1
|
Wang L, Foster CM, Mentzen WI, Tanvir R, Meng Y, Nikolau BJ, Wurtele ES, Li L. Modulation of the Arabidopsis Starch Metabolic Network by the Cytosolic Acetyl-CoA Pathway in the Context of the Diurnal Illumination Cycle. Int J Mol Sci 2024; 25:10850. [PMID: 39409177 PMCID: PMC11477042 DOI: 10.3390/ijms251910850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/20/2024] Open
Abstract
The starch metabolic network was investigated in relation to other metabolic processes by examining a mutant with altered single-gene expression of ATP citrate lyase (ACL), an enzyme responsible for generating cytosolic acetyl-CoA pool from citrate. Previous research has shown that transgenic antisense plants with reduced ACL activity accumulate abnormally enlarged starch granules. In this study, we explored the underlying molecular mechanisms linking cytosolic acetyl-CoA generation and starch metabolism under short-day photoperiods. We performed transcriptome and quantification of starch accumulation in the leaves of wild-type and antisense seedlings with reduced ACL activity. The antisense-ACLA mutant accumulated more starch than the wild type under short-day conditions. Zymogram analyses were conducted to compare the activities of starch-metabolizing enzymes with transcriptomic changes in the seedling. Differential expression between wild-type and antisense-ACLA plants was detected in genes implicated in starch and acetyl-CoA metabolism, and cell wall metabolism. These analyses revealed a strong correlation between the transcript levels of genes responsible for starch synthesis and degradation, reflecting coordinated regulation at the transcriptomic level. Furthermore, our data provide novel insights into the regulatory links between cytosolic acetyl-CoA metabolism and starch metabolic pathways.
Collapse
Affiliation(s)
- Lei Wang
- College of Life Sciences, Shihezi University, Shihezi 832003, China;
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA;
| | - Carol M. Foster
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA; (C.M.F.); (W.I.M.)
| | - Wieslawa I. Mentzen
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA; (C.M.F.); (W.I.M.)
| | - Rezwan Tanvir
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA;
| | - Yan Meng
- Department of Agriculture, Alcorn State University, Lorman, MS 39096, USA;
| | - Basil J. Nikolau
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, USA;
- Center for Metabolic Biology, Iowa State University, Ames, IA 50011, USA
| | - Eve Syrkin Wurtele
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA; (C.M.F.); (W.I.M.)
- Center for Metabolic Biology, Iowa State University, Ames, IA 50011, USA
| | - Ling Li
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA;
| |
Collapse
|
2
|
Shang H, Lu Y, Xun L, Wang K, Li B, Liu Y, Ma T. Genome assembly of Stephania longa provides insight into cepharanthine biosynthesis. FRONTIERS IN PLANT SCIENCE 2024; 15:1414636. [PMID: 39301160 PMCID: PMC11410628 DOI: 10.3389/fpls.2024.1414636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/21/2024] [Indexed: 09/22/2024]
Abstract
Introduction Stephania longa, a medicinal plant renowned for producing cepharanthine, has gained significance due to the compound's notable antiviral properties against SARS-CoV-2. However, a comprehensive genetic understanding of S. longa has been lacking. This study aimed to develop a high-quality, chromosome-level genome assembly to uncover the genetic intricacies and evolutionary narrative of this species. By integrating genomic data with metabolomic and transcriptomic analyses, we sought to identify key genes involved in cepharanthine biosynthesis. Methods We employed a multi-faceted approach comprising genome assembly, phylogenetic analysis, gene family dynamics investigation, metabolomic profiling, and gene expression analysis across various tissues of S. longa. This integrated strategy enabled the identification of key genes involved in cepharanthine biosynthesis and elucidated the species' evolutionary history. Results Our phylogenetic analysis clarified the placement of the genus Stephania within the Ranunculales order and revealed its notably high mutation rate. We identified gene family expansions and signs of positive selection likely contributing to Stephania's unique metabolic capabilities. Metabolomic profiling uncovered complex regulatory mechanisms orchestrating the biosynthesis and distribution of cepharanthine and related metabolites. Through the integration of genomic, transcriptomic, and metabolomic data, we identified genes with expression patterns and evolutionary trajectories suggesting pivotal roles in cepharanthine biosynthesis, including those involved in crucial biosynthetic steps. Discussion This comprehensive study, integrating genomic, metabolomic, and transcriptomic approaches, provides valuable insights into S. longa's biosynthetic potential. It not only enhances our understanding of the species but also establishes a foundation for future investigations into the biosynthesis and therapeutic exploitation of cepharanthine and related alkaloids.
Collapse
Affiliation(s)
- Huiying Shang
- Xi'an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi'an, Shaanxi, China
| | - Yuan Lu
- Xi'an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi'an, Shaanxi, China
| | - Lulu Xun
- Xi'an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi'an, Shaanxi, China
| | - Kun Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Bin Li
- Xi'an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi'an, Shaanxi, China
| | - Yuxuan Liu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Tao Ma
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Ferreira MJ, Silva J, Takeuchi H, Suzuki T, Higashiyama T, Coimbra S. Transcriptomic landscape of seedstick in Arabidopsis thaliana funiculus after fertilisation. BMC PLANT BIOLOGY 2024; 24:771. [PMID: 39134964 PMCID: PMC11320993 DOI: 10.1186/s12870-024-05489-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
BACKGROUND In Angiosperms, the continuation of plant species is intricately dependent on the funiculus multifaceted role in nutrient transport, mechanical support, and dehiscence of seeds. SEEDSTICK (STK) is a MADS-box transcription factor involved in seed size and abscission, and one of the few genes identified as affecting funiculus growth. Given the importance of the funiculus to a correct seed development, allied with previous phenotypic observations of stk mutants, we performed a transcriptomic analysis of stk funiculi from floral stage 17, using RNA-sequencing, to infer on the deregulated networks of genes. RESULTS The generated dataset of differentially expressed genes was enriched with cell wall biogenesis, cell cycle, sugar metabolism and transport terms, all in accordance with stk phenotype observed in funiculi from floral stage 17. We selected eight differentially expressed genes for transcriptome validation using qPCR and/or promoter reporter lines. Those genes were involved with abscission, seed development or novel functions in stk funiculus, such as hormones/secondary metabolites transport. CONCLUSION Overall, the analysis performed in this study allowed delving into the STK-network established in Arabidopsis funiculus, fulfilling a literature gap. Simultaneously, our findings reinforced the reliability of the transcriptome, making it a valuable resource for candidate genes selection for functional genetic studies in the funiculus. This will enhance our understanding on the regulatory network controlled by STK, on the role of the funiculus and how seed development may be affected by them.
Collapse
Affiliation(s)
- Maria João Ferreira
- LAQV/REQUIMTE, Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, Porto, 4169-007, Portugal
| | - Jessy Silva
- LAQV/REQUIMTE, Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, Porto, 4169-007, Portugal
- School of Sciences, University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| | - Hidenori Takeuchi
- Institute for Advanced Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa- ku, Nagoya, 464-8601, Japan
| | - Takamasa Suzuki
- Department of Biological Chemistry, College of Biosciences and Biotechnology, Chubu University, Kasugai, 487-8501, Aichi, Japan
| | - Tetsuya Higashiyama
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa- ku, Nagoya, 464-8601, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Sílvia Coimbra
- LAQV/REQUIMTE, Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, Porto, 4169-007, Portugal.
| |
Collapse
|
4
|
Sergeeva EM, Larichev KT, Salina EA, Kochetov AV. Starch metabolism in potato <i>Solanum tuberosum</i> L. Vavilovskii Zhurnal Genet Selektsii 2022; 26:250-263. [PMID: 35774362 PMCID: PMC9168746 DOI: 10.18699/vjgb-22-32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 11/19/2022] Open
Abstract
Starch is a major storage carbohydrate in plants. It is an important source of calories in the human and animal diet. Also, it is widely used in various industries. Native starch consists of water-insoluble semicrystalline granules formed by natural glucose polymers amylose and amylopectin. The physicochemical properties of starch are determined by the amylose:amylopectin ratio in the granule and degrees of their polymerization and phosphorylation. Potato Solanum tuberosum L. is one of the main starch-producing crops. Growing industrial needs necessitate the breeding of plant varieties with increased starch content and specified starch properties. This task demands detailed information on starch metabolism in the producing plant. It is a complex process, requiring the orchestrated work of many enzymes, transporter and targeting proteins, transcription factors, and other regulators. Two types of starch are recognized with regard to their biological functions. Transitory starch is synthesized in chloroplasts of photosynthetic organs and degraded in the absence of light, providing carbohydrates for cell needs. Storage starch is synthesized and stored in amyloplasts of storage organs: grains and tubers. The main enzymatic reactions of starch biosynthesis and degradation, as well as carbohydrate transport and metabolism, are well known in the case of transitory starch of the model plant Arabidopsis thaliana. Less is known about features of starch metabolism in storage organs, in particular, potato tubers. Several issues remain obscure: the roles of enzyme isoforms and different regulatory factors in tissues at various plant developmental stages and under different environmental conditions; alternative enzymatic processes; targeting and transport proteins. In this review, the key enzymatic reactions of plant carbohydrate metabolism, transitory and storage starch biosynthesis,
and starch degradation are discussed, and features specific for potato are outlined. Attention is also paid to the
known regulatory factors affecting starch metabolism
Collapse
Affiliation(s)
- E. M. Sergeeva
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| | - K. T. Larichev
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| | - E. A. Salina
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| | - A. V. Kochetov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| |
Collapse
|
5
|
Yu J, Wang K, Beckles DM. Starch branching enzymes as putative determinants of postharvest quality in horticultural crops. BMC PLANT BIOLOGY 2021; 21:479. [PMID: 34674662 PMCID: PMC8529802 DOI: 10.1186/s12870-021-03253-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
Starch branching enzymes (SBEs) are key determinants of the structure and amount of the starch in plant organs, and as such, they have the capacity to influence plant growth, developmental, and fitness processes, and in addition, the industrial end-use of starch. However, little is known about the role of SBEs in determining starch structure-function relations in economically important horticultural crops such as fruit and leafy greens, many of which accumulate starch transiently. Further, a full understanding of the biological function of these types of starches is lacking. Because of this gap in knowledge, this minireview aims to provide an overview of SBEs in horticultural crops, to investigate the potential role of starch in determining postharvest quality. A systematic examination of SBE sequences in 43 diverse horticultural species, identified SBE1, 2 and 3 isoforms in all species examined except apple, olive, and Brassicaceae, which lacked SBE1, but had a duplicated SBE2. Among our findings after a comprehensive and critical review of published data, was that as apple, banana, and tomato fruits ripens, the ratio of the highly digestible amylopectin component of starch increases relative to the more digestion-resistant amylose fraction, with parallel increases in SBE2 transcription, fruit sugar content, and decreases in starch. It is tempting to speculate that during the ripening of these fruit when starch degradation occurs, there are rearrangements made to the structure of starch possibly via branching enzymes to increase starch digestibility to sugars. We propose that based on the known action of SBEs, and these observations, SBEs may affect produce quality, and shelf-life directly through starch accumulation, and indirectly, by altering sugar availability. Further studies where SBE activity is fine-tuned in these crops, can enrich our understanding of the role of starch across species and may improve horticulture postharvest quality.
Collapse
Affiliation(s)
- Jingwei Yu
- Department of Plant Sciences, University of California, One Shields Avenue, Davis, CA, 95616, USA
- Graduate Group of Horticulture & Agronomy, University of California, Davis, CA, 95616, USA
- Present Address: Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, PR China
| | - Keyun Wang
- Department of Plant Sciences, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Diane M Beckles
- Department of Plant Sciences, University of California, One Shields Avenue, Davis, CA, 95616, USA.
| |
Collapse
|
6
|
Vinson CC, Mota APZ, Porto BN, Oliveira TN, Sampaio I, Lacerda AL, Danchin EGJ, Guimaraes PM, Williams TCR, Brasileiro ACM. Characterization of raffinose metabolism genes uncovers a wild Arachis galactinol synthase conferring tolerance to abiotic stresses. Sci Rep 2020; 10:15258. [PMID: 32943670 PMCID: PMC7498584 DOI: 10.1038/s41598-020-72191-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 07/31/2020] [Indexed: 12/31/2022] Open
Abstract
Raffinose family oligosaccharides (RFOs) are implicated in plant regulatory mechanisms of abiotic stresses tolerance and, despite their antinutritional proprieties in grain legumes, little information is available about the enzymes involved in RFO metabolism in Fabaceae species. In the present study, the systematic survey of legume proteins belonging to five key enzymes involved in the metabolism of RFOs (galactinol synthase, raffinose synthase, stachyose synthase, alpha-galactosidase, and beta-fructofuranosidase) identified 28 coding-genes in Arachis duranensis and 31 in A. ipaënsis. Their phylogenetic relationships, gene structures, protein domains, and chromosome distribution patterns were also determined. Based on the expression profiling of these genes under water deficit treatments, a galactinol synthase candidate gene (AdGolS3) was identified in A. duranensis. Transgenic Arabidopsis plants overexpressing AdGolS3 exhibited increased levels of raffinose and reduced stress symptoms under drought, osmotic, and salt stresses. Metabolite and expression profiling suggested that AdGolS3 overexpression was associated with fewer metabolic perturbations under drought stress, together with better protection against oxidative damage. Overall, this study enabled the identification of a promising GolS candidate gene for metabolic engineering of sugars to improve abiotic stress tolerance in crops, whilst also contributing to the understanding of RFO metabolism in legume species.
Collapse
Affiliation(s)
- Christina C Vinson
- EMBRAPA Recursos Genéticos e Biotecnologia. Parque Estação Biológica, Final W5 Norte, Brasília, DF, CP 02372, Brazil
- Departamento de Botânica, Universidade de Brasília, Campus Darcy Ribeiro, Brasília, DF, Brazil
| | - Ana P Z Mota
- EMBRAPA Recursos Genéticos e Biotecnologia. Parque Estação Biológica, Final W5 Norte, Brasília, DF, CP 02372, Brazil
| | - Brenda N Porto
- EMBRAPA Recursos Genéticos e Biotecnologia. Parque Estação Biológica, Final W5 Norte, Brasília, DF, CP 02372, Brazil
| | - Thais N Oliveira
- EMBRAPA Recursos Genéticos e Biotecnologia. Parque Estação Biológica, Final W5 Norte, Brasília, DF, CP 02372, Brazil
| | - Iracyara Sampaio
- EMBRAPA Recursos Genéticos e Biotecnologia. Parque Estação Biológica, Final W5 Norte, Brasília, DF, CP 02372, Brazil
- Departamento de Botânica, Universidade de Brasília, Campus Darcy Ribeiro, Brasília, DF, Brazil
| | - Ana L Lacerda
- EMBRAPA Recursos Genéticos e Biotecnologia. Parque Estação Biológica, Final W5 Norte, Brasília, DF, CP 02372, Brazil
| | | | - Patricia M Guimaraes
- EMBRAPA Recursos Genéticos e Biotecnologia. Parque Estação Biológica, Final W5 Norte, Brasília, DF, CP 02372, Brazil
| | - Thomas C R Williams
- Departamento de Botânica, Universidade de Brasília, Campus Darcy Ribeiro, Brasília, DF, Brazil
| | - Ana C M Brasileiro
- EMBRAPA Recursos Genéticos e Biotecnologia. Parque Estação Biológica, Final W5 Norte, Brasília, DF, CP 02372, Brazil.
| |
Collapse
|
7
|
Zhang J, Yang J, Zhang T, Yang Q, Gao H, Cheng H, Jin H, Wang Y, Qi Z. Arabidopsis thaliana branching enzyme 1 is essential for amylopectin biosynthesis and cesium tolerance. JOURNAL OF PLANT PHYSIOLOGY 2020; 252:153208. [PMID: 32688166 DOI: 10.1016/j.jplph.2020.153208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/10/2020] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
Arabidopsis thaliana BRANCHING ENZYME 1 (AtBE1) is a chloroplast-localized embryo-lethal gene previously identified in knockout mutants. AtBE1 is thought to function in carbohydrate metabolism; however, this has not been experimentally demonstrated. Chlorosis is a typical symptom of cesium (Cs) toxicity in plants. The genetic target of Cs toxicity is largely unknown. Here, we isolated a Cs+-tolerant and chlorophyll-defective Arabidopsis ethyl methanesulfonate (EMS) mutant, atbe1-5. Mapping by sequencing and genetic complementation confirmed that a single amino acid change (P749S) in a random coil motif of AtBE1 confers the mutant's Cs+-tolerant and chlorophyll-defective phenotype. An isothermal titration calorimetry assay determined that the 749th residue is the Cs+-binding site and hence likely the target of Cs+ toxicity. We hypothesized that binding of Cs+ to the 749th residue of AtBE1 inhibits the enzyme's activity and confers Cs+ toxicity, which in turn reduces photosynthetic efficiency. In support with this hypothesis, atbe1-5 leaves have a reduced photosynthetic efficiency, and their amylose and amylopectin contents are ∼60 % and ∼1%, respectively, of those in Col-0 ecotype leaves. Leaves of the mutant have a lower sucrose, but higher maltose, concentration than those of Col-0. This study demonstrated that AtBE1 is an essential gene for amylopectin and amylose biosynthesis, as well as the target of Cs+ toxicity; therefore, it can serve as a genetic locus for engineering plants to extract Cs+ from contaminated soil while maintaining growth.
Collapse
Affiliation(s)
- Junxia Zhang
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010010, PR China
| | - Ju Yang
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010010, PR China; State Key Laboratory of Reproductive Regulatory and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010010, PR China; Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Ting Zhang
- Medical College, Inner Mongolia University for the Nationalities, Tongliao, 028000, PR China
| | - Qihui Yang
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010010, PR China
| | - Hairong Gao
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010010, PR China
| | - Hongmei Cheng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Huiqing Jin
- Research Centre for Horticultural Science and Technology of Hohhot, Hohhot, 010020, PR China
| | - Yufen Wang
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010010, PR China.
| | - Zhi Qi
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010010, PR China; State Key Laboratory of Reproductive Regulatory and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010010, PR China; Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China.
| |
Collapse
|
8
|
Abt MR, Zeeman SC. Evolutionary innovations in starch metabolism. CURRENT OPINION IN PLANT BIOLOGY 2020; 55:109-117. [PMID: 32428846 DOI: 10.1016/j.pbi.2020.03.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 05/23/2023]
Abstract
The traditional view of starch metabolism has focused on the multiplicity of enzymes and enzyme isoforms contributing to the production of the constituent polymers, amylopectin and amylose. However, knowledge of these enzymes has not provided a full insight into many aspects of starch biosynthesis. This enzyme-centered view has recently been augmented by the discovery and characterization of novel proteins with proposed regulatory, scaffolding, and interactive roles. This begins to reveal an unprecedented level of complexity beyond mere glucan biosynthesis, enabling us to envisage how starch granules are initiated and grow into specific forms, allowing it to serve biological roles beyond just carbohydrate storage. This review focuses on very recent findings in this vibrant field, highlighting the evolutionary novelty.
Collapse
Affiliation(s)
- Melanie R Abt
- Institute of Molecular Plant Biology, Department of Biology, ETH Zurich, Universitätstrasse 2, 8092 Zurich, Switzerland
| | - Samuel C Zeeman
- Institute of Molecular Plant Biology, Department of Biology, ETH Zurich, Universitätstrasse 2, 8092 Zurich, Switzerland.
| |
Collapse
|
9
|
Smith AM, Zeeman SC. Starch: A Flexible, Adaptable Carbon Store Coupled to Plant Growth. ANNUAL REVIEW OF PLANT BIOLOGY 2020; 71:217-245. [PMID: 32075407 DOI: 10.1146/annurev-arplant-050718-100241] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Research in the past decade has uncovered new and surprising information about the pathways of starch synthesis and degradation. This includes the discovery of previously unsuspected protein families required both for processes and for the long-sought mechanism of initiation of starch granules. There is also growing recognition of the central role of leaf starch turnover in making carbon available for growth across the day-night cycle. Sophisticated systems-level control mechanisms involving the circadian clock set rates of nighttime starch mobilization that maintain a steady supply of carbon until dawn and modulate partitioning of photosynthate into starch in the light, optimizing the fraction of assimilated carbon that can be used for growth. These discoveries also uncover complexities: Results from experiments with Arabidopsis leaves in conventional controlled environments are not necessarily applicable to other organs or species or to growth in natural, fluctuating environments.
Collapse
Affiliation(s)
| | - Samuel C Zeeman
- Institute of Plant Molecular Biology, ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
10
|
Tuncel A, Corbin KR, Ahn‐Jarvis J, Harris S, Hawkins E, Smedley MA, Harwood W, Warren FJ, Patron NJ, Smith AM. Cas9-mediated mutagenesis of potato starch-branching enzymes generates a range of tuber starch phenotypes. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:2259-2271. [PMID: 31033104 PMCID: PMC6835119 DOI: 10.1111/pbi.13137] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/03/2019] [Accepted: 04/23/2019] [Indexed: 05/20/2023]
Abstract
We investigated whether Cas9-mediated mutagenesis of starch-branching enzymes (SBEs) in tetraploid potatoes could generate tuber starches with a range of distinct properties. Constructs containing the Cas9 gene and sgRNAs targeting SBE1, SBE2 or both genes were introduced by Agrobacterium-mediated transformation or by PEG-mediated delivery into protoplasts. Outcomes included lines with mutations in all or only some of the homoeoalleles of SBE genes and lines in which homoeoalleles carried several different mutations. DNA delivery into protoplasts resulted in mutants with no detectable Cas9 gene, suggesting the absence of foreign DNA. Selected mutants with starch granule abnormalities had reductions in tuber SBE1 and/or SBE2 protein that were broadly in line with expectations from genotype analysis. Strong reduction in both SBE isoforms created an extreme starch phenotype, as reported previously for low-SBE potato tubers. HPLC-SEC and 1 H NMR revealed a decrease in short amylopectin chains, an increase in long chains and a large reduction in branching frequency relative to wild-type starch. Mutants with strong reductions in SBE2 protein alone had near-normal amylopectin chain-length distributions and only small reductions in branching frequency. However, starch granule initiation was enormously increased: cells contained many granules of <4 μm and granules with multiple hila. Thus, large reductions in both SBEs reduce amylopectin branching during granule growth, whereas reduction in SBE2 alone primarily affects numbers of starch granule initiations. Our results demonstrate that Cas9-mediated mutagenesis of SBE genes has the potential to generate new, potentially valuable starch properties without integration of foreign DNA into the genome.
Collapse
Affiliation(s)
| | | | | | - Suzanne Harris
- Quadram Institute BioscienceNorwich Research ParkNorwichUK
| | | | | | | | | | | | | |
Collapse
|
11
|
Aguirre M, Kiegle E, Leo G, Ezquer I. Carbohydrate reserves and seed development: an overview. PLANT REPRODUCTION 2018; 31:263-290. [PMID: 29728792 DOI: 10.1007/s00497-018-0336-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 04/23/2018] [Indexed: 06/08/2023]
Abstract
Seeds are one of the most important food sources, providing humans and animals with essential nutrients. These nutrients include carbohydrates, lipids, proteins, vitamins and minerals. Carbohydrates are one of the main energy sources for both plant and animal cells and play a fundamental role in seed development, human nutrition and the food industry. Many studies have focused on the molecular pathways that control carbohydrate flow during seed development in monocot and dicot species. For this reason, an overview of seed biodiversity focused on the multiple metabolic and physiological mechanisms that govern seed carbohydrate storage function in the plant kingdom is required. A large number of mutants affecting carbohydrate metabolism, which display defective seed development, are currently available for many plant species. The physiological, biochemical and biomolecular study of such mutants has led researchers to understand better how metabolism of carbohydrates works in plants and the critical role that these carbohydrates, and especially starch, play during seed development. In this review, we summarize and analyze the newest findings related to carbohydrate metabolism's effects on seed development, pointing out key regulatory genes and enzymes that influence seed sugar import and metabolism. Our review also aims to provide guidelines for future research in the field and in this way to assist seed quality optimization by targeted genetic engineering and classical breeding programs.
Collapse
Affiliation(s)
- Manuel Aguirre
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133, Milan, Italy
- FNWI, University of Amsterdam, 1098 XH, Amsterdam, The Netherlands
| | - Edward Kiegle
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133, Milan, Italy
| | - Giulia Leo
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133, Milan, Italy
| | - Ignacio Ezquer
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133, Milan, Italy.
| |
Collapse
|
12
|
Van Harsselaar JK, Lorenz J, Senning M, Sonnewald U, Sonnewald S. Genome-wide analysis of starch metabolism genes in potato (Solanum tuberosum L.). BMC Genomics 2017; 18:37. [PMID: 28056783 PMCID: PMC5217216 DOI: 10.1186/s12864-016-3381-z] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 12/06/2016] [Indexed: 12/11/2022] Open
Abstract
Background Starch is the principle constituent of potato tubers and is of considerable importance for food and non-food applications. Its metabolism has been subject of extensive research over the past decades. Despite its importance, a description of the complete inventory of genes involved in starch metabolism and their genome organization in potato plants is still missing. Moreover, mechanisms regulating the expression of starch genes in leaves and tubers remain elusive with regard to differences between transitory and storage starch metabolism, respectively. This study aimed at identifying and mapping the complete set of potato starch genes, and to study their expression pattern in leaves and tubers using different sets of transcriptome data. Moreover, we wanted to uncover transcription factors co-regulated with starch accumulation in tubers in order to get insight into the regulation of starch metabolism. Results We identified 77 genomic loci encoding enzymes involved in starch metabolism. Novel isoforms of many enzymes were found. Their analysis will help to elucidate mechanisms of starch biosynthesis and degradation. Expression analysis of starch genes led to the identification of tissue-specific isoenzymes suggesting differences in the transcriptional regulation of starch metabolism between potato leaf and tuber tissues. Selection of genes predominantly expressed in developing potato tubers and exhibiting an expression pattern indicative for a role in starch biosynthesis enabled the identification of possible transcriptional regulators of tuber starch biosynthesis by co-expression analysis. Conclusions This study provides the annotation of the complete set of starch metabolic genes in potato plants and their genomic localizations. Novel, so far undescribed, enzyme isoforms were revealed. Comparative transcriptome analysis enabled the identification of tuber- and leaf-specific isoforms of starch genes. This finding suggests distinct regulatory mechanisms in transitory and storage starch metabolism. Putative regulatory proteins of starch biosynthesis in potato tubers have been identified by co-expression and their expression was verified by quantitative RT-PCR. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3381-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jessica K Van Harsselaar
- Department of Biology, Division of Biochemistry, Friedrich-Alexander-University Erlangen-Nuremberg, Staudtstrasse 5, 91058, Erlangen, Germany
| | - Julia Lorenz
- Department of Biology, Division of Biochemistry, Friedrich-Alexander-University Erlangen-Nuremberg, Staudtstrasse 5, 91058, Erlangen, Germany
| | - Melanie Senning
- Department of Biology, Division of Biochemistry, Friedrich-Alexander-University Erlangen-Nuremberg, Staudtstrasse 5, 91058, Erlangen, Germany
| | - Uwe Sonnewald
- Department of Biology, Division of Biochemistry, Friedrich-Alexander-University Erlangen-Nuremberg, Staudtstrasse 5, 91058, Erlangen, Germany
| | - Sophia Sonnewald
- Department of Biology, Division of Biochemistry, Friedrich-Alexander-University Erlangen-Nuremberg, Staudtstrasse 5, 91058, Erlangen, Germany.
| |
Collapse
|
13
|
Pfister B, Sánchez-Ferrer A, Diaz A, Lu K, Otto C, Holler M, Shaik FR, Meier F, Mezzenga R, Zeeman SC. Recreating the synthesis of starch granules in yeast. eLife 2016; 5:e15552. [PMID: 27871361 PMCID: PMC5119888 DOI: 10.7554/elife.15552] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 10/08/2016] [Indexed: 11/13/2022] Open
Abstract
Starch, as the major nutritional component of our staple crops and a feedstock for industry, is a vital plant product. It is composed of glucose polymers that form massive semi-crystalline granules. Its precise structure and composition determine its functionality and thus applications; however, there is no versatile model system allowing the relationships between the biosynthetic apparatus, glucan structure and properties to be explored. Here, we expressed the core Arabidopsis starch-biosynthesis pathway in Saccharomyces cerevisiae purged of its endogenous glycogen-metabolic enzymes. Systematic variation of the set of biosynthetic enzymes illustrated how each affects glucan structure and solubility. Expression of the complete set resulted in dense, insoluble granules with a starch-like semi-crystalline organization, demonstrating that this system indeed simulates starch biosynthesis. Thus, the yeast system has the potential to accelerate starch research and help create a holistic understanding of starch granule biosynthesis, providing a basis for the targeted biotechnological improvement of crops.
Collapse
Affiliation(s)
| | | | - Ana Diaz
- Paul Scherrer Institut, Villigen, Switzerland
| | - Kuanjen Lu
- Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Caroline Otto
- Department of Biology, ETH Zürich, Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
Starch-rich crops form the basis of our nutrition, but plants have still to yield all their secrets as to how they make this vital substance. Great progress has been made by studying both crop and model systems, and we approach the point of knowing the enzymatic machinery responsible for creating the massive, insoluble starch granules found in plant tissues. Here, we summarize our current understanding of these biosynthetic enzymes, highlighting recent progress in elucidating their specific functions. Yet, in many ways we have only scratched the surface: much uncertainty remains about how these components function together and are controlled. We flag-up recent observations suggesting a significant degree of flexibility during the synthesis of starch and that previously unsuspected non-enzymatic proteins may have a role. We conclude that starch research is not yet a mature subject and that novel experimental and theoretical approaches will be important to advance the field.
Collapse
Affiliation(s)
- Barbara Pfister
- Department of Biology, ETH Zurich, 8092, Zurich, Switzerland
| | - Samuel C Zeeman
- Department of Biology, ETH Zurich, 8092, Zurich, Switzerland.
| |
Collapse
|
15
|
|
16
|
Busi MV, Gomez-Casati DF, Martín M, Barchiesi J, Grisolía MJ, Hedín N, Carrillo JB. Starch Metabolism in Green Plants. POLYSACCHARIDES 2014. [DOI: 10.1007/978-3-319-03751-6_78-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
17
|
Abstract
Starch is the major non-structural carbohydrate in plants. It serves as an important store of carbon that fuels plant metabolism and growth when they are unable to photosynthesise. This storage can be in leaves and other green tissues, where it is degraded during the night, or in heterotrophic tissues such as roots, seeds and tubers, where it is stored over longer time periods. Arabidopsis accumulates starch in many of its tissues, but mostly in its leaves during the day. It has proven to be a powerful genetic system for discovering how starch is synthesised and degraded, and new proteins and processes have been discovered. Such work has major significance for our starch crops, whose yield and quality could be improved by the application of this knowledge. Research into Arabidopsis starch metabolism has begun to reveal how its daily turnover is integrated into the rest of metabolism and adapted to the environmental conditions. Furthermore, Arabidopsis mutant lines deficient in starch metabolism have been employed as tools to study other biological processes ranging from sugar sensing to gravitropism and flowering time control. This review gives a detailed account of the use of Arabidopsis to study starch metabolism. It describes the major discoveries made and presents an overview of our understanding today, together with some as-yet unresolved questions.
Collapse
Affiliation(s)
- Sebastian Streb
- Institute of Agricultural Sciences, Department of Biology, ETH
Zurich, Universitätstrasse 2, Zurich, Switzerland
| | - Samuel C. Zeeman
- Institute of Agricultural Sciences, Department of Biology, ETH
Zurich, Universitätstrasse 2, Zurich, Switzerland
| |
Collapse
|
18
|
Li C, Li QG, Dunwell JM, Zhang YM. Divergent evolutionary pattern of starch biosynthetic pathway genes in grasses and dicots. Mol Biol Evol 2012; 29:3227-36. [PMID: 22586327 DOI: 10.1093/molbev/mss131] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Starch is the most widespread and abundant storage carbohydrate in crops and its production is critical to both crop yield and quality. In regard to the starch content in the seeds of crop plants, there is a distinct difference between grasses (Poaceae) and dicots. However, few studies have described the evolutionary pattern of genes in the starch biosynthetic pathway in these two groups of plants. In this study, therefore, an attempt was made to compare evolutionary rate, gene duplication, and selective pattern of the key genes involved in this pathway between the two groups, using five grasses and five dicots as materials. The results showed 1) distinct differences in patterns of gene duplication and loss between grasses and dicots; duplication in grasses mainly occurred before the divergence of grasses, whereas duplication mostly occurred in individual species within the dicots; there is less gene loss in grasses than in dicots, 2) a considerably higher evolutionary rate in grasses than in dicots in most gene families analyzed, and 3) evidence of a different selective pattern between grasses and dicots; positive selection may have occurred asymmetrically in grasses in some gene families, for example, ADP-glucose pyrophosphorylase small subunit. Therefore, we deduced that gene duplication contributes to, and a higher evolutionary rate is associated with, the higher starch content in grasses. In addition, two novel aspects of the evolution of the starch biosynthetic pathway were observed.
Collapse
Affiliation(s)
- Chun Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Department of Crop Genetics and Breeding, Nanjing Agricultural University, Nanjing, People's Republic of China
| | | | | | | |
Collapse
|
19
|
Santelia D, Zeeman SC. Progress in Arabidopsis starch research and potential biotechnological applications. Curr Opin Biotechnol 2011; 22:271-80. [DOI: 10.1016/j.copbio.2010.11.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 11/25/2010] [Accepted: 11/25/2010] [Indexed: 11/30/2022]
|