, VIC, Australia
| | - Joel C Bornstein
- Department of Physiology, The University of MelbourneParkville, VIC, Australia
| | - Pieter Vanden Berghe
- Laboratory for Enteric Neuroscience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), KU LeuvenLeuven, Belgium
| |
Collapse
|
21
|
Wong KKL, Tang LCY, Zhou J, Ho V. Analysis of spatiotemporal pattern and quantification of gastrointestinal slow waves caused by anticholinergic drugs. Organogenesis 2017; 13:39-62. [PMID: 28277890 DOI: 10.1080/15476278.2017.1295904] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Anticholinergic drugs are well-known to cause adverse effects, such as constipation, but their effects on baseline contractile activity in the gut driven by slow waves is not well established. In a video-based gastrointestinal motility monitoring (GIMM) system, a mouse's small intestine was placed in Krebs solution and recorded using a high definition camera. Untreated controls were recorded for each specimen, then treated with a therapeutic concentration of the drug, and finally, treated with a supratherapeutic dose of the drug. Next, the video clips showing gastrointestinal motility were processed, giving us the segmentation motions of the intestine, which were then converted via Fast Fourier Transform (FFT) into their respective frequency spectrums. These contraction quantifications were analyzed from the video recordings under standardised conditions to evaluate the effect of drugs. Six experimental trials were included with benztropine and promethazine treatments. Only the supratherapeutic dose of benztropine was shown to significantly decrease the amplitude of contractions; at therapeutic doses of both drugs, neither frequency nor amplitude was significantly affected. We have demonstrated that intestinal slow waves can be analyzed based on the colonic frequency or amplitude at a supratherapeutic dose of the anticholinergic medications. More research is required on the effects of anticholinergic drugs on these slow waves to ascertain the true role of ICC in neurologic control of gastrointestinal motility.
Collapse
Affiliation(s)
- Kelvin K L Wong
- a School of Medicine, Western Sydney University , Campbelltown , NSW , Australia
| | - Lauren C Y Tang
- a School of Medicine, Western Sydney University , Campbelltown , NSW , Australia
| | - Jerry Zhou
- a School of Medicine, Western Sydney University , Campbelltown , NSW , Australia
| | - Vincent Ho
- a School of Medicine, Western Sydney University , Campbelltown , NSW , Australia
| |
Collapse
|
22
|
Rodrigues RJ, Almeida T, Díaz-Hernández M, Marques JM, Franco R, Solsona C, Miras-Portugal MT, Ciruela F, Cunha RA. Presynaptic P2X1-3 and α3-containing nicotinic receptors assemble into functionally interacting ion channels in the rat hippocampus. Neuropharmacology 2016; 105:241-257. [PMID: 26801076 DOI: 10.1016/j.neuropharm.2016.01.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 12/20/2015] [Accepted: 01/18/2016] [Indexed: 01/10/2023]
Abstract
Previous studies documented a cross-talk between purinergic P2X (P2XR) and nicotinic acetylcholine receptors (nAChR) in heterologous expression systems and peripheral preparations. We now investigated if this occurred in native brain preparations and probed its physiological function. We found that P2XR and nAChR were enriched in hippocampal terminals, where both P2X1-3R and α3, but not α4, nAChR subunits were located in the active zone and in dopamine-β-hydroxylase-positive hippocampal terminals. Notably, P2XR ligands displaced nAChR binding and nAChR ligands displaced P2XR binding to hippocampal synaptosomes. In addition, a negative P2XR/nAChR cross-talk was observed in the control of the evoked release of noradrenaline from rat hippocampal synaptosomes, characterized by a less-than-additive facilitatory effect upon co-activation of both receptors. This activity-dependent cross-inhibition was confirmed in Xenopus oocytes transfected with P2X1-3Rs and α3β2 (but not α4β2) nAChR. Besides, P2X2 co-immunoprecipitated α3β2 (but not α4β2) nAChR, both in HEK cells and rat hippocampal membranes indicating that this functional interaction is supported by a physical association between P2XR and nAChR. Moreover, eliminating extracellular ATP with apyrase in hippocampal slices promoted the inhibitory effect of the nAChR antagonist tubocurarine on noradrenaline release induced by high- but not low-frequency stimulation. Overall, these results provide integrated biochemical, pharmacological and functional evidence showing that P2X1-3R and α3β2 nAChR are physically and functionally interconnected at the presynaptic level to control excessive noradrenergic terminal activation upon intense synaptic firing in the hippocampus.
Collapse
Affiliation(s)
- Ricardo J Rodrigues
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Portugal.
| | - Teresa Almeida
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Portugal; Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, 08028, Spain; Department of Pathology and Experimental Therapeutics, Faculty of Medicine, IDIBELL, University of Barcelona, 08907, Spain
| | - Miguel Díaz-Hernández
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary, Complutense University of Madrid, 28040, Spain
| | - Joana M Marques
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Portugal
| | - Rafael Franco
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, 08028, Spain; CIBERNED, Centro de Investigación en Red, Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| | - Carles Solsona
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine, IDIBELL, University of Barcelona, 08907, Spain
| | - María Teresa Miras-Portugal
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary, Complutense University of Madrid, 28040, Spain
| | - Francisco Ciruela
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine, IDIBELL, University of Barcelona, 08907, Spain; Department of Physiology, Faculty of Sciences, University of Ghent, B-9000, Belgium
| | - Rodrigo A Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Portugal; Faculty of Medicine, University of Coimbra, 3004-504, Portugal
| |
Collapse
|
23
|
Choe K, Jang JY, Park I, Kim Y, Ahn S, Park DY, Hong YK, Alitalo K, Koh GY, Kim P. Intravital imaging of intestinal lacteals unveils lipid drainage through contractility. J Clin Invest 2015; 125:4042-52. [PMID: 26436648 DOI: 10.1172/jci76509] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 08/27/2015] [Indexed: 01/26/2023] Open
Abstract
Lacteals are lymphatic vessels located at the center of each intestinal villus and provide essential transport routes for lipids and other lipophilic molecules. However, it is unclear how absorbed molecules are transported through the lacteal. Here, we used reporter mice that express GFP under the control of the lymphatic-specific promoter Prox1 and a custom-built confocal microscope and performed intravital real-time visualization of the absorption and transport dynamics of fluorescence-tagged fatty acids (FAs) and various exogenous molecules in the intestinal villi in vivo. These analyses clearly revealed transepithelial absorption of these molecules via enterocytes, diffusive distribution over the lamina propria, and subsequent transport through lacteals. Moreover, we observed active contraction of lacteals, which seemed to be directly involved in dietary lipid drainage. Our analysis revealed that the smooth muscles that surround each lacteal are responsible for contractile dynamics and that lacteal contraction is ultimately controlled by the autonomic nervous system. These results indicate that the lacteal is a unique organ-specific lymphatic system and does not merely serve as a passive conduit but as an active pump that transports lipids. Collectively, using this efficient imaging method, we uncovered drainage of absorbed molecules in small intestinal villus lacteals and the involvement of lacteal contractibility.
Collapse
|
24
|
Abstract
Acetylcholine-activating pentameric nicotinic receptors (nAChRs) are an essential mode of neurotransmission in the enteric nervous system (ENS). In this study, we examined the functional development of specific nAChR subtypes in myenteric neurons using Wnt1-Cre;R26R-GCaMP3 mice, where all enteric neurons and glia express the genetically encoded calcium indicator, GCaMP3. Transcripts encoding α3, α4, α7, β2, and β4 nAChR subunits were already expressed at low levels in the E11.5 gut and by E14.5 and, thereafter, α3 and β4 transcripts were the most abundant. The effect of specific nAChR subtype antagonists on evoked calcium activity in enteric neurons was investigated at different ages. Blockade of the α3β4 receptors reduced electrically and chemically evoked calcium responses at E12.5, E14.5, and P0. In addition to the α3β4 antagonist, antagonists to α3β2 and α4β2 also significantly reduced responses by P10-11 and in adult preparations. Therefore, there is an increase in the diversity of functional nAChRs during postnatal development. However, an α7 nAChR antagonist had no effect at any age. Furthermore, at E12.5 we found evidence for unconventional receptors that were responsive to the nAChR agonists 1-dimethyl-4-phenylpiperazinium and nicotine, but were insensitive to the general nicotinic blocker, hexamethonium. Migration, differentiation, and neuritogenesis assays did not reveal a role for nAChRs in these processes during embryonic development. In conclusion, there are significant changes in the contribution of different nAChR subunits to synaptic transmission during ENS development, even after birth. This is the first study to investigate the development of cholinergic transmission in the ENS.
Collapse
|
25
|
King BF. Purinergic signalling in the enteric nervous system (An overview of current perspectives). Auton Neurosci 2015; 191:141-7. [PMID: 26049261 DOI: 10.1016/j.autneu.2015.05.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Purinergic Signalling in the Enteric Nervous System involves the regulated release of ATP (or a structurally-related nucleotide) which activates an extensive suite of membrane-inserted receptors (P2X and P2Y subtypes) on a variety of cell types in the gastrointestinal tract. P2X receptors are gated ion-channels permeable to sodium, potassium and calcium. They depolarise cells, act as a pathway for calcium influx to activate calcium-dependent processes and initiate gene transcription, interact at a molecular level as a form of self-regulation with lipids within the cell wall (e.g. PIP2) and cross-react with other membrane-inserted receptors to regulate their activity (e.g. nAChRs). P2Y receptors are metabotropic receptors that couple to G-proteins. They may release calcium ions from intracellular stores to activate calcium-dependent processes, but also may activate calcium-independent signalling pathways and influence gene transcription. Originally ATP was a candidate only for NANC neurotransmission, for inhibitory motoneurons supplying the muscularis externa of the gastrointestinal tract and bringing about the fast IJP. Purinergic signalling later included neuron-neuron signalling in the ENS, via the production of either fast or slow EPSPs. Later still, purinergic signalling included the neuro-epithelial synapse-for efferent signalling to epithelia cells participating in secretion and absorption, and afferent signalling for chemoreception and mechanoreception at the surface of the mucosa. Many aspects of purinergic signalling have since been addressed in a series of highly-focussed and authoritative reviews. In this overview however, the current focus is on key aspects of purinergic signalling where there remains uncertainty and ambiguity, with the view to stimulating further research in these areas.
Collapse
Affiliation(s)
- Brian F King
- University College London (UCL), Department of Neuroscience, Physiology and Pharmacology (NPP), Royal Free Campus, Rowland Hill Street, Hampstead, London NW3 2PF, United Kingdom.
| |
Collapse
|
26
|
Mutafova-Yambolieva VN, Durnin L. The purinergic neurotransmitter revisited: a single substance or multiple players? Pharmacol Ther 2014; 144:162-91. [PMID: 24887688 PMCID: PMC4185222 DOI: 10.1016/j.pharmthera.2014.05.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 05/23/2014] [Indexed: 12/20/2022]
Abstract
The past half century has witnessed tremendous advances in our understanding of extracellular purinergic signaling pathways. Purinergic neurotransmission, in particular, has emerged as a key contributor in the efficient control mechanisms in the nervous system. The identity of the purine neurotransmitter, however, remains controversial. Identifying it is difficult because purines are present in all cell types, have a large variety of cell sources, and are released via numerous pathways. Moreover, studies on purinergic neurotransmission have relied heavily on indirect measurements of integrated postjunctional responses that do not provide direct information for neurotransmitter identity. This paper discusses experimental support for adenosine 5'-triphosphate (ATP) as a neurotransmitter and recent evidence for possible contribution of other purines, in addition to or instead of ATP, in chemical neurotransmission in the peripheral, enteric and central nervous systems. Sites of release and action of purines in model systems such as vas deferens, blood vessels, urinary bladder and chromaffin cells are discussed. This is preceded by a brief discussion of studies demonstrating storage of purines in synaptic vesicles. We examine recent evidence for cell type targets (e.g., smooth muscle cells, interstitial cells, neurons and glia) for purine neurotransmitters in different systems. This is followed by brief discussion of mechanisms of terminating the action of purine neurotransmitters, including extracellular nucleotide hydrolysis and possible salvage and reuptake in the cell. The significance of direct neurotransmitter release measurements is highlighted. Possibilities for involvement of multiple purines (e.g., ATP, ADP, NAD(+), ADP-ribose, adenosine, and diadenosine polyphosphates) in neurotransmission are considered throughout.
Collapse
Affiliation(s)
| | - Leonie Durnin
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, United States
| |
Collapse
|
27
|
Burnstock G. Purinergic signalling in the gastrointestinal tract and related organs in health and disease. Purinergic Signal 2014; 10:3-50. [PMID: 24307520 PMCID: PMC3944042 DOI: 10.1007/s11302-013-9397-9] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/24/2013] [Indexed: 01/04/2023] Open
Abstract
Purinergic signalling plays major roles in the physiology and pathophysiology of digestive organs. Adenosine 5'-triphosphate (ATP), together with nitric oxide and vasoactive intestinal peptide, is a cotransmitter in non-adrenergic, non-cholinergic inhibitory neuromuscular transmission. P2X and P2Y receptors are widely expressed in myenteric and submucous enteric plexuses and participate in sympathetic transmission and neuromodulation involved in enteric reflex activities, as well as influencing gastric and intestinal epithelial secretion and vascular activities. Involvement of purinergic signalling has been identified in a variety of diseases, including inflammatory bowel disease, ischaemia, diabetes and cancer. Purinergic mechanosensory transduction forms the basis of enteric nociception, where ATP released from mucosal epithelial cells by distension activates nociceptive subepithelial primary afferent sensory fibres expressing P2X3 receptors to send messages to the pain centres in the central nervous system via interneurons in the spinal cord. Purinergic signalling is also involved in salivary gland and bile duct secretion.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK,
| |
Collapse
|
28
|
Fu XY, Li Z, Zhang N, Yu HT, Wang SR, Liu JR. Effects of gastrointestinal motility on obesity. Nutr Metab (Lond) 2014; 11:3. [PMID: 24398016 PMCID: PMC3891996 DOI: 10.1186/1743-7075-11-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 12/31/2013] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Changes of gastrointestinal motility, which are important related to the food digestion and absorption in the gastrointestinal tract, may be one of the factors in obesity-formation. AIMS The changes of gastrointestinal motility were explored in the rats from diet-induced obesity (DIO), diet-induced obese resistant (DR) or control (CON) by diet intervention. METHODS After fed with a high fat diet (HFD), 100 male Sprague-Dawley rats were divided into DIO, DR and CON groups. The rats from DIO and DR groups were fed with HFD, and CON with a basic diet (BD) for 6 weeks. Body weight, energy intake, gastric emptying, intestinal transit, motility of isolated small intestine segments and colon's function were measured in this study. Expression of interstitial cells of Cajal (ICCs) and enteric nervous system (ENS) - choline acetyltransferase (ChAT), vasoactive intestinal peptides (VIP), substance P (SP) and NADPH-d histochemistry of nitric oxide synthase (NOS) were determined by immunohistochemistry. RESULTS Body weight and intake energy in the DIO group were higher than those in the DR group (p < 0.05). Gastric emptying of DIO group rats (78.33 ± 4.95%) was significantly faster than that of DR group (51.79 ± 10.72%) (p < 0.01). The peak value of motility in rat's duodenum from the DR group was significantly higher than that in the DIO group (p < 0.05). In addition, the expression of interstitial cells of Cajal (ICC), choline acetyltransferase (ChAT), substance P (SP), vasoactive intestinal peptides (VIP) and neuronal nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) in the intestine of rats were significantly increased in the DIO group when compared to the DR group (p < 0.05). CONCLUSION A faster gastric emptying, a weaker contraction of duodenum movement, and a stronger contraction and relaxation of ileum movement were found in the rats from the DIO group. It indicated that there has effect of gastrointestinal motility on obesity induced by HFD.
Collapse
Affiliation(s)
- Xiao-Yi Fu
- School of Public Health, JiLin Medical College, 5 JiLin street, JiLin, JiLin Province 132013, The People’s Republic of China
| | - Ze Li
- School of Public Health, Harbin Medical University, 157 BaoJian Road, Harbin, HeiLongJiang Province 150081, The People’s Republic of China
| | - Na Zhang
- School of Public Health, Harbin Medical University, 157 BaoJian Road, Harbin, HeiLongJiang Province 150081, The People’s Republic of China
| | - Hai-Tao Yu
- School of Public Health, JiLin Medical College, 5 JiLin street, JiLin, JiLin Province 132013, The People’s Republic of China
| | - Shu-Ran Wang
- School of Public Health, JiLin Medical College, 5 JiLin street, JiLin, JiLin Province 132013, The People’s Republic of China
| | - Jia-Ren Liu
- Boston Children’s Hospital and Harvard Medical School, 300 LongWood Ave, Boston 02115, USA
| |
Collapse
|
29
|
Ellis M, Chambers JD, Gwynne RM, Bornstein JC. Serotonin and cholecystokinin mediate nutrient-induced segmentation in guinea pig small intestine. Am J Physiol Gastrointest Liver Physiol 2013; 304:G749-61. [PMID: 23392236 DOI: 10.1152/ajpgi.00358.2012] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Segmentation is an important process in nutrient mixing and absorption; however, the mechanisms underlying this motility pattern are poorly understood. Segmentation can be induced by luminal perfusion of fatty acid in guinea pig small intestine in vitro and mimicked by the serotonin (5-HT) reuptake inhibitor fluoxetine (300 nM) and by cholecystokinin (CCK). Serotonergic and CCK-related mechanisms underlying nutrient-induced segmentation were investigated using selective 5-HT and CCK receptor antagonists on isolated segments of small intestine luminally perfused with 1 mM decanoic acid. Motility patterns were analyzed using video imaging and spatiotemporal maps. Segmenting activity mediated by decanoic acid was depressed following luminal application of the 5-HT receptor antagonists granisetron (5-HT(3), 1 μM) and SB-207266 (5-HT(4), 10 nM) and the CCK receptor antagonists devazepide (CCK-1, 300 nM) and L-365260 (CCK-2, 300 nM), but these antagonists did not further depress segmentation when combined. The P2 receptor antagonist pyridoxal phosphate-6-azophenyl-2',4'-disulfonate (10 μM) had no effect on activity. Serosal application of 5-HT antagonists had little effect on segmentation in the duodenum but reduced activity in the jejunum when granisetron and SB-207266 were applied together. These results reveal that 5-HT(3) and 5-HT(4) receptors, as well as CCK-1 and CCK-2 receptors, are critical in regulating decanoic acid-induced segmentation. Computational simulation indicated that these data are consistent with decanoic acid activating two pathways in the mucosa that converge within the enteric neural circuitry, while contraction-induced release of 5-HT from the mucosa provides feedback into the neural circuit to set the time course of the overall contractile activity.
Collapse
Affiliation(s)
- Melina Ellis
- Department of Physiology, University of Melbourne, Parkville, Victoria, Australia.
| | | | | | | |
Collapse
|
30
|
Abstract
INTRODUCTION The ability of nicotine, the primary psychoactive substance in tobacco smoke, to regulate appetite and body weight is one of the factors cited by smokers that prevents them from quitting and is the primary reason for smoking initiation in teenage girls. The regulation of feeding and metabolism by nicotine is complex, and recent studies have begun to identify nicotinic acetylcholine receptor (nAChR) subtypes and circuits or cell types involved in this regulation. DISCUSSION We will briefly describe the primary anatomical and functional features of the input, output, and central integration structures of the neuroendocrine systems that regulate energy homeostasis. Then, we will describe the nAChR subtypes expressed in these structures in mammals to identify the possible molecular targets for nicotine. Finally, we will review the effects of nicotine and its withdrawal on feeding and energy metabolism and attribute them to potential central and peripheral cellular targets.
Collapse
Affiliation(s)
- Michele Zoli
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125, Modena, Italy.
| | | |
Collapse
|
31
|
Hons IM, Storr MA, Mackie K, Lutz B, Pittman QJ, Mawe GM, Sharkey KA. Plasticity of mouse enteric synapses mediated through endocannabinoid and purinergic signaling. Neurogastroenterol Motil 2012; 24:e113-24. [PMID: 22235973 PMCID: PMC3276688 DOI: 10.1111/j.1365-2982.2011.01860.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND The enteric nervous system (ENS) possesses extensive synaptic connections which integrate information and provide appropriate outputs to coordinate the activity of the gastrointestinal tract. The regulation of enteric synapses is not well understood. Cannabinoid (CB)(1) receptors inhibit the release of acetylcholine (ACh) in the ENS, but their role in the synapse is not understood. We tested the hypothesis that enteric CB(1) receptors provide inhibitory control of excitatory neurotransmission in the ENS. METHODS Intracellular microelectrode recordings were obtained from mouse myenteric plexus neurons. Interganglionic fibers were stimulated with a concentric stimulating electrode to elicit synaptic events on to the recorded neuron. Differences between spontaneous and evoked fast synaptic transmission was examined within preparations from CB(1) deficient mice (CB(1)(-/-)) and wild-type (WT) littermate controls. KEY RESULTS Cannabinoid receptors were colocalized on terminals expressing the vesicular ACh transporter and the synaptic protein synaptotagmin. A greater proportion of CB(1)(-/-) neurons received spontaneous fast excitatory postsynaptic potentials than neurons from WT preparations. The CB(1) agonist WIN55,212 depressed WT synapses without any effect on CB(1)(-/-) synapses. Synaptic activity in response to depolarization was markedly enhanced at CB(1)(-/-) synapses and after treatment with a CB(1) antagonist in WT preparations. Activity-dependent liberation of a retrograde purine messenger was demonstrated to facilitate synaptic transmission in CB(1)(-/-) mice. CONCLUSIONS & INFERENCES Cannabinoid receptors inhibit transmitter release at enteric synapses and depress synaptic strength basally and in an activity-dependent manner. These actions help explain accelerated intestinal transit observed in the absence of CB(1) receptors.
Collapse
Affiliation(s)
- Ian M. Hons
- Hotchkiss Brain Institute and Snyder Institute of Infection, Immunity and Inflammation, Department of Physiology & Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Martin A. Storr
- Snyder Institute of Infection, Immunity and Inflammation, Division of Gastroenterology, Department of Medicine, University of Calgary, Calgary, AB, Canada
| | - Ken Mackie
- Department of Psychological and Brain Sciences, Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, USA
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Centre of Johannes Gutenberg, University Mainz, Germany
| | - Quentin J. Pittman
- Hotchkiss Brain Institute and Snyder Institute of Infection, Immunity and Inflammation, Department of Physiology & Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Gary M. Mawe
- Hotchkiss Brain Institute and Snyder Institute of Infection, Immunity and Inflammation, Department of Physiology & Pharmacology, University of Calgary, Calgary, AB, Canada,Department of Anatomy and Neurobiology, University of Vermont, Burlington, VT, USA
| | - Keith A. Sharkey
- Hotchkiss Brain Institute and Snyder Institute of Infection, Immunity and Inflammation, Department of Physiology & Pharmacology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
32
|
|
33
|
Valdez-Morales E, Guerrero-Alba R, Liñán-Rico A, Espinosa-Luna R, Zarazua-Guzman S, Miranda-Morales M, Montaño LM, Barajas-López C. P2X7 receptors contribute to the currents induced by ATP in guinea pig intestinal myenteric neurons. Eur J Pharmacol 2011; 668:366-72. [PMID: 21819977 DOI: 10.1016/j.ejphar.2011.07.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 06/29/2011] [Accepted: 07/14/2011] [Indexed: 10/17/2022]
Abstract
The whole-cell configuration, several pharmacological tools, and single-cell RT-PCR were used to investigate the contribution of P2X7 subunits to the ATP-induced currents (I(ATP)) in guinea pig myenteric neurons. I(ATP) was recorded in the great majority of tested neurons. ATP concentration-response curve (0.01-10mM) showed two phases, the first mediated by high-sensitive P2X receptors (hsP2X receptors), observed between 0.01-0.3mM and the second mediated by low-sensitive P2X receptors (lsP2X receptors). The calculated EC(50) values of these phases were 38 and 1759 μM, respectively. 2'-3'-O-(4-benzoylbenzoyl)-ATP (BzATP) concentration-response curve was monophasic (0.01-1mM), and less potent (EC(50) 142 μM) than ATP to activate hsP2X receptors. A strong inward rectification was noticed when hsP2X receptors were activated with ATP (0.1mM) and for BzATP-induced currents (0.1mM; I(BzATP)) but a significant lower rectification was noticed when lsP2X receptors were activated (5mM). Brilliant blue G (BBG) at a concentration of 0.3 μM (known to inhibit only P2X7 receptors) reduced I(ATP) when lsP2X receptors contributed to it but neither affect hsP2X receptors nor I(BzATP). However, hsP2X receptors and I(BzATP) were both inhibited by concentrations ≥ 1 μM of this antagonist. BzATP inhibited hsP2X receptors and therefore, it behaves as partial agonist on these receptors. Using the single-cell RT-PCR technique P2X7 mRNA was detectable in 7 out of 13 myenteric neurons exhibiting P2X2 mRNA. Altogether, our results show that low-sensitive P2X receptors are likely P2X7, whereas, the high-sensitive P2X channels are probably constituted, at least in part, by P2X2 subunits.
Collapse
Affiliation(s)
- Eduardo Valdez-Morales
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí, SLP, México
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Gwynne RM, Bornstein JC. Synaptic transmission at functionally identified synapses in the enteric nervous system: roles for both ionotropic and metabotropic receptors. Curr Neuropharmacol 2010; 5:1-17. [PMID: 18615154 DOI: 10.2174/157015907780077141] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Revised: 11/28/2006] [Accepted: 12/04/2006] [Indexed: 12/18/2022] Open
Abstract
Digestion and absorption of nutrients and the secretion and reabsorption of fluid in the gastrointestinal tract are regulated by neurons of the enteric nervous system (ENS), the extensive peripheral nerve network contained within the intestinal wall. The ENS is an important physiological model for the study of neural networks since it is both complex and accessible. At least 20 different neurochemically and functionally distinct classes of enteric neurons have been identified in the guinea pig ileum. These neurons express a wide range of ionotropic and metabotropic receptors. Synaptic potentials mediated by ionotropic receptors such as the nicotinic acetylcholine receptor, P2X purinoceptors and 5-HT(3) receptors are seen in many enteric neurons. However, prominent synaptic potentials mediated by metabotropic receptors, like the P2Y(1) receptor and the NK(1) receptor, are also seen in these neurons. Studies of synaptic transmission between the different neuron classes within the enteric neural pathways have shown that both ionotropic and metabotropic synaptic potentials play major roles at distinct synapses within simple reflex pathways. However, there are still functional synapses at which no known transmitter or receptor has been identified. This review describes the identified roles for both ionotropic and metabotropic neurotransmission at functionally defined synapses within the guinea pig ileum ENS. It is concluded that metabotropic synaptic potentials act as primary transmitters at some synapses. It is suggested identification of the interactions between different synaptic potentials in the production of complex behaviours will require the use of well validated computer models of the enteric neural circuitry.
Collapse
Affiliation(s)
- R M Gwynne
- Department of Physiology, University of Melbourne, Parkville, Victoria 3010, Australia.
| | | |
Collapse
|
35
|
Lecea B, Martínez E, Aulí M, Opazo A, Clavé P. Selective stimulation of intrinsic excitatory and inhibitory motor pathways in porcine lower oesophageal sphincter. Neurogastroenterol Motil 2009; 21:1342-e130. [PMID: 19614864 DOI: 10.1111/j.1365-2982.2009.01357.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The mechanisms of stimulation of inhibitory and excitatory motor neurons (MNs) in the lower oesophageal sphincter (LOS) are not fully understood. The aim of this study was to assess the effect of selective stimulation of inhibitory and excitatory MNs in porcine LOS through nicotinic acetylcholine receptors (nAChRs), 5-HT(3) and P2X receptors. Circular LOS strips from adult pigs were studied in organ baths. We compared the effects of stimulation of MNs by electrical field stimulation (26 V, 0.3-20 Hz); nicotine (1-300 micromol L(-1)); 5-HT and 2-Me-5-HT (1 nmol(-1)-30 micromol L(-1)); and alpha,beta-methylene ATP (alpha,beta-meATP 1-100 micromol L(-1)); in standard Krebs solution; a non-adrenergic non-nitrergic non-purinergic (NANNNP) solution; and a non-adrenergic non-cholinergic (NANC) solution. Electrical stimulation of inhibitory MNs caused an intense LOS relaxation (-78.94 +/- 4.50% of LOS tone); and of excitatory MNs, a strong contraction (17.89 +/- 1.96 g). Nicotine 100 micromol L(-1) relaxed LOS (-84.67 +/- 3.98%) in standard Krebs solution, an effect reduced by Tetrodotoxin (TTX) 1 micromol L(-1). Nicotine induced a weak TTX-sensitive contraction (1.64 +/- 0.4 g) in NANNNP solution. 5-HT 10 micromol L(-1) and 2-Me-5-HT 30 micromol L(-1) contracted LOS in standard, NANC and NANNNP conditions, maximal responses (7.30 +/- 1.52 g, 3.50 +/- 0.18 g respectively) being reduced by TTX. alpha,beta-meATP 100 micromol L(-1) caused a LOS relaxation (-17.45 +/- 6.62%) unaffected by TTX in NANC solution, and a contraction (6.7 +/- 0.85 g) antagonized by TTX in NANNNP solution. Our results suggest selective mechanisms for stimulation of intrinsic excitatory and inhibitory motor pathways in porcine LOS. Inhibitory MNs are strongly stimulated by nAChRs and do not respond to stimulation of 5-HT(3) and P2X receptors. By contrast, excitatory MNs are stimulated through 5-HT(3) and P2X receptors, stimulation through nACRs being difficult and causing a weak response.
Collapse
Affiliation(s)
- B Lecea
- Department of Surgery, Hospital de Mataró, Universitat Autònoma de Barcelona, Spain
| | | | | | | | | |
Collapse
|
36
|
Duarte-Araújo M, Nascimento C, Timóteo MA, Magalhães-Cardoso MT, Correia-de-Sá P. Relative contribution of ecto-ATPase and ecto-ATPDase pathways to the biphasic effect of ATP on acetylcholine release from myenteric motoneurons. Br J Pharmacol 2009; 156:519-33. [PMID: 19154428 DOI: 10.1111/j.1476-5381.2008.00058.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE The relative contribution of distinct ecto-nucleotidases to the modulation of purinergic signalling may depend on differential tissue distribution and substrate preference. EXPERIMENTAL APPROACH Extracellular ATP catabolism (assessed by high-performance liquid chromatography) and its influence on [(3)H]acetylcholine ([(3)H]ACh) release were investigated in the myenteric plexus of rat ileum in vitro. KEY RESULTS ATP was primarily metabolized via ecto-ATPDase (adenosine 5'-triphosphate diphosphohydrolase) into AMP, which was then dephosphorylated into adenosine by ecto-5'-nucleotidase. Alternative conversion of ATP into ADP by ecto-ATPase (adenosine 5'-triphosphatase) was more relevant at high ATP concentrations. ATP transiently increased basal [(3)H]ACh outflow in a 2',3'-O-(2,4,6-trinitrophenyl)adenosine-5'-triphosphate (TNP-ATP)-dependent, tetrodotoxin-independent manner. ATP and ATPgammaS (adenosine 5'-[gamma-thio]triphosphate), but not alpha,beta-methyleneATP, decreased [(3)H]ACh release induced by electrical stimulation. ADP and ADPbetaS (adenosine 5'[beta-thio]diphosphate) only decreased evoked [(3)H]ACh release. Inhibition by ADPbetaS was prevented by MRS 2179 (2'-deoxy-N(6)-methyl adenosine 3',5'-diphosphate diammonium salt, a selective P2Y(1) antagonist); blockade of ADP inhibition required co-application of MRS 2179 plus adenosine deaminase (which inactivates endogenous adenosine). Blockade of adenosine A(1) receptors with 1,3-dipropyl-8-cyclopentyl xanthine enhanced ADPbetaS inhibition, indicating that P2Y(1) stimulation is cut short by tonic adenosine A(1) receptor activation. MRS 2179 facilitated evoked [(3)H]ACh release, an effect reversed by the ecto-ATPase inhibitor, ARL67156, which delayed ATP conversion into ADP without affecting adenosine levels. CONCLUSIONS AND IMPLICATIONS ATP transiently facilitated [(3)H]ACh release from non-stimulated nerve terminals via prejunctional P2X (probably P2X(2)) receptors. Hydrolysis of ATP directly into AMP by ecto-ATPDase and subsequent formation of adenosine by ecto-5'-nucleotidase reduced [(3)H]ACh release via inhibitory adenosine A(1) receptors. Stimulation of inhibitory P2Y(1) receptors by ADP generated alternatively via ecto-ATPase might be relevant in restraining ACh exocytosis when ATP saturates ecto-ATPDase activity.
Collapse
Affiliation(s)
- M Duarte-Araújo
- Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Portugal
| | | | | | | | | |
Collapse
|
37
|
Garza A, Huang LZ, Son JH, Winzer-Serhan UH. Expression of nicotinic acetylcholine receptors and subunit messenger RNAs in the enteric nervous system of the neonatal rat. Neuroscience 2008; 158:1521-9. [PMID: 19095047 DOI: 10.1016/j.neuroscience.2008.11.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 11/13/2008] [Accepted: 11/18/2008] [Indexed: 10/21/2022]
Abstract
In the enteric nervous system (ENS) excitatory nicotinic cholinergic transmission is mediated by neuronal nicotinic acetylcholine receptors (nAChR) and is critical for the regulation of gastric motility. nAChRs are ligand-gated pentameric ion channels found in the CNS and peripheral nervous system. The expression of heteromeric nAChR and receptor subunit mRNAs was investigated in the neonatal rat ENS using receptor autoradiography with the radiolabeled ligand (125)I-epibatidine, and in situ hybridization with subtype specific probes for ligand binding alpha (alpha2, alpha3, alpha4, alpha5, alpha6) and structural beta (beta2, beta3, beta4) subunits. The results showed strong nicotine sensitive binding of (125)I-epibatidine around the stomach, and small and large intestines. The binding was partially displaced by A85380, a nicotinic ligand which differentiates between different heteromeric nAChR subtypes, suggesting a mixed receptor population. Radioactive in situ hybridization detected expression of alpha3, alpha5, alpha7, beta2 and beta4 mRNA in the myenteric plexus of the stomach, and small and large intestines. In the submucosal plexus of the small and large intestines expression of alpha3, alpha5 and beta4 was found in some ganglia. There was no signal for alpha4, alpha6 and beta3 in the ENS but positive hybridization signal for alpha2 transcripts was seen in some areas of the small intestines. However, the signal was not associated with any ganglion cells. The results confirm the presence of heteromeric nAChRs in the ENS similar to those found in the peripheral nervous system, with the majority being composed of alpha3(alpha5)beta4, and a few alpha3beta2 nAChRs. In addition, homomeric alpha7 nAChRs could be present.
Collapse
Affiliation(s)
- A Garza
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University System, College Station, TX 77843-1114, USA
| | | | | | | |
Collapse
|
38
|
Kestler C, Neuhuber WL, Raab M. Distribution of P2X(3) receptor immunoreactivity in myenteric ganglia of the mouse esophagus. Histochem Cell Biol 2008; 131:13-27. [PMID: 18810483 DOI: 10.1007/s00418-008-0498-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2008] [Indexed: 02/07/2023]
Abstract
Intraganglionic laminar endings (IGLEs) represent the major vagal afferent terminals throughout the gut. Electrophysiological experiments revealed a modulatory role of ATP in the IGLE-mechanotransduction process and the P2X(2)-receptor has been described in IGLEs of mouse, rat and guinea pig. Another purinoceptor, the P2X(3)-receptor, was found in IGLEs of the rat esophagus. These findings prompted us to investigate occurrence and distribution of the P2X(3)-receptor in the mouse esophagus. Using multichannel immunofluorescence and confocal microscopy, P2X(3)-immunoreactivity (-iry) was found colocalized with the vesicular glutamate transporter 2 (VGLUT2), a specific marker for IGLEs, on average in three-fourths of esophageal IGLEs. The distribution of P2X(3) immunoreactive (-ir) IGLEs was similar to that of P2X(2)-iry and showed increasing numbers towards the abdominal esophagus. P2X(3)/P2X(2)-colocalization within IGLEs suggested the occurrence of heteromeric P2X(2/3) receptors. In contrast to the rat, where only a few P2X(3)-ir perikarya were described, P2X(3) stained perikarya in ~80% of myenteric ganglia in the mouse. Detailed analysis revealed P2X(3)-iry in subpopulations of nitrergic (nNOS) and cholinergic (ChAT) myenteric neurons and ganglionic neuropil of the mouse esophagus. We conclude that ATP might act as a neuromodulator in IGLEs via a (P2X(2))-P2X(3) receptor-mediated pathway especially in the abdominal portion of the mouse esophagus.
Collapse
Affiliation(s)
- Christine Kestler
- Institut für Anatomie, Lehrstuhl I, Universität Erlangen-Nürnberg, Krankenhausstr. 9, 91054 Erlangen, Germany
| | | | | |
Collapse
|
39
|
Effects of excitatory and inhibitory neurotransmission on motor patterns of human sigmoid colon in vitro. Br J Pharmacol 2008; 155:1043-55. [PMID: 18846038 DOI: 10.1038/bjp.2008.332] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND AND PURPOSE To characterize the in vitro motor patterns and the neurotransmitters released by enteric motor neurons (EMNs) in the human sigmoid colon. EXPERIMENTAL APPROACH Sigmoid circular strips were studied in organ baths. EMNs were stimulated by electrical field stimulation (EFS) and through nicotinic ACh receptors. KEY RESULTS Strips developed weak spontaneous rhythmic contractions (3.67+/-0.49 g, 2.54+/-0.15 min) unaffected by the neurotoxin tetrodotoxin (TTX; 1 microM). EFS induced strong contractions during (on, 56%) or after electrical stimulus (off, 44%), both abolished by TTX. Nicotine (1-100 microM) inhibited spontaneous contractions. Latency of off-contractions and nicotine responses were reduced by N(G)-nitro-L-arginine (1 mM) and blocked after further addition of apamin (1 microM) or the P2Y(1) receptor antagonist MRS 2179 (10 microM) and were unaffected by the P2X antagonist NF279 (10 microM) or alpha-chymotrypsin (10 U mL(-1)). Amplitude of on- and off-contractions was reduced by atropine (1 microM) and the selective NK(2) receptor antagonist Bz-Ala-Ala-D-Trp-Phe-D-Pro-Pro-Nle-NH(2) (1 microM). MRS 2179 reduced the amplitude of EFS on- and off-contractions without altering direct muscular contractions induced by ACh (1 nM-1 mM) or substance P (1 nM-10 microM). CONCLUSIONS AND IMPLICATIONS Latency of EFS-induced off-contractions and inhibition of spontaneous motility by nicotine are caused by stimulation of inhibitory EMNs coreleasing NO and a purine acting at muscular P2Y(1) receptors through apamin-sensitive K(+) channels. EFS-induced on- and off-contractions are caused by stimulation of excitatory EMNs coreleasing ACh and tachykinins acting on muscular muscarinic and NK(2) receptors. Prejunctional P2Y(1) receptors might modulate the activity of excitatory EMNs. P2Y(1) and NK(2) receptors might be therapeutic targets for colonic motor disorders.
Collapse
|
40
|
Fulgenzi A, Ticozzi P, Gabel CA, Dell'Antonio G, Quattrini A, Franzone JS, Ferrero ME. Periodate oxidized ATP (oATP) reduces hyperalgesia in mice: involvement of P2X7 receptors and implications for therapy. Int J Immunopathol Pharmacol 2008; 21:61-71. [PMID: 18336732 DOI: 10.1177/039463200802100108] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Some inflammatory mediators play an important role not only in the pathogenesis of the inflammatory pain, but also in that of neuropathic and visceral pain. We previously showed the antihyperalgesic effect of oATP, the inhibitor of the P2X7 receptors for the pro-nociceptive ATP, in experimental inflammation. Here we show the antihyperalgesic effect of oATP in mouse models of neuropathic and visceral pain, other than in a model of arthritic pain mimicking rheumatoid arthritis in humans. We also show that mice lacking P2X7 receptors (KO) are resistant to hyperalgesic thermal stimuli following the induction of arthritic, neuropathic and visceral pain. Local (injection into the right hind paw) pre-treatment with oATP is able to prevent the successive induction of ATP-dependent hyperalgesia in wild type mice. In addition, KO mice are not insensitive to intraplantar treatment with ATP. Our data suggest that, even if oATP is able to inhibit purinoceptors different from P2X7, the latter are the more important involved in pain transmission.
Collapse
Affiliation(s)
- A Fulgenzi
- Institute of General Pathology, University of Milan, Milan Italy
| | | | | | | | | | | | | |
Collapse
|
41
|
Gallego D, Vanden Berghe P, Farré R, Tack J, Jiménez M. P2Y1 receptors mediate inhibitory neuromuscular transmission and enteric neuronal activation in small intestine. Neurogastroenterol Motil 2008; 20:159-68. [PMID: 17971025 DOI: 10.1111/j.1365-2982.2007.01004.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
There is increasing evidence that adenosine 5'-triphosphate or a related purine plays a crucial role in smooth muscle relaxation and enteric synaptic neurotransmission. Accordingly, the aim of the present work is to investigate the role P2Y(1) receptors in purinergic inhibitory neurotransmission (pig ileum) and enteric neuronal activation in the small intestine (guinea-pig ileum). Using contractility measurements, micro-electrode recordings and Ca(2+) imaging we found that (i) adenosine 5'-Omicron-2-thiodiphosphate (ADPbetaS) (10 micromol L(-1)) caused smooth muscle relaxation and hyperpolarization that was antagonized by MRS2179 (10 micromol L(-1)) a P2Y(1) receptor antagonist and apamin (1 micromol L(-1)); (ii) electrical field stimulation (EFS) caused a non-nitrergic inhibitory junction potential (IJP) and relaxation that was antagonized by MRS2179 (10 micromol L(-1)); (iii) P2Y(1) receptors were immunolocalized in smooth muscle cells and enteric neurons; (i.v.) superfusion of ADPbetaS (1 micromol L(-1)) induced Ca(2+) transients in myenteric neurons that were inhibited by MRS2179 (1 micromol L(-1)), but not by tetrodotoxin (1 micromol L(-1)); and (v) EFS induced calcium transients were partially inhibited by MRS2179 (1 micromol L(-1)). We conclude that in the small intestine purinergic neuromuscular transmission responsible for the IJP and non-nitrergic relaxation is mediated by P2Y(1) receptors located in smooth muscle cells. Functional P2Y(1) receptors are also present in guinea-pig myenteric neurons. Therefore, P2Y(1) receptors might be an important pharmacological target to modulate gastrointestinal functions.
Collapse
Affiliation(s)
- D Gallego
- Department of Cell Biology, Physiology and Immunology, Universitat Autonoma de Barcelona, Bellaterra, Barcelona, Spain
| | | | | | | | | |
Collapse
|
42
|
Bornstein JC. Purinergic mechanisms in the control of gastrointestinal motility. Purinergic Signal 2007; 4:197-212. [PMID: 18368521 DOI: 10.1007/s11302-007-9081-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Accepted: 09/06/2007] [Indexed: 02/08/2023] Open
Abstract
For many years, ATP and adenosine have been implicated in movement regulation of the gastrointestinal tract. They act through three major receptor subtypes: adenosine or P1 receptors, P2X receptors and P2Y receptors. Each of these major receptor types can be subdivided into several different classes and is widely distributed amongst various neurons, muscle types, glia and interstitial cells that regulate intestinal functions. Several key roles for the different receptors and their endogenous ligands have been identified in physiological and pharmacological studies. For example, adenosine acting at A(1) receptors appears to inhibit intestinal motility in various pathological conditions. Similarly, ATP acting at P2Y receptors is an important component of inhibitory neuromuscular transmission, acting as a cotransmitter with nitric oxide. ATP acting at P2X and P2Y(1) receptors is important for synaptic transmission in simple descending excitatory and inhibitory reflex pathways. Some P2Y receptor subtypes prefer uridine nucleotides over purine nucleotides. Thus, roles for UTP and UDP as enteric transmitters in place of ATP cannot be excluded. ATP also appears to be important for sensory transduction, especially in chemosensitive pathways that initiate local inhibitory reflexes. Despite this evidence, data are lacking about the roles of either adenosine or ATP in more complex motility patterns such as segmentation or the interdigestive migrating motor complex. Clarification of roles for purinergic transmission in these common, but understudied, motility patterns will depend on the use of subtype-specific antagonists that in some cases have not yet been developed.
Collapse
Affiliation(s)
- J C Bornstein
- Department of Physiology, University of Melbourne, Parkville, VIC, 3010, Australia,
| |
Collapse
|
43
|
ATP and acetylcholine, equal brethren. Neurochem Int 2007; 52:634-48. [PMID: 18029057 DOI: 10.1016/j.neuint.2007.09.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Revised: 09/07/2007] [Accepted: 09/10/2007] [Indexed: 12/13/2022]
Abstract
Acetylcholine was the first neurotransmitter identified and ATP is the hitherto final compound added to the list of small molecule neurotransmitters. Despite the wealth of evidence assigning a signaling role to extracellular ATP and other nucleotides in neural and non-neural tissues, the significance of this signaling pathway was accepted very reluctantly. In view of this, this short commentary contrasts the principal molecular and functional components of the cholinergic signaling pathway with those of ATP and other nucleotides. It highlights pathways of their discovery and analyses tissue distribution, synthesis, uptake, vesicular storage, receptors, release, extracellular hydrolysis as well as pathophysiological significance. There are differences but also striking similarities. Comparable to ACh, ATP is taken up and stored in synaptic vesicles, released in a Ca(2+)-dependent manner, acts on nearby ligand-gated or metabotropic receptors and is hydrolyzed extracellularly. ATP and acetylcholine are also costored and coreleased. In addition, ATP is coreleased from biogenic amine storing nerve terminals as well as from at least subpopulations of glutamatergic and GABAergic terminals. Both ACh and ATP fulfill the criteria postulated for neurotransmitters. More recent evidence reveals that the two messengers are not confined to neural functions, exerting a considerable variety of non-neural functions in non-innervated tissues. While it has long been known that a substantial number of pathologies originate from malfunctions of the cholinergic system there is now ample evidence that numerous pathological conditions have a purinergic component.
Collapse
|
44
|
Shafton AD, Bogeski G, Kitchener PD, Sanger GJ, Furness JB, Shimizu Y. Effects of NMDA receptor antagonists on visceromotor reflexes and on intestinal motility, in vivo. Neurogastroenterol Motil 2007; 19:617-24. [PMID: 17539896 DOI: 10.1111/j.1365-2982.2007.00942.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Antagonists of NMDA receptors can inhibit both the transmission of pain signals from the intestine and enteric reflexes. However, it is unknown whether doses of the NMDA antagonist, ketamine, that are used in anaesthetic mixtures suppress motility reflexes and visceromotor responses (VMRs). In fact, whether intestinal motility is affected by NMDA receptor blockers in vivo has been little investigated. We studied the effects of ketamine and memantine, administered intravenously or intrathecally. Rats were maintained under alpha-chloralose plus xylazine or pentobarbitone anaesthesia; VMR and jejunal motility were measured. Under alpha-chloralose/xylazine anaesthesia, i.v. ketamine inhibited VMRs at 6 mg kg h(-1), but not at 3 mg kg h(-1). It did not inhibit propulsive reflexes in the jejunum at 10 mg kg h(-1), but reduced them by 30% at 20 mg kg h(-1). Under alpha-chloralose/pentobarbitone anaesthesia, i.v. ketamine reduced propulsive reflexes at 40 mg kg h(-1) and VMR at 10 mg kg h(-1). Memantine inhibited VMRs at 20 mg kg h(-1) and propulsion at 2 mg kg h(-1). Ketamine and memantine, intrathecally, prevented VMRs, but not jejunal propulsion. We conclude that peripherally administered ketamine reduces both VMR and motility reflexes, but not at doses used in anaesthetic mixes (1.8-2.4 mg kg h(-1)). Effects on motility reflexes are likely to be due to non-NMDA receptor actions, possibly on nicotinic receptors.
Collapse
Affiliation(s)
- A D Shafton
- Department of Anatomy and Cell Biology, Centre for Neuroscience, University of Melbourne, Parkville, VIC, Australia
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
This review is focused on purinergic neurotransmission, i.e., ATP released from nerves as a transmitter or cotransmitter to act as an extracellular signaling molecule on both pre- and postjunctional membranes at neuroeffector junctions and synapses, as well as acting as a trophic factor during development and regeneration. Emphasis is placed on the physiology and pathophysiology of ATP, but extracellular roles of its breakdown product, adenosine, are also considered because of their intimate interactions. The early history of the involvement of ATP in autonomic and skeletal neuromuscular transmission and in activities in the central nervous system and ganglia is reviewed. Brief background information is given about the identification of receptor subtypes for purines and pyrimidines and about ATP storage, release, and ectoenzymatic breakdown. Evidence that ATP is a cotransmitter in most, if not all, peripheral and central neurons is presented, as well as full accounts of neurotransmission and neuromodulation in autonomic and sensory ganglia and in the brain and spinal cord. There is coverage of neuron-glia interactions and of purinergic neuroeffector transmission to nonmuscular cells. To establish the primitive and widespread nature of purinergic neurotransmission, both the ontogeny and phylogeny of purinergic signaling are considered. Finally, the pathophysiology of purinergic neurotransmission in both peripheral and central nervous systems is reviewed, and speculations are made about future developments.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neurscience Centre, Royal Free and University College Medical School, London, UK.
| |
Collapse
|
46
|
Woods CM, Toouli J, Saccone GTP. Exogenous purines induce differential responses in the proximal and distal regions of the possum sphincter of Oddi. ACTA ACUST UNITED AC 2007; 27:27-38. [PMID: 17199873 DOI: 10.1111/j.1474-8673.2006.00387.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
1. The aim of this study was to compare the effect of exogenous ATP and adenosine on spontaneous motility of the proximal and distal regions of the possum sphincter of Oddi (SO). 2. ATP or adenosine (1 microm-1 mm) was applied to distal-SO or proximal-SO muscle rings in organ baths in the absence or presence of tetrodotoxin (TTX) or P1/P2 antagonists. 3. Both ATP and adenosine altered spontaneous activity, predominantly in proximal-SO rings. 4. Exogenous ATP induced a bi-phasic response consisting of a brief TTX-sensitive excitatory component, and a longer-lasting TTX-insensitive inhibitory component. 5. The excitatory ATP response likely involves P2X receptors, whereas the late inhibitory response likely involves P2Y receptors. 6. Exogenous adenosine decreased spontaneous SO activity, via a TTX-insensitive mechanism. 7. Exogenous purines modulate SO motility, acting primarily in the proximal region of the SO, via neural and non-neural mechanisms and multiple purine receptor subtypes.
Collapse
Affiliation(s)
- C M Woods
- Pancreatobiliary Research Group, Department of General and Digestive Surgery, Flinders University, Flinders Medical Centre, Bedford Park, SA 5042, Australia
| | | | | |
Collapse
|
47
|
Tompkins JD, Parsons RL. Exocytotic release of ATP and activation of P2X receptors in dissociated guinea pig stellate neurons. Am J Physiol Cell Physiol 2006; 291:C1062-71. [PMID: 16760262 DOI: 10.1152/ajpcell.00472.2005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Activation of P2X receptors by a Ca(2+)- and soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein-dependent release of ATP was measured using patch-clamp recordings from dissociated guinea pig stellate neurons. Asynchronous transient inward currents (ASTICs) were activated by depolarization or treatment with the Ca(2+) ionophore ionomycin (1.5 and 3 microM). During superfusion with a HEPES-buffered salt solution containing 2.5 mM Ca(2+), depolarizing voltage steps (-60 to 0 mV, 500 ms) evoked ASTICs on the decaying phase of a larger, transient inward current. Equimolar substitution of Ba(2+) for Ca(2+) augmented the postdepolarization frequency of ASTICs, while eliminating the larger transient current. Perfusion with an ionomycin-containing solution elicited a sustained activation of ASTICs, allowing quantitative analysis over a range of holding potentials. Under these conditions, increasing extracellular [Ca(2+)] to 5 mM increased ASTIC frequency, whereas no events were observed following replacement of Ca(2+) with Mg(2+), demonstrating a Ca(2+) requirement. ASTICs were Na(+) dependent, inwardly rectifying, and reversed near 0 mV. Treatment with the nonselective purinergic receptor antagonist pyridoxal phosphate-6-azophenyl-2',4'-disulfonic acid (PPADS) (10 microM) blocked all events under both conditions, whereas the ganglionic nicotinic antagonist hexamethonium (100 microM and 1 mM) had no effect. PPADS also blocked the macroscopic inward current evoked by exogenously applied ATP (300 microM). The presence of botulinum neurotoxin E (BoNT/E) in the whole-cell recording electrode significantly attenuated the ionomycin-induced ASTIC activity, whereas phorbol ester treatment potentiated this activity. These results suggest that ASTICs are mediated by vesicular release of ATP and activation of P2X receptors.
Collapse
Affiliation(s)
- John D Tompkins
- University of Vermont, College of Medicine, Dept. of Anatomy and Neurobiology, Burlington, VT 05405, USA.
| | | |
Collapse
|
48
|
Grundy D, Al-Chaer ED, Aziz Q, Collins SM, Ke M, Taché Y, Wood JD. Fundamentals of neurogastroenterology: basic science. Gastroenterology 2006; 130:1391-411. [PMID: 16678554 DOI: 10.1053/j.gastro.2005.11.060] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2005] [Accepted: 11/03/2005] [Indexed: 02/06/2023]
Abstract
The focus of neurogastroenterology in Rome II was the enteric nervous system (ENS). To avoid duplication with Rome II, only advances in ENS neurobiology after Rome II are reviewed together with stronger emphasis on interactions of the brain, spinal cord, and the gut in terms of relevance for abdominal pain and disordered gastrointestinal function. A committee with expertise in selective aspects of neurogastroenterology was invited to evaluate the literature and provide a consensus overview of the Fundamentals of Neurogastroenterology textbook as they relate to functional gastrointestinal disorders (FGIDs). This review is an abbreviated version of a fuller account that appears in the forthcoming book, Rome III. This report reviews current basic science understanding of visceral sensation and its modulation by inflammation and stress and advances in the neurophysiology of the ENS. Many of the concepts are derived from animal studies in which the physiologic mechanisms underlying visceral sensitivity and neural control of motility, secretion, and blood flow are examined. Impact of inflammation and stress in experimental models relative to FGIDs is reviewed as is human brain imaging, which provides a means for translating basic science to understanding FGID symptoms. Investigative evidence and emerging concepts implicate dysfunction in the nervous system as a significant factor underlying patient symptoms in FGIDs. Continued focus on neurogastroenterologic factors that underlie the development of symptoms will lead to mechanistic understanding that is expected to directly benefit the large contingent of patients and care-givers who deal with FGIDs.
Collapse
Affiliation(s)
- David Grundy
- Department of Biomedical Sciences, University of Sheffield, Sheffield, England
| | | | | | | | | | | | | |
Collapse
|
49
|
Obaid AL, Nelson ME, Lindstrom J, Salzberg BM. Optical studies of nicotinic acetylcholine receptor subtypes in the guinea-pig enteric nervous system. ACTA ACUST UNITED AC 2006; 208:2981-3001. [PMID: 16043603 DOI: 10.1242/jeb.01732] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Nicotinic transmission in the enteric nervous system (ENS) is extensive, but the role of individual nicotinic acetylcholine receptor (nAChR) subtypes in the functional connectivity of its plexuses has been elusive. Using monoclonal antibodies (mAbs) against neuronal alpha3-, alpha4-, alpha3/alpha5-, beta2-, beta4- and alpha7-subunits, combined with radioimmunoassays and immunocytochemistry, we demonstrate that guinea-pig enteric ganglia contain all of these nAChR-subunits with the exception of alpha4, and so, differ from mammalian brain. This information alone, however, is insufficient to establish the functional role of the identified nAChR-subtypes within the enteric networks and, ultimately, their specific contributions to gastrointestinal physiology. We have used voltage-sensitive dyes and a high-speed CCD camera, in conjunction with specific antagonists to various nAChRs, to elucidate some of the distinct contributions of the individual subtypes to the behaviour of enteric networks. In the guinea-pig, the submucous plexus has the extraordinary advantage that it is virtually two-dimensional, permitting optical recording, with single cell resolution, of the electrical activity of all of its neurones. In this plexus, the block of alpha3beta2-, alpha3beta4- and/or alpha7-nAChRs always results in a decrease in the magnitude of the synaptic response. However, the magnitude of the fast excitatory post-synaptic potentials (epsps) evoked by electrical stimulation of a neighbouring ganglion varies from cell to cell, reflecting the differential expression of subunits already observed using mAbs, as well as the strengths of the activated synaptic inputs. At the same time, we observe that submucous neurones have a substantial mecamylamine (Mec)-insensitive (non-nicotinic) component to their fast epsps, which may point to the presence of purinergic or serotonergic fast epsps in this system. In the myenteric plexus, on the other hand, the antagonist-induced changes in the evoked synaptic response vary depending upon the location of the stimulating electrode with respect to the ganglion under study. The range of activity patterns that follows sequential pharmacological elimination of individual subtypes suggests that nAChRs may be capable of regulating the activity of both excitatory and inhibitory pathways, in a manner similar to that described in the central nervous system.
Collapse
Affiliation(s)
- A L Obaid
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6074, USA
| | | | | | | |
Collapse
|
50
|
Nylander O, Pihl L. Luminal hypotonicity increases duodenal mucosal permeability by a mechanism involving 5-hydroxytryptamine. Acta Physiol (Oxf) 2006; 186:45-58. [PMID: 16497179 DOI: 10.1111/j.1748-1716.2005.01507.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AIM To investigate whether 5-hydroxytryptamine (5-HT) participates in the mediation of the hypotonicity-induced increase in duodenal mucosal permeability. METHODS Proximal duodenum in anaesthetized rats was perfused in situ with a hypotonic NaCl solution and effects on duodenal motility, net fluid flux, mucosal permeability [blood-to-lumen clearance of (51)Cr-ethylenediaminetetraacetic acid (EDTA)] and the release of 5-HT into the luminal solution studied in the presence of the cyclooxygenase inhibitor indomethacin. RESULTS Perfusion of the duodenum with 50 mm NaCl increased mucosal permeability eightfold, increased the luminal output of 5-HT twofold and induced net fluid absorption. This rise in permeability was enhanced 25% by 5-HT (3 x 10(-3) m), reduced by the 5-HT(3)-receptor antagonists granisetron (10(-4)-3 x 10(-4) m) or ondansetron (10(-5)-10(-4) m) or by the 5-HT(4) receptor antagonist SB 203186 (10(-4) m). The 5-HT(3/4) receptor antagonist tropisetron, at 10(-4) m, did not affect while 3 x 10(-4) and 3 x 10(-3) m augmented the hypotonicity-induced increase in mucosal permeability. Lidocaine (1.1 x 10(-3) m) similarly potentiated while tetrodotoxin (TTX) (5 x 10(-5) m) inhibited the hypotonicity-induced increase in mucosal permeability. Compared with animals treated with indomethacin alone ondansetron and granisetron augmented (by 30-40%) while tropisetron and lidocaine reduced (by 60-70%) the hypotonicity-induced net fluid absorption. Tetrodotoxin and all 5-HT receptor antagonists, except tropisetron, depressed duodenal motility. CONCLUSIONS Luminal hypotonicity increases duodenal mucosal permeability by a neural mechanism involving 5-HT acting on 5-HT(3) and 5-HT(4) receptors. 5-HT also appears to participate in the regulation of the hypotonicity-induced fluid flux.
Collapse
Affiliation(s)
- O Nylander
- Department of Neuroscience, Division of Physiology, Biomedical Center, Uppsala University, Uppsala, Sweden.
| | | |
Collapse
|