1
|
Anticarcinogenic Effects of Isothiocyanates on Hepatocellular Carcinoma. Int J Mol Sci 2022; 23:ijms232213834. [PMID: 36430307 PMCID: PMC9693344 DOI: 10.3390/ijms232213834] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer, accounting for about 90% of cases. Sorafenib, lenvatinib, and the combination of atezolizumab and bevacizumab are considered first-line treatments for advanced HCC. However, clinical application of these drugs has also caused some adverse reactions such as hypertension, elevated aspartate aminotransferases, and proteinuria. At present, natural products and their derivatives have drawn more and more attention due to less side effects as cancer treatments. Isothiocyanates (ITCs) are one type of hydrolysis products from glucosinolates (GLSs), secondary plant metabolites found exclusively in cruciferous vegetables. Accumulating evidence from encouraging in vitro and in vivo animal models has demonstrated that ITCs have multiple biological activities, especially their potentially health-promoting activities (antibacterial, antioxidant, and anticarcinogenic effects). In this review, we aim to comprehensively summarize the chemopreventive, anticancer, and chemosensitizative effects of ITCs on HCC, and explain the underlying molecular mechanisms.
Collapse
|
2
|
Ramos-Tovar E, Muriel P. Free radicals, antioxidants, nuclear factor-E2-related factor-2 and liver damage. VITAMINS AND HORMONES 2022; 121:271-292. [PMID: 36707137 DOI: 10.1016/bs.vh.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The liver performs various biochemical and molecular functions. Its location as a portal to blood arriving from the intestines makes it susceptible to several insults, leading to diverse pathologies, including alcoholic liver disease, viral infections, nonalcoholic steatohepatitis, and hepatocellular carcinoma, which are causes of death worldwide. Illuminating the molecular mechanism underlying hepatic injury will provide targets to develop new therapeutic strategies to fight liver maladies. In this regard, reactive oxygen species (ROS) are well-recognized mediators of liver damage. ROS induce nuclear factor-κB and the nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 inflammasome, which are the main proinflammatory signaling pathways that upregulate several proinflammatory and profibrogenic mediators. Additionally, oxygen-derived free radicals induce hepatic stellate cell activation to produce exacerbated quantities of extracellular matrix proteins, leading to fibrosis, cirrhosis and eventually hepatocellular carcinoma. Exogenous and endogenous antioxidants counteract the harmful effects of ROS, preventing liver necroinflammation and fibrogenesis. Therefore, several researchers have demonstrated that the administration of antioxidants, mainly derived from plants, affords beneficial effects on the liver. Notably, nuclear factor-E2-related factor-2 (Nrf2) is a major factor against oxidative stress in the liver. Increasing evidence has demonstrated that Nrf2 plays an important role in liver necroinflammation and fibrogenesis via the induction of antioxidant response element genes. The use of Nrf2 inducers seems to be an interesting approach to prevent/attenuate hepatic disorders, particularly under conditions where ROS play a causative role.
Collapse
Affiliation(s)
- Erika Ramos-Tovar
- Postgraduate Studies and Research Section, School of Higher Education in Medicine-IPN, Mexico City, Mexico.
| | - Pablo Muriel
- Laboratory of Experimental Hepatology, Department of Pharmacology, Cinvestav-IPN, Mexico City, Mexico.
| |
Collapse
|
3
|
Lorenzetti S, Plösch T, Teller IC. Antioxidative Molecules in Human Milk and Environmental Contaminants. Antioxidants (Basel) 2021; 10:550. [PMID: 33916168 PMCID: PMC8065843 DOI: 10.3390/antiox10040550] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 12/21/2022] Open
Abstract
Breastfeeding provides overall beneficial health to the mother-child dyad and is universally recognized as the preferred feeding mode for infants up to 6-months and beyond. Human milk provides immuno-protection and supplies nutrients and bioactive compounds whose concentrations vary with lactation stage. Environmental and dietary factors potentially lead to excessive chemical exposure in critical windows of development such as neonatal life, including lactation. This review discusses current knowledge on these environmental and dietary contaminants and summarizes the known effects of these chemicals in human milk, taking into account the protective presence of antioxidative molecules. Particular attention is given to short- and long-term effects of these contaminants, considering their role as endocrine disruptors and potential epigenetic modulators. Finally, we identify knowledge gaps and indicate potential future research directions.
Collapse
Affiliation(s)
- Stefano Lorenzetti
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità (ISS), 00161 Rome, Italy;
| | - Torsten Plösch
- Perinatal Neurobiology, Department of Human Medicine, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany;
- Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | | |
Collapse
|
4
|
Nrf2 in Neoplastic and Non-Neoplastic Liver Diseases. Cancers (Basel) 2020; 12:cancers12102932. [PMID: 33053665 PMCID: PMC7599585 DOI: 10.3390/cancers12102932] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/29/2020] [Accepted: 10/08/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Although the Keap1-Nrf2 pathway represents a powerful cell defense mechanism against a variety of toxic insults, its role in acute or chronic liver damage and tumor development is not completely understood. This review addresses how Nrf2 is involved in liver pathophysiology and critically discusses the contrasting results emerging from the literature. The aim of the present report is to stimulate further investigation on the role of Nrf2 that could lead to define the best strategies to therapeutically target this pathway. Abstract Activation of the Keap1/Nrf2 pathway, the most important cell defense signal, triggered to neutralize the harmful effects of electrophilic and oxidative stress, plays a crucial role in cell survival. Therefore, its ability to attenuate acute and chronic liver damage, where oxidative stress represents the key player, is not surprising. On the other hand, while Nrf2 promotes proliferation in cancer cells, its role in non-neoplastic hepatocytes is a matter of debate. Another topic of uncertainty concerns the nature of the mechanisms of Nrf2 activation in hepatocarcinogenesis. Indeed, it remains unclear what is the main mechanism behind the sustained activation of the Keap1/Nrf2 pathway in hepatocarcinogenesis. This raises doubts about the best strategies to therapeutically target this pathway. In this review, we will analyze and discuss our present knowledge concerning the role of Nrf2 in hepatic physiology and pathology, including hepatocellular carcinoma. In particular, we will critically examine and discuss some findings originating from animal models that raise questions that still need to be adequately answered.
Collapse
|
5
|
Gong Y, Yang Y. Activation of Nrf2/AREs-mediated antioxidant signalling, and suppression of profibrotic TGF-β1/Smad3 pathway: a promising therapeutic strategy for hepatic fibrosis - A review. Life Sci 2020; 256:117909. [PMID: 32512009 DOI: 10.1016/j.lfs.2020.117909] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/19/2020] [Accepted: 06/01/2020] [Indexed: 02/07/2023]
Abstract
Hepatic fibrosis (HF) is a wound-healing response that occurs during chronic liver injury and features by an excessive accumulation of extracellular matrix (ECM) components. Activation of hepatic stellate cell (HSC), the leading effector in HF, is responsible for overproduction of ECM. It has been documented that transforming growth factor-β1 (TGF-β1) stimulates superfluous accumulation of ECM and triggers HSCs activation mainly via canonical Smad-dependent pathway. Also, the pro-fibrogenic TGF-β1 is correlated with generation of reactive oxygen species (ROS) and inhibition of antioxidant mechanisms. Moreover, involvement of oxidative stress (OS) can be clearly elucidated as a fundamental event in liver fibrogenesis. Nuclear factor erythroid 2-related factor 2-antioxidant response elements (Nrf2-AREs) pathway, a group of OS-mediated transcription factors with diverse downstream targets, is associated with the induction of diverse detoxifying enzymes and the most pivotal endogenous antioxidative system. More specifically, Nrf2-AREs pathway has recently assigned as a new therapeutic target for cure of HF. The overall goal of this review will focus on recent findings about activation of Nrf2-AREs-mediated antioxidant and suppression of profibrotic TGF-β1/Smad3 pathway in the liver, providing an overview of recent advances in transcriptional repressors that dislocated during HF formation, and highlighting possible novel therapeutic targets for liver fibrosis.
Collapse
Affiliation(s)
- Yongfang Gong
- Department of Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Hefei 230032, China
| | - Yan Yang
- Department of Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Hefei 230032, China.
| |
Collapse
|
6
|
Saeedi BJ, Liu KH, Owens JA, Hunter-Chang S, Camacho MC, Eboka RU, Chandrasekharan B, Baker NF, Darby TM, Robinson BS, Jones RM, Jones DP, Neish AS. Gut-Resident Lactobacilli Activate Hepatic Nrf2 and Protect Against Oxidative Liver Injury. Cell Metab 2020; 31:956-968.e5. [PMID: 32213347 PMCID: PMC7329068 DOI: 10.1016/j.cmet.2020.03.006] [Citation(s) in RCA: 196] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/09/2020] [Accepted: 03/03/2020] [Indexed: 02/07/2023]
Abstract
Many studies have suggested a role for gut-resident microbes (the "gut microbiome") in modulating host health; however, the mechanisms by which they impact systemic physiology remain largely unknown. In this study, metabolomic and transcriptional profiling of germ-free and conventionalized mouse liver revealed an upregulation of the Nrf2 antioxidant and xenobiotic response in microbiome-replete animals. Using a Drosophila-based screening assay, we identified members of the genus Lactobacillus capable of stimulating Nrf2. Indeed, the human commensal Lactobacillus rhamnosus GG (LGG) potently activated Nrf2 in the Drosophila liver analog and the murine liver. This activation was sufficient to protect against two models of oxidative liver injury, acetaminophen overdose and acute ethanol toxicity. Characterization of the portal circulation of LGG-treated mice by tandem mass spectrometry identified a small molecule activator of Nrf2, 5-methoxyindoleacetic acid, produced by LGG. Taken together, these data demonstrate a mechanism by which intestinal microbes modulate hepatic susceptibility to oxidative injury.
Collapse
Affiliation(s)
- Bejan J Saeedi
- Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ken H Liu
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Joshua A Owens
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Sarah Hunter-Chang
- Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Mary C Camacho
- Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Richard U Eboka
- Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Bindu Chandrasekharan
- Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Nusaiba F Baker
- Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Trevor M Darby
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Brian S Robinson
- Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Rheinallt M Jones
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Dean P Jones
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Andrew S Neish
- Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
7
|
Wen JJ, Cummins CB, Szczesny B, Radhakrishnan RS. Cardiac Dysfunction after Burn Injury: Role of the AMPK-SIRT1-PGC1α-NFE2L2-ARE Pathway. J Am Coll Surg 2020; 230:562-571. [PMID: 32032722 DOI: 10.1016/j.jamcollsurg.2019.12.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 12/29/2022]
Abstract
BACKGROUND Mitochondrial oxidative stress plays a prominent role in the development of burn-induced cardiac dysfunction. AMP-activated kinase (AMPK), an energy sensor, has a central role in the pathogenesis of heart failure. However, its role in cardiac dysfunction after burn injury is unclear. Our hypothesis is that burn injury acts through the AMPK-sirtuin 1-PGC1α-nuclear factor erythroid 2-related factor 2 (NFE2L2)-ARE signaling pathway, leading to cardiac mitochondrial impairment, resulting in cardiac dysfunction. STUDY DESIGN Male Sprague-Dawley rats underwent sham procedure or 60% total body surface area full-thickness burn. Echocardiograms were performed 24 hours post burn. Heart tissue was harvested at 24 hours post burn for biochemistry/molecular biologic analysis. AC16 cardiomyocytes were treated with either sham or burned rat serum (±AMPK inhibitor/AMPK activator/PGC1α activator) for evaluation of cardiomyocyte mitochondrial function by using seahorse in vitro. RESULTS Burn injury-induced cardiac dysfunction was measured by echocardiogram. Burn injury suppressed cardiac AMPK, sirtuin 1, and PGC1 expression, leading to acetylation of cardiomyocyte proteins. In addition, burn injury caused NFE2L2 and NFE2L2 regulated antioxidants (heme oxygenase 1, NADH quinone oxidoreductase 1, glutamatecysteine ligase catalytic subunit, manganese superoxide dismutase, and glutathione peroxidase) to decrease, resulting in cardiac oxidative stress. In vitro, AMPK1 activator and PGC1α agonist treatment improved Ac16 cell mitochondrial dysfunction, and AMPK1 inhibitor treatment worsened Ac16 cellular damage. CONCLUSIONS Burn-induced cardiac dysfunction and cardiac mitochondrial damage occur via the AMPK-sirtuin 1-PGC1α-NFE2L2-ARE signaling pathway. AMPK and PGC1α agonists might be promising therapeutic agents to reverse cardiac dysfunction after burn injury.
Collapse
Affiliation(s)
- Jake J Wen
- Department of Surgery, University of Texas Medical Branch, Galveston, TX
| | - Claire B Cummins
- Department of Surgery, University of Texas Medical Branch, Galveston, TX
| | - Bartosz Szczesny
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX
| | | |
Collapse
|
8
|
Luo J, Yan D, Li S, Liu S, Zeng F, Cheung CW, Liu H, Irwin MG, Huang H, Xia Z. Allopurinol reduces oxidative stress and activates Nrf2/p62 to attenuate diabetic cardiomyopathy in rats. J Cell Mol Med 2019; 24:1760-1773. [PMID: 31856386 PMCID: PMC6991641 DOI: 10.1111/jcmm.14870] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 10/15/2019] [Accepted: 11/06/2019] [Indexed: 12/21/2022] Open
Abstract
Allopurinol (ALP) attenuates oxidative stress and diabetic cardiomyopathy (DCM), but the mechanism is unclear. Activation of nuclear factor erythroid 2‐related factor 2 (Nrf2) following the disassociation with its repressor Keap1 under oxidative stress can maintain inner redox homeostasis and attenuate DCM with concomitant attenuation of autophagy. We postulated that ALP treatment may activate Nrf2 to mitigate autophagy over‐activation and consequently attenuate DCM. Streptozotocin‐induced type 1 diabetic rats were untreated or treated with ALP (100 mg/kg/d) for 4 weeks and terminated after heart function measurements by echocardiography and pressure‐volume conductance system. Cardiomyocyte H9C2 cells infected with Nrf2 siRNA or not were incubated with high glucose (HG, 25 mmol/L) concomitantly with ALP treatment. Cell viability, lactate dehydrogenase, 15‐F2t‐Isoprostane and superoxide dismutase (SOD) were measured with colorimetric enzyme‐linked immunosorbent assays. ROS, apoptosis, was assessed by dihydroethidium staining and TUNEL, respectively. The Western blot and qRT‐PCR were used to assess protein and mRNA variations. Diabetic rats showed significant reductions in heart rate (HR), left ventricular eject fraction (LVEF), stroke work (SW) and cardiac output (CO), left ventricular end‐systolic volume (LVVs) as compared to non‐diabetic control and ALP improved or normalized HR, LVEF, SW, CO and LVVs in diabetic rats (all P < .05). Hearts of diabetic rats displayed excessive oxidative stress manifested as increased levels of 15‐F2t‐Isoprostane and superoxide anion production, increased apoptotic cell death and cardiomyocytes autophagy that were concomitant with reduced expressions of Nrf2, heme oxygenase‐1 (HO‐1) and Keap1. ALP reverted all the above‐mentioned diabetes‐induced biochemical changes except that it did not affect the levels of Keap1. In vitro, ALP increased Nrf2 and reduced the hyperglycaemia‐induced increases of H9C2 cardiomyocyte hypertrophy, oxidative stress, apoptosis and autophagy, and enhanced cellular viability. Nrf2 gene silence cancelled these protective effects of ALP in H9C2 cells. Activation of Nrf2 subsequent to the suppression of Keap1 and the mitigation of autophagy over‐activation may represent major mechanisms whereby ALP attenuates DCM.
Collapse
Affiliation(s)
- Jierong Luo
- Department of Anesthesiology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Department of Anesthesiology, The University of Hong Kong, Hong Kong, China
| | - Dan Yan
- Department of Anesthesiology, The University of Hong Kong, Hong Kong, China
| | - Sisi Li
- Department of Anesthesiology, The University of Hong Kong, Hong Kong, China
| | - Shiming Liu
- Department of Anesthesiology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Fei Zeng
- Department of Anesthesiology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Chi Wai Cheung
- Department of Anesthesiology, The University of Hong Kong, Hong Kong, China
| | - Hong Liu
- Department of Anesthesiology and Pain Medicine, University of California Davis Health System, Sacramento, CA, USA
| | - Michael G Irwin
- Department of Anesthesiology, The University of Hong Kong, Hong Kong, China
| | - Huansen Huang
- Department of Anesthesiology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zhengyuan Xia
- Department of Anesthesiology, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
9
|
Hegazy RR, Mansour DF, Salama AA, Abdel-Rahman RF, Hassan AM. Regulation of PKB/Akt-pathway in the chemopreventive effect of lactoferrin against diethylnitrosamine-induced hepatocarcinogenesis in rats. Pharmacol Rep 2019; 71:879-891. [PMID: 31442665 DOI: 10.1016/j.pharep.2019.04.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 04/15/2019] [Accepted: 04/24/2019] [Indexed: 12/29/2022]
Abstract
BACKGROUND Abnormal activation of protein kinase B (PKB) is associated with many cancers. This makes inhibition of PKB signaling pathway a promising strategy for cancer therapy. Lactoferrin (Lf) has been reported for its inhibition of tumor growth and metastasis, however, the mechanism is not completely understood. Its anti-hepatocarcinogenic activity has not taken the deserved recognition despite the additional advantages of Lf as an antiviral against hepatitis C virus, the main cause of hepatocellular carcinoma (HCC), and as a targeting ligand for delivering chemotherapeutics to hepatoma cells. METHODS This study evaluated the anti-hepatocarcinogenic effect of Lf, and the role of PKB in this effect using diethylnitrosamine (DENA)-induced HCC rat model, and a primary cell culture prepared from the induced hepatic lesions (DENA-HCC cell culture). RESULTS Up-regulation of activated PKB in the hepatocytes of rats with DENA-induced HCC was observed, as measured biochemically in the liver homogenate, and localized immunohistochemically. This was accompanied by increment of hepatocytes proliferation, and expression of vascular endothelial growth factor and endothelial nitric oxide synthase. Involvement of PKB in DENA-induced HCC was confirmed by the observed decrease in cell proliferation in DENA-HCC cell culture that was treated with PKB inhibitor. In Lf-treated rats, a dose-dependent chemopreventive effect was observed, with decreased expression and activation of PKB, amelioration of the other DENA-induced alterations, and stimulation of apoptosis. In vitro, Lf blocked PKB activator-induced cell proliferation. CONCLUSION These findings support the chemopreventive activity of Lf against HCC, and suggest regulation of PKB-pathway as a potential mechanism underlying this effect.
Collapse
Affiliation(s)
- Rehab R Hegazy
- Department of Pharmacology, Medical Division, National Research Centre, Giza, Egypt.
| | - Dina F Mansour
- Department of Pharmacology, Medical Division, National Research Centre, Giza, Egypt
| | - Abeer A Salama
- Department of Pharmacology, Medical Division, National Research Centre, Giza, Egypt
| | - Rehab F Abdel-Rahman
- Department of Pharmacology, Medical Division, National Research Centre, Giza, Egypt
| | - Azza M Hassan
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
10
|
Afroz F, Kist A, Hua J, Zhou Y, Sokoya EM, Padbury R, Nieuwenhuijs V, Barritt G. Rapamycin induces the expression of heme oxygenase-1 and peroxyredoxin-1 in normal hepatocytes but not in tumorigenic liver cells. Exp Mol Pathol 2018; 105:334-344. [PMID: 30290159 DOI: 10.1016/j.yexmp.2018.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 08/27/2018] [Accepted: 09/28/2018] [Indexed: 12/14/2022]
Abstract
Rapamycin (sirolimus) is employed as an immunosuppressant following liver transplant, to inhibit the re-growth of cancer cells following liver resection for hepatocellular carcinoma (HCC), and for the treatment of advanced HCC. Rapamycin also induces the expression of antioxidant enzymes in the liver, suggesting that pretreatment with the drug could provide a potential strategy to reduce ischemia reperfusion injury following liver surgery. The aim of this study was to further investigate the actions of rapamycin in inducing expression of the antioxidant enzymes heme oxygenase-1 (HO-1) and peroxiredoxin-1 (Prx-1) in normal liver and in tumorigenic liver cells. A rat model of segmental hepatic ischemia and reperfusion, cultured freshly-isolated rat hepatocytes, and tumorigenic H4IIE rat liver cells in culture were employed. Expression of HO-1 and Prx-1 was measured using quantitative PCR and western blot. Rapamycin pre-treatment of normal liver in vivo or normal hepatocytes in vitro led to a substantial induction of mRNA encoding HO-1 and Prx-1. The dose-response curve for the action of rapamycin on mRNA expression was biphasic, showing an increase in expression at 0 - 0.1 μM rapamycin but a decrease from maximum at concentrations greater than 0.1 μM. By contrast, in H4IIE cells, rapamycin inhibited the expression of HO-1 and Prx-1 mRNA. Oltipraz, an established activator of transcription factor Nrf2, caused a large induction of HO-1 and Prx-1 mRNA. The dose response curve for the inhibition by rapamycin of HO-1 and Prx-4 mRNA expression, determined in the presence of oltipraz, was monophasic with half maximal inhibition at about 0.01 μM. It is concluded that, at concentrations comparable to those used clinically, pre-treatment of the liver with rapamycin induces the expression of HO-1 and Prx-1. However, the actions of rapamycin on the expression of these two antioxidant enzymes in normal hepatocytes are complex and, in tumorigenic liver cells, differ from those in normal hepatocytes. Further studies are warranted to evaluate preconditioning the livers of patients subject to liver resection or liver transplant with rapamycin as a viable strategy to reduce IR injury following liver surgery.
Collapse
Affiliation(s)
- Farhana Afroz
- Discipline of Medical Biochemistry, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Alwyn Kist
- Discipline of Medical Biochemistry, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Jin Hua
- Discipline of Medical Biochemistry, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Yabin Zhou
- Discipline of Medical Biochemistry, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Elke M Sokoya
- Discipline of Human Physiology, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Robert Padbury
- The HPB and Liver Transplant Unit, Flinders Medical Centre and College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | | | - Greg Barritt
- Discipline of Medical Biochemistry, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia.
| |
Collapse
|
11
|
Sogawa Y, Nagasu H, Iwase S, Ihoriya C, Itano S, Uchida A, Kidokoro K, Taniguchi S, Takahashi M, Satoh M, Sasaki T, Suzuki T, Yamamoto M, Horng T, Kashihara N. Infiltration of M1, but not M2, macrophages is impaired after unilateral ureter obstruction in Nrf2-deficient mice. Sci Rep 2017; 7:8801. [PMID: 28821730 PMCID: PMC5562821 DOI: 10.1038/s41598-017-08054-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 07/06/2017] [Indexed: 02/07/2023] Open
Abstract
Chronic inflammation can be a major driver of the failure of a variety of organs, including chronic kidney disease (CKD). The NLR family pyrin domain-containing 3 (NLRP3) inflammasome has been shown to play a pivotal role in inflammation in a mouse kidney disease model. Nuclear factor erythroid 2-related factor 2 (Nrf2), the master transcription factor for anti-oxidant responses, has also been implicated in inflammasome activation under physiological conditions. However, the mechanism underlying inflammasome activation in CKD remains elusive. Here, we show that the loss of Nrf2 suppresses fibrosis and inflammation in a unilateral ureter obstruction (UUO) model of CKD in mice. We consistently observed decreased expression of inflammation-related genes NLRP3 and IL-1β in Nrf2-deficient kidneys after UUO. Increased infiltration of M1, but not M2, macrophages appears to mediate the suppression of UUO-induced CKD symptoms. Furthermore, we found that activation of the NLRP3 inflammasome is attenuated in Nrf2-deficient bone marrow–derived macrophages. These results demonstrate that Nrf2-related inflammasome activation can promote CKD symptoms via infiltration of M1 macrophages. Thus, we have identified the Nrf2 pathway as a promising therapeutic target for CKD.
Collapse
Affiliation(s)
- Yuji Sogawa
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Hajime Nagasu
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan.
| | - Shigeki Iwase
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | - Chieko Ihoriya
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Seiji Itano
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Atsushi Uchida
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Kengo Kidokoro
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Shun'ichiro Taniguchi
- Department of Molecular Oncology, Shinshu University Graduate School of Medicine, Matsumoto, Nagano, Japan
| | - Masafumi Takahashi
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Minoru Satoh
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Tamaki Sasaki
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Takafumi Suzuki
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Tiffany Horng
- Department of Genetics & Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Naoki Kashihara
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan
| |
Collapse
|
12
|
Schmoll D, Engel CK, Glombik H. The Keap1-Nrf2 protein-protein interaction: A suitable target for small molecules. DRUG DISCOVERY TODAY. TECHNOLOGIES 2017; 24:11-17. [PMID: 29233294 DOI: 10.1016/j.ddtec.2017.10.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 03/07/2017] [Accepted: 10/09/2017] [Indexed: 06/07/2023]
Abstract
The transcription factor Nrf2 controls pathways involved in oxidative-stress defense and is a potential pharmacological target for the treatment of chronic diseases. Activators of Nrf2 that have undergone clinical development are reactive molecules that are either associated with safety issues or for which it is unclear if their pharmacological efficacy depends on the activation of Nrf2. Therefore, the clinical validity of Nrf2 activation is not yet proven. The activity of Nrf2 is inhibited by Keap1 via a protein-protein interaction. Its structural characteristics allowed the identification of reversible small-molecule inhibitors of the Keap1-Nrf2 interaction that can hopefully elucidate the therapeutic potential of Nrf2 activation.
Collapse
Affiliation(s)
- Dieter Schmoll
- Sanofi R&D, Industriepark Hoechst, D-65926 Frankfurt, Germany.
| | | | - Heiner Glombik
- Sanofi R&D, Industriepark Hoechst, D-65926 Frankfurt, Germany
| |
Collapse
|
13
|
Mondal A, Guria T, Maity TK, Bishayee A. A Novel Tetraenoic Fatty Acid Isolated from Amaranthus spinosus Inhibits Proliferation and Induces Apoptosis of Human Liver Cancer Cells. Int J Mol Sci 2016; 17:E1604. [PMID: 27669220 PMCID: PMC5085637 DOI: 10.3390/ijms17101604] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 09/09/2016] [Accepted: 09/12/2016] [Indexed: 02/07/2023] Open
Abstract
Amaranthus spinosus Linn. (Family: Amaranthaceae) has been shown to be useful in preventing and mitigating adverse pathophysiological conditions and complex diseases. However, only limited information is available on the anticancer potential of this plant. In this study, we examined the antiproliferative and pro-apoptotic effects of a novel fatty acid isolated from A. spinosus-(14E,18E,22E,26E)-methyl nonacosa-14,18,22,26 tetraenoate-against HepG2 human liver cancer cells. We used 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay to determine cell viability, flow cytometry assay for cell cycle analysis, and Western blot analysis to measure protein expression of Cdc2), cyclin B1, Bcl-2-associated X protein (Bax), and B-cell lymphoma 2 (Bcl-2). The MTT assay showed that the fatty acid markedly inhibited the proliferation of HepG2 cells in a dosage-dependent fashion, with a half maximal inhibitory concentration (IC50) value of 25.52 µmol/L. This antiproliferative result was superior to that of another known fatty acid, linoleic acid (IC50 38.65 µmol/L), but comparable to that of standard anticancer drug doxorubicin (IC50 24.68 µmol/L). The novel fatty acid also induced apoptosis mediated by downregulation of cyclin B1, upregulation of Bax, and downregulation of Bcl-2, resulting in the G₂/M transition arrest. Our results provide the first experimental evidence that a novel fatty acid isolated from A. spinosus exhibits significant antiproliferative activity mediated through the induction of apoptosis in HepG2 cells. These encouraging results may facilitate the development of A. spinosus fatty acid for the prevention and intervention of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Arijit Mondal
- Department of Pharmaceutical Chemistry, Bengal College of Pharmaceutical Sciences and Research, Durgapur 713 212, West Bengal, India.
| | - Tanmoy Guria
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700 032, West Bengal, India.
| | - Tapan Kumar Maity
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700 032, West Bengal, India.
| | - Anupam Bishayee
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin Health Sciences Institute, Miami, FL 33169, USA.
| |
Collapse
|
14
|
Moreno FS, Heidor R, Pogribny IP. Nutritional Epigenetics and the Prevention of Hepatocellular Carcinoma with Bioactive Food Constituents. Nutr Cancer 2016; 68:719-733. [PMID: 27266713 DOI: 10.1080/01635581.2016.1180410] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is an aggressive and life-threatening disease often diagnosed at intermediate or advanced stages, which substantially limits therapeutic approaches to its successful treatment. This indicates that the prevention of HCC may be the most promising strategy in reducing its incidence and mortality. Emerging evidence indicates that numerous nutrients and nonnutrient dietary bioactive components can reduce the occurrence and/or delay the development of HCC through modifications of deregulated epigenetic mechanisms. This review examines the existing knowledge on the epigenetic mechanism-based studies in in vitro and in vivo models of HCC on the chemopreventive potential of epigenetic food components, including dietary methyl-group donors, epigallocatechin-3-gallate, sodium butyrate, resveratrol, curcumin, and sulforaphane, on liver carcinogenesis. Future direction and potential challenges in the effective use of bioactive food constituents in the prevention of HCC are highlighted and discussed.
Collapse
Affiliation(s)
- Fernando Salvador Moreno
- a Laboratory of Diet, Nutrition, and Cancer , Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo , São Paulo , Brazil
| | - Renato Heidor
- a Laboratory of Diet, Nutrition, and Cancer , Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo , São Paulo , Brazil
| | - Igor P Pogribny
- b Division of Biochemical Toxicology, National Center for Toxicological Research , Jefferson , Arkansas , USA
| |
Collapse
|
15
|
Cabrera M, Mastandrea I, Otero G, Cerecetto H, González M. In vivo phase II-enzymes inducers, as potential chemopreventive agents, based on the chalcone and furoxan skeletons. Bioorg Med Chem 2016; 24:1665-74. [DOI: 10.1016/j.bmc.2016.02.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 02/20/2016] [Accepted: 02/27/2016] [Indexed: 02/06/2023]
|
16
|
Cabrera M, Cerecetto H, González M. New hybrid bromopyridine-chalcones as in vivo phase II enzyme inducers: potential chemopreventive agents. MEDCHEMCOMM 2016. [DOI: 10.1039/c6md00456c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the synthesis of eighteen new potential cancer chemopreventive agents, structurally designed to combine (naphtho)chalcone and (bromo)pyridine skeletons.
Collapse
Affiliation(s)
- Mauricio Cabrera
- Grupo de Química Medicinal
- Laboratorio de Química Orgánica
- Facultad de Ciencias
- Universidad de la República
- 11400 Montevideo
| | - Hugo Cerecetto
- Grupo de Química Medicinal
- Laboratorio de Química Orgánica
- Facultad de Ciencias
- Universidad de la República
- 11400 Montevideo
| | - Mercedes González
- Grupo de Química Medicinal
- Laboratorio de Química Orgánica
- Facultad de Ciencias
- Universidad de la República
- 11400 Montevideo
| |
Collapse
|
17
|
Winkel AF, Engel CK, Margerie D, Kannt A, Szillat H, Glombik H, Kallus C, Ruf S, Güssregen S, Riedel J, Herling AW, von Knethen A, Weigert A, Brüne B, Schmoll D. Characterization of RA839, a Noncovalent Small Molecule Binder to Keap1 and Selective Activator of Nrf2 Signaling. J Biol Chem 2015; 290:28446-28455. [PMID: 26459563 DOI: 10.1074/jbc.m115.678136] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Indexed: 01/07/2023] Open
Abstract
The activation of the transcription factor NF-E2-related factor 2 (Nrf2) maintains cellular homeostasis in response to oxidative stress by the regulation of multiple cytoprotective genes. Without stressors, the activity of Nrf2 is inhibited by its interaction with the Keap1 (kelch-like ECH-associated protein 1). Here, we describe (3S)-1-[4-[(2,3,5,6-tetramethylphenyl) sulfonylamino]-1-naphthyl]pyrrolidine-3-carboxylic acid (RA839), a small molecule that binds noncovalently to the Nrf2-interacting kelch domain of Keap1 with a Kd of ∼6 μM, as demonstrated by x-ray co-crystallization and isothermal titration calorimetry. Whole genome DNA arrays showed that at 10 μM RA839 significantly regulated 105 probe sets in bone marrow-derived macrophages. Canonical pathway mapping of these probe sets revealed an activation of pathways linked with Nrf2 signaling. These pathways were also activated after the activation of Nrf2 by the silencing of Keap1 expression. RA839 regulated only two genes in Nrf2 knock-out macrophages. Similar to the activation of Nrf2 by either silencing of Keap1 expression or by the reactive compound 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid methyl ester (CDDO-Me), RA839 prevented the induction of both inducible nitric-oxide synthase expression and nitric oxide release in response to lipopolysaccharides in macrophages. In mice, RA839 acutely induced Nrf2 target gene expression in liver. RA839 is a selective inhibitor of the Keap1/Nrf2 interaction and a useful tool compound to study the biology of Nrf2.
Collapse
Affiliation(s)
| | | | | | - Aimo Kannt
- R&D, Sanofi, 65926 Frankfurt, Germany; Medical Faculty Mannheim, Heidelberg University, 69120 Mannheim, Germany
| | | | | | | | - Sven Ruf
- R&D, Sanofi, 65926 Frankfurt, Germany
| | | | | | | | - Andreas von Knethen
- Faculty of Medicine, Biochemistry I, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Andreas Weigert
- Faculty of Medicine, Biochemistry I, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Bernhard Brüne
- Faculty of Medicine, Biochemistry I, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | | |
Collapse
|
18
|
Abstract
BACKGROUND The KEAP1-Nrf2 antioxidant signaling pathway is important in protecting liver from various insults. However, little is known about the expression of Nrf2-related genes in human liver in different diseases. METHODS This study utilized normal donor liver tissues (n=35), samples from patients with hepatocellular carcinoma (HCC, n=24), HBV-related cirrhosis (n=27), alcoholic cirrhosis (n=5) and end-stage liver disease (n=13). All of the liver tissues were from the Oriental Liver Transplant Center, Beijing, China. The expressions of Nrf2 and Nrf2-related genes, including its negative regulator Kelch-like ECH-associated protein 1 (KEAP1), its targeted gene NAD(P)H-quinone oxidoreductase 1 (NQO1), glutamate-cysteine ligase catalytic subunit (GCLC) and modified subunit (GCLM), heme oxygenase 1 (HO-1) and peroxiredoxin-1 (PRDX1) were evaluated. RESULTS The expression of Nrf2 was decreased in HCC, increased in alcoholic cirrhosis and end-stage liver disease. The expression of KEAP1 was increased in all of the liver samples. The most notable finding was the increased expression of NQO1 in HCC (18-fold), alcoholic cirrhosis (6-fold), end-stage liver disease (5-fold) and HBV-related cirrhosis (3-fold). Peri-HCC also had 4-fold higher NQO1 mRNA as compared to the normal livers. GCLC mRNA levels were lower only in HCC, as compared to the normal livers and peri-HCC tissues. GCLM mRNA levels were higher in HBV-related cirrhosis and end-stage liver disease. HO-1 mRNA levels were increased in all liver tissues except for HCC. Peri-HCC had higher PRDX1 mRNA levels compared with HCC and normal livers. CONCLUSION Nrf2 and Nrf2-related genes are aberrantly expressed in the liver in different diseases and the increase of NQO1 was the most notable finding, especially in HCC.
Collapse
|
19
|
Becker RA, Patlewicz G, Simon TW, Rowlands JC, Budinsky RA. The adverse outcome pathway for rodent liver tumor promotion by sustained activation of the aryl hydrocarbon receptor. Regul Toxicol Pharmacol 2015; 73:172-90. [PMID: 26145830 DOI: 10.1016/j.yrtph.2015.06.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 06/19/2015] [Accepted: 06/22/2015] [Indexed: 12/29/2022]
Abstract
An Adverse Outcome Pathway (AOP) represents the existing knowledge of a biological pathway leading from initial molecular interactions of a toxicant and progressing through a series of key events (KEs), culminating with an apical adverse outcome (AO) that has to be of regulatory relevance. An AOP based on the mode of action (MOA) of rodent liver tumor promotion by dioxin-like compounds (DLCs) has been developed and the weight of evidence (WoE) of key event relationships (KERs) evaluated using evolved Bradford Hill considerations. Dioxins and DLCs are potent aryl hydrocarbon receptor (AHR) ligands that cause a range of species-specific adverse outcomes. The occurrence of KEs is necessary for inducing downstream biological responses and KEs may occur at the molecular, cellular, tissue and organ levels. The common convention is that an AOP begins with the toxicant interaction with a biological response element; for this AOP, this initial event is binding of a DLC ligand to the AHR. Data from mechanistic studies, lifetime bioassays and approximately thirty initiation-promotion studies have established dioxin and DLCs as rat liver tumor promoters. Such studies clearly show that sustained AHR activation, weeks or months in duration, is necessary to induce rodent liver tumor promotion--hence, sustained AHR activation is deemed the molecular initiating event (MIE). After this MIE, subsequent KEs are 1) changes in cellular growth homeostasis likely associated with expression changes in a number of genes and observed as development of hepatic foci and decreases in apoptosis within foci; 2) extensive liver toxicity observed as the constellation of effects called toxic hepatopathy; 3) cellular proliferation and hyperplasia in several hepatic cell types. This progression of KEs culminates in the AO, the development of hepatocellular adenomas and carcinomas and cholangiolar carcinomas. A rich data set provides both qualitative and quantitative knowledge of the progression of this AOP through KEs and the KERs. Thus, the WoE for this AOP is judged to be strong. Species-specific effects of dioxins and DLCs are well known--humans are less responsive than rodents and rodent species differ in sensitivity between strains. Consequently, application of this AOP to evaluate potential human health risks must take these differences into account.
Collapse
Affiliation(s)
- Richard A Becker
- Regulatory and Technical Affairs Department, American Chemistry Council (ACC), Washington, DC 20002, USA.
| | - Grace Patlewicz
- DuPont Haskell Global Centers for Health and Environmental Sciences, Newark, DE 19711, USA
| | - Ted W Simon
- Ted Simon LLC, 4184 Johnston Road, Winston, GA 30187, USA
| | - J Craig Rowlands
- The Dow Chemical Company, Toxicology & Environmental Research & Consulting, 1803 Building Washington Street, Midland, MI 48674, USA
| | - Robert A Budinsky
- The Dow Chemical Company, Toxicology & Environmental Research & Consulting, 1803 Building Washington Street, Midland, MI 48674, USA
| |
Collapse
|
20
|
Searching phase II enzymes inducers, from Michael acceptor-[1,2]dithiolethione hybrids, as cancer chemopreventive agents. Future Med Chem 2015; 7:857-71. [DOI: 10.4155/fmc.15.32] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background: Cancer chemoprevention involves the carcinogenic process prevention, delay or reverse by the administration of chemopreventive agents, which are able to suppress or block the carcinogen metabolic activation/formation. The increased activity of phase II detoxification enzymes such as quinone-reductase (QR) and glutation-S-transferase (GST) correlates with the protection against chemically-induced carcinogenesis. It has been shown that synthetic chalcones and 3H-[1,2]-dithiole-3-thiones promote expression of genes involved in chemoprevention. Materials & Methods: Herein, the induction of phase II enzymes by designed Michael acceptor-dithiolethione hybrids was studied. Results & Discussion: Hybrids 5 and 7 displayed the induction of quinone-reductase and glutation-S-transferase in vitro in the same order on the wild-type mouse-hepatoma Hepa 1c1c7 and on the aryl-hydrocarbon-nuclear-translocator (Arnt)-defective mutant BPrc1 cells indicating that 7 displays the best chemopreventive potential.
Collapse
|
21
|
Mondal A. A novel extraction of trichosanthin from Trichosanthes kirilowii roots using three-phase partitioning and its in vitro anticancer activity. PHARMACEUTICAL BIOLOGY 2014; 52:677-680. [PMID: 24824319 DOI: 10.3109/13880209.2013.864684] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
CONTEXT Three-phase partitioning (TPP), a unique technique which has been explored for protein separation, was used for extraction of trichosanthin (TCS). OBJECTIVE TPP was used to optimize the TCS extraction and to determine its anticancer activity. MATERIALS AND METHODS The process consists of the simultaneous addition of t-butanol and ammonium sulfate to the aqueous slurry of Trichosanthes kirilowii Maxim (Cucurbitaceae) root powder. The extraction of TCS was optimized with respect to the concentration of ammonium sulfate loading, the ratio of t-butanol to slurry, extraction time and pH. The anticancer activity was performed using 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay in vitro. RESULTS The extraction time with this technique is lower in comparison to conventional solvent extraction. The optimized protocol resulted in maximum recovery of 98.68% (w/w) protein within 1 h. The in vitro cytotoxic activity of the TCS was evaluated against HepG2 and WRL 68 cancer cell line and results showed that TCS possesses quite highly significant anticancer activity having IC50 values of 10.38 and 15.45 μmol/l, respectively, comparable to standard drugs. CONCLUSION This framework is utilized as a basis for optimization for protein separation using TPP technique which is economical and eco-friendly.
Collapse
Affiliation(s)
- Arijit Mondal
- Drug Development Diagnostics & Biotechnology Division, Indian Institute of Chemical Biology , Kolkata , India
| |
Collapse
|
22
|
Kensler KH, Slocum SL, Chartoumpekis DV, Dolan PM, Johnson NM, Ilic Z, Crawford DR, Sell S, Groopman JD, Kensler TW, Egner PA. Genetic or pharmacologic activation of Nrf2 signaling fails to protect against aflatoxin genotoxicity in hypersensitive GSTA3 knockout mice. Toxicol Sci 2014; 139:293-300. [PMID: 24675090 DOI: 10.1093/toxsci/kfu056] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Mice are resistant to aflatoxin hepatotoxicity, primarily due to high expression of glutathione S-transferases (GSTs), and in particular the GSTA3 subunit. Nuclear factor erythroid 2 related factor 2 (Nrf2) signaling, which controls a broad-based cytoprotective response, was activated either genetically or pharmacologically in an attempt to rescue GSTA3 knockout mice from aflatoxin genotoxicity. Genetic activation of Nrf2 signaling was attained in a GSTA3: hepatocyte-specific Keap1 double knockout (DKO) mouse whereas pharmacologic activation of Nrf2 was achieved through pretreatment of mice with the triterpenoid 1-[2-cyano-3-,12-dioxoleana-1,9(11)-dien-28-oyl] imidazole (CDDO-Im) prior to aflatoxin B1 exposure. Following oral treatment with aflatoxin, urine was collected from mice for 24 h and hepatic and urinary aflatoxin metabolites then quantified using isotope dilution-mass spectrometry. Although Nrf2 was successfully activated genetically and pharmacologically, neither means affected the response of GSTA3 knockout mice to chemical insult with aflatoxin. Hepatic aflatoxin B1-N(7)-guanine levels were elevated 120-fold in GSTA3 knockout mice compared with wild-type and levels were not attenuated by the interventions. This lack of effect was mirrored in the urinary excretion of aflatoxin B1-N(7)-guanine. By contrast, urinary excretion of aflatoxin B1-N-acetylcysteine was >200-fold higher in wild-type mice compared with the single GSTA3 knockout or DKO mouse. The inability to rescue GSTA3 knockout mice from aflatoxin genotoxicity through the Nrf2 transcriptional program indicates that Gsta3 is unilaterally responsible for the detoxication of aflatoxin in mice.
Collapse
Affiliation(s)
- Kevin H Kensler
- Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, Maryland 21205
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Couto M, Cabrera M, Echeverría GA, Piro OE, González M, Cerecetto H. A serendipitous one-step conversion of 3H-1,2-dithiole-3-thione to (E)-3-[1-(alkylthio)alkylidene]-3H-1,2-dithiole: an experimental and theoretical study. Mol Divers 2014; 18:285-94. [PMID: 24420794 DOI: 10.1007/s11030-013-9499-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 12/23/2013] [Indexed: 01/07/2023]
Abstract
In the course of our studies on 3H-1,2-dithiole-3-thione synthesis, a serendipitous reactivity with α-haloketones, in the presence of excess of potassium iodide, has been observed. Instead of the expected reaction of the nucleophile in a remote point of the molecule, we have obtained a product resulted from the electrophile character of the thiocarbonyl moiety on the 3-position of the 1,2-dithiole. In order to obtain an efficient protocol in terms of energy efficiency, this methodology was studied under conventional and microwave heating with similar or better results in the latter conditions. Simplicity and great efficiency in this one-step transformation are some of the advantages of this reaction. Moreover, the results can be explained according to the Pearson's hard and soft acid base theory.
Collapse
Affiliation(s)
- Marcos Couto
- Grupo de Química Medicinal, Facultad de Química-Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo, 11400, Uruguay
| | | | | | | | | | | |
Collapse
|
24
|
Wu X, Li C, Xing G, Qi X, Ren J. Resveratrol Downregulates Cyp2e1 and Attenuates Chemically Induced Hepatocarcinogenesis in SD Rats. J Toxicol Pathol 2013; 26:385-92. [PMID: 24526811 PMCID: PMC3921921 DOI: 10.1293/tox.2013-0020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 08/13/2013] [Indexed: 01/02/2023] Open
Abstract
Cyp2e1 plays an important role in chemically induced hepatocarcinogenesis. Resveratrol (REV) is known to prevent diethylnitrosamine (DEN)-induced hepatocarcinogenesis, but its effects on this process induced by DEN and 2-acetylaminofluorene (2-AAF) and the role of Cyp2e1 remain unclear. In this study, glutathione S-transferase placental form (GST-P)-positive foci were used as a marker of hepatocarcinogenesis. REV or diallyl disulfide (DADS, an inhibitor of Cyp2e1) significantly reduced both the area and number of GST-P-positive foci induced by DEN and 2-AAF. Treatment with REV or DADS also markedly decreased the expression of Cyp2e1 in the rat liver. By immunohistochemical staining of serial liver sections, we found that the expression of Cyp2e1 in GST-P-positive foci showed three distinct patterns: decreased in GST-P foci, increased in GST-P foci when compared with surrounding liver tissue and mixed type. The number of GST-P foci with increased Cyp2e1 expression was greater than the number of GST-P foci with decreased Cyp2e1. Protein levels of GST-P and Cyp2e1 were also higher in foci compared with surrounding liver tissue. REV or DADS significantly reduced the expression of GST-P and Cyp2e1 in both foci and surrounding liver tissue. Taken together, these results suggested that REV has a significant inhibitory effect on chemically induced hepatocarcinogenesis, which may be attributed to downregulation of Cyp2e1.
Collapse
Affiliation(s)
- Xiongfei Wu
- Center for Drug Safety Evaluation and Research, State Key Laboratory of New Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
| | - Chenggang Li
- Center for Drug Safety Evaluation and Research, State Key Laboratory of New Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
| | - Guozhen Xing
- Center for Drug Safety Evaluation and Research, State Key Laboratory of New Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
| | - Xinming Qi
- Center for Drug Safety Evaluation and Research, State Key Laboratory of New Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
| | - Jin Ren
- Center for Drug Safety Evaluation and Research, State Key Laboratory of New Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
| |
Collapse
|
25
|
Murakami A. Modulation of protein quality control systems by food phytochemicals. J Clin Biochem Nutr 2013; 52:215-27. [PMID: 23704811 PMCID: PMC3652296 DOI: 10.3164/jcbn.12-126] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 01/15/2013] [Indexed: 12/15/2022] Open
Abstract
There is compelling evidence showing that dietary phytochemicals have exhibited pronounced bioactivities in a number of experimental models. In addition, a variety of epidemiological surveys have demonstrated that frequent ingestion of vegetables and fruits, which contain abundant phytochemicals, lowers the risk of onset of some diseases. However, the action mechanisms by which dietary phytochemicals show bioactivity remain to be fully elucidated and a fundamental question is why this class of chemicals has great potential for regulating health. Meanwhile, maintenance and repair of biological proteins by molecular chaperones, such as heat shock proteins, and clearance of abnormal proteins by the ubiquitin-proteasome system and autophagy play central roles in health, some disease prevention, and longevity. Interestingly, several recent studies have revealed that phytochemicals, including curcumin (yellow pigment in turmeric), resveratrol (phytoalexin in grapes), quercetin (general flavonol in onions and others), and isothiocyanates (preferentially present in cruciferous vegetables, such as broccoli and cabbage), are remarkable regulators of protein quality control systems, suggesting that their physiological and biological functions are exerted, at least in part, through activation of such unique mechanisms. This review article highlights recent findings regarding the effects of representative phytochemicals on protein quality control systems and their possible molecular mechanisms.
Collapse
Affiliation(s)
- Akira Murakami
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
26
|
Han CW, Kwun MJ, Kim KH, Choi JY, Oh SR, Ahn KS, Lee JH, Joo M. Ethanol extract of Alismatis Rhizoma reduces acute lung inflammation by suppressing NF-κB and activating Nrf2. JOURNAL OF ETHNOPHARMACOLOGY 2013; 146:402-10. [PMID: 23333748 DOI: 10.1016/j.jep.2013.01.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Revised: 01/07/2013] [Accepted: 01/09/2013] [Indexed: 05/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The tuber of Alisma orientale Juzepzuk, a medicinal herb that has been used for the treatment of various disorders in Korea, has an anti-inflammatory effect. Here, we investigated a possible underlying mechanism and a protective effect on acute lung injury (ALI). MATERIALS AND METHODS Alisma orientale tuber was extracted in 80% ethanol and dried. The powder of the ethanol extract of Alisma orientale tuber (EEAO) was dissolved in PBS. The effect of EEAO on NF-κB and Nrf2 activities was analyzed with RAW 264.7 cells. The effect of EEAO on lung inflammation was determined by histologic and molecular biological analyses of the lung tissue of C57BL/6 mice that were gavaged once a day with 0.3 or 1.2 g/kg of EEAO for 14 days, prior to an intranasal administration of LPS (0.01 g/kg) for inducing ALI. RESULTS EEAO pre-treatment of RAW 264.7 cells suppressed NF-κB activity and the expression of its dependent genes including COX-2, IL-1β and iNOS. Similar treatment enhanced Nrf2 activity and the expression of Nrf2-regulated genes including NQO-1, HO-1 and GCLC. LPS instillation induced acute neutrophilic lung inflammation, which was significantly suppressed by pre-treatment with EEAO. Analysis of the lungs revealed that EEAO pre-treatment induced the expression of Nrf2-regulated genes, with concomitant down-regulation of inflammatory gene expression. CONCLUSIONS EEAO attenuated lung inflammation in LPS-induced ALI mice, which was associated with differential regulation of NF-κB and Nrf2 activities. We suggest that EEAO can be developed as a potential therapeutics for the treatment of ALI.
Collapse
Affiliation(s)
- Chang Woo Han
- School of Korean Medicine, Pusan National University, Korean Medicine Hospital, Yangsan 626-789, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Resveratrol down-regulates Myosin light chain kinase, induces apoptosis and inhibits diethylnitrosamine-induced liver tumorigenesis in rats. Int J Mol Sci 2013; 14:1940-51. [PMID: 23344064 PMCID: PMC3565357 DOI: 10.3390/ijms14011940] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 12/27/2012] [Accepted: 12/31/2012] [Indexed: 01/09/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a serious healthcare problem worldwide because of its increasing morbidity and high mortality rates. However, our understanding of the mechanism of liver tumorigenesis remains incomplete. We report the expression of myosin light chain kinase (MLCK) in the livers of rats with diethylnitrosamine (DENA)-induced HCC and investigated the correlation between MLCK and liver tumorigenesis by observing the expression of MLCK in a rat model of HCC. HCC was induced in rats by an intraperitoneal injection of DENA, and resveratrol-treated rats were orally administered resveratrol with 50 mg/kg body weight/day. The livers of rats were excised after 20 weeks and immersed in 10% formaldehyde prior to immunohistochemical and Western blot analyses for determining the level of MLCK expression. These analyses indicated that the MLCK expression was higher in the livers of HCC rats than in normal and resveratrol-treated rats. High level of MLCK expression was responsible for proliferation and anti-apoptotic effects. However, resveratrol down-regulated the expression of MLCK, which induced cell apoptosis and inhibited liver tumorigenesis in rats with DENA-induced HCC. Our results suggest that the over expression of MLCK may be related to the development of liver tumorigenesis.
Collapse
|
28
|
Kilic U, Kilic E, Tuzcu Z, Tuzcu M, Ozercan IH, Yilmaz O, Sahin F, Sahin K. Melatonin suppresses cisplatin-induced nephrotoxicity via activation of Nrf-2/HO-1 pathway. Nutr Metab (Lond) 2013; 10:7. [PMID: 23311701 PMCID: PMC3561216 DOI: 10.1186/1743-7075-10-7] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 01/08/2013] [Indexed: 01/22/2023] Open
Abstract
Background Cisplatin, one of the most effective and potent anticancer drugs, is used in the treatment of a wide variety of both pediatric and adult malignancies. However, the chemotherapeutic use of cisplatin is limited by its serious side-effects such as nephrotoxicity and ototoxicity. Cisplatin chemotherapy induces a reduction in the antioxidant status, leading to a failure of the antioxidant defense against free-radical damage generated by antitumor drugs. Cisplatin-induced oxidative stress in the kidney was partially prevented by antioxidant treatments using superoxide dismutase, glutathione, selenium and flavonoids. Melatonin and its metabolites possess free-radical scavenging activity and it has been shown that they protect against cisplatin toxicity. However, the mechanism of the protective effects of melatonin against cisplatin-induced nephrotoxicity is still essentially unknown. We therefore designed this study to investigate the underlying mechanism of the protective effect of melatonin against cisplatin-induced renal damage in a rat nephrotoxicity model in vivo. Methods Twenty eight 8-week-old male Wistar rats were divided into four groups of control, melatonin treatment (4 mg/kg b.w i.p. for 10 days), cisplatin treatment (7 mg/kg b.w., i.p.) and melatonin and cisplatin combination treatment. Serum urea nitrogen (urea-N) and creatinine levels were measured. Histopathological changes were evaluated. In addition, we analyzed the expression levels of HO-1, Nrf2, NF-κB and AP-1 in Western blot analysis. Results Both serum creatinine and urea nitrogen increased significantly following cisplatin administration alone; these values decreased significantly with melatonin co-treatment of cisplatin-treated rats. Histological analysis showed that cisplatin caused damage in the proximal tubular cells in the kidneys of cisplatin-treated rats; these changes were reversed by melatonin co-treatment. Upon Western blot analysis, melatonin treatment increased Nrf2 accumulation in the nuclear fraction, and increased the expression of HO-1 in the cytosolic fraction as compared to the cisplatin-treated rats. Expressions of NF-κB p65 and AP-1 were increased significantly in the kidneys of rats treated with cisplatin compared with the expression in the kidneys from the control, melatonin-only-treated and melatonin co-treated rats. Conclusion Our present data suggest that melatonin attenuates cisplatin-induced nephrotoxicity possibly by modulating Nrf2/HO-1 signaling.
Collapse
Affiliation(s)
- Ulkan Kilic
- Department of Medical Biology, Faculty of Medicine, Bezmialem Vakif University, Adnan Menderes Bulvarı Vatan Caddesi, Fatih, TR-34093, Istanbul, Turkey.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Ochoa-Callejero L, Pérez-Martínez L, Rubio-Mediavilla S, Oteo JA, Martínez A, Blanco JR. Maraviroc, a CCR5 antagonist, prevents development of hepatocellular carcinoma in a mouse model. PLoS One 2013; 8:e53992. [PMID: 23326556 PMCID: PMC3541191 DOI: 10.1371/journal.pone.0053992] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 12/07/2012] [Indexed: 12/30/2022] Open
Abstract
Chronic liver disease may result in a sequential progression through fibrosis, cirrhosis and lead, eventually, to hepatocellular carcinoma (HCC). Hepatic stellate cells (HSC) seem to be responsible for the fibrogenic response through the activation of an autocrine loop involving the chemokine receptor, CCR5. However, the role of CCR5 in HCC remains poorly understood. Since this receptor is also one of the main ports of entry for the human immunodeficiency virus (HIV), several CCR5 inhibitors are being used in the clinic to reduce viral load. We used one of these inhibitors, maraviroc (MVC), in a mouse model of diet-induced HCC to investigate whether this intervention would reduce disease progression. Animals treated with MVC on top of a normal control diet did not present any evidence of toxicity or any morphological change when compared with non-treated mice. Animals treated with MVC presented higher survival, less liver fibrosis, lower levels of liver injury markers and chemokines, less apoptosis, lower proliferation index, and lower tumor burden than their counterparts receiving only the hepatotoxic diet. In addition, MVC inhibits HSC activation markers such as phosphorylation of p38 and ERK, and increases hepatocyte survival. This study suggests that MVC, a well tolerated and clinically characterized drug, may be used as a preventative treatment for HCC. Clinical studies are needed to demonstrate the efficacy of this drug, or other CCR5 inhibitors, in patients with high risk of developing HCC.
Collapse
Affiliation(s)
| | - Laura Pérez-Martínez
- Infectious Diseases Area, Center for Biomedical Research of La Rioja (CIBIR), Logroño, Spain
| | | | - José A. Oteo
- Infectious Diseases Area, Center for Biomedical Research of La Rioja (CIBIR), Logroño, Spain
| | - Alfredo Martínez
- Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), Logroño, Spain
- * E-mail:
| | - José R. Blanco
- Infectious Diseases Area, Center for Biomedical Research of La Rioja (CIBIR), Logroño, Spain
| |
Collapse
|
30
|
Chen HH, Chen YT, Huang YW, Tsai HJ, Kuo CC. 4-Ketopinoresinol, a novel naturally occurring ARE activator, induces the Nrf2/HO-1 axis and protects against oxidative stress-induced cell injury via activation of PI3K/AKT signaling. Free Radic Biol Med 2012; 52:1054-66. [PMID: 22245092 DOI: 10.1016/j.freeradbiomed.2011.12.012] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 12/06/2011] [Accepted: 12/06/2011] [Indexed: 02/07/2023]
Abstract
The Nrf2/ARE pathway plays an important role in inducing phase II detoxifying enzymes and antioxidant proteins and has been considered a potential target for cancer chemoprevention because it eliminates harmful reactive oxygen species or reactive intermediates generated from carcinogens. The objectives of this study were to identify novel Nrf2/ARE activators and to investigate the mechanistic signaling pathway involved in the activation of Nrf2-mediated cytoprotective effects against oxidative-induced cell injury. A stable ARE-driven luciferase reporter cell line was established to screen a potentially cytoprotective compound. 4-Ketopinoresinol (4-KPR), the (α-γ) double-cyclized type of lignan obtained from adlay (Coix lachryma-jobi L. var. ma-yuen Stapf), activates ARE-driven luciferase activity more effectively than the classical ARE activator tert-butylhydroquinone. 4-KPR treatment resulted in a transient increase in AKT phosphorylation and subsequent phosphorylation and nuclear translocation of Nrf2, along with increased expression of ARE-dependent cytoprotective genes, such as heme oxygenase-1 (HO-1), aldo-keto reductases, and glutathione synthetic enzyme. 4-KPR suppresses oxidative stress-induced DNA damage and cell death via upregulation of HO-1. Inhibition of PI3K/AKT signaling by chemical inhibitors or RNA interference not only suppressed 4-KPR-induced Nrf2/HO-1 activation, but also eliminated the cytoprotective effect against oxidative damage. These observations in an ARE-regulated gene system suggest that 4-KPR is a novel Nrf2/ARE-mediated transcription activator, activates the Nrf2/HO-1 axis, and protects against oxidative stress-induced cell injury via activation of PI3K/AKT signaling.
Collapse
Affiliation(s)
- Huang-Hui Chen
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan
| | | | | | | | | |
Collapse
|
31
|
Yao JW, Liu J, Kong XZ, Zhang SG, Wang XH, Yu M, Zhan YQ, Li W, Xu WX, Tang LJ, Ge CH, Wang L, Li CY, Yang XM. Induction of activation of the antioxidant response element and stabilization of Nrf2 by 3-(3-pyridylmethylidene)-2-indolinone (PMID) confers protection against oxidative stress-induced cell death. Toxicol Appl Pharmacol 2012; 259:227-35. [PMID: 22245129 DOI: 10.1016/j.taap.2011.12.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2011] [Revised: 12/01/2011] [Accepted: 12/26/2011] [Indexed: 01/26/2023]
Abstract
The antioxidant response elements (ARE) are a cis-acting enhancer sequence located in regulatory regions of antioxidant and detoxifying genes. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a member of the Cap 'n' Collar family of transcription factors that binds to the ARE and regulates the transcription of specific ARE-containing genes. Under oxidative stress, Nrf2/ARE induction is fundamental to defense against reactive oxygen species (ROS) and serves as a key factor in the protection against toxic xenobiotics. 3-(3-Pyridylmethylidene)-2-Indolinone (PMID) is a derivative of 2-indolinone compounds which act as protein kinase inhibitors and show anti-tumor activity. However, the role of PMID in the oxidative stress remains unknown. In the present study, we showed that PMID induced the activation of ARE-mediated transcription, increased the DNA-binding activity of Nrf2 and then up-regulated the expression of antioxidant genes such as HO-1, SOD, and NQO1. The level of Nrf2 protein was increased in cells treated with PMID by a post-transcriptional mechanism. Under CHX treatment, the stability of Nrf2 protein was enhanced by PMID with decreased turnover rate. We showed that PMID reduced the ubiquitination of Nrf2 and disrupted the Cullin3 (Cul3)-Keap1 interaction. Furthermore, cells treated with PMID showed resistance to cytotoxicity by H(2)O(2) and pro-oxidant 6-OHDA. PMID also up-regulated the antioxidant level in BALB/c mice. Taken together, the compound PMID induces the ARE-mediated gene expression through stabilization of Nrf2 protein and activation of Nrf2/ARE pathway and protects against oxidative stress-mediated cell death.
Collapse
Affiliation(s)
- Jia-Wei Yao
- Tianjin University, School of Chemical Engineering and Technology, Department of pharmaceutical engineering, Tianjin, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
De Flora S, Bonanni P. The prevention of infection-associated cancers. Carcinogenesis 2011; 32:787-95. [PMID: 21436188 PMCID: PMC3314281 DOI: 10.1093/carcin/bgr054] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 03/07/2011] [Accepted: 03/14/2011] [Indexed: 01/06/2023] Open
Abstract
Collectively, chronic viral and bacterial infections and trematode infestations have been estimated to be associated with approximately one of five human cancers worldwide. The fraction attributable to each one of the chronic infections caused by hepatitis B and C viruses (HBV and HCV), human papillomaviruses (HPV) and Helicobacter pylori, is ∼5%. These infections are the most important causes of major types of cancer, including hepatocellular carcinoma, cervical cancer and stomach cancer, respectively. Taking into account the mechanisms of infection-related carcinogenesis, integrated approaches are addressed to the control of the associated infection as well as to avoidance of cancer occurrence and progression. Large-scale interventions have been implemented, such as the anti-HBV and anti-HPV routine vaccination programs. The latter has been designed with the specific goal of preventing HPV-associated cancers, which is an outstanding breakthrough in cancer prevention. Intriguingly, not only prevention but even therapy of an infectious disease and eradication of a pathogen become a crucial tool for the primary prevention of these cancers. An important role is also played by secondary prevention (e.g. Pap test and DNA testing for HPV-associated cervical cancers) and by tertiary prevention (e.g. antiangiogenesis in Kaposi's sarcoma). The present article reviews the microbial and parasitic diseases that have been associated so far with human cancers, draws an overview of their burden in cancer epidemiology, deals with applicable prevention strategies and provides examples of co-ordinated approaches to the control of cancers associated with HBV, HCV, HPV, human immunodeficiency virus and H.pylori infections.
Collapse
Affiliation(s)
- Silvio De Flora
- Department of Health Sciences, University of Genoa, Via A. Pastore 1, I-16132 Genoa, Italy.
| | | |
Collapse
|
33
|
Abstract
IMPORTANCE OF THE FIELD Reactive oxygen species (ROS) occur as natural by-products of oxygen metabolism and have important cellular functions. Normally, the cell is able to maintain an adequate balance between the formation and removal of ROS either via anti-oxidants or through the use specific enzymatic pathways. However, if this balance is disturbed, oxidative stress may occur in the cell, a situation linked to the pathogenesis of many diseases, including cancer. AREAS COVERED IN THIS REVIEW HDACs are important regulators of many oxidative stress pathways including those involved with both sensing and coordinating the cellular response to oxidative stress. In particular aberrant regulation of these pathways by histone deacetylases may play critical roles in cancer progression. WHAT THE READER WILL GAIN In this review we discuss the notion that targeting HDACs may be a useful therapeutic avenue in the treatment of oxidative stress in cancer, using chronic obstructive pulmonary disease (COPD), NSCLC and hepatocellular carcinoma (HCC) as examples to illustrate this possibility. TAKE HOME MESSAGE Epigenetic mechanisms may be an important new therapeutic avenue for targeting oxidative stress in cancer.
Collapse
Affiliation(s)
- Matthew W Lawless
- Mater Misericordiae University Hospital, University College Dublin, Centre for Liver Disease, Dublin, Ireland
| | | | | |
Collapse
|
34
|
Sorafenib extends the survival time of patients with multiple recurrences of hepatocellular carcinoma after liver transplantation. Acta Pharmacol Sin 2010; 31:1643-8. [PMID: 21102481 DOI: 10.1038/aps.2010.124] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AIM to determine the efficacy and toxicities of sorafenib in the treatment of patients with multiple recurrences of hepatocellular carcinoma (HCC) after liver transplantation in a Chinese population. METHODS twenty patients with multiple recurrences of HCC after liver transplantation were retrospectively studied. They received either transarterial chemoembolization (TACE) or TACE combined with sorafenib. RESULTS the median survival times (MST) after multiple recurrences was 14 months (TACE+sorafenib group) and 6 months (TACE only group). The difference was significant in MST between the two groups (P=0.005). The TACE + sorafenib group had more stable disease (SD) patients than the TACE group. The most frequent adverse events of sorafenib were hand-foot skin reaction and diarrhea. In the univariate analysis, preoperative bilirubin and CHILD grade are found to be significantly associated with tumor-free survival time, the survival time after multiple recurrences and overall survival time. TACE+sorafenib group showed a better outcome than single TACE treatment group. In the multivariate COX regression modeling, the preoperative high CHILD grade was found to be a risk factor of tumor-free survival time. In addition, the preoperative high bilirubin grade was also found to be a risk factor of survival time after recurrence and overall survival time. Furthermore, survival time after recurrence and overall survival time were also associated with therapeutic schedule, which was indicated by the GROUP. CONCLUSION Treatment with TACE and sorafenib is worthy of further study and may have more extensive application prospects.
Collapse
|
35
|
Regulation of Nrf2- and AP-1-mediated gene expression by epigallocatechin-3-gallate and sulforaphane in prostate of Nrf2-knockout or C57BL/6J mice and PC-3 AP-1 human prostate cancer cells. Acta Pharmacol Sin 2010; 31:1223-40. [PMID: 20729872 DOI: 10.1038/aps.2010.147] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
AIM To examine the regulatory crosstalk between the transcription factors Nrf2 and AP-1 in prostate cancer (PCa) by dietary cancer chemopreventive compounds (-)epigallocatechin-3-gallate (EGCG) from green tea and sulforaphane (SFN) from cruciferous vegetables. METHODS We performed (i) in vitro studies including luciferase reporter gene assays, MTS cell viability assays, and quantitative real-time PCR (qRT-PCR) in PC-3 AP-1 human PCa cells, (ii) in vivo temporal (3 h and 12 h) microarray studies in the prostate of Nrf2-deficient mice that was validated by qRT-PCR, and (iii) in silico bioinformatic analyses to delineate conserved Transcription Factor Binding Sites (TFBS) in the promoter regions of Nrf2 and AP-1, as well as coregulated genes including ATF-2 and ELK-1. RESULTS Our study shows that AP-1 activation was attenuated by the combinations of SFN (25 micromol/L) and EGCG (20 or 100 micromol/L) in PC-3 cells. Several key Nrf2-dependent genes were down-regulated (3-fold to 35-fold) after in vivo administration of the combination of EGCG (100 mg/kg) and SFN (45 mg/kg). Conserved TFBS signatures were identified in the promoter regions of Nrf2, AP-1, ATF2, and ELK-1 suggesting a potential regulatory mechanism of crosstalk between them. CONCLUSION Taken together, our present study of transcriptome profiling the gene expression changes induced by dietary phytochemicals SFN and EGCG in Nrf2-deficient mice and in PC-3 cells in vitro demonstrates that the effects of SFN+EGCG could be mediated via concerted modulation of Nrf2 and AP-1 pathways in the prostate.
Collapse
|
36
|
Abstract
NF-E2-related factor 2 (Nrf2) is an important transcription factor. When oxidative stress occurs, Nrf2 dissociates from Keap1 (Kelch-like ECH-associating protein 1), translocates to the nucleus, and regulates the expression of genes encoding phase II detoxifying enzymes and antioxidant proteins, thereby increasing the resistance to oxidative stress and electrophilic agents. Reactive oxygen species and oxidative stress play an important role in the development of hepatic diseases. In this article, we will summarize the relationship between the Nrf2-Keap1 system and hepatic diseases.
Collapse
|
37
|
Bishayee A, Barnes KF, Bhatia D, Darvesh AS, Carroll RT. Resveratrol suppresses oxidative stress and inflammatory response in diethylnitrosamine-initiated rat hepatocarcinogenesis. Cancer Prev Res (Phila) 2010; 3:753-63. [PMID: 20501860 DOI: 10.1158/1940-6207.capr-09-0171] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hepatocellular carcinoma (HCC), one of the most frequent and deadliest cancers, has been increasing considerably in the United States. In the absence of a proven effective therapy for HCC, novel chemopreventive strategies are urgently needed to lower the current morbidity and mortality of HCC. Recently, we have reported that resveratrol, a compound present in grapes and red wine, significantly prevents diethylnitrosamine (DENA)-induced liver tumorigenesis in rats, although the mechanism of action is not completely understood. In the present study, we have examined the underlying mechanisms of resveratrol chemoprevention of hepatocarcinogenesis by investigating the effects of resveratrol on oxidative damage and inflammatory markers during DENA-initiated rat liver carcinogenesis. There was a significant increase in hepatic lipid peroxidation and protein oxidation in carcinogen control animals compared with their normal counterparts at the end of the study (20 weeks). Elevated expressions of inducible nitric oxide synthase and 3-nitrotyrosine were noticed in the livers of the same animals. Dietary resveratrol (50-300 mg/kg) administered throughout the study reversed all the aforementioned markers in a dose-responsive fashion in rats challenged with DENA. Resveratrol also elevated the protein and mRNA expression of hepatic nuclear factor E2-related factor 2 (Nrf2). Results of the present investigation provide evidence that attenuation of oxidative stress and suppression of inflammatory response mediated by Nrf2 could be implicated, at least in part, in the chemopreventive effects of this dietary agent against chemically induced hepatic tumorigenesis in rats. The outcome of this study may benefit the development of resveratrol in the prevention and intervention of human HCC.
Collapse
Affiliation(s)
- Anupam Bishayee
- Department of Pharmaceutical Sciences, Northeastern Ohio Universities Colleges of Medicine and Pharmacy, Rootstown, 44272, USA.
| | | | | | | | | |
Collapse
|
38
|
Suppression of the Inflammatory Cascade is Implicated in Resveratrol Chemoprevention of Experimental Hepatocarcinogenesis. Pharm Res 2010; 27:1080-91. [DOI: 10.1007/s11095-010-0144-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Accepted: 03/30/2010] [Indexed: 12/15/2022]
|
39
|
Wu JH, Miao W, Hu LG, Batist G. Identification and Characterization of Novel Nrf2 Inducers Designed to Target the Intervening Region of Keap1. Chem Biol Drug Des 2010; 75:475-80. [DOI: 10.1111/j.1747-0285.2010.00955.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
40
|
Luther DJ, Ohanyan V, Shamhart PE, Hodnichak CM, Sisakian H, Booth TD, Meszaros JG, Bishayee A. Chemopreventive doses of resveratrol do not produce cardiotoxicity in a rodent model of hepatocellular carcinoma. Invest New Drugs 2009; 29:380-91. [DOI: 10.1007/s10637-009-9332-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Accepted: 09/22/2009] [Indexed: 12/25/2022]
|
41
|
Abstract
Over the last 50 years, the posttranslational modification (PTM) of proteins has emerged as a central mechanism for cells to regulate metabolism, growth, differentiation, cell-cell interactions, and immune responses. By influencing protein structure and function, PTM leads to a multiplication of proteome diversity. Redox-dependent PTMs, mediated by environmental and endogenously generated reactive species, induce cell signaling responses and can have toxic effects in organisms. PTMs induced by the electrophilic by-products of redox reactions most frequently occur at protein thiols; other nucleophilic amino acids serve as less favorable targets. Advances in mass spectrometry and affinity-chemistry strategies have improved the detection of electrophile-induced protein modifications both in vitro and in vivo and have revealed a high degree of amino acid and protein selectivity of electrophilic PTM. The identification of biological targets of electrophiles has motivated further study of the functional impact of various PTM reactions on specific signaling pathways and how this might affect organisms.
Collapse
Affiliation(s)
- Tanja K. Rudolph
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Cardiology, University Heart Center Hamburg, Hamburg, Germany
| | - Bruce A. Freeman
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
42
|
Targeting NRF2 signaling for cancer chemoprevention. Toxicol Appl Pharmacol 2009; 244:66-76. [PMID: 19732782 DOI: 10.1016/j.taap.2009.08.028] [Citation(s) in RCA: 237] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 08/13/2009] [Accepted: 08/26/2009] [Indexed: 02/06/2023]
Abstract
Modulation of the metabolism and disposition of carcinogens through induction of cytoprotective enzymes is one of several promising strategies to prevent cancer. Chemopreventive efficacies of inducers such as dithiolethiones and sulforaphane have been extensively studied in animals as well as in humans. The KEAP1-NRF2 system is a key, but not unilateral, molecular target for these chemopreventive agents. The transcription factor NRF2 (NF-E2-related factor 2) is a master regulator of the expression of a subset of genes, which produce proteins responsible for the detoxication of electrophiles and reactive oxygen species as well as the removal or repair of some of their damage products. It is believed that chemopreventive enzyme inducers affect the interaction between KEAP1 and NRF2 through either mediating conformational changes of the KEAP1 protein or activating phosphorylation cascades targeting the KEAP1-NRF2 complex. These events in turn affect NRF2 stability and trafficking. Recent advances elucidating the underlying structural biology of KEAP1-NRF2 signaling and identification of the gene clusters under the transcriptional control of NRF2 are facilitating understanding of the potential pleiotropic effects of NRF2 activators and discovery of novel classes of potent chemopreventive agents such as the triterpenoids. Although there is appropriately a concern regarding a deleterious role of the KEAP1-NRF2 system in cancer cell biology, especially as the pathway affects cell survival and drug resistance, the development and the use of NRF2 activators as chemopreventive agents still holds a great promise for protection of normal cells from a diversity of environmental stresses that contribute to the burden of cancer and other chronic, degenerative diseases.
Collapse
|
43
|
Abdel-Hamid NM. Premalignant Variations in Extracellular Matrix Composition in Chemically Induced Hepatocellular Carcinoma in Rats. J Membr Biol 2009; 230:155-162. [DOI: 10.1007/s00232-009-9196-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2009] [Accepted: 07/28/2009] [Indexed: 02/07/2023]
|
44
|
Bjelakovic G, Nikolova D, Simonetti RG, Gluud C. Systematic review: primary and secondary prevention of gastrointestinal cancers with antioxidant supplements. Aliment Pharmacol Ther 2008; 28:689-703. [PMID: 19145725 DOI: 10.1111/j.1365-2036.2008.03785.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND The evidence on whether antioxidant supplements prevent gastrointestinal cancers is contradictory. AIM To assess the beneficial and harmful effects of antioxidant supplements in preventing gastrointestinal cancers. METHODS Using the Cochrane Collaboration methodology, we reviewed the randomized trials comparing antioxidant supplements with placebo or no intervention on the occurrence of gastrointestinal cancers. We searched electronic databases and reference lists until October, 2007. Our outcome measures were gastrointestinal cancers, overall mortality and adverse events. Outcomes were reported as relative risks (RR) with 95% confidence intervals (CI) based on random-effects and fixed-effect models meta-analyses. RESULTS We identified 20 randomized trials (211,818 participants) assessing beta-carotene, vitamin A, vitamin C, vitamin E, and selenium. The trial quality was generally high. The antioxidant supplements were without a significant effect on the occurrence of gastrointestinal cancers (RR 0.94, 95% CI 0.83-1.06, I(2) = 54.0%). The heterogeneity seemed to be explained by bias risk (low-bias risk trials RR 1.04, 95% CI 0.96-1.13 compared to high-bias risk trials RR 0.59, 95% CI 0.43-0.80, test of interaction P < 0.0005) and type of antioxidant supplement (beta-carotene potentially increasing and selenium potentially decreasing cancer risk). Antioxidant supplements had no significant effect on mortality in a random-effects model meta-analysis (RR 1.02, 95% CI 0.97-1.07, I(2) = 53.5%) but significantly increased mortality in a fixed-effect model meta-analysis (RR 1.04, 95% CI 1.02-1.07). CONCLUSIONS We could not find evidence that the studied antioxidant supplements prevented gastrointestinal cancers. On the contrary, they seem to increase overall mortality.
Collapse
Affiliation(s)
- G Bjelakovic
- The Cochrane Hepato-Biliary Group, Copenhagen Trial Unit, Centre for Clinical Intervention Research, Rigs-hospitalet, Copenhagen University Hospital, Copenhagen, Denmark.
| | | | | | | |
Collapse
|
45
|
Du Y, Villeneuve NF, Wang XJ, Sun Z, Chen W, Li J, Lou H, Wong PK, Zhang DD. Oridonin confers protection against arsenic-induced toxicity through activation of the Nrf2-mediated defensive response. ENVIRONMENTAL HEALTH PERSPECTIVES 2008; 116:1154-61. [PMID: 18795156 PMCID: PMC2535615 DOI: 10.1289/ehp.11464] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2008] [Accepted: 05/21/2008] [Indexed: 05/12/2023]
Abstract
BACKGROUND Groundwater contaminated with arsenic imposes a big challenge to human health worldwide. Using natural compounds to subvert the detrimental effects of arsenic represents an attractive strategy. The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) is a critical regulator of the cellular antioxidant response and xenobiotic metabolism. Recently, activation of the Nrf2 signaling pathway has been reported to confer protection against arsenic-induced toxicity in a cell culture model. OBJECTIVES The goal of the present work was to identify a potent Nrf2 activator from plants as a chemopreventive compound and to demonstrate the efficacy of the compound in battling arsenic-induced toxicity. RESULTS Oridonin activated the Nrf2 signaling pathway at a low subtoxic dose and was able to stabilize Nrf2 by blocking Nrf2 ubiquitination and degradation, leading to accumulation of the Nrf2 protein and activation of the Nrf2-dependent cytoprotective response. Pretreatment of UROtsa cells with 1.4 muM oridonin significantly enhanced the cellular redox capacity, reduced formation of reactive oxygen species (ROS), and improved cell survival after arsenic challenge. CONCLUSIONS We identified oridonin as representing a novel class of Nrf2 activators and illustrated the mechanism by which the Nrf2 pathway is activated. Furthermore, we demonstrated the feasibility of using natural compounds targeting Nrf2 as a therapeutic approach to protect humans from various environmental insults that may occur daily.
Collapse
Affiliation(s)
- Yu Du
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, USA
- Department of Natural Products, School of Pharmaceutical Sciences, Shandong University, Shandong, People’s Republic of China
| | - Nicole F. Villeneuve
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, USA
| | - Xiao-Jun Wang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, USA
| | - Zheng Sun
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, USA
| | - Weimin Chen
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, USA
| | - Jixue Li
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, USA
| | - Hongxiang Lou
- Department of Natural Products, School of Pharmaceutical Sciences, Shandong University, Shandong, People’s Republic of China
| | - Pak Kin Wong
- Aerospace and Mechanical Engineering Department, University of Arizona, Tucson, Arizona, USA
| | - Donna D. Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, USA
- Address correspondence to D.D. Zhang, University of Arizona, College of Pharmacy, 1703 East Mabel, Tucson, AZ 85721 USA. Telephone: (520) 626-9918. Fax: (520) 626-2466. E-mail:
| |
Collapse
|
46
|
Bjelakovic G, Nikolova D, Simonetti RG, Gluud C. Antioxidant supplements for preventing gastrointestinal cancers. Cochrane Database Syst Rev 2008:CD004183. [PMID: 18677777 DOI: 10.1002/14651858.cd004183.pub3] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Oxidative stress may cause gastrointestinal cancers. The evidence on whether antioxidant supplements are effective in preventing gastrointestinal cancers is contradictory. OBJECTIVES To assess the beneficial and harmful effects of antioxidant supplements in preventing gastrointestinal cancers. SEARCH STRATEGY We identified trials through the trials registers of the four Cochrane Review Groups on gastrointestinal diseases, The Cochrane Central Register of Controlled Trials in The Cochrane Library (Issue 2, 2007), MEDLINE, EMBASE, LILACS, SCI-EXPANDED, and The Chinese Biomedical Database from inception to October 2007. We scanned reference lists and contacted pharmaceutical companies. SELECTION CRITERIA Randomised trials comparing antioxidant supplements to placebo/no intervention examining occurrence of gastrointestinal cancers. DATA COLLECTION AND ANALYSIS Two authors (GB and DN) independently selected trials for inclusion and extracted data. Outcome measures were gastrointestinal cancers, overall mortality, and adverse effects. Outcomes were reported as relative risks (RR) with 95% confidence interval (CI) based on random-effects and fixed-effect model meta-analysis. Meta-regression assessed the effect of covariates across the trials. MAIN RESULTS We identified 20 randomised trials (211,818 participants), assessing beta-carotene (12 trials), vitamin A (4 trials), vitamin C (8 trials), vitamin E (10 trials), and selenium (9 trials). Trials quality was generally high. Heterogeneity was low to moderate. Antioxidant supplements were without significant effects on gastrointestinal cancers (RR 0.94, 95% CI 0.83 to 1.06). However, there was significant heterogeneity (I(2) = 54.0%, P = 0.003). The heterogeneity may have been explained by bias risk (low-bias risk trials RR 1.04, 95% CI 0.96 to 1.13 compared to high-bias risk trials RR 0.59, 95% CI 0.43 to 0.80; test of interaction P < 0.0005), and type of antioxidant supplement (beta-carotene potentially increasing and selenium potentially decreasing cancer risk). The antioxidant supplements had no significant effects on mortality in a random-effects model meta-analysis (RR 1.02, 95% CI 0.97 to 1.07, I(2) = 53.5%), but significantly increased mortality in a fixed-effect model meta-analysis (RR 1.04, 95% CI 1.02 to 1.07). Beta-carotene in combination with vitamin A (RR 1.16, 95% CI 1.09 to 1.23) and vitamin E (RR 1.06, 95% CI 1.02 to 1.11) significantly increased mortality. Increased yellowing of the skin and belching were non-serious adverse effects of beta-carotene. In five trials (four with high risk of bias), selenium seemed to show significant beneficial effect on gastrointestinal cancer occurrence (RR 0.59, 95% CI 0.46 to 0.75, I(2) = 0%). AUTHORS' CONCLUSIONS We could not find convincing evidence that antioxidant supplements prevent gastrointestinal cancers. On the contrary, antioxidant supplements seem to increase overall mortality. The potential cancer preventive effect of selenium should be tested in adequately conducted randomised trials.
Collapse
Affiliation(s)
- Goran Bjelakovic
- Copenhagen Trial Unit, Centre for Clinical Intervention Research,, Department 3344, Rigshospitalet, Copenhagen University Hospital,, Blegdamsvej 9, Copenhagen, Denmark, DK-2100.
| | | | | | | |
Collapse
|
47
|
Holst B, Williamson G. Nutrients and phytochemicals: from bioavailability to bioefficacy beyond antioxidants. Curr Opin Biotechnol 2008; 19:73-82. [PMID: 18406129 DOI: 10.1016/j.copbio.2008.03.003] [Citation(s) in RCA: 297] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Revised: 03/14/2008] [Accepted: 03/14/2008] [Indexed: 02/07/2023]
Abstract
The effect of any dietary compound is influenced by the active bioavailable dose rather than the dose ingested. Depending on the individual predisposition, including genetics and medication, a bioavailable dose may cause different magnitudes of effects in different people. Age might affect the predisposition and thus the requirements for nutrients including phytonutrients (e.g. phytochemicals such as flavonoids, phenolic acids and glucosinolates). These are not essential for growth and development but to maintain body functions and health throughout the adult and later phases of life; they are 'lifespan essentials'. Major mechanisms involved in chronic, age-related diseases include the oxidant/antioxidant balance, but the latest research indicates indirect effects of dietary bioactives in vivo and adaptive responses in addition to direct radical scavenging.
Collapse
Affiliation(s)
- Birgit Holst
- BioAnalytical Science Department, Nestlé Research Center, Nestec Ltd., Vers-chez-les-Blanc, CH-1000 Lausanne 26, Switzerland.
| | | |
Collapse
|
48
|
Mebrahtu B, Pamela K, Alan J, Charles S. Expression of MRP1 and GSTP1-1 modulate the acute cellular response to treatment with the chemopreventive isothiocyanate, sulforaphane. Carcinogenesis 2008; 29:807-15. [PMID: 18204073 PMCID: PMC9939032 DOI: 10.1093/carcin/bgn013] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A major component of the anticarcinogenic activity of the dietary chemopreventive agent sulforaphane (SFN) is attributed to its ability to induce expression of phase II detoxification genes containing the antioxidant response element (ARE) within their promoters. Because SFN is a reactive electrophile--readily forming conjugates with glutathione (GSH)--we asked whether expression of glutathione S-transferase (GST) P1-1 and the GSH conjugate efflux pump, multidrug resistance or resistance-associated protein (MRP) 1, would significantly modify the cellular response to SFN exposure. This was investigated using GST- and MRP1-poor parental MCF7 cells and transgenic derivatives expressing GSTP1-1 and/or MRP1. Compared with parental cells, expression of GSTP1-1 alone enhanced the rate of intracellular accumulation of SFN and its glutathione conjugate, SFN-SG--an effect that was associated with increased ARE-containing reporter gene induction. Expression of MRP1 greatly reduced SFN/SFN-SG accumulation and resulted in significant attenuation of SFN-mediated induction of ARE-containing reporter and endogenous gene expression. Coexpression of GSTP1-1 with MRP1 further reduced the level of induction. Depletion of GSH prior to SFN treatment or the substitution of tert-butylhydroquinone for SFN abolished the effects of MRP1/GSTP1-1 on ARE-containing gene induction-indicating that these effects are GSH dependent. Lastly, analysis of NF-E2-related factor 2 (Nrf2)--a transcription factor operating via binding to the ARE--showed that the increased levels of Nrf2 following SFN treatment were considerably less sustained in MRP1-expressing, especially those coexpressing GSTP1-1, than in MRP1-poor cells. These results suggest that the regulating effects of MRP1 and GSTP1-1 expression on SFN-dependent induction of phase II genes are ultimately mediated by altering nuclear Nrf2 levels.
Collapse
Affiliation(s)
| | | | | | - S.Morrow Charles
- To whom correspondence should be addressed. Tel: +1 336 713 7218; Fax: +1 336 716 7161;
| |
Collapse
|
49
|
Bjelakovic G, Nikolova D, Simonetti RG, Gluud C. Antioxidant supplements for preventing gastrointestinal cancers. Cochrane Database Syst Rev 2004:CD004183. [PMID: 15495084 DOI: 10.1002/14651858.cd004183.pub2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Oxidative stress may cause gastrointestinal cancers. The evidence on whether antioxidant supplements are effective in preventing gastrointestinal cancers is contradictory. OBJECTIVES To assess the beneficial and harmful effects of antioxidant supplements in preventing gastrointestinal cancers. SEARCH STRATEGY We identified trials through the trials registers of the four Cochrane Review Groups on gastrointestinal diseases, The Cochrane Central Register of Controlled Trials on The Cochrane Library (Issue 1, 2003), MEDLINE, EMBASE, LILACS, and SCI-EXPANDED from inception to February 2003, and The Chinese Biomedical Database (March 2003). We scanned reference lists and contacted pharmaceutical companies. SELECTION CRITERIA Randomised trials comparing antioxidant supplements to placebo/no intervention examining the incidence of gastrointestinal cancers. DATA COLLECTION AND ANALYSIS Two reviewers independently selected trials for inclusion and extracted data. The outcome measures were incidence of gastrointestinal cancers, overall mortality, and adverse events. Outcomes were reported as relative risks (RR) with 95% confidence interval (CI) based on fixed and random effects meta-analyses. MAIN RESULTS We identified 14 randomised trials (170,525 participants), assessing beta-carotene (9 trials), vitamin A (4 trials), vitamin C (4 trials), vitamin E (5 trials), and selenium (6 trials). Trial quality was generally high. Heterogeneity was low to moderate. Neither the fixed effect (RR 0.96, 95% CI 0.88 to 1.04) nor random effects meta-analyses (RR 0.90, 95% CI 0.77 to 1.05) showed significant effects of supplementation with antioxidants on the incidences of gastrointestinal cancers. Among the seven high-quality trials reporting on mortality (131,727 participants), the fixed effect (RR 1.06, 95% CI 1.02 to 1.10) unlike the random effects meta-analysis (RR 1.06, 95% CI 0.98 to 1.15) showed that antioxidant supplements significantly increased mortality. Two low-quality trials (32,302 participants) found no significant effect of antioxidant supplementation on mortality. The difference between the mortality estimates in high- and low-quality trials was significant by test of interaction (z = 2.10, P = 0.04). Beta-carotene and vitamin A (RR 1.29, 95% CI 1.14 to 1.45) and beta-carotene and vitamin E (RR 1.10, 95% CI 1.01 to 1.20) significantly increased mortality, while beta-carotene alone only tended to do so (RR 1.05, 95% CI 0.99 to 1.11). Increased yellowing of the skin and belching were non-serious adverse effects of beta-carotene. In four trials (three with unclear/inadequate methodology), selenium showed significant beneficial effect on gastrointestinal cancer incidences. REVIEWERS' CONCLUSIONS We could not find evidence that antioxidant supplements prevent gastrointestinal cancers. On the contrary, they seem to increase overall mortality. The potential cancer preventive effect of selenium should be studied in adequately conducted randomised trials.
Collapse
Affiliation(s)
- G Bjelakovic
- Cochrane Hepato-Biliary Group, Copenhagen Trial Unit, Centre for Clinical Intervention Research, Dept. 7102, H:S Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, DK 2100 Copenhagen, Denmark.
| | | | | | | |
Collapse
|