1
|
Lonare S, Gupta DN, Kaur H, Rode S, Verma S, Gubyad M, Ghosh DK, Kumar P, Sharma AK. Characterization of Cationic Amino Acid Binding Protein from Candidatus Liberibacter Asiaticus and in Silico Study to Identify Potential Inhibitor Molecules. Protein J 2024; 43:967-982. [PMID: 39306651 DOI: 10.1007/s10930-024-10233-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2024] [Indexed: 09/29/2024]
Abstract
Cationic amino acid binding protein (CLasArgBP), one of the two amino acid binding receptor in Candidatus Liberibacter asiaticus (CLas), is predominately expressed in citrus psyllids as a part of ATP-binding cassette transport system. The present study describes characterization of CLasArgBP by various biophysical techniques and in silico study, to identify potential inhibitor molecules against CLasArgBP through virtual screening and MD simulations. Further, in planta study was carried out to assess the effect of selected inhibitors on Huanglongbing infected Mosambi plants. The results showed that CLasArgBP exhibits pronounced specificity for arginine, histidine and lysine. Surface plasmon resonance (SPR) study reports highest binding affinity for arginine (Kd, 0.14 µM), compared to histidine and lysine (Kd, 15 µΜ and 26 µΜ, respectively). Likewise, Differential Scanning Calorimetry (DSC) study showed higher stability of CLasArgBP for arginine, compared to histidine and lysine. N(omega)-nitro-L-arginine, Gamma-hydroxy-L-arginine and Gigartinine emerged as lead compounds through in silico study displaying higher binding energy and stability compared to arginine. SPR reports elevated binding affinities for N(omega)-nitro-L-arginine and Gamma-hydroxy-L-arginine (Kd, 0.038 µΜ and 0.061 µΜ, respectively) relative to arginine. DSC studies showed enhanced thermal stability for CLasArgBP in complex with selected inhibitors. Circular dichroism and fluorescence studies showed pronounced conformational changes in CLasArgBP with selected inhibitors than with arginine. In planta study demonstrated a substantial decrease in CLas titer in treated plants as compared to control plants. Overall, the study provides the first comprehensive characterization of cationic amino acid binding protein from CLas, as a potential drug target to manage HLB disease.
Collapse
Affiliation(s)
- Sapna Lonare
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Deena Nath Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Harry Kaur
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Surabhi Rode
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Shalja Verma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Mrugendra Gubyad
- Plant Virology Laboratory, ICAR Central Citrus Research Institute, Nagpur, India
| | - Dilip Kumar Ghosh
- Plant Virology Laboratory, ICAR Central Citrus Research Institute, Nagpur, India
| | - Pravindra Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Ashwani Kumar Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India.
| |
Collapse
|
2
|
Zangani E, Angourani HR, Andalibi B, Rad SV, Mastinu A. Sodium Nitroprusside Improves the Growth and Behavior of the Stomata of Silybum marianum L. Subjected to Different Degrees of Drought. Life (Basel) 2023; 13:life13040875. [PMID: 37109404 PMCID: PMC10145804 DOI: 10.3390/life13040875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/16/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
The use of growth-stimulating signals to increase the tolerance of plants to water deficits can be an important strategy in the production of plants in dry areas. Therefore, a split-plot experiment with three replications was conducted to evaluate the effects of sodium nitroprusside (SNP) application rate as an NO donor (0, 100, and 200 µM) on the growth and yield parameters of Silybum marianum L. (S. marianum) under different irrigation cut-off times (control, irrigation cut-off from stem elongation, and anthesis). The results of this study showed that with increasing drought severity, leaf RWC, proline content and capitula per plant, 1000 grain weight, plant height, branch per plant, capitula diameter, and the biological and grain yield of S. marianum decreased significantly, whereas the number of grains per capitula increased compared with the control. Also, by irrigation cut-off from the stem elongation stage, the density of leaf stomata at the bottom and top epidermis increased by 64% and 39%, respectively, and the length of the stomata at the bottom epidermis of the leaf decreased up to 28%. In contrast, the results of this experiment showed that the exogenous application of nitric oxide reduced the negative effects of irrigation cut-off, such that the application of 100 µM SNP enhanced RWC content (up to 9%), proline concentration (up to 40%), and grain (up to 34%) and biological (up to 44%) yields in plants under drought stress compared with non-application of SNP. The decrease in the number of capitula per plant and capitula diameter was also compensated by foliar application of 100 µM SNP under stress conditions. In addition, exogenous NO changed the behavior of the stomata during the period of dehydration, such that plants treated with SNP showed a decrease in the stomatal density of the leaf and an increase in the length of the stomata at the leaf bottom epidermis. These results indicate that SNP treatment, especially at 100 µM, was helpful in alleviating the deleterious effects of water deficiency and enhancing the tolerance of S. marianum to withholding irrigation times.
Collapse
Affiliation(s)
- Esmaeil Zangani
- Department of Plant Production and Genetics, University of Zanjan, Zanjan 45371-38791, Iran;
- Correspondence: (E.Z.); (A.M.)
| | - Hossein Rabbi Angourani
- Research Institute of Modern Biological Techniques, University of Zanjan, Zanjan 45371-38791, Iran;
| | - Babak Andalibi
- Department of Plant Production and Genetics, University of Zanjan, Zanjan 45371-38791, Iran;
| | - Saeid Vaezi Rad
- Department of Agronomy, Science and Research Branch, Islamic Azad University, Zanjan 45156-58145, Iran;
| | - Andrea Mastinu
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, 25123 Brescia, Italy
- Correspondence: (E.Z.); (A.M.)
| |
Collapse
|
3
|
Tahjib-Ul-Arif M, Wei X, Jahan I, Hasanuzzaman M, Sabuj ZH, Zulfiqar F, Chen J, Iqbal R, Dastogeer KMG, Sohag AAM, Tonny SH, Hamid I, Al-Ashkar I, Mirzapour M, El Sabagh A, Murata Y. Exogenous nitric oxide promotes salinity tolerance in plants: A meta-analysis. FRONTIERS IN PLANT SCIENCE 2022; 13:957735. [PMID: 36420041 PMCID: PMC9676926 DOI: 10.3389/fpls.2022.957735] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Nitric oxide (NO) has received much attention since it can boost plant defense mechanisms, and plenty of studies have shown that exogenous NO improves salinity tolerance in plants. However, because of the wide range of experimental settings, it is difficult to assess the administration of optimal dosages, frequency, timing, and method of application and the overall favorable effects of NO on growth and yield improvements. Therefore, we conducted a meta-analysis to reveal the exact physiological and biochemical mechanisms and to understand the influence of plant-related or method-related factors on NO-mediated salt tolerance. Exogenous application of NO significantly influenced biomass accumulation, growth, and yield irrespective of salinity stress. According to this analysis, seed priming and foliar pre-treatment were the most effective methods of NO application to plants. Moreover, one-time and regular intervals of NO treatment were more beneficial for plant growth. The optimum concentration of NO ranges from 0.1 to 0.2 mM, and it alleviates salinity stress up to 150 mM NaCl. Furthermore, the beneficial effect of NO treatment was more pronounced as salinity stress was prolonged (>21 days). This meta-analysis showed that NO supplementation was significantly applicable at germination and seedling stages. Interestingly, exogenous NO treatment boosted plant growth most efficiently in dicots. This meta-analysis showed that exogenous NO alleviates salt-induced oxidative damage and improves plant growth and yield potential by regulating osmotic balance, mineral homeostasis, photosynthetic machinery, the metabolism of reactive oxygen species, and the antioxidant defense mechanism. Our analysis pointed out several research gaps, such as lipid metabolism regulation, reproductive stage performance, C4 plant responses, field-level yield impact, and economic profitability of farmers in response to exogenous NO, which need to be evaluated in the subsequent investigation.
Collapse
Affiliation(s)
- Md. Tahjib-Ul-Arif
- Plant Biology and Biofunctional Chemistry Lab, Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Xiangying Wei
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, China
| | - Israt Jahan
- Department of Biology, York University, Toronto, ON, Canada
| | - Md. Hasanuzzaman
- Department of Biotechnology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Zahid Hasan Sabuj
- Breeding Division, Bangladesh Sugarcrop Research Institute, Pabna, Bangladesh
| | - Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Jianjun Chen
- Environmental Horticulture Department and Mid-Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Apopka, FL, United States
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | | - Abdullah Al Mamun Sohag
- Plant Biology and Biofunctional Chemistry Lab, Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Sadia Haque Tonny
- Plant Biology and Biofunctional Chemistry Lab, Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Imran Hamid
- Faculty of Animal Husbandry, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Ibrahim Al-Ashkar
- Department of Plant Production, College of Food and Agriculture, King Saud University, Riyadh, Saudi Arabia
- Agronomy Department, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Mohsen Mirzapour
- Faculty of Agriculture, Department of Agricultural Biotechnology, Siirt University, Siirt, Turkey
| | - Ayman El Sabagh
- Department of Field Crops, Faculty of Agriculture, Siirt University, Siirt, Turkey
- Department of Agronomy, Faculty of Agriculture, Kafrelsheikh University, Kafr el-sheikh, Egypt
| | - Yoshiyuki Murata
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| |
Collapse
|
4
|
Hydrogen Sulfide, Ethylene, and Nitric Oxide Regulate Redox Homeostasis and Protect Photosynthetic Metabolism under High Temperature Stress in Rice Plants. Antioxidants (Basel) 2022; 11:antiox11081478. [PMID: 36009197 PMCID: PMC9405544 DOI: 10.3390/antiox11081478] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 02/06/2023] Open
Abstract
Rising temperatures worldwide due to global climate change are a major scientific issue at present. The present study reports the effects of gaseous signaling molecules, ethylene (200 µL L−1; 2-chloroethylphosphonic acid; ethephon, Eth), nitric oxide (NO; 100 µM sodium nitroprusside; SNP), and hydrogen sulfide (H2S; 200 µM sodium hydrosulfide, NaHS) in high temperature stress (HS) tolerance, and whether or not H2S contributes to ethylene or NO-induced thermo-tolerance and photosynthetic protection in rice (Oryza sativa L.) cultivars, i.e., Taipei-309, and Rasi. Plants exposed to an HS of 40 °C for six h per day for 15 days caused a reduction in rice biomass, associated with decreased photosynthesis and leaf water status. High temperature stress increased oxidative stress by increasing the content of hydrogen peroxide (H2O2) and thiobarbituric acid reactive substance (TBARS) in rice leaves. These signaling molecules increased biomass, leaf water status, osmolytes, antioxidants, and photosynthesis of plants under non-stress and high temperature stress. However, the effect was more conspicuous with ethylene than NO and H2S. The application of H2S scavenger hypotaurine (HT) reversed the effect of ethylene or NO on photosynthesis under HS. This supports the findings that the ameliorating effects of Eth or SNP involved H2S. Thus, the presence of H2S with ethylene or NO can enhance thermo-tolerance while also protecting plant photosynthesis.
Collapse
|
5
|
Iqbal N, Umar S, Khan NA, Corpas FJ. Crosstalk between abscisic acid and nitric oxide under heat stress: exploring new vantage points. PLANT CELL REPORTS 2021; 40:1429-1450. [PMID: 33909122 DOI: 10.1007/s00299-021-02695-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/05/2021] [Indexed: 05/22/2023]
Abstract
Heat stress adversely affects plants growth potential. Global warming is reported to increase in the intensity, frequency, and duration of heatwaves, eventually affecting ecology, agriculture and economy. With an expected increase in average temperature by 2-3 °C over the next 30-50 years, crop production is facing a severe threat to sub-optimum growth conditions. Abscisic acid (ABA) and nitric oxide (NO) are growth regulators that are involved in the adaptation to heat stress by affecting each other and changing the adaptation process. The interaction between these molecules has been discussed in various studies in general or under stress conditions; however, regarding high temperature, their interaction has little been worked out. In the present review, the focus is shifted on the role of these molecules under heat stress emphasizing the different possible interactions between ABA and NO as both regulate stomatal closure and other molecules including hydrogen peroxide (H2O2), hydrogen sulfide (H2S), antioxidants, proline, glycine betaine, calcium (Ca2+) and heat shock protein (HSP). Exploring the crosstalk between ABA and NO with other molecules under heat stress will provide us with a comprehensive knowledge of plants mechanism of heat tolerance which could be useful to develop heat stress-resistant varieties.
Collapse
Affiliation(s)
- Noushina Iqbal
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India.
| | - Shahid Umar
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Nafees A Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Apartado 419, 18080, Granada, Spain.
| |
Collapse
|
6
|
Raipuria RK, Kataria S, Watts A, Jain M. Magneto-priming promotes nitric oxide via nitric oxide synthase to ameliorate the UV-B stress during germination of soybean seedlings. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2021; 220:112211. [PMID: 34022548 DOI: 10.1016/j.jphotobiol.2021.112211] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 04/25/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023]
Abstract
We have evaluated the contribution of nitric oxide (NO) in static magnetic field (SMF-200 mT for 1h) induced tolerance towards UV-B stress in soybean seedlings using various NO modulators like sodium nitroprusside (SNP), inhibitor of nitrate reductase (NR) sodium tungstate (ST), NO synthase (NOS) inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME) and diphenylene iodonium (DPI) a NADPH oxidase inhibitor. The UV-B exposure significantly reduced germination, seedling growth together with activities of total amylase, NOS and NR in seedlings from un-primed seeds whereas SMF-primed seedlings showed significant enhancement in all these parameters along with higher level of NO/ROS. The supply of NO donor, SNP further improved all the seedlings parameters in un-primed and SMF-primed seeds after UV-B exposure. While ST, L-NAME and DPI significantly reduced the SMF-induced seedling performance after UV-B exposure. The gene expression study also showed significant up-regulation of α-amylase (GmAMY1, GmAMY2), nitric oxide synthase (GmNOS2) and nitrate reductase (GmNR2) encoding genes in UV-B exposed SMF-primed seedlings over un-primed seedlings. In particular, SNP+UV-B treatment enhanced the GmNOS2 expression in both unprimed (31.9-fold) and SMF-primed (93.2-fold) seedlings in comparison to their respective controls of CK+UV-B. In contrast, L-NAME+UV-B treatment reduced the SMF-induced GmNOS2 expression (4.8-fold) and NOS activity (76%). It confirmed that NO may be the key signaling molecule in SMF stimulated tolerance towards UV-B stress during early seedling growth and NOS may possibly be accountable for SMF-triggered NO production in soybean seedlings exposed to UV-B irradiations.
Collapse
Affiliation(s)
| | - Sunita Kataria
- School of Biochemistry, Devi Ahilya Vishwavidyalaya, Khandwa Road, Indore-452001, M.P., India.
| | - Anshul Watts
- ICAR-National Institute for Plant Biotechnology, New Delhi-110012, India
| | - Meeta Jain
- School of Biochemistry, Devi Ahilya Vishwavidyalaya, Khandwa Road, Indore-452001, M.P., India
| |
Collapse
|
7
|
Ahammed GJ, Li X, Mao Q, Wan H, Zhou G, Cheng Y. The SlWRKY81 transcription factor inhibits stomatal closure by attenuating nitric oxide accumulation in the guard cells of tomato under drought. PHYSIOLOGIA PLANTARUM 2021; 172:885-895. [PMID: 33063343 DOI: 10.1111/ppl.13243] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 05/07/2023]
Abstract
The WRKY transcription factors (TFs) play multifaceted roles in plant growth, development, and stress response. Previously, we found that SlWRKY81 negatively regulates tomato tolerance to drought; however, the mechanisms of stomatal regulation in response to drought remain largely unclear. Here, we showed that drought-induced upregulation in the SlWRKY81 transcripts induced photoinhibition and reduced the net photosynthetic rate in tomato leaves. However, silencing SlWRKY81 alleviated those inhibitions and minimized the drought-induced damage. A time-course of water loss showed that SlWRKY81 silencing significantly and consistently reduced leaf water loss, suggesting a role for SlWRKY81 in stomatal movement. Further analysis using light microscopy revealed that SlWRKY81 silencing significantly decreased stomatal aperture and increased the ratio of length to width of stomata under drought. Both biochemical assay and confocal laser scanning microscopy demonstrated that drought-induced upregulation in SlWRKY81 expression inhibited the nitric oxide (NO) accumulation in the guard cells, which was attributed to the simultaneous declines in the activity of nitrate reductase (NR) and NR expression in tomato leaves. The inspection of 3-kb sequences upstream of the predicted transcriptional start site of the NR identified three copies of the core W-box (TTGACC/T) sequence in the promoter region, indicating possible targets of SlWRKY81. Taken together, these data suggest that SlWRKY81 potentially represses NR transcription and thus reduces NO accumulation to attenuate stomatal closure and subsequent drought tolerance. These findings provide an improved understanding of the mechanism of WRKY-induced regulation of stomatal closure, which can be exploited in the future to enhance drought tolerance in crops.
Collapse
Affiliation(s)
- Golam Jalal Ahammed
- College of Forestry, Henan University of Science and Technology, Luoyang, China
| | - Xin Li
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Qi Mao
- College of Forestry, Henan University of Science and Technology, Luoyang, China
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hongjian Wan
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Guozhi Zhou
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yuan Cheng
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
8
|
Manna I, Sahoo S, Bandyopadhyay M. Effect of Engineered Nickel Oxide Nanoparticle on Reactive Oxygen Species-Nitric Oxide Interplay in the Roots of Allium cepa L. FRONTIERS IN PLANT SCIENCE 2021; 12:586509. [PMID: 33633755 PMCID: PMC7901573 DOI: 10.3389/fpls.2021.586509] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 01/06/2021] [Indexed: 06/01/2023]
Abstract
Scientists anxiously follow instances of heavy metals augmenting in the environment and undergoing bioaccumulation and trace their biomagnification across food webs, wary of their potent toxicity on biological entities. Engineered nanoparticles supplement natural pools of respective heavy metals and can mimic their effects, exerting toxicity at higher concentrations. Thus, a thorough understanding of the underlying mechanism of this precarious interaction is mandatory. Most urban and industrial environments contain considerable quantities of nickel oxide nanoparticles. These in excess can cause considerable damage to plant metabolism through a significant increase in cellular reactive oxygen species and perturbation of its cross-talk with the reactive nitrogen species. In the present work, the authors have demonstrated how the intrusion of nickel oxide nanoparticles (NiO-NP) affected the exposed roots of Allium cepa: starting with disruption of cell membranes, before being interiorized within cell organelles, effectively disrupting cellular homeostasis and survival. A major shift in the reactive oxygen species (ROS) and nitric oxide (NO) equanimity was also observed, unleashing major altercations in several crucial biochemical profiles. Altered antioxidant contents and upregulation of stress-responsive genes, namely, Catalase, Ascorbate peroxidase, Superoxide dismutase, and Rubisco activase, showing on average 50-250% rise across NiO-NP concentrations tested, also entailed increased cellular hydrogen peroxide contents, with tandem rise in cellular NO. Increased NO content was evinced from altered concentrations of nitric oxide synthase and nitrate reductase, along with NADPH oxidase, when compared with the negative control. Though initially showing a dose-dependent concomitant rise, a significant decrease of NO was observed at higher concentrations of NiO-NP, while cellular ROS continued to increase. Modified K/Na ratios, with increased proline concentrations and GABA contents, all hallmarks of cellular stress, correlated with ROS-NO perturbations. Detailed studies showed that NiO-NP concentration had a significant role in inducing toxicity, perturbing the fine balance of ROS-NO, which turned lethal for the cell at higher dosages of the ENP precipitating in the accumulation of stress markers and an inevitable shutdown of cellular mechanisms.
Collapse
Affiliation(s)
- Indrani Manna
- Department of Botany, CAS, University of Calcutta, Kolkata, India
| | - Saikat Sahoo
- Department of Botany, Krishna Chandra College, Hetampur, India
| | | |
Collapse
|
9
|
Li R, Sheng J, Shen L. Nitric Oxide Plays an Important Role in β-Aminobutyric Acid-Induced Resistance to Botrytis cinerea in Tomato Plants. THE PLANT PATHOLOGY JOURNAL 2020; 36:121-132. [PMID: 32296292 PMCID: PMC7143515 DOI: 10.5423/ppj.oa.11.2019.0274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/16/2020] [Accepted: 03/03/2020] [Indexed: 05/25/2023]
Abstract
β-Aminobutyric acid (BABA) has consistently been reported to enhance plant immunity. However, the specific mechanisms and downstream components that mediate this resistance are not yet agreed upon. Nitric oxide (NO) is an important signal molecule involved in a diverse range of physiological processes, and whether NO is involved in BABA-induced resistance is interesting. In this study, treatment with BABA significantly increased NO accumulation and reduced the sensitivity to Botrytis cinerea in tomato plants. BABA treatment reduced physical signs of infection and increased both the transcription of key defense marker genes and the activity of defensive enzymes. Interestingly, compared to treatment with BABA alone, treatment with BABA plus cPTIO (NO specific scavenger) not only significantly reduced NO accumulation, but also increased disease incidence and lesion area. These results suggest that NO accumulation plays an important role in BABA-induced resistance against B. cinerea in tomato plants.
Collapse
Affiliation(s)
- Rui Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jiping Sheng
- School of Agricultural Economics and Rural Development, Renmin University of China, Beijing 100872, China
| | - Lin Shen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
10
|
Zhao Y, Ma W, Wei X, Long Y, Zhao Y, Su M, Luo Q. Identification of Exogenous Nitric Oxide-Responsive miRNAs from Alfalfa ( Medicago sativa L.) under Drought Stress by High-Throughput Sequencing. Genes (Basel) 2019; 11:genes11010030. [PMID: 31888061 PMCID: PMC7016817 DOI: 10.3390/genes11010030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/17/2019] [Accepted: 12/24/2019] [Indexed: 01/01/2023] Open
Abstract
Alfalfa (Medicago sativa L.) is a high quality leguminous forage. Drought stress is one of the main factors that restrict the development of the alfalfa industry. High-throughput sequencing was used to analyze the microRNA (miRNA) profiles of alfalfa plants treated with CK (normal water), PEG (polyethylene glycol-6000; drought stress), and PEG + SNP (sodium nitroprusside; nitric oxide (NO) sprayed externally under drought stress). We identified 90 known miRNAs belonging to 46 families and predicted 177 new miRNAs. Real-time quantitative fluorescent PCR (qRT-PCR) was used to validate high-throughput expression analysis data. A total of 32 (14 known miRNAs and 18 new miRNAs) and 55 (24 known miRNAs and 31 new miRNAs) differentially expressed miRNAs were identified in PEG and PEG + SNP samples. This suggested that exogenous NO can induce more new miRNAs. The differentially expressed miRNA maturation sequences in the two treatment groups were targeted by 86 and 157 potential target genes, separately. The function of target genes was annotated by gene ontology (GO) enrichment and kyoto encyclopedia of genes and genomes (KEGG) analysis. The expression profiles of nine selected miRNAs and their target genes verified that their expression patterns were opposite. This study has documented that analysis of miRNA under PEG and PEG + SNP conditions provides important insights into the improvement of drought resistance of alfalfa by exogenous NO at the molecular level. This has important scientific value and practical significance for the improvement of plant drought resistance by exogenous NO.
Collapse
Affiliation(s)
- Yaodong Zhao
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Y.Z.); (W.M.); (Y.Z.); (M.S.); (Q.L.)
- Gansu Key Laboratory of Crop Genetic Improvement and Germplasm Innovation, Lanzhou 730070, China
- Gansu Key Laboratory of Arid Habitat Crop Science, Lanzhou 730070, China
| | - Wenjing Ma
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Y.Z.); (W.M.); (Y.Z.); (M.S.); (Q.L.)
- Gansu Key Laboratory of Crop Genetic Improvement and Germplasm Innovation, Lanzhou 730070, China
- Gansu Key Laboratory of Arid Habitat Crop Science, Lanzhou 730070, China
| | - Xiaohong Wei
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Y.Z.); (W.M.); (Y.Z.); (M.S.); (Q.L.)
- Gansu Key Laboratory of Crop Genetic Improvement and Germplasm Innovation, Lanzhou 730070, China
- Gansu Key Laboratory of Arid Habitat Crop Science, Lanzhou 730070, China
- Correspondence: ; Tel.: +86-138-9331-7951
| | - Yu Long
- College of Business Administration, Kent State University, Kent, OH 44240, USA;
| | - Ying Zhao
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Y.Z.); (W.M.); (Y.Z.); (M.S.); (Q.L.)
- Gansu Key Laboratory of Crop Genetic Improvement and Germplasm Innovation, Lanzhou 730070, China
- Gansu Key Laboratory of Arid Habitat Crop Science, Lanzhou 730070, China
| | - Meifei Su
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Y.Z.); (W.M.); (Y.Z.); (M.S.); (Q.L.)
- Gansu Key Laboratory of Crop Genetic Improvement and Germplasm Innovation, Lanzhou 730070, China
- Gansu Key Laboratory of Arid Habitat Crop Science, Lanzhou 730070, China
| | - Qiaojuan Luo
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Y.Z.); (W.M.); (Y.Z.); (M.S.); (Q.L.)
- Gansu Key Laboratory of Crop Genetic Improvement and Germplasm Innovation, Lanzhou 730070, China
- Gansu Key Laboratory of Arid Habitat Crop Science, Lanzhou 730070, China
| |
Collapse
|
11
|
Batista PF, Costa AC, Müller C, Silva-Filho RDO, Barbosa da Silva F, Merchant A, Mendes GC, Nascimento KJT. Nitric oxide mitigates the effect of water deficit in Crambe abyssinica. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 129:310-322. [PMID: 29925047 DOI: 10.1016/j.plaphy.2018.06.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/28/2018] [Accepted: 06/11/2018] [Indexed: 06/08/2023]
Abstract
Crambe abyssinica is widely cultivated in the off-season in the Midwest region of Brazil with great potential for biodeisel production. Low precipitation is characteristic of this region, which can drastically affect the productivity of C. abyssinica. Signaling molecules, such as nitric oxide (NO), can potentially alleviate the effects of water stress on plants. Here we test whether nitric oxide, applied by donor sodium nitroprusside (SNP), can alleviate the occurrence of water deficit damages in Crambe plants and maintain physiological and biochemical processes. Crambe plants were sprayed with three doses of SNP (0, 75, and 150 μM) and were submitted to two water levels (100% and 50% of the maximum water holding capacity). After 32 and 136 h, leaves were analyzed to evaluate the concentration of NO, water relations, gas exchange, chlorophyll a fluorescence, chloroplastidic pigments, proline, malondialdehyde, hydrogen peroxide, superoxide anions, and the antioxidant enzymes activity. Application of SNP allowed the maintenance of gas exchange, chlorophyll fluorescence parameters, and activities of antioxidant enzymes in plants exposed to water deficit, as well as increased the concentration of NO, proline, chloroplastidic pigments and osmotic potential. The application of SNP also decreased the concentration of malondialdehyde and reactive oxygen species in plants submitted to water deficit. Thus, the application of SNP prevented the occurrence of symptoms of water deficit in Crambe plants, maintaining the physiological and biochemical responses at reference levels, even under stress conditions.
Collapse
Affiliation(s)
- Priscila Ferreira Batista
- Ecophysiology and Plant Productivity Laboratory, Goiano Federal Institute of Science and Technology - Campus Rio Verde, P.O. Box 66, 75901-970, Rio Verde, GO, Brazil
| | - Alan Carlos Costa
- Ecophysiology and Plant Productivity Laboratory, Goiano Federal Institute of Science and Technology - Campus Rio Verde, P.O. Box 66, 75901-970, Rio Verde, GO, Brazil.
| | - Caroline Müller
- Ecophysiology and Plant Productivity Laboratory, Goiano Federal Institute of Science and Technology - Campus Rio Verde, P.O. Box 66, 75901-970, Rio Verde, GO, Brazil
| | - Robson de Oliveira Silva-Filho
- Ecophysiology and Plant Productivity Laboratory, Goiano Federal Institute of Science and Technology - Campus Rio Verde, P.O. Box 66, 75901-970, Rio Verde, GO, Brazil
| | - Fábia Barbosa da Silva
- Stressed Plant Studies Laboratory, The University of São Paulo, Luiz de Queiroz College of Agriculture (ESALQ), P.O. Box 9, 13418- 900, Piracicaba, SP, Brazil
| | - Andrew Merchant
- Centre for Carbon Water and Food, The University of Sydney, Camden, 2570, NSW, Australia
| | - Giselle Camargo Mendes
- Ecophysiology and Plant Productivity Laboratory, Goiano Federal Institute of Science and Technology - Campus Rio Verde, P.O. Box 66, 75901-970, Rio Verde, GO, Brazil
| | - Kelly Juliane Telles Nascimento
- Ecophysiology and Plant Productivity Laboratory, Goiano Federal Institute of Science and Technology - Campus Rio Verde, P.O. Box 66, 75901-970, Rio Verde, GO, Brazil
| |
Collapse
|
12
|
Pereira PN, Smith JAC, Mercier H. Nitrate enhancement of CAM activity in two Kalanchoë species is associated with increased vacuolar proton transport capacity. PHYSIOLOGIA PLANTARUM 2017; 160:361-372. [PMID: 28393374 DOI: 10.1111/ppl.12578] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 02/24/2017] [Accepted: 03/05/2017] [Indexed: 06/07/2023]
Abstract
Among species that perform CAM photosynthesis, members of the genus Kalanchoë have been studied frequently to investigate the effect of environmental factors on the magnitude of CAM activity. In particular, different nitrogen sources have been shown to influence the rate of nocturnal CO2 fixation and organic-acid accumulation in several species of Kalanchoë. However, there has been little investigation of the interrelationship between nitrogen source (nitrate versus ammonium), concentration and the activity of the vacuolar proton pumps responsible for driving nocturnal organic-acid accumulation in these species. In the present study with Kalanchoë laxiflora and Kalanchoë delagoensis cultivated on different nitrogen sources, both species were found to show highest total nocturnal organic-acid accumulation and highest rates of ATP- and PPi-dependent vacuolar proton transport on 2.5 mM nitrate, whereas plants cultivated on 5.0 mM ammonium showed the lowest values. In both species malate was the principal organic-acid accumulated during the night, but the second-most accumulated organic-acid was fumarate for K. laxiflora and citrate for K. delagoensis. Higher ATP- and PPi-dependent vacuolar proton transport rates and greater nocturnal acid accumulation were observed in K. delagoensis compared with K. laxiflora. These results show that the effect of nitrogen source on CAM activity in Kalanchoë species is reflected in corresponding differences in activity of the tonoplast proton pumps responsible for driving sequestration of these acids in the vacuole of CAM-performing cells.
Collapse
Affiliation(s)
- Paula Natália Pereira
- Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo, 05508-090, Brazil
| | | | - Helenice Mercier
- Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo, 05508-090, Brazil
| |
Collapse
|
13
|
Zhang X, Min D, Li F, Ji N, Meng D, Li L. Synergistic Effects of l-Arginine and Methyl Salicylate on Alleviating Postharvest Disease Caused by Botrysis cinerea in Tomato Fruit. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:4890-4896. [PMID: 28535671 DOI: 10.1021/acs.jafc.7b00395] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The effects of l-arginine (Arg, 1 mM) and/or methyl salicylate (MeSA, 0.05 mM) treatment on gray mold caused by Botrytis cinerea in tomato fruit were studied. Results indicated that Arg or MeSA alleviated the incidence and severity of fruit disease caused by B. cinerea, and that both Arg and MeSA (Arg + MeSA) further inhibited the development of fruit decay. Treatment with Arg + MeSA not only enhanced the activities of superoxide dismutase, catalase, and peroxidase but also promoted the expression levels of pathogenesis-related protein 1 gene and the activities of defense-related enzymes of phenylalanine ammonia-lyase, polyphenol oxidase, β-1,3-glucanase, and chitinase during most of the storage periods, which were associated with lower disease incidence and disease index. In addition, the combined treatment elevated the levels of total phenolics, polyamines, especially putrescine, and nitric oxide. These observations suggest that treatment of fruit with Arg + MeSA is an effective and promising way to alleviate postharvest decays on a commercial scale.
Collapse
Affiliation(s)
- Xinhua Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology , Zibo, Shandong 255049, People's Republic of China
| | - Dedong Min
- School of Agricultural Engineering and Food Science, Shandong University of Technology , Zibo, Shandong 255049, People's Republic of China
| | - Fujun Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology , Zibo, Shandong 255049, People's Republic of China
| | - Nana Ji
- School of Agricultural Engineering and Food Science, Shandong University of Technology , Zibo, Shandong 255049, People's Republic of China
| | - Demei Meng
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology , Tianjin 300457, People's Republic of China
| | - Ling Li
- Department of Food Science, Tianjin Agricultural University , Tianjin 300384, People's Republic of China
| |
Collapse
|
14
|
Arbuscular mycorrhizal symbiosis modifies the effects of a nitric oxide donor (sodium nitroprusside;SNP) and a nitric oxide synthesis inhibitor (Nω-nitro-L-arginine methyl ester;L-NAME) on lettuce plants under well watered and drought conditions. Symbiosis 2017. [DOI: 10.1007/s13199-017-0486-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Peng D, Wang X, Li Z, Zhang Y, Peng Y, Li Y, He X, Zhang X, Ma X, Huang L, Yan Y. NO is involved in spermidine-induced drought tolerance in white clover via activation of antioxidant enzymes and genes. PROTOPLASMA 2016; 253:1243-54. [PMID: 26338203 DOI: 10.1007/s00709-015-0880-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 08/20/2015] [Indexed: 05/21/2023]
Abstract
Nitric oxide (NO), a key signaling molecule, can be induced by polyamines (PAs), which play an important role in improving drought tolerance in plants. This study was to further investigate the role of NO in spermidine (Spd)-induced drought tolerance associated with antioxidant defense in leaves of white clover (Trifolium repens) under drought stress induced by -0.3 MPa polyethylene glycol (PEG-6000) solution. A hydroponic growth method was used for cultivating plants in a controlled growth chamber for 30-33 days until the second leaves were fully expanded. Two relative independent experiments were carried out in our study. One is that exogenous application of Spd or an NO donor (sodium nitroprusside (SNP)) significantly improved drought tolerance in whole plants, as demonstrated by better phenotypic appearance, increased relative water content (RWC), and decreased electrolyte leakage (EL) and malondialdehyde (MDA) content in leaves as compared to untreated plants. For another detached leaf experiment, PEG induced an increase in the generation of NO in cells and significantly improved activities of nitrate reductase (NR) and nitric oxide synthase (NOS). These responses could be blocked by pre-treatment with a Spd biosynthetic inhibitor, dicyclohexyl amine (DCHA), and then reversed by application of exogenous Spd. Meanwhile, PEG induced up-regulation of activities and gene transcript levels of corresponding antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and ascorbate peroxidase (APX) to varying degrees, while these effects were partially blocked by pre-treatment with DCHA, the scavenger of NO, the inhibitors of NR or NOS. In addition, Spd-induced antioxidant enzyme activities and gene expression also could be effectively inhibited by an NO scavenger as well as inhibitors of NR and NOS. These findings suggest that both Spd and NO can enhance drought tolerance. Spd was involved in drought stress-activated NR and NOS pathways associated with NO release, which mediated antioxidant defense and thus contributed to drought tolerance in white clover.
Collapse
Affiliation(s)
- Dandan Peng
- Key Laboratory of Grassland Science, Faculty of Animal Science and Technology, Sichuan Agricultural University, Huiming Street 211, Chengdu, Sichuan, 611130, People's Republic of China
| | - Xiaojuan Wang
- Key Laboratory of Grassland Science, Faculty of Animal Science and Technology, Sichuan Agricultural University, Huiming Street 211, Chengdu, Sichuan, 611130, People's Republic of China
| | - Zhou Li
- Key Laboratory of Grassland Science, Faculty of Animal Science and Technology, Sichuan Agricultural University, Huiming Street 211, Chengdu, Sichuan, 611130, People's Republic of China
| | - Yan Zhang
- Key Laboratory of Grassland Science, Faculty of Animal Science and Technology, Sichuan Agricultural University, Huiming Street 211, Chengdu, Sichuan, 611130, People's Republic of China
| | - Yan Peng
- Key Laboratory of Grassland Science, Faculty of Animal Science and Technology, Sichuan Agricultural University, Huiming Street 211, Chengdu, Sichuan, 611130, People's Republic of China.
| | - Yaping Li
- Key Laboratory of Grassland Science, Faculty of Animal Science and Technology, Sichuan Agricultural University, Huiming Street 211, Chengdu, Sichuan, 611130, People's Republic of China
| | - Xiaoshuang He
- Key Laboratory of Grassland Science, Faculty of Animal Science and Technology, Sichuan Agricultural University, Huiming Street 211, Chengdu, Sichuan, 611130, People's Republic of China
| | - Xinquan Zhang
- Key Laboratory of Grassland Science, Faculty of Animal Science and Technology, Sichuan Agricultural University, Huiming Street 211, Chengdu, Sichuan, 611130, People's Republic of China
| | - Xiao Ma
- Key Laboratory of Grassland Science, Faculty of Animal Science and Technology, Sichuan Agricultural University, Huiming Street 211, Chengdu, Sichuan, 611130, People's Republic of China
| | - Linkai Huang
- Key Laboratory of Grassland Science, Faculty of Animal Science and Technology, Sichuan Agricultural University, Huiming Street 211, Chengdu, Sichuan, 611130, People's Republic of China
| | - Yanhong Yan
- Key Laboratory of Grassland Science, Faculty of Animal Science and Technology, Sichuan Agricultural University, Huiming Street 211, Chengdu, Sichuan, 611130, People's Republic of China
| |
Collapse
|
16
|
Ahmad P, Abdel Latef AA, Hashem A, Abd_Allah EF, Gucel S, Tran LSP. Nitric Oxide Mitigates Salt Stress by Regulating Levels of Osmolytes and Antioxidant Enzymes in Chickpea. FRONTIERS IN PLANT SCIENCE 2016; 7:347. [PMID: 27066020 PMCID: PMC4814448 DOI: 10.3389/fpls.2016.00347] [Citation(s) in RCA: 252] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/07/2016] [Indexed: 05/19/2023]
Abstract
This work was designed to evaluate whether external application of nitric oxide (NO) in the form of its donor S-nitroso-N-acetylpenicillamine (SNAP) could mitigate the deleterious effects of NaCl stress on chickpea (Cicer arietinum L.) plants. SNAP (50 μM) was applied to chickpea plants grown under non-saline and saline conditions (50 and 100 mM NaCl). Salt stress inhibited growth and biomass yield, leaf relative water content (LRWC) and chlorophyll content of chickpea plants. High salinity increased electrolyte leakage, carotenoid content and the levels of osmolytes (proline, glycine betaine, soluble proteins and soluble sugars), hydrogen peroxide (H2O2) and malondialdehyde (MDA), as well as the activities of antioxidant enzymes, such as superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase in chickpea plants. Expression of the representative SOD, CAT and APX genes examined was also up-regulated in chickpea plants by salt stress. On the other hand, exogenous application of NO to salinized plants enhanced the growth parameters, LRWC, photosynthetic pigment production and levels of osmolytes, as well as the activities of examined antioxidant enzymes which is correlated with up-regulation of the examined SOD, CAT and APX genes, in comparison with plants treated with NaCl only. Furthermore, electrolyte leakage, H2O2 and MDA contents showed decline in salt-stressed plants supplemented with NO as compared with those in NaCl-treated plants alone. Thus, the exogenous application of NO protected chickpea plants against salt stress-induced oxidative damage by enhancing the biosyntheses of antioxidant enzymes, thereby improving plant growth under saline stress. Taken together, our results demonstrate that NO has capability to mitigate the adverse effects of high salinity on chickpea plants by improving LRWC, photosynthetic pigment biosyntheses, osmolyte accumulation and antioxidative defense system.
Collapse
Affiliation(s)
- Parvaiz Ahmad
- Department of Botany, Sri Pratap CollegeSrinagar, India
| | - Arafat A. Abdel Latef
- Botany Department, Faculty of Science, South Valley UniversityQena, Egypt
- Biology Department, College of Applied Medical Sciences, Taif UniversityTurabah, Saudi Arabia
| | - Abeer Hashem
- Mycology and Plant Disease Survey Department, Plant Pathology Research Institute, Agriculture Research CenterGiza, Egypt
- Botany and Microbiology Department, College of Science, King Saud UniversityRiyadh, Saudi Arabia
| | - Elsayed F. Abd_Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud UniversityRiyadh, Saudi Arabia
| | - Salih Gucel
- Centre for Environmental Research, Near East UniversityNicosia, Cyprus
| | - Lam-Son P. Tran
- Plant Abiotic Stress Research Group & Faculty of Applied Sciences, Ton Duc Thang UniversityHo Chi Minh City, Vietnam
- Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource ScienceYokohama, Japan
| |
Collapse
|
17
|
Yang L, Fountain JC, Wang H, Ni X, Ji P, Lee RD, Kemerait RC, Scully BT, Guo B. Stress Sensitivity Is Associated with Differential Accumulation of Reactive Oxygen and Nitrogen Species in Maize Genotypes with Contrasting Levels of Drought Tolerance. Int J Mol Sci 2015; 16:24791-819. [PMID: 26492235 PMCID: PMC4632777 DOI: 10.3390/ijms161024791] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 09/28/2015] [Accepted: 10/12/2015] [Indexed: 01/24/2023] Open
Abstract
Drought stress decreases crop growth, yield, and can further exacerbate pre-harvest aflatoxin contamination. Tolerance and adaptation to drought stress is an important trait of agricultural crops like maize. However, maize genotypes with contrasting drought tolerances have been shown to possess both common and genotype-specific adaptations to cope with drought stress. In this research, the physiological and metabolic response patterns in the leaves of maize seedlings subjected to drought stress were investigated using six maize genotypes including: A638, B73, Grace-E5, Lo964, Lo1016, and Va35. During drought treatments, drought-sensitive maize seedlings displayed more severe symptoms such as chlorosis and wilting, exhibited significant decreases in photosynthetic parameters, and accumulated significantly more reactive oxygen species (ROS) and reactive nitrogen species (RNS) than tolerant genotypes. Sensitive genotypes also showed rapid increases in enzyme activities involved in ROS and RNS metabolism. However, the measured antioxidant enzyme activities were higher in the tolerant genotypes than in the sensitive genotypes in which increased rapidly following drought stress. The results suggest that drought stress causes differential responses to oxidative and nitrosative stress in maize genotypes with tolerant genotypes with slower reaction and less ROS and RNS production than sensitive ones. These differential patterns may be utilized as potential biological markers for use in marker assisted breeding.
Collapse
Affiliation(s)
- Liming Yang
- United States Department of Agriculture, Agricultural Research Service (USDA-ARS), Crop Protection and Management Research Unit, Tifton, GA 31793, USA.
- Department of Plant Pathology, University of Georgia, Tifton, GA 31793, USA.
- School of Life Sciences, Huaiyin Normal University, Huaian 223300, China.
| | - Jake C Fountain
- Department of Plant Pathology, University of Georgia, Tifton, GA 31793, USA.
| | - Hui Wang
- Department of Plant Pathology, University of Georgia, Tifton, GA 31793, USA.
| | - Xinzhi Ni
- United States Department of Agriculture, Agricultural Research Service (USDA-ARS), Crop Genetics and Breeding Research Unit, Tifton, GA 31793, USA.
| | - Pingsheng Ji
- Department of Plant Pathology, University of Georgia, Tifton, GA 31793, USA.
| | - Robert D Lee
- Department of Crop and Soil Sciences, University of Georgia, Tifton, GA 31793, USA.
| | - Robert C Kemerait
- Department of Plant Pathology, University of Georgia, Tifton, GA 31793, USA.
| | - Brian T Scully
- United States Department of Agriculture, Agricultural Research Service (USDA-ARS), U.S. Horticultural Research Laboratory, Fort Pierce, FL 34945, USA.
| | - Baozhu Guo
- United States Department of Agriculture, Agricultural Research Service (USDA-ARS), Crop Protection and Management Research Unit, Tifton, GA 31793, USA.
| |
Collapse
|
18
|
Santisree P, Bhatnagar-Mathur P, Sharma KK. NO to drought-multifunctional role of nitric oxide in plant drought: Do we have all the answers? PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 239:44-55. [PMID: 26398790 DOI: 10.1016/j.plantsci.2015.07.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 07/16/2015] [Accepted: 07/17/2015] [Indexed: 05/25/2023]
Abstract
Nitric oxide (NO) is a versatile gaseous signaling molecule with increasing significance in plant research due to its association with various stress responses. Although, improved drought tolerance by NO is associated greatly with its ability to reduce stomatal opening and oxidative stress, it can immensely influence other physiological processes such as photosynthesis, proline accumulation and seed germination under water deficit. NO as a free radical can directly alter proteins, enzyme activities, gene transcription, and post-translational modifications that benefit functional recovery from drought. The present drought-mitigating strategies have focused on exogenous application of NO donors for exploring the associated physiological and molecular events, transgenic and mutant studies, but are inadequate. Considering the biphasic effects of NO, a cautious deployment is necessary along with a systematic approach for deciphering positively regulated responses to avoid any cytotoxic effects. Identification of NO target molecules and in-depth analysis of its effects under realistic field drought conditions should be an upmost priority. This detailed synthesis on the role of NO offers new insights on its functions, signaling, regulation, interactions and co-existence with different drought-related events providing future directions for exploiting this molecule towards improving drought tolerance in crop plants.
Collapse
Affiliation(s)
- Parankusam Santisree
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad 502324, Telangana, India.
| | - Pooja Bhatnagar-Mathur
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad 502324, Telangana, India
| | - Kiran K Sharma
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad 502324, Telangana, India
| |
Collapse
|
19
|
Planchet E, Verdu I, Delahaie J, Cukier C, Girard C, Morère-Le Paven MC, Limami AM. Abscisic acid-induced nitric oxide and proline accumulation in independent pathways under water-deficit stress during seedling establishment in Medicago truncatula. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2161-70. [PMID: 24604737 DOI: 10.1093/jxb/eru088] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Nitric oxide (NO) production and amino acid metabolism modulation, in particular abscisic acid (ABA)-dependent proline accumulation, are stimulated in planta by most abiotic stresses. However, the relationship between NO production and proline accumulation under abiotic stress is still poorly understood, especially in the early phases of plant development. To unravel this question, this work investigated the tight relationship between NO production and proline metabolism under water-deficit stress during seedling establishment. Endogenous nitrate reductase-dependent NO production in Medicago truncatula seedlings increased in a time-dependent manner after short-term water-deficit stress. This water-deficit-induced endogenous NO accumulation was mediated through a ABA-dependent pathway and accompanied by an inhibition of seed germination, a loss of water content, and a decrease in elongation of embryo axes. Interestingly, a treatment with a specific NO scavenger (cPTIO) alleviated these water-deficit detrimental effects. However, the content of total amino acids, in particular glutamate and proline, as well as the expression of genes encoding enzymes of synthesis and degradation of proline were not affected by cPTIO treatment under water-deficit stress. Under normal conditions, exogenous NO donor stimulated neither the expression of P5CS2 nor the proline content, as observed after PEG treatment. These results strongly suggest that the modulation of proline metabolism is independent of NO production under short-term water-deficit stress during seedling establishment.
Collapse
Affiliation(s)
- Elisabeth Planchet
- Université d'Angers, Institut de Recherche en Horticulture et Semences UMR 1345, SFR 4207 QUASAV, 2 Bd Lavoisier, F-49045 Angers, France
| | | | | | | | | | | | | |
Collapse
|
20
|
Zheng Y, Hong H, Chen L, Li J, Sheng J, Shen L. LeMAPK1, LeMAPK2, and LeMAPK3 are associated with nitric oxide-induced defense response against Botrytis cinerea in the Lycopersicon esculentum fruit. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:1390-6. [PMID: 24490996 DOI: 10.1021/jf404870d] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Nitric oxide (NO) and mitogen-activated protein kinases (MAPKs) are signal molecules involved in the disease resistance of plants. To investigate the role of tomato MAPKs in the NO-mediated defense response, mature green tomatoes (Lycopersicon esculentum Mill. cv. Qian-xi) were treated with a MAPKs inhibitor (1,4-diamino-2,3-dicyano-1,4-bis(o-amino-phenylmercapto) butadiene (U0126)), NO donor sodium nitroprusside (SNP), and SNP plus U0126. Treatment with U0126 increased the incidence of disease and size of lesion areas in the tomato fruits after being inoculated with Botrytis cinerea. NO enhanced the resistance of the tomato fruits against Botrytis cinerea invasion and the activities of nitric oxide synthase, Chitinase, β-1,3-glucanase, polyphenol oxidase, and phenylalanine ammonia-lyase. However, the effects of NO on disease resistance were weakened by the MAPKs inhibitor. Meanwhile, the relative expression of LeMAPK1, LeMAPK2, and LeMAPK3 in the (SNP + U0126)-treated fruits was lower than that in the SNP-treated fruits. The results suggest that LeMAPK1/2/3 are involved in NO-induced disease resistance of tomato fruits against Botrytis cinerea.
Collapse
Affiliation(s)
- Yanyan Zheng
- College of Food Science and Nutritional Engineering, China Agricultural University , Beijing, 100083, China
| | | | | | | | | | | |
Collapse
|
21
|
Tan J, Zhuo C, Guo Z. Nitric oxide mediates cold- and dehydration-induced expression of a novel MfHyPRP that confers tolerance to abiotic stress. PHYSIOLOGIA PLANTARUM 2013; 149:310-20. [PMID: 23387330 DOI: 10.1111/ppl.12032] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 12/29/2012] [Accepted: 01/07/2013] [Indexed: 05/10/2023]
Abstract
Hybrid proline-rich proteins (HyPRPs) are cell wall-localized proteins, and are frequently responsive to environmental stresses. The coding sequence of a HyPRP cDNA was isolated from Medicago falcata, a forage crop that shows cold and drought tolerance. The predicted MfHyPRP contains a proline-rich domain at N-terminus after the signal peptide and a conserved eight-cysteine motif at the C-terminus. Higher level of MfHyPRP transcript was observed in leaves than in stems and roots under control conditions, while more MfHyPRP transcript was induced in leaves and stems than in roots after cold treatment. Levels of MfHyPRP transcript and MfHyPRP protein in leaves were induced by cold, dehydration, abscisic acid (ABA), hydrogen peroxide (H2 O2) and nitric oxide (NO), but not responsive to salt stress. The cold- or dehydration-induced expression of MfHyPRP was blocked by scavenger of NO, but not affected by inhibitor of ABA biosynthesis or scavenger of H2 O2. The results indicated that NO, but not ABA and H2 O2, was essential in the cold- and dehydration-induced expression of MfHyPRP. Overexpression of MfHyPRP in tobacco led to increased tolerance to freezing, chilling and osmotic stress as well as methyl viologen-induced oxidative stress. The increased cold and osmotic stress tolerance was proposed to be associated with improved protection against oxidative damages. It is suggested that NO mediates cold- and dehydration-induced expression of MfHyPRP that confers tolerance to abiotic stress.
Collapse
Affiliation(s)
- Jiali Tan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China; Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, 510642, China
| | | | | |
Collapse
|
22
|
|
23
|
Zhang X, Shen L, Li F, Meng D, Sheng J. Hot air treatment-induced arginine catabolism is associated with elevated polyamines and proline levels and alleviates chilling injury in postharvest tomato fruit. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2013; 93:3245-51. [PMID: 23576244 DOI: 10.1002/jsfa.6166] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 03/12/2013] [Accepted: 04/09/2013] [Indexed: 05/04/2023]
Abstract
BACKGROUND To understand whether arginine catabolism might be involved in hot air (HA)-induced chilling tolerance mechanism in tomato fruit, we investigated the effect of HA treatment on endogenous arginine catabolism in relation to chilling injury. RESULTS Tomato fruit were harvested at mature green stage and treated with HA at 38°C for 12 h and then stored at 2°C for 21 days. The effects of HA treatment on fruit chilling injury and gene expression levels or enzyme activity, and metabolites related to arginine catabolism were evaluated. HA treatment reduced the chilling injury symptoms of tomato fruit and enhanced the accumulation of endogenous polyamines, especially putrescine and proline. This accumulation is associated with the increased transcript levels of genes encoding arginase (LeARG1 and LeARG2), arginine decarboxylase (LeADC), ornithine decarboxylase (LeODC) and ornithine aminotransferase (LeOAT) at most sampling times. However, HA treatment had little effect on nitric oxide synthase activity and nitric oxide concentration. CONCLUSION These results revealed that the reduction in chilling injury by HA treatment may be due to the accumulation of putrescine and proline induced primarily by activating the catabolism of endogenous arginine.
Collapse
Affiliation(s)
- Xinhua Zhang
- School of Agricultural and Food Engineering, Shandong University of Technology, Zibo, 255049, Shandong, People's Republic of China; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, People's Republic of China
| | | | | | | | | |
Collapse
|
24
|
Signorelli S, Corpas FJ, Borsani O, Barroso JB, Monza J. Water stress induces a differential and spatially distributed nitro-oxidative stress response in roots and leaves of Lotus japonicus. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 201-202:137-46. [PMID: 23352412 DOI: 10.1016/j.plantsci.2012.12.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 12/04/2012] [Accepted: 12/05/2012] [Indexed: 05/21/2023]
Abstract
Water stress is one of the most severe problems for plant growth and productivity. Using the legume Lotus japonicus exposed to water stress, a comparative analysis of key components in metabolism of reactive nitrogen and oxygen species (RNS and ROS, respectively) were made. After water stress treatment plants accumulated proline 23 and 10-fold in roots and leaves respectively, compared with well-watered plants. Significant changes in metabolism of RNS and ROS were observed, with an increase in both protein tyrosine nitration and lipid peroxidation, which indicate that water stress induces a nitro-oxidative stress. In roots, ·NO content was increased and S-nitrosoglutathione reductase activity was reduced by 23%, wherein a specific protein nitration pattern was observed. As part of this response, activity of NADPH-generating dehydrogenases was also affected in roots resulting in an increase of the NADPH/NADP(+) ratio. Our results suggest that in comparison with leaves, roots are significantly affected by water stress inducing an increase in proline and NO content which could highlight multiple functions for these metabolites in water stress adaptation, recovery and signaling. Thus, it is proposed that water stress generates a spatial distribution of nitro-oxidative stress with the oxidative stress component being higher in leaves whereas the nitrosative stress component is higher in roots.
Collapse
Affiliation(s)
- Santiago Signorelli
- Laboratorio de Bioquímica, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, CP 12900 Montevideo, Uruguay
| | | | | | | | | |
Collapse
|
25
|
Fan QJ, Liu JH. Nitric oxide is involved in dehydration/drought tolerance in Poncirus trifoliata seedlings through regulation of antioxidant systems and stomatal response. PLANT CELL REPORTS 2012; 31:145-154. [PMID: 21938448 DOI: 10.1007/s00299-011-1148-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 08/03/2011] [Accepted: 09/01/2011] [Indexed: 05/31/2023]
Abstract
Nitric oxide (NO) is a component of the repertoire of signals implicated in plant responses to environmental stimuli. In the present study, we investigated the effects of exogenous application of NO-releasing donor sodium nitroprusside (SNP) and nitric oxide synthase inhibitor N(G)-nitro-L-arginine-methyl ester (L-NAME) on dehydration and drought tolerance of Poncirus trifoliata. The endogenous NO level was enhanced by SNP pretreatment, but decreased by L-NAME, in the hydroponic or potted plants with or without stresses. Under dehydration, leaves from the SNP-treated hydroponic seedlings displayed less water loss, lower electrolyte leakage and reactive oxygen species accumulation, higher antioxidant enzyme activities and smaller stomatal apertures as compared with the control (treated with water). In addition, pretreatment of the potted plants with SNP resulted in lower electrolyte leakage, higher chlorophyll content, smaller stomatal conductance and larger photosynthetic rate relative to the control. By contrast, the inhibitor treatment changed these physiological attributes or phenotypes in an opposite way. These results indicate that NO in the form of SNP enhanced dehydration and drought tolerance, whereas the inhibitor makes the leaves or plants more sensitive to the stresses. The stress tolerance by NO might be ascribed to a combinatory effect of modulation of stomatal response and activation of the antioxidant enzymes. Taken together, NO is involved in dehydration and drought tolerance of P. trifoliata, implying that manipulation of this signal molecule may provide a practical approach to combat the environmental stresses.
Collapse
Affiliation(s)
- Qi-Jun Fan
- Key Laboratory of Horticultural Plant Biology (MOE), National Key Laboratory of Crop Genetic Improvement, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | | |
Collapse
|
26
|
Xiong J, Zhang L, Fu G, Yang Y, Zhu C, Tao L. Drought-induced proline accumulation is uninvolved with increased nitric oxide, which alleviates drought stress by decreasing transpiration in rice. JOURNAL OF PLANT RESEARCH 2012; 125:155-64. [PMID: 21400017 DOI: 10.1007/s10265-011-0417-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 02/22/2011] [Indexed: 05/04/2023]
Abstract
Accumulation of proline is trusted to be an adaptive response of plants against drought stress, and exogenous application of nitric oxide (NO) enhances proline accumulation in Cu-treated algae. In order to investigate whether NO works as a necessary signaling molecule in drought-induced proline accumulation in rice leaves, effects of drought stress on endogenous NO content and proline accumulation were studied in rice leaves, using sodium nitroprusside (SNP, a NO donor) and 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO, a NO scavenger). The results showed that drought treatment increased both endogenous NO and proline contents in rice leaves, while foliar spray of various concentrations of SNP failed to induce proline accumulation in the leaves of well-watered rice and foliar spray of cPTIO failed to inhibit proline accumulation in the leaves of drought-stressed rice. These results indicate that increase of endogenous NO is dispensable for proline accumulation in the leaves of rice under drought stress. Further studies indicate that exogenous application of NO alleviates drought-induced water loss and ion leakage by decreasing transpiration rate of rice leaves.
Collapse
Affiliation(s)
- Jie Xiong
- State Key Laboratory of Rice Biology, China National Rice Research Institute, 359 Tiyuchang Road, Hangzhou, 310006, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
27
|
Corpas FJ, Leterrier M, Valderrama R, Airaki M, Chaki M, Palma JM, Barroso JB. Nitric oxide imbalance provokes a nitrosative response in plants under abiotic stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 181:604-11. [PMID: 21893257 DOI: 10.1016/j.plantsci.2011.04.005] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 03/11/2011] [Accepted: 04/12/2011] [Indexed: 05/06/2023]
Abstract
Nitric oxide (NO), a free radical generated in plant cells, belongs to a family of related molecules designated as reactive nitrogen species (RNS). When an imbalance of RNS takes place for any adverse environmental circumstances, some of these molecules can cause direct or indirect damage at the cellular or molecular level, promoting a phenomenon of nitrosative stress. Thus, this review will emphasize the recent progress in understanding the function of NO and its production under adverse environmental conditions.
Collapse
Affiliation(s)
- Francisco J Corpas
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, CSIC, Granada, Spain.
| | | | | | | | | | | | | |
Collapse
|
28
|
Zhang X, Shen L, Li F, Meng D, Sheng J. Methyl salicylate-induced arginine catabolism is associated with up-regulation of polyamine and nitric oxide levels and improves chilling tolerance in cherry tomato fruit. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:9351-7. [PMID: 21790190 DOI: 10.1021/jf201812r] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The effects of methyl salicylate (MeSA) on chilling injury (CI) and gene expression levels, enzyme activities, and metabolites related to arginine catabolism in cherry tomato fruit were investigated. Freshly harvested fruits were treated with 0.05 mM MeSA vapor at 20 °C for 12 h and then stored at 2 °C for up to 28 days. MeSA reduced CI and enhanced the accumulation of putrescine, spermidine, and spermine, which was associated with increased gene expression levels and activities of arginase, arginine decarboxylase, and ornithine decarboxylase at most sampling times. MeSA also increased nitric oxide synthase activity, which at least partly contributed to the increased nitric oxide content. The results indicate that MeSA activates the different pathways of arginine catabolism in cold-stored fruit and that the reduction in CI by MeSA may be due to the coordinated metabolism of arginine and the increase in polyamines and nitric oxide levels.
Collapse
Affiliation(s)
- Xinhua Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | | | | | | | | |
Collapse
|
29
|
Siddiqui MH, Al-Whaibi MH, Basalah MO. Role of nitric oxide in tolerance of plants to abiotic stress. PROTOPLASMA 2011; 248:447-55. [PMID: 20827494 DOI: 10.1007/s00709-010-0206-9] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Accepted: 08/26/2010] [Indexed: 05/21/2023]
Abstract
Nitric oxide (NO) has now gained significant place in plant science, mainly due to its properties (free radical, small size, no charge, short-lived, and highly diffusible across biological membranes) and multifunctional roles in plant growth, development, and regulation of remarkable spectrum of plant cellular mechanisms. In the last few years, the role of NO in tolerance of plants to abiotic stress has established much consideration. As it is evident from the present review, recent progress on NO potentiality in tolerance of plants to environmental stresses has been impressive. These investigations suggest that NO, itself, possesses antioxidant properties and might act as a signal in activating ROS-scavenging enzyme activities under abiotic stress. NO plays an important role in resistance to salt, drought, temperature (high and low), UV-B, and heavy metal stress. Rapidly increasing evidences indicate that NO is essentially involve in several physiological processes; however, there has been much disagreement regarding the mechanism(s) by which NO reduces abiotic stress.
Collapse
Affiliation(s)
- Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia.
| | | | | |
Collapse
|
30
|
Liu Y, Jiang H, Zhao Z, An L. Nitric oxide synthase like activity-dependent nitric oxide production protects against chilling-induced oxidative damage in Chorispora bungeana suspension cultured cells. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2010; 48:936-44. [PMID: 20875746 DOI: 10.1016/j.plaphy.2010.09.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 07/07/2010] [Accepted: 09/07/2010] [Indexed: 05/08/2023]
Abstract
In the present study, we used suspension cultured cells from Chorispora bungeana Fisch. and C.A. Mey to investigate whether nitric oxide (NO) is involved in the signaling pathway of chilling adaptive responses. Low temperatures at 4 °C or 0 °C induced ion leakage, lipid peroxidation and cell viability suppression, which were dramatically alleviated by exogenous application of NO donor sodium nitroprusside (SNP). The levels of reactive oxygen species (ROS) were obviously reduced, and the activities of antioxidant enzymes such as ascorbate peroxidase (APX, EC 1.11.1.11), catalase (CAT, EC 1.11.1.6), glutathione reductase (GR, EC 1.6.4.2), peroxidase (POD, EC 1.11.1.7) and superoxide dismutase (SOD, EC 1.15.1.1) and the contents of ascorbic acid (AsA) and reduced glutathione (GSH) increased evidently in the presence of SNP under chilling stress. In addition, under low temperature conditions, treatment with NO scavenger PTIO or mammalian NO synthase (NOS) inhibitor l-NAME remarkably aggravated oxidative damage in the suspension cultures compared with that of chilling treatment alone. Moreover, measurements of NOS activity and NO production showed that both NOS activity and endogenous NO content increased markedly under chilling stress. The accumulation of NO was inhibited by l-NAME in chilling-treated cultures, indicating that most NO production under chilling may be generated from NOS-like activity. Collectively, these results suggest that chilling-induced NO accumulation can effectively protect against oxidative injury and that NOS like activity-dependent NO production might act as an antioxidant directly scavengering ROS or operate as a signal activating antioxidant defense under chilling stress, thus conferring an increased tolerance to chilling in C. bungeana suspension cultures.
Collapse
Affiliation(s)
- Yajie Liu
- Key Laboratory of Arid and Grassland Agroecology of Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou 730000, People's Republic of China
| | | | | | | |
Collapse
|
31
|
Corpas FJ, Palma JM, Del Río LA, Barroso JB. Evidence supporting the existence of L-arginine-dependent nitric oxide synthase activity in plants. THE NEW PHYTOLOGIST 2009; 184:9-14. [PMID: 19659743 DOI: 10.1111/j.1469-8137.2009.02989.x] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Affiliation(s)
- Francisco J Corpas
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín (EEZ), CSIC, Apartado 419, E-18080 Granada, Spain
| | - José M Palma
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín (EEZ), CSIC, Apartado 419, E-18080 Granada, Spain
| | - Luis A Del Río
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín (EEZ), CSIC, Apartado 419, E-18080 Granada, Spain
| | - Juan B Barroso
- Grupo de Señalización Molecular y Sistemas Antioxidantes en Plantas, Unidad Asociada al CSIC (EEZ), Área de Bioquímica y Biología Molecular, Universidad de Jaén, E-23071 Jaén, Spain
| |
Collapse
|