1
|
Guven C, Koçak S, Karadag A, Aydın H, Yalcin A, Turk A. Adropin as a protective agent against renal ischemia-reperfusion injury induced by suprarenal aortic cross-clamping in rats. BMC Nephrol 2025; 26:154. [PMID: 40140781 PMCID: PMC11948768 DOI: 10.1186/s12882-025-04087-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 03/20/2025] [Indexed: 03/28/2025] Open
Abstract
BACKGROUND The development of protective therapeutic strategies against acute kidney injury associated with suprarenal aneurysms, renal artery occlusive disease, and suprarenal aortic reconstruction is of paramount importance. Adropin is a peptide hormone that has been shown to protect vascular endothelial cells and reduce oxidative stress, apoptosis, and inflammation. Therefore, in addition to its metabolic and vascular effects, adropin has potential as a therapeutic agent in renal ischemia-reperfusion injury. This study aims to investigate the protective effects of adropine on kidney ischemia-reperfusion (IR) injury under the suprarenal aortic cross clamp. METHODS Male Sprague Dawley rats were divided into six groups, with seven rats in each group for the study design. The control and ischemia reperfusion (IR) induced groups were designated as the two groups while the other four groups (TR1 to TR4 ) were administered varying doses of adropin at 0.5 mg/kg, 1 mg/kg, 1.5 mg/kg, and 2 mg/kg for each group. After a 60 min ischemic period, a 24-hour reperfusion period was implemented to assess the outcomes of adropin treatment on renal IR. Histopathological analysis was performed in conjunction with determination of apoptosis, and malondialdehyde (MDA) levels. In addition, serum concentrations of adropin, superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), as well as endothelial nitric oxide synthase (eNOS) were measured in order to further define the biochemical reactions of the treatment. RESULTS MDA levels were significantly elevated in the IR group compared to the control group, while the activities of eNOS, SOD, and GSH-Px enzymes were significantly decreased (P < 0.05). MDA levels in the treatment groups were lower than those in the IR group, whereas eNOS, SOD, and GSH-Px levels were higher (P < 0.05). Statistically, the lowest adropin levels were observed in the IR group, while the highest levels were noted in the TR4 group (P < 0.05). Histopathological examination revealed a reduction in tissue damage in the treatment groups compared to the IR group. CONCLUSION The histological and biochemical findings from this study indicate that adropin provides protective effects against renal ischemia-reperfusion injury in a dose-dependent manner.
Collapse
Affiliation(s)
- Cengiz Guven
- Faculty of Medicine, Department of Cardiovascular Surgery, Adiyaman University, Adiyaman, Turkey
| | - Seda Koçak
- Faculty of Medicine, Department of Physiology, Kırşehir Ahi Evran University, Kırşehir, Turkey.
| | - Abdullah Karadag
- Faculty of Medicine, Department of Physiology, Adiyaman University, Adiyaman, Turkey
| | - Hasan Aydın
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Adiyaman University, Adiyaman, Turkey
| | - Alper Yalcin
- Faculty of Medicine, Department of Histology and Embryology, Kahramanmaraş Sütçü Imam University, Adiyaman, Turkey
| | - Ahmet Turk
- Faculty of Medicine, Department of Histology and Embryology, Adiyaman University, Adıyaman, Turkey
| |
Collapse
|
2
|
Damasceno ROS, Pinheiro JLS, da Silva LD, Rodrigues LHM, Emídio JJ, Lima TC, de Sousa DP. Phytochemistry and Anti-Inflammatory and Antioxidant Activities of Cinnamomum osmophloeum and Its Bioactive Constituents: A Review. PLANTS (BASEL, SWITZERLAND) 2025; 14:562. [PMID: 40006821 PMCID: PMC11859615 DOI: 10.3390/plants14040562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/31/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025]
Abstract
Cinnamomum osmophloeum, commonly known as indigenous cinnamon, is a tree species native to Taiwan's hardwood forests. It has been extensively investigated for its chemical composition and bioactivities. Several reports have shown that C. osmophloeum leaves are rich in aromatic oils, which are grouped into various chemotypes based on their major constituents. Components of the volatile oils included phenylpropanoids, monoterpenoids, sesquiterpenoids, phenols, coumarins, and other miscellaneous compounds. In addition, other secondary metabolites previously identified in this species included flavonol glycosides, phenolic acids, lignans, proanthocyanidins, and cyclopropanoids. C. osmophloeum is widely recognized for its medicinal and industrial applications, particularly its essential oils. In general, essential oils exhibit remarkable anti-inflammatory and antioxidant actions, enabling them to modulate key inflammatory mediators and neutralize free radicals. This review explored the phytochemical composition of the essential oils and extracts from C. osmophloeum as well as therapeutic potential of this species, focusing on the action mechanisms and clinical potential. We hope that this review will contribute to a better understanding of the biological effects of this plant and its potential applications in the management of conditions associated with inflammation and oxidative stress.
Collapse
Affiliation(s)
- Renan Oliveira Silva Damasceno
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife 50670-901, Pernambuco, Brazil; (J.L.S.P.); (L.D.d.S.); (L.H.M.R.)
| | - João Lucas Silva Pinheiro
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife 50670-901, Pernambuco, Brazil; (J.L.S.P.); (L.D.d.S.); (L.H.M.R.)
| | - Lorena Duarte da Silva
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife 50670-901, Pernambuco, Brazil; (J.L.S.P.); (L.D.d.S.); (L.H.M.R.)
| | - Lucas Henrique Marques Rodrigues
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife 50670-901, Pernambuco, Brazil; (J.L.S.P.); (L.D.d.S.); (L.H.M.R.)
| | - Jeremias Justo Emídio
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa 58051-970, Paraíba, Brazil;
| | - Tamires Cardoso Lima
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão 49100-000, Sergipe, Brazil;
| | - Damião Pergentino de Sousa
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa 58051-970, Paraíba, Brazil;
| |
Collapse
|
3
|
Gaydarski L, Petrova K, Angushev I, Stanchev S, Iliev A, Stamenov N, Kirkov V, Landzhov B. Exploring the Molecular Modalities in the Pathogenesis of Diabetic Kidney Disease with a Focus on the Potential Therapeutic Implications. Biomedicines 2024; 13:50. [PMID: 39857634 PMCID: PMC11763324 DOI: 10.3390/biomedicines13010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/13/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
Diabetic kidney disease (DKD) is a leading cause of chronic kidney disease (CKD) and end-stage renal disease worldwide, affecting approximately 40% of individuals with type 2 diabetes (T2DM) and 30% of those with type 1 diabetes (T1DM). As the prevalence of diabetes continues to rise, the burden of DKD is expected to grow correspondingly. This review explores the roles of key molecular pathways, including the apelinergic system, vascular endothelial growth factor (VEGF)/VEGF receptor (VEGFR) axis, and nitric oxide (NO)/nitric oxide synthase (NOS) signaling, in DKD pathogenesis and potential therapeutic applications. The apelinergic system, involving apelin and its receptor (APLNR), influences endothelial function, glucose metabolism, and renal health. Preclinical studies highlight its dual role in renal protection and injury through anti-inflammatory and antioxidant pathways, while other evidence suggests that it may exacerbate DKD through podocyte damage and angiogenesis. Similarly, the VEGF/VEGFR axis demonstrates a complex contribution to DKD, where VEGF-A promotes pathological angiogenesis and glomerular damage, but its inhibition requires careful modulation to prevent adverse effects. The NO/NOS system, integral to vascular and renal homeostasis, also exhibits altered activity in DKD, with reduced bioavailability linked to oxidative stress and inflammation. This review underscores the intricate interplay between these pathways in DKD, revealing both challenges and opportunities in their therapeutic targeting. Further research is essential to refine strategies and develop effective interventions for DKD management.
Collapse
Affiliation(s)
- Lyubomir Gaydarski
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, 1431 Sofia, Bulgaria; (K.P.); (I.A.); (S.S.); (A.I.); (N.S.); (B.L.)
| | - Kristina Petrova
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, 1431 Sofia, Bulgaria; (K.P.); (I.A.); (S.S.); (A.I.); (N.S.); (B.L.)
| | - Ivan Angushev
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, 1431 Sofia, Bulgaria; (K.P.); (I.A.); (S.S.); (A.I.); (N.S.); (B.L.)
| | - Stancho Stanchev
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, 1431 Sofia, Bulgaria; (K.P.); (I.A.); (S.S.); (A.I.); (N.S.); (B.L.)
| | - Alexandar Iliev
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, 1431 Sofia, Bulgaria; (K.P.); (I.A.); (S.S.); (A.I.); (N.S.); (B.L.)
| | - Nikola Stamenov
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, 1431 Sofia, Bulgaria; (K.P.); (I.A.); (S.S.); (A.I.); (N.S.); (B.L.)
| | - Vidin Kirkov
- Department of Health Policy and Management, Faculty of Public Health ‘Prof. Dr. Tzekomir Vodenicharov’, Medical University of Sofia, 1527 Sofia, Bulgaria;
| | - Boycho Landzhov
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, 1431 Sofia, Bulgaria; (K.P.); (I.A.); (S.S.); (A.I.); (N.S.); (B.L.)
| |
Collapse
|
4
|
Asgari A, Franczak A, Herchen A, Jickling GC, Jurasz P. Elevated levels of pro-thrombotic eNOS-negative platelets in COVID-19 patients. Thromb Res 2024; 244:109178. [PMID: 39369655 DOI: 10.1016/j.thromres.2024.109178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/13/2024] [Accepted: 10/02/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND Platelet-rich microvascular thrombi are common in severe COVID-19. Endogenous nitric oxide (NO)-signaling limits thrombus formation and previously we identified platelet subpopulations with a differential ability to produce NO based on the presence or absence of endothelial nitric oxide synthase (eNOS). eNOS expression is counter-regulated by cytokines, and COVID-19-associated immune/inflammatory responses may affect the transcriptome profile of megakaryocytes and their platelet progeny. OBJECTIVES We investigated whether the percentage of eNOS-negative to eNOS-positive platelets increases in COVID-19 patients and whether this change may be due to the actions of pro-inflammatory cytokines on megakaryocytes. METHODS Platelets were isolated from hospitalized COVID-19 patients and COVID-19-negative controls. Platelet eNOS was measured by flow cytometry and plasma inflammatory cytokines by ELISA. Megakaryocytes from eNOS-GFP transgenic mice and the Meg-01 cell line were characterized to identify an appropriate model to study eNOS-based platelet subpopulation formation in response to inflammatory cytokines. RESULTS COVID-19 patients demonstrated a significant increase in eNOS-negative and a concomitant decrease in eNOS-positive platelets compared to controls, and this change was associated with disease severity as assessed by ICU admission. A higher eNOS-negative to -positive platelet percentage was associated with enhanced platelet activation as measured by surface CD62P. Accordingly, COVID-19 patients demonstrated higher TNF-α, IL-6, and IL-1β plasma concentrations than controls. Inflammatory cytokines associated with COVID-19 promoted eNOS-negative Meg-01 formation and enhanced subsequent eNOS-negative platelet-like particle formation. CONCLUSIONS COVID-19 patients have a higher percentage of eNOS-negative to -positive platelets, likely as a result of inflammatory response reducing megakaryocyte eNOS expression, which predisposes to thrombosis.
Collapse
Affiliation(s)
- Amir Asgari
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | - Aleksandra Franczak
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Alex Herchen
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada; School of Medicine and Dentistry, Griffith University, Queensland, Australia
| | - Glen C Jickling
- Department of Medicine, Division of Neurology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Paul Jurasz
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada; Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada; Cardiovascular Research Institute, University of Alberta, Edmonton, AB, Canada; Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
5
|
Chen X, Song Y, Hong Y, Zhang X, Li Q, Zhou H. "NO" controversy?: A controversial role in insulin signaling of diabetic encephalopathy. Mol Cell Endocrinol 2024; 593:112346. [PMID: 39151653 DOI: 10.1016/j.mce.2024.112346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/14/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Insulin, a critical hormone in the human body, exerts its effects by binding to insulin receptors and regulating various cellular processes. While nitric oxide (NO) plays an important role in insulin secretion and acts as a mediator in the signal transduction pathway between upstream molecules and downstream effectors, holds a significant position in the downstream signal network of insulin. Researches have shown that the insulin-NO system exhibits a dual regulatory effect within the central nervous system, which is crucial in the regulation of diabetic encephalopathy (DE). Understanding this system holds immense practical importance in comprehending the targets of existing drugs and the development of potential therapeutic interventions. This review extensively examines the characterization of insulin, NO, Nitric oxide synthase (NOS), specific NO pathway, their interconnections, and the mechanisms underlying their regulatory effects in DE, providing a reference for new therapeutic targets of DE.
Collapse
Affiliation(s)
- Xi Chen
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Ying Song
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China; Hangzhou King's Bio-pharmaceutical Technology Co., Ltd, Hangzhou, Zhejiang, 310007, China.
| | - Ye Hong
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Xiaomin Zhang
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Qisong Li
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Hongling Zhou
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| |
Collapse
|
6
|
Gezer A, Üstündağ H, Karadağ Sarı E, Bedir G, Gür C, Mendil AS, Duysak L. β-carotene protects against α-amanitin nephrotoxicity via modulation of oxidative, autophagic, nitric oxide signaling, and polyol pathways in rat kidneys. Food Chem Toxicol 2024; 193:115040. [PMID: 39389447 DOI: 10.1016/j.fct.2024.115040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/26/2024] [Accepted: 10/06/2024] [Indexed: 10/12/2024]
Abstract
Alpha-amanitin (α-AMA), a toxic component of Amanita phalloides, causes severe hepato- and nephrotoxicity. This study investigated the protective effects of βeta-carotene (βC) against α-AMA-induced kidney damage in rats. Thirty-two male Sprague-Dawley rats were divided into four groups: Control, βC (50 mg/kg/day), α-AMA (3 mg/kg), and βC+α-AMA. βC was administered orally for 7 days before α-AMA injection. Renal function, oxidative stress markers, histopathological changes, and enzyme activities were evaluated 48 h post-α-AMA administration. α-AMA significantly increased serum creatinine and urea levels, decreased glutathione and catalase activity, and increased malondialdehyde levels (P < 0.001). βC pretreatment attenuated these changes (P < 0.05). Histopathological examination revealed reduced tubular degeneration in the βC+α-AMA group (P < 0.001). Immunohistochemical analysis showed increased LC3B and Beclin-1 expression in α-AMA-treated rats, indicating enhanced autophagy, partially reversed by βC. Additionally, α-AMA reduced nitric oxide synthase (NOS) activity and increased aldose reductase (AR) activity, both normalized by βC pretreatment (P < 0.01). βC demonstrates protective effects against α-AMA-induced nephrotoxicity through antioxidant action, modulation of autophagy, and regulation of NOS and AR pathways, suggesting its potential as a therapeutic agent in α-AMA poisoning.
Collapse
Affiliation(s)
- Arzu Gezer
- Atatürk University, Pharmaceutical Research and Development, Graduate School of Natural and Applied Sciences, Erzurum, Turkiye; Atatürk University, Vocational School of Health Services, Erzurum, Turkiye.
| | - Hilal Üstündağ
- Erzincan Binali Yıldırım University, Faculty of Medicine, Department of Physiology, Erzincan, Turkiye.
| | - Ebru Karadağ Sarı
- Kafkas University, Faculty of Veterinary Medicine, Department of Histology and Embryology, Kars, Turkiye
| | - Gürsel Bedir
- Atatürk University, School of Medicine, Department of Histology and Embryology, Erzurum, Turkiye
| | - Cihan Gür
- Atatürk University, Vocational School of Health Services, Erzurum, Turkiye
| | - Ali Sefa Mendil
- Erciyes University, Faculty of Veterinary Medicine, Department of Pathology, Kayseri, Turkiye
| | - Lale Duysak
- Atatürk University, Faculty of Pharmacy, Department of Biochemistry, Erzurum, Turkiye
| |
Collapse
|
7
|
Yalcın B, Onder GO, Goktepe O, Suna PA, Mat OC, Koseoglu E, Cetindag E, Baran M, Bitgen N, Öz Gergı N Ö, Yay A. Enhanced kidney damage induced by increasing nonylphenol doses: impact on autophagy-related proteins and proinflammatory cytokines in rats. Toxicol Mech Methods 2024; 34:867-876. [PMID: 38769906 DOI: 10.1080/15376516.2024.2358348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/05/2024] [Accepted: 05/05/2024] [Indexed: 05/22/2024]
Abstract
Nonylphenol (NP) is an organic pollutant and endocrine disruptor chemical that has harmful effects on the environment and living organisms. This study looked at whether kidney tissues subjected to increasing doses of nonylphenol generated alterations in histopathologic, pro-inflammatory, and autophagic markers. Fifty rats were divided into five groups of ten each: group I: healthy group, II: control (corn oil), group III: 25 μl/kg NP, group IV: 50 μl/kg NP, group V: 75 μl/kg NP. The kidney tissue samples were obtained for histopathological, immunohistochemical, and biochemical analyses. The histological deteriorations observed in all NP groups included tubular epithelial cell degeneration, inflammation areas, and hemorrhage. The immunohistochemical investigations showed that NP significantly elevated the autophagy markers (Beclin-1, LC3A/B, p62), pro-inflammatory cytokines (TNF-α, IL-6), HIF-1α, and eNOS in group III, IV and V compared with group I and II. The biochemical analysis also revealed that pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6) increased in correlation with the NP doses, but only IL-1β reached statistical significance in NP treated rats kidney tissue. The biochemical findings have been confirmed by the histological studies. The damage to renal tissue caused by NP exposure may worsen it by increasing inflammatory and autophagic markers.
Collapse
Affiliation(s)
- Betul Yalcın
- Department of Histology and Embryology, Adıyaman University, Adıyaman, Turkey
| | - Gozde Ozge Onder
- Department of Histology and Embryology, Erciyes University, Kayseri, Turkey
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
| | - Ozge Goktepe
- Department of Histology and Embryology, Erciyes University, Kayseri, Turkey
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
| | - Pınar Alisan Suna
- Department of Histology and Embryology, Erciyes University, Kayseri, Turkey
| | - Ozge Cengiz Mat
- Department of Histology and Embryology, Erciyes University, Kayseri, Turkey
| | - Eda Koseoglu
- Department of Histology and Embryology, Erciyes University, Kayseri, Turkey
| | - Emre Cetindag
- Department of Histology and Embryology, Erciyes University, Kayseri, Turkey
| | - Munevver Baran
- Department of Pharmacy Basic Science, Erciyes University, Kayseri, Turkey
| | - Nazmiye Bitgen
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
- Department of Medical Biology, Erciyes University, Kayseri, Turkey
| | - Özlem Öz Gergı N
- Department of Surgical Medicine Science, Anesthesiology and Reanimation, Erciyes University, Kayseri, Turkey
| | - Arzu Yay
- Department of Histology and Embryology, Erciyes University, Kayseri, Turkey
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
| |
Collapse
|
8
|
Gaydarski L, Dimitrova IN, Stanchev S, Iliev A, Kotov G, Kirkov V, Stamenov N, Dikov T, Georgiev GP, Landzhov B. Unraveling the Complex Molecular Interplay and Vascular Adaptive Changes in Hypertension-Induced Kidney Disease. Biomedicines 2024; 12:1723. [PMID: 39200188 PMCID: PMC11351430 DOI: 10.3390/biomedicines12081723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/25/2024] [Accepted: 07/31/2024] [Indexed: 09/02/2024] Open
Abstract
Angiogenesis, the natural mechanism by which fresh blood vessels develop from preexisting ones, is altered in arterial hypertension (AH), impacting renal function. Studies have shown that hypertension-induced renal damage involves changes in capillary density (CD), indicating alterations in vascularization. We aimed to elucidate the role of the apelin receptor (APLNR), neuronal nitric oxide synthase (nNOS), and vascular endothelial growth factor (VEGF) in hypertension-induced renal damage. We used two groups of spontaneously hypertensive rats aged 6 and 12 months, representing different stages of AH, and compared them to age-matched normotensive controls. The kidney tissue samples were prepared through a well-established protocol. All data analysis was conducted with a dedicated software program. APLNR was localized in tubular epithelial cells and the endothelial cells of the glomeruli, with higher expression in older SHRs. The localization of nNOS and VEGF was similar. The expression of APLNR and nNOS increased with AH progression, while VEGF levels decreased. CD was lower in young SHRs compared to controls and decreased significantly in older SHRs in comparison to age-matched controls. Our statistical analysis revealed significant differences in molecule expression between age groups and varying correlations between the expression of the three molecules and CD.
Collapse
Affiliation(s)
- Lyubomir Gaydarski
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, 1431 Sofia, Bulgaria; (L.G.); (S.S.); (A.I.); (N.S.); (B.L.)
| | - Iva N. Dimitrova
- Department of Cardiology, University Hospital “St. Ekaterina”, Medical University of Sofia, 1431 Sofia, Bulgaria;
| | - Stancho Stanchev
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, 1431 Sofia, Bulgaria; (L.G.); (S.S.); (A.I.); (N.S.); (B.L.)
| | - Alexandar Iliev
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, 1431 Sofia, Bulgaria; (L.G.); (S.S.); (A.I.); (N.S.); (B.L.)
| | - Georgi Kotov
- Department of Rheumatology, Clinic of Rheumatology, University Hospital “St. Ivan Rilski”, Medical Faculty, Medical University of Sofia, 1612 Sofia, Bulgaria;
| | - Vidin Kirkov
- Department of Health Policy and Management, Faculty of Public Health “Prof. Dr. Tzekomir Vodenicharov”, Medical University of Sofia, 1431 Sofia, Bulgaria;
| | - Nikola Stamenov
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, 1431 Sofia, Bulgaria; (L.G.); (S.S.); (A.I.); (N.S.); (B.L.)
| | - Tihomir Dikov
- Department of General and Clinical Pathology, Medical University of Sofia, 1431 Sofia, Bulgaria;
| | - Georgi P. Georgiev
- Department of Orthopedics and Traumatology, University Hospital Queen Giovanna-ISUL, Medical University of Sofia, 1527 Sofia, Bulgaria
| | - Boycho Landzhov
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, 1431 Sofia, Bulgaria; (L.G.); (S.S.); (A.I.); (N.S.); (B.L.)
| |
Collapse
|
9
|
Fenton Navarro B, Casimiro Aguayo AA, Torres Gómez YL, Cervantes Alfaro M, Torner L. Early Life Stress Influences Oxidative Stress Enzyme Activities in Liver, Heart, Kidney, Suprarenal Glands, and Pancreas in Male and Female Rat Pups. Antioxidants (Basel) 2024; 13:802. [PMID: 39061871 PMCID: PMC11273735 DOI: 10.3390/antiox13070802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Early life stress (ELS) is a risk factor for the development of chronic diseases resulting from functional alterations of organs in the cardiorespiratory and renal systems. This work studied the changes in oxidative stress enzyme activities (EAs) of SOD, CAT, GPX, GR, GST, NOS, MDA, and FRAP in different organs (heart, liver, kidney, adrenal glands (AGs), and pancreas) of male and female Sprague-Dawley rat pups on postnatal day (PN) 15, immediately after basal and acute or chronic stress conditions were accomplished, as follows: basal control (BC; undisturbed maternal pups care), stress control (SC; 3 h maternal separation on PN15), basal maternal separation (BMS; daily 3 h maternal separation on PN 1-14), and stress maternal separation (SMS; daily 3 h maternal separation on PN 1-14 and 3 h maternal separation on PN15). Acute or long-term stress resulted in overall oxidative stress, increase in EA, and reduced antioxidant capacity in these organs. Some different response patterns, due to precedent SMS, were observed in specific organs, especially in the AGs. Acute stress exposure increases the EA, but chronic stress generates a response in the antioxidant system in some of the organs studied and is damped in response to a further challenge.
Collapse
Affiliation(s)
- Bertha Fenton Navarro
- Laboratorio de Glicobiología y Farmacognosia, Facultad de Ciencias Médicas y Biológicas “Dr. Ignacio Chávez”, Universidad Michoacana de San Nicolás de Hidalgo. Av. Dr. Rafael Carrillo S/N, Esq. Dr. Salvador González Herrejón Bosque, Cuauhtémoc, Morelia 58020, Michoacán, Mexico; (A.A.C.A.); (Y.L.T.G.)
| | - Alexis Abraham Casimiro Aguayo
- Laboratorio de Glicobiología y Farmacognosia, Facultad de Ciencias Médicas y Biológicas “Dr. Ignacio Chávez”, Universidad Michoacana de San Nicolás de Hidalgo. Av. Dr. Rafael Carrillo S/N, Esq. Dr. Salvador González Herrejón Bosque, Cuauhtémoc, Morelia 58020, Michoacán, Mexico; (A.A.C.A.); (Y.L.T.G.)
| | - Yayr Luis Torres Gómez
- Laboratorio de Glicobiología y Farmacognosia, Facultad de Ciencias Médicas y Biológicas “Dr. Ignacio Chávez”, Universidad Michoacana de San Nicolás de Hidalgo. Av. Dr. Rafael Carrillo S/N, Esq. Dr. Salvador González Herrejón Bosque, Cuauhtémoc, Morelia 58020, Michoacán, Mexico; (A.A.C.A.); (Y.L.T.G.)
| | - Miguel Cervantes Alfaro
- Laboratorio de Neurociencias, Facultad de Ciencias Médicas y Biológicas “Dr. Ignacio Chávez”, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58000, Michoacán, Mexico;
| | - Luz Torner
- Laboratorio de Neuroendocrinología, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social; Cam. de La Arboleda # 300, La Huerta, Morelia 58341, Michoacán, Mexico
| |
Collapse
|
10
|
Thongsepee N, Himakhun W, Kankul K, Martviset P, Chantree P, Sornchuer P, Ruangtong J, Hiranyachattada S. Monosodium glutamate altered renal architecture and modulated expression of NMDA-R, eNOS, and nNOS in normotensive and hypertensive rats. Food Chem Toxicol 2024; 189:114763. [PMID: 38797315 DOI: 10.1016/j.fct.2024.114763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
Monosodium glutamate (MSG) administration has been shown to pronounce hypertension and oxidative status with increased renal blood flow (RBF), however, the precise mechanisms of action have never been demonstrated. This study aimed to investigate the MSG action by studying the alteration in renal architecture and specific protein expression in 2-kidney-1-clip hypertensive comparing to sham operative normotensive rats. The administered doses of MSG were 80, 160, or 320 mg/kg BW daily for 8 weeks. Using routine chemical staining, the congestion of glomerular capillaries, a lesser renal corpuscles and glomeruli size, a widen Bowman capsule's space, an increase in mesangial cell proliferation and mesangial matrix, renal interstitial fibrosis, focal cloudy swelling of renal tubular epithelial cells were observed. Immunological study revealed an increase in the expression of N-methyl-D-aspartate receptor (NMDA-R) and endothelial nitric oxide synthase (eNOS) but a decrease in neuronal NOS (nNOS). It is suggested that MSG may upregulate the NMDA-R levels which responsible for the oxidative stress, glomerular injury, and renal interstitial fibrosis. The NMDA-R may also stimulate eNOS overexpression which resulted in renal microvascular dilatation, a raise in RBF and GFR, and natriuresis and diuresis promotion. Long-term exposure of MSG may trigger adaptation of tubuloglomerular feedback through nNOS downregulation.
Collapse
Affiliation(s)
- Nattaya Thongsepee
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathum Thani, 12120, Thailand; Research Unit in Nutraceuticals and Food Safety, Thammasat University, Pathum Thani, 12120, Thailand.
| | - Wanwisa Himakhun
- Department of Pathology, Faculty of Medicine, Thammasat University, Pathum Thani, 12120, Thailand
| | - Kanokwan Kankul
- Research Unit in Nutraceuticals and Food Safety, Thammasat University, Pathum Thani, 12120, Thailand
| | - Pongsakorn Martviset
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathum Thani, 12120, Thailand; Research Unit in Nutraceuticals and Food Safety, Thammasat University, Pathum Thani, 12120, Thailand
| | - Pathanin Chantree
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathum Thani, 12120, Thailand; Research Unit in Nutraceuticals and Food Safety, Thammasat University, Pathum Thani, 12120, Thailand
| | - Phornphan Sornchuer
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathum Thani, 12120, Thailand; Research Unit in Nutraceuticals and Food Safety, Thammasat University, Pathum Thani, 12120, Thailand
| | - Jittiporn Ruangtong
- Research Unit in Nutraceuticals and Food Safety, Thammasat University, Pathum Thani, 12120, Thailand
| | | |
Collapse
|
11
|
Abdel-Reheim MA, Ali ME, Gaafar AGA, Ashour AA. Quillaja saponin mitigates methotrexate-provoked renal injury; insight into Nrf-2/Keap-1 pathway modulation with suppression of oxidative stress and inflammation. J Pharm Health Care Sci 2024; 10:17. [PMID: 38594773 PMCID: PMC11003044 DOI: 10.1186/s40780-024-00330-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/20/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Methotrexate (MTX) is an antineoplastic/immunosuppressive drug, whose clinical use is impeded owing to its serious adverse effects; one of which is acute kidney injury (AKI). Most of MTX complications emerged from the provoked pro-oxidant-, pro-inflammatory- and pro-apoptotic effects. Quillaja saponaria bark saponin (QBS) is a bioactive triterpene that has been traditionally used as an antitussive, anti-inflammatory supplement, and to boost the immune system due to its potent antioxidant- and anti-inflammatory activities. However, the protective/therapeutic potential of QBS against AKI has not been previously evaluated. This study aimed to assess the modulatory effect of QBS on MTX-induced reno-toxicity. METHODS Thirty-two male rats were divided into 4-groups. Control rats received oral saline (group-I). In group-II, rats administered QBS orally for 10-days. In group-III, rats were injected with single i.p. MTX (20 mg/kg) on day-5. Rats in group-IV received QBS and MTX. Serum BUN/creatinine levels were measured, as kidney-damage-indicating biomarkers. Renal malondialdehyde (MDA), reduced-glutathione (GSH) and nitric-oxide (NOx) were determined, as oxidative-stress indices. Renal expression of TNF-α protein and Nrf-2/Keap-1 mRNAs were evaluated as regulators of inflammation. Renal Bcl-2/cleaved caspase-3 immunoreactivities were evaluated as apoptosis indicators. RESULTS Exaggerated kidney injury upon MTX treatment was evidenced histologically and biochemically. QBS attenuated MTX-mediated renal degeneration, oxidant-burden enhancement, excessive inflammation, and proapoptotic induction. Histopathological analysis further confirmed the reno-protective microenvironment rendered by QBS. CONCLUSIONS In conclusion, our results suggest the prophylactic and/or therapeutic effects of QBS in treating MTX-induced AKI. Such reno-protection is most-likely mediated via Nrf-2 induction that interferes with oxidant load, inflammatory pathways, and proapoptotic signaling.
Collapse
Affiliation(s)
- Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, 11961, Shaqra, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, Egypt
| | - Merhan E Ali
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Ahmed Gaafar A Gaafar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Port Said University, Port Said, Egypt
| | - Ahmed Amine Ashour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, El-Nasr Road, P.O. 11751, Cairo, Egypt.
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University - Kantara Branch, Ismailia, 41636, Egypt.
| |
Collapse
|
12
|
You XL, Zhao ML, Liu YR, Tang ZS, Zhao YT, Yan-Liu, Song ZX. Hypericum perforatum L. protects against renal function decline in ovariectomy rat model by regulating expressions of NOS3 and AKT1 in AGE-RAGE pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155160. [PMID: 37984122 DOI: 10.1016/j.phymed.2023.155160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/29/2023] [Accepted: 10/19/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Hypericum perforatum L. (HPL) is a potential traditional Chinese medicine. It could promotes menopausal 'kidney-yin deficiency syndrome' that characterized by renal function decline. However, its potential pharmacological effect and mechanism remains unknown. OBJECTIVE The aim of this study was to investigate whether HPL can improve menopausal renal function decline and to explore its mechanism of action. METHODS The mainly ingredients of HPL were identified using UPLC-Q-TOF-MS/MS approach, and the potential therapeutic targets of HPL for renal function decline were chose via network pharmacology technique. The key therapeutic metabolites were selected through non-targeted metabolomic and chemometric methods. Then, the network were constructed and the key targets and metabolites were screened. At last, the validation experiments and mechanism exploring were adopted by using Immunofluorescence, enzyme-linked immunosorbent assay (ELISA), real-time PCR (RT-PCR), and western blotting assays. RESULTS mainly ingredients of HPL were identified and determined 17 compounds and 29 targets were chose as mainly active compounds and potential therapeutic targets. Based on OVX induced renal decline rat model, after chemometric analysis, 59 endo-metabolites were selected as key therapeutic metabolites, and AGE-RAGE signal pathway in diabetes complications was enriched as the key pathway. By constructing a "disease-component-target" network, Hyperoside, Quercetrin, and quinic were selected as the key therapeutic compounds, and the AKT1 and NOS3 were selected as the key therapeutic targets. The results of ELISA, RT-PCR and western blot experiments indicated that HPL could rescue the abnormal expressions both of AKT1 and NOS3, as well as their related metabolites distortion. CONCLUSION Our findings indicated that HPL regulated expression of AKT1 and NOS3 through modulating AGE-RAGE signaling pathway in OVX stimulated rats` renal dysfunction, implicating the potential values of HPL in menopause syndromes therapy.
Collapse
Affiliation(s)
- Xue-Lian You
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi Collaborative Innovation Center Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, 712083, Xianyang, China
| | - Meng-Li Zhao
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi Collaborative Innovation Center Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, 712083, Xianyang, China
| | - Yan-Ru Liu
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi Collaborative Innovation Center Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, 712083, Xianyang, China.
| | - Zhi-Shu Tang
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi Collaborative Innovation Center Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, 712083, Xianyang, China; Chinese Academy of Traditional Chinese Medicine,100700, Beijing, China
| | - Yan-Ting Zhao
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi Collaborative Innovation Center Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, 712083, Xianyang, China
| | - Yan-Liu
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi Collaborative Innovation Center Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, 712083, Xianyang, China
| | - Zhong-Xing Song
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi Collaborative Innovation Center Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, 712083, Xianyang, China
| |
Collapse
|
13
|
Efosa JO, Omage K, Azeke MA. Drying temperature affects the hypolipidemic, antioxidant, and antihypertensive potential of Hibiscus sabdariffa calyx in rats induced with L-NAME. Toxicol Rep 2023; 11:177-188. [PMID: 37719201 PMCID: PMC10504460 DOI: 10.1016/j.toxrep.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/25/2023] [Accepted: 09/05/2023] [Indexed: 09/19/2023] Open
Abstract
The effects of different drying temperatures on the hypolipidemic, antioxidant, and antihypertensive potential of Hibiscus sabdariffa calyx was evaluated. The calyx were dried under different temperature conditions (- 58 °C, 30 °C, 40 °C, and 50 °C), and extracted with a solvent mixture of ethanol and water (1:4 % w/v). To induce hypertension, the rats were administered with 40 mg/kg body weight dose of N-nitro L-arginine methyl-ester (L-NAME), via the intra-gastric route. H. sabdariffa extract was administered orally, at varying doses (250, 500, and 1000 mg/kg) to the rats. Afterwards, the hypolipidemic, antioxidant, and antihypertensive potentials of the extracts were evaluated using standard validated methods. Induction with L-NAME significantly (p < 0.05) increased the total cholesterol, triglyceride, and LDL levels, significantly decreased the HDL levels; significantly (p < 0.05) increased the levels of LPO/MDA, H2O2, and decreased GPx, and SOD activities; significantly (p < 0.05) increased the pressures (diastolic and systolic); significantly (p < 0.05) increased ACE and arginase activities, glucose level, and significantly decreased nitric oxide activity. Treatment with H. sabdariffa extract significantly (p < 0.05) reversed these trends in the hypertensive experimental rats. The hypolipidemic, antioxidant, and antihypertensive properties of the extract from the calyx of H. sabdariffa, which varies with the drying temperatures of the calyx, portends its potential as a curative agent in the treatment of hypertensive conditions, and other cardiovascular diseases.
Collapse
Affiliation(s)
- John Osarenren Efosa
- Department of Physical Laboratory Technology, School of Applied Sciences and Technology, Auchi Polytechnic, Edo State, Nigeria
| | - Kingsley Omage
- Department of Biochemistry, College of Basic Medical Sciences, Igbinedion University Okada, Edo State, Nigeria
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Marshall Arebojie Azeke
- Department of Biochemistry, Faculty of Life Sciences, Ambrose Alli University, Edo State, Nigeria
| |
Collapse
|
14
|
Chen X, Hocher CF, Shen L, Krämer BK, Hocher B. Reno- and cardioprotective molecular mechanisms of SGLT2 inhibitors beyond glycemic control: from bedside to bench. Am J Physiol Cell Physiol 2023; 325:C661-C681. [PMID: 37519230 DOI: 10.1152/ajpcell.00177.2023] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 08/01/2023]
Abstract
Large placebo-controlled clinical trials have shown that sodium-glucose cotransporter-2 inhibitors (SGLT2i) delay the deterioration of renal function and reduce cardiovascular events in a glucose-independent manner, thereby ultimately reducing mortality in patients with chronic kidney disease (CKD) and/or heart failure. These existing clinical data stimulated preclinical studies aiming to understand the observed clinical effects. In animal models, it was shown that the beneficial effect of SGLT2i on the tubuloglomerular feedback (TGF) improves glomerular pressure and reduces tubular workload by improving renal hemodynamics, which appears to be dependent on salt intake. High salt intake might blunt the SGLT2i effects on the TGF. Beyond the salt-dependent effects of SGLT2i on renal hemodynamics, SGLT2i inhibited several key aspects of macrophage-mediated renal inflammation and fibrosis, including inhibiting the differentiation of monocytes to macrophages, promoting the polarization of macrophages from a proinflammatory M1 phenotype to an anti-inflammatory M2 phenotype, and suppressing the activation of inflammasomes and major proinflammatory factors. As macrophages are also important cells mediating atherosclerosis and myocardial remodeling after injury, the inhibitory effects of SGLT2i on macrophage differentiation and inflammatory responses may also play a role in stabilizing atherosclerotic plaques and ameliorating myocardial inflammation and fibrosis. Recent studies suggest that SGLT2i may also act directly on the Na+/H+ exchanger and Late-INa in cardiomyocytes thus reducing Na+ and Ca2+ overload-mediated myocardial damage. In addition, the renal-cardioprotective mechanisms of SGLT2i include systemic effects on the sympathetic nervous system, blood volume, salt excretion, and energy metabolism.
Collapse
Affiliation(s)
- Xin Chen
- Department of Nephrology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology/Pneumology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Carl-Friedrich Hocher
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology/Pneumology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
- Klinik für Innere Medizin, Bundeswehrkrankenhaus Berlin, Berlin, Germany
| | - Linghong Shen
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bernhard K Krämer
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology/Pneumology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Berthold Hocher
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology/Pneumology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China
- IMD Institut für Medizinische Diagnostik Berlin-Potsdam GbR, Berlin, Germany
| |
Collapse
|
15
|
Chung CY, Wu SY, Chiu HH, Wu TN, Wang YT, Lin MY. Associations of air pollutant concentrations with longitudinal kidney function changes in patients with chronic kidney disease. Sci Rep 2023; 13:9609. [PMID: 37311921 DOI: 10.1038/s41598-023-36682-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 06/08/2023] [Indexed: 06/15/2023] Open
Abstract
This longitudinal cohort study investigated the associations of air pollutant exposures, including CO, NO, NO2, NOx, O3, PM10, PM2.5, and SO2, with long-term kidney function changes in patients with chronic kidney disease (CKD). We enrolled 447 CKD patients who took part in a universal hospital pre-ESRD care program during 2011-2015. The daily average air pollutant exposures and temperature were estimated for each patient, with different levels of air pollutant concentrations defined by 5-knot and restricted cubic spline function. Predicted annual estimated glomerular filtration (eGFR) slope values by one mixed model were considered as the study outcome. The average age of the study population was 77.1 ± 12.6 years, and the median annual eGFR decreased by 2.1 ml/min/1.73 m2 per year from 30 ml/min/1.73 m2 at baseline during a mean follow-up time of 3.4 years. The univariable and multivariable analyses revealed no significant linear and non-linear associations between 5-knot air pollutant concentrations and annual eGFR slope. In addition, the visualized spline effect plots show insignificant variation patterns in annual eGFR slope values with increased air pollutant concentrations. These results encourage more extensive studies to clarify the causal relationships and mechanisms of long-term specific air pollutant exposures and longitudinal kidney function change, especially in CKD populations.
Collapse
Affiliation(s)
- Cheng-Yin Chung
- Department of Internal Medicine, Pingtung Hospital, Ministry of Health and Welfare, Pingtung, 900214, Taiwan
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, No. 100, TzYou 1st Road, Sanmin District, Kaohsiung City, 80708, Taiwan
| | - Shang-Yu Wu
- Department of Internal Medicine, Pingtung Hospital, Ministry of Health and Welfare, Pingtung, 900214, Taiwan
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, No. 100, TzYou 1st Road, Sanmin District, Kaohsiung City, 80708, Taiwan
| | - Huei-Hsuan Chiu
- Department of Internal Medicine, Pingtung Hospital, Ministry of Health and Welfare, Pingtung, 900214, Taiwan
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, No. 100, TzYou 1st Road, Sanmin District, Kaohsiung City, 80708, Taiwan
| | - Tzu-Ning Wu
- Department of Nursing, Ministry of Health and Welfare, Pingtung Hospital, Pingtung, 900214, Taiwan
| | - Your-Tong Wang
- Department of Nursing, Ministry of Health and Welfare, Pingtung Hospital, Pingtung, 900214, Taiwan
| | - Ming-Yen Lin
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, No. 100, TzYou 1st Road, Sanmin District, Kaohsiung City, 80708, Taiwan.
- Department of Kidney Care, College of Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
16
|
Cytoprotective remedies for ameliorating nephrotoxicity induced by renal oxidative stress. Life Sci 2023; 318:121466. [PMID: 36773693 DOI: 10.1016/j.lfs.2023.121466] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/27/2023] [Accepted: 01/27/2023] [Indexed: 02/11/2023]
Abstract
AIMS Nephrotoxicity is the hallmark of anti-neoplastic drug metabolism that causes oxidative stress. External chemical agents and prescription drugs release copious amounts of free radicals originating from molecular oxidation and unless sustainably scavenged, they stimulate membrane lipid peroxidation and disruption of the host antioxidant mechanisms. This review aims to provide a comprehensive collection of potential cytoprotective remedies in surmounting the most difficult aspect of cancer therapy as well as preventing renal oxidative stress by other means. MATERIALS AND METHODS Over 400 published research and review articles spanning several decades were scrutinised to obtain the relevant data which is presented in 3 categories; sources, mechanisms, and mitigation of renal oxidative stress. KEY-FINDINGS Drug and chemical-induced nephrotoxicity commonly manifests as chronic or acute kidney disease, nephritis, nephrotic syndrome, and nephrosis. Renal replacement therapy requirements and mortalities from end-stage renal disease are set to rapidly increase in the next decade for which 43 different cytoprotective compounds which have the capability to suppress experimental nephrotoxicity are described. SIGNIFICANCE The renal system performs essential homeostatic functions that play a significant role in eliminating toxicants, and its accumulation and recurrence in nephric tissues results in tubular degeneration and subsequent renal impairment. Global statistics of the latest chronic kidney disease prevalence is 13.4 % while the end-stage kidney disease requiring renal replacement therapy is 4-7 million per annum. The remedial compounds discussed herein had proven efficacy against nephrotoxicity manifested consequent to impaired antioxidant mechanisms in preclinical models produced by renal oxidative stress activators.
Collapse
|
17
|
Fraga CG, Trostchansky A, Rocha BS, Laranjinha J, Rubbo H, Galleano M. (Poly)phenols and nitrolipids: Relevant participants in nitric oxide metabolism. Mol Aspects Med 2023; 89:101158. [PMID: 36517273 DOI: 10.1016/j.mam.2022.101158] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 12/14/2022]
Abstract
Nitric oxide (•NO) is an essential molecule able to control and regulate many biological functions. Additionally, •NO bears a potential toxicity or damaging effects under conditions of uncontrolled production, and because of its participation in redox-sensitive pathways and oxidizing reactions. Several plant (poly)phenols present in the diet are able to regulate the enzymes producing •NO (NOSs). In addition, (poly)phenols are implicated in defining •NO bioavailability, especially by regulating NADPH oxidases (NOXs), and the subsequent generation of superoxide and •NO depletion. Nitrolipids are compounds that are present in animal tissues because of dietary consumption, e.g. of olive oil, and/or as result of endogenous production. This endogenous production of nitrolipids is dependent on the nitrate/nitrite presence in the diet. Select nitrolipids, e.g. the nitroalkenes, are able to exert •NO-like signaling actions, and act as •NO reservoirs, becoming relevant for systemic •NO bioavailability. Furthermore, the presence of (poly)phenols in the stomach reduces dietary nitrite to •NO favoring nitrolipids formation. In this review we focus on the capacity of molecules representing these two groups of bioactives, i.e. (poly)phenols and nitrolipids, as relevant participants in •NO metabolism and bioavailability. This participation acquires especial relevance when human homeostasis is lost, for example under inflammatory conditions, in which the protective actions of (poly)phenols and/or nitrolipids have been associated with local and systemic •NO bioavailability.
Collapse
Affiliation(s)
- César G Fraga
- Physical Chemistry, School of Pharmacy and Biochemistry, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Bioquímica y Medicina Molecular-Dr. Alberto Boveris (IBIMOL), Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina; Department of Nutrition, University of California, Davis, CA, USA
| | - Andrés Trostchansky
- Departamento de Bioquímica, Facultad de Medicina, Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| | - Barbara S Rocha
- Faculty of Pharmacy and Center for Neurosciences and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - João Laranjinha
- Faculty of Pharmacy and Center for Neurosciences and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Homero Rubbo
- Departamento de Bioquímica, Facultad de Medicina, Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| | - Monica Galleano
- Physical Chemistry, School of Pharmacy and Biochemistry, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Bioquímica y Medicina Molecular-Dr. Alberto Boveris (IBIMOL), Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina.
| |
Collapse
|
18
|
Sun E, Huang R, Ding K, Wang L, Hou J, Tan X, Wei Y, Feng L, Jia X. Integrating strategies of metabolomics, network pharmacology, and experiment validation to investigate the processing mechanism of Epimedium fried with suet oil to warm kidney and enhance yang. Front Pharmacol 2023; 14:1113213. [PMID: 36762111 PMCID: PMC9905240 DOI: 10.3389/fphar.2023.1113213] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/16/2023] [Indexed: 01/27/2023] Open
Abstract
Introduction: Epimedium, a traditional Chinese medicine (TCM) commonly used in ancient and modern China, is one of the traditional Chinese medicines clinically used to treat kidney yang deficiency syndrome (KYDS). There are differences in the efficacy of Epimedium before and after processing, and the effect of warming the kidney and enhancing yang is significantly enhanced after heating with suet oil. However, the active compounds, corresponding targets, metabolic pathways, and synergistic mechanism of frying Epimedium in suet oil to promote yang, remain unclear. Methods: Herein, a strategy based on comprehensive GC-TOF/MS metabolomics and network pharmacology analysis was used to construct an "active compounds-targets-metabolic pathways" network to identify the active compounds, targets and metabolic pathways involved. Subsequently, the targets in kidney tissue were further validated by real-time quantitative polymerase chain reaction (RT-qPCR). Histopathological analysis with physical and biochemical parameters were performed. Results: Fifteen biomarkers from urine and plasma, involving five known metabolic pathways related to kidney yang deficiency were screened. The network pharmacology results showed 37 active compounds (13 from Epimedium and 24 from suet oil), 159 targets, and 267 pathways with significant correlation. Importantly, integrated metabolomics and network pharmacologic analysis revealed 13 active compounds (nine from Epimedium and four from suet oil), 7 corresponding targets (ALDH2, ARG2, GSTA3, GSTM1, GSTM2, HPGDS, and NOS2), two metabolic pathways (glutathione metabolism, arginine and proline metabolism), and two biomarkers (Ornithine and 5-Oxoproline) associated with improved kidney yang deficiency by Epimedium fried with suet oil. Discussion: These finds may elucidate the underlying mechanism of yang enhancement via kidney warming effects. Our study indicated that the mechanism of action mainly involved oxidative stress and amino acid metabolism. Here, we demonstrated the novel strategies of integrating metabolomics and network pharmacology in exploring of the mechanisms of traditional Chinese medicines.
Collapse
Affiliation(s)
- E. Sun
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China,Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Academy of Traditional Chinese Medicine, Nanjing, China,*Correspondence: E. Sun, ; Xiaobin Jia,
| | - Ran Huang
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China,Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Ke Ding
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ling Wang
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jian Hou
- Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Academy of Traditional Chinese Medicine, Nanjing, China
| | - Xiaobin Tan
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China,Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Academy of Traditional Chinese Medicine, Nanjing, China
| | - Yingjie Wei
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China,Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Academy of Traditional Chinese Medicine, Nanjing, China
| | - Liang Feng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiaobin Jia
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China,School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China,*Correspondence: E. Sun, ; Xiaobin Jia,
| |
Collapse
|
19
|
The role of nitric oxide in sepsis-associated kidney injury. Biosci Rep 2022; 42:231441. [PMID: 35722824 PMCID: PMC9274646 DOI: 10.1042/bsr20220093] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/07/2022] [Accepted: 06/17/2022] [Indexed: 01/09/2023] Open
Abstract
Sepsis is one of the leading causes of acute kidney injury (AKI), and several mechanisms including microcirculatory alterations, oxidative stress, and endothelial cell dysfunction are involved. Nitric oxide (NO) is one of the common elements to all these mechanisms. Although all three nitric oxide synthase (NOS) isoforms are constitutively expressed within the kidneys, they contribute in different ways to nitrergic signaling. While the endothelial (eNOS) and neuronal (nNOS) isoforms are likely to be the main sources of NO under basal conditions and participate in the regulation of renal hemodynamics, the inducible isoform (iNOS) is dramatically increased in conditions such as sepsis. The overexpression of iNOS in the renal cortex causes a shunting of blood to this region, with consequent medullary ischemia in sepsis. Differences in the vascular reactivity among different vascular beds may also help to explain renal failure in this condition. While most of the vessels present vasoplegia and do not respond to vasoconstrictors, renal microcirculation behaves differently from nonrenal vascular beds, displaying similar constrictor responses in control and septic conditions. The selective inhibition of iNOS, without affecting other isoforms, has been described as the ideal scenario. However, iNOS is also constitutively expressed in the kidneys and the NO produced by this isoform is important for immune defense. In this sense, instead of a direct iNOS inhibition, targeting the NO effectors such as guanylate cyclase, potassium channels, peroxynitrite, and S-nitrosothiols, may be a more interesting approach in sepsis-AKI and further investigation is warranted.
Collapse
|
20
|
Chen X, Zou Z, Wang Q, Gao W, Zeng S, Ye S, Xu P, Huang M, Li K, Chen J, Zhong Z, Zhang Q, Hao B, Liu Q. Inhibition of NOS1 promotes the interferon response of melanoma cells. J Transl Med 2022; 20:205. [PMID: 35538490 PMCID: PMC9092760 DOI: 10.1186/s12967-022-03403-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/22/2022] [Indexed: 02/07/2023] Open
Abstract
Background NOS1 expression predicts poor prognosis in patients with melanoma. However, the molecular function of NOS1 in the type I IFN response and immune escape of melanoma is still unknown. Methods The CRISPR/Cas9 system was used to generate NOS1-knockout melanoma cells and the biological characteristics of NOS1-knockout cells were evaluated by MTT assay, clonogenic assay, EdU assay, and flow cytometric assay. The effect on tumor growth was tested in BALB/c-nu and C57BL/6 mouse models. The gene expression profiles were detected with Affymetrix microarray and RNA-seq and KEGG (Kyoto Encyclopedia of Genes and Genomes) and CLUE GO analysis was done. The clinical data and transcriptional profiles of melanoma patients from the public database TCGA (The Cancer Genome Atlas) and GEO (Gene Expression Omnibus, GSE32611) were analyzed by Qlucore Omics Explorer. Results NOS1 deletion suppressed the proliferation of melanoma A375 cells in culture, blocked cell cycling at the G0/G1 phase, and decreased the tumor growth in lung metastasis nodes in a B16 melanoma xenograft mouse model. Moreover, NOS1 knockout increased the infiltration of CD3+ immune cells in tumors. The transcriptomics analysis identified 2203 differential expression genes (DEGs) after NOS1 deletion. These DEGs indicated that NOS1 deletion downregulated mostly metabolic functions but upregulated immune response pathways. After inhibiting with NOS1 inhibitor N-PLA, melanoma cells significantly increased the response to IFN\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\upalpha $$\end{document}α by upregulation expression of IFN\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\upalpha $$\end{document}α simulation genes (ISGs), especially the components in innate immune signaling, JAK-STAT, and TOLL-LIKE pathway. Furthermore, these NOS1-regulating immune genes (NOS1-ISGs) worked as a signature to predict poor overall survival and lower response to chemotherapy in melanoma patients. Conclusion These findings provided a transcriptional evidence of NOS1 promotion on tumor growth, which is correlated with metabolic regulation and immune escape in melanoma cells. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03403-w.
Collapse
Affiliation(s)
- Xi Chen
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Shatai South Road, Baiyun District, 16, Guangzhou, 510515, China
| | - Zhiwei Zou
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Shatai South Road, Baiyun District, 16, Guangzhou, 510515, China
| | - Qianli Wang
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Shatai South Road, Baiyun District, 16, Guangzhou, 510515, China
| | - Wenwen Gao
- First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450001, China
| | - Sisi Zeng
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Shatai South Road, Baiyun District, 16, Guangzhou, 510515, China
| | - Shuangyan Ye
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Shatai South Road, Baiyun District, 16, Guangzhou, 510515, China
| | - Pengfei Xu
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Shatai South Road, Baiyun District, 16, Guangzhou, 510515, China
| | - Mengqiu Huang
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Shatai South Road, Baiyun District, 16, Guangzhou, 510515, China
| | - Keyi Li
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Shatai South Road, Baiyun District, 16, Guangzhou, 510515, China
| | - Jianping Chen
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Shatai South Road, Baiyun District, 16, Guangzhou, 510515, China
| | - Zhuo Zhong
- Guangzhou Hospital of integrated Traditional and West Medicine, Guangzhou, 510800, China
| | - Qianbing Zhang
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Shatai South Road, Baiyun District, 16, Guangzhou, 510515, China
| | - Bingtao Hao
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Shatai South Road, Baiyun District, 16, Guangzhou, 510515, China.
| | - Qiuzhen Liu
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Shatai South Road, Baiyun District, 16, Guangzhou, 510515, China. .,Pingshan District People's Hospital of Shenzhen, Shenzhen, 518118, China.
| |
Collapse
|
21
|
Han Z, Ma K, Tao H, Liu H, Zhang J, Sai X, Li Y, Chi M, Nian Q, Song L, Liu C. A Deep Insight Into Regulatory T Cell Metabolism in Renal Disease: Facts and Perspectives. Front Immunol 2022; 13:826732. [PMID: 35251009 PMCID: PMC8892604 DOI: 10.3389/fimmu.2022.826732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/24/2022] [Indexed: 11/29/2022] Open
Abstract
Kidney disease encompasses a complex set of diseases that can aggravate or start systemic pathophysiological processes through their complex metabolic mechanisms and effects on body homoeostasis. The prevalence of kidney disease has increased dramatically over the last two decades. CD4+CD25+ regulatory T (Treg) cells that express the transcription factor forkhead box protein 3 (Foxp3) are critical for maintaining immune homeostasis and preventing autoimmune disease and tissue damage caused by excessive or unnecessary immune activation, including autoimmune kidney diseases. Recent studies have highlighted the critical role of metabolic reprogramming in controlling the plasticity, stability, and function of Treg cells. They are also likely to play a vital role in limiting kidney transplant rejection and potentially promoting transplant tolerance. Metabolic pathways, such as mitochondrial function, glycolysis, lipid synthesis, glutaminolysis, and mammalian target of rapamycin (mTOR) activation, are involved in the development of renal diseases by modulating the function and proliferation of Treg cells. Targeting metabolic pathways to alter Treg cells can offer a promising method for renal disease therapy. In this review, we provide a new perspective on the role of Treg cell metabolism in renal diseases by presenting the renal microenvironment、relevant metabolites of Treg cell metabolism, and the role of Treg cell metabolism in various kidney diseases.
Collapse
Affiliation(s)
- Zhongyu Han
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China.,Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kuai Ma
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hongxia Tao
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongli Liu
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiong Zhang
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Xiyalatu Sai
- Affiliated Hospital of Inner Mongolia University for the Nationalities, Tongliao, China
| | - Yunlong Li
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mingxuan Chi
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Qing Nian
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China.,Department of Blood Transfusion Sicuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Linjiang Song
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chi Liu
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| |
Collapse
|
22
|
McArdle Z, Singh R, Bielefeldt-Ohmann H, Moritz K, Schreuder M, Denton K. Brief Early Life Angiotensin Converting Enzyme Inhibition Offers Reno-Protection in Sheep with a Solitary Functioning Kidney at 8 Months of Age. J Am Soc Nephrol 2022; 33:1341-1356. [PMID: 35351818 PMCID: PMC9257814 DOI: 10.1681/asn.2021111534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/18/2022] [Indexed: 11/03/2022] Open
Abstract
Background: Children born with a solitary functioning kidney (SFK) are predisposed to develop hypertension and kidney injury. Glomerular hyperfiltration and hypertrophy contribute to the pathophysiology of kidney injury. Angiotensin converting enzyme inhibitors (ACEi) can mitigate hyperfiltration and may be therapeutically beneficial in reducing progression of kidney injury in SFK. Methods: SFK was induced in male sheep fetuses at 100 days gestation (term=150 day). Between 4-8 weeks of age, SFK lambs received enalapril (SFK+ACEi; 0.5mg/kg/day, once daily, orally) or vehicle (SFK). At 8 months we examined whether SFK+ACEi reduced elevation in blood pressure (BP) and improved basal kidney function, renal functional reserve (RFR; glomerular filtration rate (GFR) response to combined amino acid and dopamine infusion), GFR response to nitric oxide synthase (NOS) inhibition and basal nitric oxide (NO) bioavailability (basal urinary total nitrate+nitrite (NOx)). Results: SFK+ACEi prevented albuminuria, resulted in lower basal GFR (16%), higher renal blood flow (~22%), and lower filtration fraction ( 35%), but similar BP compared to ~ vehicle-treated SFK sheep. Together with greater recruitment of RFR (~14%) in SFK+ACEi animals than SFK, this indicates reduction in glomerular hyperfiltration-mediated kidney dysfunction. During NOS inhibition, the decrease in GFR ( 14%) was greater among SFK+ACEi than among SFK animals. Increased ( 85%) basal urinary total NOx in SFK+ACEi animals compared to SFK indicates elevated NO bioavailability likely contributing to improvements in kidney function and prevention of albuminuria. Conclusions: Brief and early ACEi in SFK is associated with reduced glomerular hyperfiltration-mediated kidney disease up to 8 months of age in a sheep model.
Collapse
Affiliation(s)
- Zoe McArdle
- Z McArdle, Cardiovascular Program, Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Australia
| | - Reetu Singh
- R Singh, Cardiovascular Program, Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Australia
| | - Helle Bielefeldt-Ohmann
- H Bielefeldt-Ohmann, School of Veterinary Science, The University of Queensland, Gatton, Australia
| | - Karen Moritz
- K Moritz, Child Health Research Centre and School of Biomedical Sciences, The University of Queensland, Saint Lucia, Australia
| | - Michiel Schreuder
- M Schreuder, Department of Pediatric Nephrology , Amalia Children's Hospital, Nijmegen, Netherlands
| | - Kate Denton
- K Denton, Cardiovascular Program, Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Australia
| |
Collapse
|
23
|
Pereira BP, do Vale GT, Ceron CS. The role of nitric oxide in renovascular hypertension: from the pathophysiology to the treatment. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 395:121-131. [PMID: 34994823 DOI: 10.1007/s00210-021-02186-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/17/2021] [Indexed: 12/25/2022]
Abstract
Renovascular hypertension is one of the most relevant causes of secondary hypertension, mostly caused by atherosclerotic renovascular stenosis or fibromuscular dysplasia. The increase in angiotensin II production, oxidative stress, and formation of peroxynitrite promotes the decrease in nitric oxide (NO) availability and the development of hypertension, renal and endothelial dysfunction, and cardiac and vascular remodeling. The NO produced by nitric oxide synthases (NOS) acts as a vasodilator; however, endothelial NOS uncoupling (eNOS) also contributes to NO reduced availability in renovascular hypertension. NO donors and NO-derived metabolites have been investigated in experimental renovascular hypertension and have shown promissory effects in attenuating blood pressure and organ damage in this condition. Therefore, understanding the role of decreased NO in the pathophysiology of renovascular hypertension promotes the study and development of NO donors and molecules that can be converted into NO (such as nitrate and nitrite), contributing for the treatment of this condition in the future.
Collapse
Affiliation(s)
- Bruna Pinheiro Pereira
- Departamento de Alimentos E Medicamentos, Universidade Federal de Alfenas (UNIFAL-MG), Alfenas, Minas Gerais, Brazil
| | - Gabriel Tavares do Vale
- Departamento de Ciências Biomédicas E da Saúde, Universidade Do Estado de Minas Gerais (UEMG), Belo Horizonte, Minas Gerais, Brazil
| | - Carla Speroni Ceron
- Departamento de Ciências Biológicas, Universidade Federal de Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brasil.
| |
Collapse
|
24
|
Satta E, Alfarone C, De Maio A, Gentile S, Romano C, Polverino M, Polverino F. Kidney and lung in pathology: mechanisms and clinical implications. Multidiscip Respir Med 2022; 17:819. [PMID: 35127080 PMCID: PMC8791019 DOI: 10.4081/mrm.2022.819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/04/2021] [Indexed: 11/23/2022] Open
Abstract
There is a close, physiological, relationship between kidney and lung that begin in the fetal age, and is aimed to keep homeostatic balance in the body. From a pathological point of view, the kidneys could be damaged by inflammatory mediators or by immune-mediated factors linked to a primary lung disease or, conversely, it could be the kidney disease that causes lung damage. Non-immunological mechanisms are frequently involved in renal and pulmonary diseases, as observed in chronic conditions. This crosstalk have clinical and therapeutic consequences. This review aims to describe the pulmonary-renal link in physiology and in pathological conditions.
Collapse
|
25
|
Goughenour KD, Zhao J, Xu J, Zhao ZP, Ganguly A, Freeman CM, Olszewski MA. Murine Inducible Nitric Oxide Synthase Expression Is Essential for Antifungal Defenses in Kidneys during Disseminated Cryptococcus deneoformans Infection. THE JOURNAL OF IMMUNOLOGY 2021; 207:2096-2106. [PMID: 34479942 DOI: 10.4049/jimmunol.2100386] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/04/2021] [Indexed: 12/11/2022]
Abstract
Disseminated cryptococcosis has a nearly 70% mortality, mostly attributed to CNS infection, with lesser-known effects on other organs. Immune protection against Cryptococcus relies on Th1 immunity with M1 polarization, rendering macrophages fungicidal. The importance of M1-upregulated inducible NO synthase (iNOS) has been documented in pulmonary anticryptococcal defenses, whereas its role in disseminated cryptococcosis remains controversial. Here we examined the effect of iNOS deletion in disseminated (i.v.) C. deneoformans 52D infection, comparing wild-type (C57BL/6J) and iNOS-/- mice. iNOS-/- mice had significantly reduced survival and nearly 100-fold increase of the kidney fungal burden, without increases in the lungs, spleen, or brain. Histology revealed extensive lesions and almost complete destruction of the kidney cortical area with a loss of kidney function. The lack of fungal control was not due to a failure to recruit immune cells because iNOS-/- mice had increased kidney leukocytes. iNOS-/- mice also showed no defect in T cell polarization. We conclude that iNOS is critically required for local anticryptococcal defenses in the kidneys, whereas it appears to be dispensable in other organs during disseminated infection. This study exemplifies a unique phenotype of local immune defenses in the kidneys and the organ-specific importance of a single fungicidal pathway.
Collapse
Affiliation(s)
- Kristie D Goughenour
- Research Service, VA Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI.,Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI; and
| | - Jessica Zhao
- Research Service, VA Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI.,Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI; and
| | - Jintao Xu
- Research Service, VA Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI.,Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI; and
| | - Ziyin P Zhao
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI; and
| | - Anutosh Ganguly
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI; and.,Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Christine M Freeman
- Research Service, VA Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI.,Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI; and
| | - Michal A Olszewski
- Research Service, VA Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI; .,Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI; and
| |
Collapse
|
26
|
Renoprotection Induced by Aerobic Training Is Dependent on Nitric Oxide Bioavailability in Obese Zucker Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3683796. [PMID: 34621463 PMCID: PMC8492245 DOI: 10.1155/2021/3683796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 08/21/2021] [Indexed: 11/21/2022]
Abstract
Aerobic training (AT) promotes several health benefits that may attenuate the progression of obesity associated diabetes. Since AT is an important nitric oxide (NO−) inducer mediating kidney-healthy phenotype, the present study is aimed at investigating the effects of AT on metabolic parameters, morphological, redox balance, inflammatory profile, and vasoactive peptides in the kidney of obese-diabetic Zucker rats receiving L-NAME (N(omega)-nitro-L-arginine methyl ester). Forty male Zucker rats (6 wk old) were assigned into four groups (n = 10, each): sedentary lean rats (CTL-Lean), sedentary obese rats (CTL-Obese), AT trained obese rats without blocking nitric oxide synthase (NOS) (Obese+AT), and obese-trained with NOS block (Obese+AT+L-NAME). AT groups ran 60 min in the maximal lactate steady state (MLSS), five days/wk/8 wk. Obese+AT rats improved glycemic homeostasis, SBP, aerobic capacity, renal mitochondria integrity, redox balance, inflammatory profile (e.g., TNF-α, CRP, IL-10, IL-4, and IL-17a), and molecules related to renal NO− metabolism (klotho/FGF23 axis, vasoactive peptides, renal histology, and reduced proteinuria). However, none of these positive outcomes were observed in CTL-Obese and Obese+AT+L-NAME (p < 0.0001) groups. Although Obese+AT+L-NAME lowered BP (compared with CTL-Obese; p < 0.0001), renal damage was observed after AT intervention. Furthermore, AT training under conditions of low NO− concentration increased signaling pathways associated with ACE-2/ANG1-7/MASr. We conclude that AT represents an important nonpharmacological intervention to improve kidney function in obese Zucker rats. However, these renal and metabolic benefits promoted by AT are dependent on NO− bioavailability and its underlying regulatory mechanisms.
Collapse
|
27
|
Hu C, Lakshmipathi J, Binning E, Hyndman KA, Stuart D, Kohan DE. Sex-Dependent Effects of Nephron Ift88 Disruption on BP, Renal Function, and Cystogenesis. J Am Soc Nephrol 2021; 32:2210-2222. [PMID: 34045314 PMCID: PMC8729858 DOI: 10.1681/asn.2020111571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 04/13/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Primary cilia regulation of renal function and BP in health and disease is incompletely understood. This study investigated the effect of nephron ciliary loss on renal physiology, BP, and ensuing cystogenesis. METHODS Mice underwent doxycycline (DOX)-inducible nephron-specific knockout (KO) of the Ift88 gene at 2 months of age using a Cre-LoxP strategy. BP, kidney function, and renal pathology were studied 2 and 9 months after DOX (Ift88 KO) or vehicle (control). RESULTS At 2 months post-DOX, male, but not female, Ift88 KO, compared with sex-matched control, mice had reduced BP, enhanced salt-induced natriuresis, increased urinary nitrite and nitrate (NOx) excretion, and increased kidney NOS3 levels, which localized to the outer medulla; the reductions in BP in male mice were prevented by L-NAME. At 9 months post-DOX, male, but not female, Ift88 KO mice had polycystic kidneys, elevated BP, and reduced urinary NOx excretion. No differences were observed in plasma renin concentration, plasma aldosterone, urine vasopressin, or urine PGE2 between Ift88 KO and control mice at 2 or 9 months post-DOX. CONCLUSIONS Nephron cilia disruption in male, but not female, mice (1) reduces BP prior to cyst formation, (2) increases NOx production that may account for the lower BP prior to cyst formation, and (3) induces polycystic kidneys that are associated with hypertension and reduced renal NO production.
Collapse
Affiliation(s)
- Chunyan Hu
- Division of Nephrology, University of Utah Health, Salt Lake City, Utah
| | | | - Elizabeth Binning
- Division of Nephrology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Kelly A. Hyndman
- Division of Nephrology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Deborah Stuart
- Division of Nephrology, University of Utah Health, Salt Lake City, Utah
| | - Donald E. Kohan
- Division of Nephrology, University of Utah Health, Salt Lake City, Utah
| |
Collapse
|
28
|
Burmakin M, Fasching A, Kobayashi H, Urrutia AA, Damdimopoulos A, Palm F, Haase VH. Pharmacological HIF-PHD inhibition reduces renovascular resistance and increases glomerular filtration by stimulating nitric oxide generation. Acta Physiol (Oxf) 2021; 233:e13668. [PMID: 33900001 DOI: 10.1111/apha.13668] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 12/11/2022]
Abstract
AIM Hypoxia-inducible factors (HIFs) are O2 -sensitive transcription factors that regulate multiple biological processes which are essential for cellular adaptation to hypoxia. Small molecule inhibitors of HIF-prolyl hydroxylase domain (PHD) dioxygenases (HIF-PHIs) activate HIF-dependent transcriptional programs and have broad clinical potential. HIF-PHIs are currently in global late-stage clinical development for the treatment of anaemia associated with chronic kidney disease. Although the effects of hypoxia on renal haemodynamics and function have been studied in animal models and in humans living at high altitude, the effects of pharmacological HIF activation on renal haemodynamics, O2 metabolism and metabolic efficiency are not well understood. METHODS Using a cross-sectional study design, we investigated renal haemodynamics, O2 metabolism, gene expression and NO production in healthy rats treated with different doses of HIF-PHIs roxadustat or molidustat compared to vehicle control. RESULTS Systemic administration of roxadustat or molidustat resulted in a dose-dependent reduction in renovascular resistance (RVR). This was associated with increased glomerular filtration rate (GFR), urine flow and tubular sodium transport rate (TNa ). Although both total O2 delivery and TNa were increased, more O2 was extracted per transported sodium in rats treated with high-doses of HIF-PHIs, suggesting a reduction in metabolic efficiency. Changes in RVR and GFR were associated with increased nitric oxide (NO) generation and substantially suppressed by pharmacological inhibition of NO synthesis. CONCLUSIONS Our data provide mechanistic insights into dose-dependent effects of short-term pharmacological HIF activation on renal haemodynamics, glomerular filtration and O2 metabolism and identify NO as a major mediator of these effects.
Collapse
Affiliation(s)
- Mikhail Burmakin
- Section of Integrative Physiology Department of Medical Cell Biology Uppsala University Uppsala Sweden
| | - Angelica Fasching
- Section of Integrative Physiology Department of Medical Cell Biology Uppsala University Uppsala Sweden
| | - Hanako Kobayashi
- Department of Medicine Vanderbilt University Medical Center and Vanderbilt University School of Medicine Nashville TN USA
| | - Andrés A. Urrutia
- Unidad de Investigación Hospital de Santa CristinaInstituto de Investigación del Hospital Universitario La PrincesaUniversidad Autónoma de Madrid Madrid Spain
| | - Anastasios Damdimopoulos
- Bioinformatics and Expression Analysis Core Facility Department of Biosciences and Nutrition Karolinska Institute Stockholm Sweden
| | - Fredrik Palm
- Section of Integrative Physiology Department of Medical Cell Biology Uppsala University Uppsala Sweden
| | - Volker H. Haase
- Section of Integrative Physiology Department of Medical Cell Biology Uppsala University Uppsala Sweden
- Department of Medicine Vanderbilt University Medical Center and Vanderbilt University School of Medicine Nashville TN USA
- Department of Molecular Physiology and Biophysics Vanderbilt University School of Medicine Nashville TN USA
| |
Collapse
|
29
|
Elnagar GM, Elseweidy MM, Elkomy NMIM, Al-Gabri NA, Shawky M. 10-Dehydrogingerdione ameliorates renal endoplasmic reticulum/oxidative stress and apoptosis in alcoholic nephropathy induced in experimental rats. Life Sci 2021; 279:119673. [PMID: 34081991 DOI: 10.1016/j.lfs.2021.119673] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/04/2021] [Accepted: 05/27/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Chronic alcoholism induces kidney injury (KI), leading to increased mortality in alcoholic hepatitis patients. Endoplasmic reticulum stress (ER) represents the main initiator of kidney diseases and alcoholic nephropathy. AIMS We used alcoholic nephropathy rat model followed by 10-dehydrogingerdione (10-DHGD) intake as potential modulator. This is to focus on ER/oxidative stress/inflammatory and apoptotic pathways involvement. MAIN METHOD Alcoholic nephropathy was induced by alcohol administration (3.7 g/kg/body weight) orally and daily for 45 days. 10-DHGD (10 mg/kg/day) was administered either alone or along with alcohol. KEY FINDINGS Our results demonstrated significant increase in kidney function parameters like f creatinine, urea, uric acid, and blood urea nitrogen (BUN) levels. Renal ER/oxidative stress markers such as cytochrome P450 family two subfamily E member 1 (CYP2E1), C/EBP homologous protein (CHOP), and endoplasmic glucose-regulated protein 78 (GRP-78) demonstrated also significant increase. Inflammatory mediators like nuclear factor-kappa B (NF-kB), tumor necrosis factor-α (TNF-α), and transforming growth factor-β (TGF-β along with apoptotic marker caspase-3 behaved similarly. Antioxidant molecules like reduced glutathione (GSH), superoxide dismutase (SOD), and catalase demonstrated marked decrease. SIGNIFICANCE 10-DHGD administration resulted in significant modulation represented by an enhancement in the kidney functions and the histopathological patterns in a conclusion of its potential to ameliorate the pathological changes (kidney injury) induced by alcohol intake.
Collapse
Affiliation(s)
- Gehad M Elnagar
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Egypt
| | | | - Nesreen M I M Elkomy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Egypt
| | - Naif A Al-Gabri
- Department of Pathology, Faculty of Veterinary Medicine, Thamar University, Yemen; Laboratory of Regional Djibouti Livestock Quarantine, Abu Yasar international Est. 1999, Djibouti
| | - Mohamed Shawky
- Department of Biochemistry, Faculty of Pharmacy, Horus University, Egypt
| |
Collapse
|
30
|
Archer M, Dogra N, Dovey Z, Ganta T, Jang HS, Khusid JA, Lantz A, Mihalopoulos M, Stockert JA, Zahalka A, Björnebo L, Gaglani S, Noh MR, Kaplan SA, Mehrazin R, Badani KK, Wiklund P, Tsao K, Lundon DJ, Mohamed N, Lucien F, Padanilam B, Gupta M, Tewari AK, Kyprianou N. Role of α- and β-adrenergic signaling in phenotypic targeting: significance in benign and malignant urologic disease. Cell Commun Signal 2021; 19:78. [PMID: 34284799 PMCID: PMC8290582 DOI: 10.1186/s12964-021-00755-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 05/28/2021] [Indexed: 01/17/2023] Open
Abstract
The urinary tract is highly innervated by autonomic nerves which are essential in urinary tract development, the production of growth factors, and the control of homeostasis. These neural signals may become dysregulated in several genitourinary (GU) disease states, both benign and malignant. Accordingly, the autonomic nervous system is a therapeutic target for several genitourinary pathologies including cancer, voiding dysfunction, and obstructing nephrolithiasis. Adrenergic receptors (adrenoceptors) are G-Protein coupled-receptors that are distributed throughout the body. The major function of α1-adrenoceptors is signaling smooth muscle contractions through GPCR and intracellular calcium influx. Pharmacologic intervention of α-and β-adrenoceptors is routinely and successfully implemented in the treatment of benign urologic illnesses, through the use of α-adrenoceptor antagonists. Furthermore, cell-based evidence recently established the antitumor effect of α1-adrenoceptor antagonists in prostate, bladder and renal tumors by reducing neovascularity and impairing growth within the tumor microenvironment via regulation of the phenotypic epithelial-mesenchymal transition (EMT). There has been a significant focus on repurposing the routinely used, Food and Drug Administration-approved α1-adrenoceptor antagonists to inhibit GU tumor growth and angiogenesis in patients with advanced prostate, bladder, and renal cancer. In this review we discuss the current evidence on (a) the signaling events of the autonomic nervous system mediated by its cognate α- and β-adrenoceptors in regulating the phenotypic landscape (EMT) of genitourinary organs; and (b) the therapeutic significance of targeting this signaling pathway in benign and malignant urologic disease. Video abstract.
Collapse
Affiliation(s)
- M. Archer
- Department of Urology, Icahn School of Medicine at Mount Sinai, 6th Floor, 1425 Madison Avenue, New York, NY 10029 USA
| | - N. Dogra
- Department of Pathology and Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Department of Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Z. Dovey
- Department of Urology, Icahn School of Medicine at Mount Sinai, 6th Floor, 1425 Madison Avenue, New York, NY 10029 USA
| | - T. Ganta
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Division of Hematology and Medical Oncology, Mount Sinai Hospital, New York, NY USA
| | - H.-S. Jang
- Department of Urology, Icahn School of Medicine at Mount Sinai, 6th Floor, 1425 Madison Avenue, New York, NY 10029 USA
| | - J. A. Khusid
- Department of Urology, Icahn School of Medicine at Mount Sinai, 6th Floor, 1425 Madison Avenue, New York, NY 10029 USA
| | - A. Lantz
- Department of Molecular Medicine and Surgery, Section of Urology, Karolinska Institute, Stockholm, Sweden
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - M. Mihalopoulos
- Department of Urology, Icahn School of Medicine at Mount Sinai, 6th Floor, 1425 Madison Avenue, New York, NY 10029 USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - J. A. Stockert
- Department of Urology, Icahn School of Medicine at Mount Sinai, 6th Floor, 1425 Madison Avenue, New York, NY 10029 USA
| | - A. Zahalka
- Department of Urology, Icahn School of Medicine at Mount Sinai, 6th Floor, 1425 Madison Avenue, New York, NY 10029 USA
| | - L. Björnebo
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - S. Gaglani
- Department of Urology, Icahn School of Medicine at Mount Sinai, 6th Floor, 1425 Madison Avenue, New York, NY 10029 USA
| | - M. R. Noh
- Department of Urology, Icahn School of Medicine at Mount Sinai, 6th Floor, 1425 Madison Avenue, New York, NY 10029 USA
| | - S. A. Kaplan
- Department of Urology, Icahn School of Medicine at Mount Sinai, 6th Floor, 1425 Madison Avenue, New York, NY 10029 USA
| | - R. Mehrazin
- Department of Urology, Icahn School of Medicine at Mount Sinai, 6th Floor, 1425 Madison Avenue, New York, NY 10029 USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - K. K. Badani
- Department of Urology, Icahn School of Medicine at Mount Sinai, 6th Floor, 1425 Madison Avenue, New York, NY 10029 USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - P. Wiklund
- Department of Urology, Icahn School of Medicine at Mount Sinai, 6th Floor, 1425 Madison Avenue, New York, NY 10029 USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - K. Tsao
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Division of Hematology and Medical Oncology, Mount Sinai Hospital, New York, NY USA
| | - D. J. Lundon
- Department of Urology, Icahn School of Medicine at Mount Sinai, 6th Floor, 1425 Madison Avenue, New York, NY 10029 USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - N. Mohamed
- Department of Urology, Icahn School of Medicine at Mount Sinai, 6th Floor, 1425 Madison Avenue, New York, NY 10029 USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - F. Lucien
- Department of Urology, Mayo Clinic, Rochester, MN USA
| | - B. Padanilam
- Department of Urology, Icahn School of Medicine at Mount Sinai, 6th Floor, 1425 Madison Avenue, New York, NY 10029 USA
| | - M. Gupta
- Department of Urology, Icahn School of Medicine at Mount Sinai, 6th Floor, 1425 Madison Avenue, New York, NY 10029 USA
| | - A. K. Tewari
- Department of Urology, Icahn School of Medicine at Mount Sinai, 6th Floor, 1425 Madison Avenue, New York, NY 10029 USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - N. Kyprianou
- Department of Urology, Icahn School of Medicine at Mount Sinai, 6th Floor, 1425 Madison Avenue, New York, NY 10029 USA
- Department of Pathology and Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
| |
Collapse
|
31
|
Tummanapalli SS, Kuppusamy R, Yeo JH, Kumar N, New EJ, Willcox MDP. The role of nitric oxide in ocular surface physiology and pathophysiology. Ocul Surf 2021; 21:37-51. [PMID: 33940170 DOI: 10.1016/j.jtos.2021.04.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 12/31/2022]
Abstract
Nitric oxide (NO) has a wide array of biological functions including the regulation of vascular tone, neurotransmission, immunomodulation, stimulation of proinflammatory cytokine expression and antimicrobial action. These functions may depend on the type of isoform that is responsible for the synthesis of NO. NO is found in various ocular tissues playing a pivotal role in physiological mechanisms, namely regulating vascular tone in the uvea, retinal blood circulation, aqueous humor dynamics, neurotransmission and phototransduction in retinal layers. Unregulated production of NO in ocular tissues may result in production of toxic superoxide free radicals that participate in ocular diseases such as endotoxin-induced uveitis, ischemic proliferative retinopathy and neurotoxicity of optic nerve head in glaucoma. However, the role of NO on the ocular surface in mediating physiology and pathophysiological processes is not fully understood. Moreover, methods used to measure levels of NO in the biological samples of the ocular surface are not well established due to its rapid oxidation. The purpose of this review is to highlight the role of NO in the physiology and pathophysiology of ocular surface and propose suitable techniques to measure NO levels in ocular surface tissues and tears. This will improve the understanding of NO's role in ocular surface biology and the development of new NO-based therapies to treat various ocular surface diseases. Further, this review summarizes the biochemistry underpinning NO's antimicrobial action.
Collapse
Affiliation(s)
| | - Rajesh Kuppusamy
- School of Optometry & Vision Science, University of New South Wales, Australia; School of Chemistry, University of New South Wales, Australia
| | - Jia Hao Yeo
- The University of Sydney, School of Chemistry, NSW, 2006, Australia
| | - Naresh Kumar
- School of Chemistry, University of New South Wales, Australia
| | - Elizabeth J New
- The University of Sydney, School of Chemistry, NSW, 2006, Australia; The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, NSW, 2006, Australia
| | - Mark D P Willcox
- School of Optometry & Vision Science, University of New South Wales, Australia
| |
Collapse
|
32
|
da Silva CBP, Ceron CS, Mendes AS, de Martinis BS, Castro MM, Tirapelli CR. Inducible nitric oxide synthase (iNOS) mediates ethanol-induced redox imbalance and upregulation of inflammatory cytokines in the kidney. Can J Physiol Pharmacol 2021; 99:1016-1025. [PMID: 33887163 DOI: 10.1139/cjpp-2021-0108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Overexpression of the inducible isoform of the enzyme nitric oxide synthase (iNOS) has been associated to pathological processes in the kidney. Ethanol consumption induces the renal expression of iNOS; however, the contribution of this enzyme to the deleterious effects of ethanol in the kidney remains elusive. We examined whether iNOS plays a role in the renal dysfunction and oxidative stress induced by ethanol consumption. With this purpose, male C57BL/6 wild-type (WT) or iNOS-deficient (iNOS-/-) mice were treated with ethanol (20% v/v) for 10 weeks. Treatment with ethanol increased the expression of Nox4 as well as the concentration of thiobarbituric acid reactive substances and the levels of tumor necrosis factor α in the renal cortex of WT but not iNOS-/- mice. Augmented serum levels of creatinine and increased systolic blood pressure were found in WT and iNOS-/- mice treated with ethanol. WT mice treated with ethanol showed increased production of reactive oxygen species and myeloperoxidase activity, but these responses were attenuated in iNOS-/- mice. We concluded that iNOS played a role in ethanol-induced oxidative stress and pro-inflammatory cytokine production in the kidney. These are mechanisms that may contribute to the renal toxicity induced by ethanol.
Collapse
Affiliation(s)
- Carla B P da Silva
- Laboratório de Farmacologia, DEPCH, Escola de Enfermagem de Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil.,Programa de Pós-Graduação em Toxicologia, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Carla S Ceron
- Departamento de Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Atlante S Mendes
- Faculdade de Medicina de Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil
| | - Bruno S de Martinis
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil
| | - Michele M Castro
- Faculdade de Medicina de Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil
| | - Carlos R Tirapelli
- Laboratório de Farmacologia, DEPCH, Escola de Enfermagem de Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil
| |
Collapse
|
33
|
Sedaka R, Hyndman KA, Mironova E, Stockand JD, Pollock JS. High salt intake induces collecting duct HDAC1-dependent NO signaling. Am J Physiol Renal Physiol 2021; 320:F297-F307. [PMID: 33356953 PMCID: PMC7988806 DOI: 10.1152/ajprenal.00323.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 12/07/2020] [Accepted: 12/15/2020] [Indexed: 01/13/2023] Open
Abstract
We reported that high salt (HS) intake stimulates renal collecting duct (CD) endothelin (ET) type B receptor (ETBR)/nitric oxide (NO) synthase 1β (NOS1β)-dependent NO production inhibiting the epithelial sodium channel (ENaC) promoting natriuresis. However, the mechanism underlying the HS-induced increase of NO production is unclear. Histone deacetylase 1 (HDAC1) responds to increased fluid flow, as can occur in the CD during HS intake. The renal inner medulla (IM), in particular the IMCD, has the highest NOS1 activity within the kidney. Hence, we hypothesized that HS intake provokes HDAC1 activation of NO production in the IM. HS intake for 1 wk significantly increased HDAC1 abundance in the IM. Ex vivo treatment of dissociated IM from HS-fed mice with a selective HDAC1 inhibitor (MS-275) decreased NO production with no change in ET-1 peptide or mRNA levels. We further investigated the role of the ET-1/ETBR/NOS1β signaling pathway with chronic ETBR blockade (A-192621). Although NO was decreased and ET-1 levels were elevated in the dissociated IM from HS-fed mice treated with A-192621, ex vivo MS-275 did not further change NO or ET-1 levels suggesting that HDAC1-mediated NO production is regulated at the level or downstream of ETBR activation. In split-open CDs from HS-fed mice, patch clamp analysis revealed significantly higher ENaC activity after MS-275 pretreatment, which was abrogated by an exogenous NO donor. Moreover, flow-induced increases in mIMCD-3 cell NO production were blunted by HDAC1 or calcium inhibition. Taken together, these findings indicate that HS intake induces HDAC1-dependent activation of the ETBR/NO pathway contributing to the natriuretic response.
Collapse
Affiliation(s)
- Randee Sedaka
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Kelly A Hyndman
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Elena Mironova
- Department of Cellular and Integrative Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - James D Stockand
- Department of Cellular and Integrative Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Jennifer S Pollock
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
34
|
Chia TY, Murugaiyah V, Khan NA, Sattar MA, Abdulla MH, Johns EJ, Ahmad A, Hassan Z, Kaur G, Mei HY, Ahmad FU, Akhtar S. Inhibition of L-NAME-induced hypertension by combined treatment with apocynin and catalase: the role of Nox 4 expression. Physiol Res 2021; 70:13-26. [PMID: 33728924 DOI: 10.33549/physiolres.934497] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Reactive oxygen species (ROS) such as superoxide (O2-) generated by NAD(P)H oxidases have emerged as important molecules in blood pressure regulation. This study investigated the effect of apocynin and catalase on blood pressure and renal haemodynamic and excretory function in an L-NAME induced hypertension model. Forty Male Wistar-Kyoto (WKY) rats (n=8 per group) were treated with either: vehicle (WKY-C); L-NAME (WKY-L, 15 mg/kg/day in drinking fluid); WKY-L given apocynin to block NAD(P)H oxidase (WKY-LApo, 73 mg/kg/day in drinking water.); WKY-L given catalase to enhance ROS scavenging (WKY-LCat, 10000 U/kg/day i.p.); and WKY-L receiving apocynin plus catalase (WKY-LApoCat) daily for 14 days. L-NAME elevated systolic blood pressure (SBP), 116+/-1 to 181±4 mmHg, reduced creatinine clearance, 1.69+/-0.26 to 0.97+/-0.05 ml/min/kg and fractional sodium excretion, 0.84+/-0.09 to 0.55+/-0.09 % at day 14. Concomitantly, plasma malondialdehyde (MDA) increased six fold, while plasma total superoxide dismutase (T-SOD), plasma nitric oxide (NO) and plasma total antioxidant capacity (T-AOC) were decreased by 60-70 % and Nox 4 mRNA expression was increased 2-fold. Treatment with apocynin and catalase attenuated the increase in SBP and improved renal function, enhanced antioxidative stress capacity and reduced the magnitude of Nox4 mRNAs expression in the L-NAME treated rats. This study demonstrated that apocynin and catalase offset the development of L-NAME induced hypertension, renal dysfunction and reduced oxidative stress status, possibly contributed by a reduction in Nox4 expression during NOS inhibition. These findings would suggest that antioxidant compounds such as apocynin and catalase have potential in treating cardiovascular diseases.
Collapse
Affiliation(s)
- T Y Chia
- Cardiovascular and Renal Physiology Research Laboratory, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia. or . Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Reshma VG, Mohanan PV. Assessment of Immunotoxicity and Oxidative Stress Induced by Zinc Selenium/Zinc Sulphide Quantum Dots. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2020.597382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Although ZnSe/ZnS quantum dots (QDs) have emerged as apparently less hazardous substitute to cadmium-based QDs, their toxicity has not been fully understood. Huge levels of ROS production and associated difficulties comprise the underlying reason for nanomaterial toxicity in cells. This will cause both immunotoxicity and genotoxicity. In the current work, Zinc Selenium/Zinc Sulphide (ZnSe/ZnS) QDs was synthesized, characterized and analyzed for its role in oxidative stress induction in two cell lines (HepG2 and HEK) and Swiss Albino mice. ROS production and influence of catalase activity in ROS production measured by DCFHDA assay in both HepG2 and HEK cells after exposure to ZnSe/ZnS QDs. Assessment of nitrile radical formation carried out by griess reagent. Level of GSH is assessed as a marker for oxidative stress induced by QDs. Cell death induced after exposure to ZnSe/ZnS QDs investigated by Calcein AM-PI live dead assay. Apoptotic DNA ladder assay carried out for studying the potential of ZnSe/ZnS QDs to induce DNA fragmentation. In vivo bio-nano interaction was studied by exposing Swiss Albino mice to ZnSe/ZnS QDs via i.v. and i.p. injection. Antioxidant assays were carried out in brain and liver homogenates to study the oxidative stress. LPO, GSH, GPx, GR and SOD are considered as biomarkers for the stress analysis. Blood brain barrier (BBB) integrity also studied. Spleenocytes proliferation assay was carried out to study the immunotoxicity response. ZnSe/ZnS QDs do not induce visible oxidative stress upto a concentration of 50 μg/ml. Cell death occurs at higher concentration (100 μg/ml) caused by ROS production. Overall study apparently provide attentive information that ZnSe/ZnS QDs is not capable of eliciting any serious damages to liver and brain tissues which in turn substantiates its applicability in biomedical applications.
Collapse
|
36
|
Meier J, Stapleton J, Hofferber E, Haworth A, Kachman S, Iverson NM. Quantification of Nitric Oxide Concentration Using Single-Walled Carbon Nanotube Sensors. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:243. [PMID: 33477618 PMCID: PMC7831316 DOI: 10.3390/nano11010243] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 11/26/2022]
Abstract
Nitric oxide (NO), a free radical present in biological systems, can have many detrimental effects on the body, from inflammation to cancer. Due to NO's short half-life, detection and quantification is difficult. The inability to quantify NO has hindered researchers' understanding of its impact in healthy and diseased conditions. Single-walled carbon nanotubes (SWNTs), when wrapped in a specific single-stranded DNA chain, becomes selective to NO, creating a fluorescence sensor. Unfortunately, the correlation between NO concentration and the SWNT's fluorescence intensity has been difficult to determine due to an inability to immobilize the sensor without altering its properties. Through the use of a recently developed sensor platform, systematic studies can now be conducted to determine the correlation between SWNT fluorescence and NO concentration. This paper explains the methods used to determine the equations that can be used to convert SWNT fluorescence into NO concentration. Through the use of the equations developed in this paper, an easy method for NO quantification is provided. The methods outlined in this paper will also enable researchers to develop equations to determine the concentration of other reactive species through the use of SWNT sensors.
Collapse
Affiliation(s)
- Jakob Meier
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (J.M.); (J.S.); (E.H.); (A.H.)
| | - Joseph Stapleton
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (J.M.); (J.S.); (E.H.); (A.H.)
| | - Eric Hofferber
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (J.M.); (J.S.); (E.H.); (A.H.)
| | - Abigail Haworth
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (J.M.); (J.S.); (E.H.); (A.H.)
| | - Stephen Kachman
- Department of Statistics, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| | - Nicole M. Iverson
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (J.M.); (J.S.); (E.H.); (A.H.)
| |
Collapse
|
37
|
Abstract
The prevalence of cardiovascular and metabolic disease coupled with kidney dysfunction is increasing worldwide. This triad of disorders is associated with considerable morbidity and mortality as well as a substantial economic burden. Further understanding of the underlying pathophysiological mechanisms is important to develop novel preventive or therapeutic approaches. Among the proposed mechanisms, compromised nitric oxide (NO) bioactivity associated with oxidative stress is considered to be important. NO is a short-lived diatomic signalling molecule that exerts numerous effects on the kidneys, heart and vasculature as well as on peripheral metabolically active organs. The enzymatic L-arginine-dependent NO synthase (NOS) pathway is classically viewed as the main source of endogenous NO formation. However, the function of the NOS system is often compromised in various pathologies including kidney, cardiovascular and metabolic diseases. An alternative pathway, the nitrate-nitrite-NO pathway, enables endogenous or dietary-derived inorganic nitrate and nitrite to be recycled via serial reduction to form bioactive nitrogen species, including NO, independent of the NOS system. Signalling via these nitrogen species is linked with cGMP-dependent and independent mechanisms. Novel approaches to restoring NO homeostasis during NOS deficiency and oxidative stress have potential therapeutic applications in kidney, cardiovascular and metabolic disorders.
Collapse
|
38
|
Bernabò I, Guardia A, Macirella R, Sesti S, Tripepi S, Brunelli E. Tissues injury and pathological changes in Hyla intermedia juveniles after chronic larval exposure to tebuconazole. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 205:111367. [PMID: 32971454 DOI: 10.1016/j.ecoenv.2020.111367] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/24/2020] [Accepted: 09/13/2020] [Indexed: 06/11/2023]
Abstract
Tebuconazole (TBZ), an azole pesticide, is one of the most frequently detected fungicides in surface water. Despite its harmful effects, mainly related to endocrine disturbance, the consequences of TBZ exposure in amphibians remain poorly understood. Here, we investigated the adverse and delayed effects of TBZ chronic exposure on a native anuran species, often inhabiting cultivated areas, the Italian tree frog (Hyla intermedia). To disclose the multiple mechanisms of action through which TBZ exerts its toxicity we exposed tadpoles over the whole larval period to two sublethal TBZ concentrations (5 and 50 μg/L), and we evaluated histological alterations in three target organs highly susceptible to xenobiotics: liver, kidney, and gonads. We also assessed morphometric and gravimetric parameters: snout-vent length (SVL), body mass (BM), liver somatic index (LSI), and gonad-mesonephros complex index (GMCI) and determined sex ratio, gonadal development, and differentiation. Our results show that TBZ induces irreversible effects on multiple target organs in H. intermedia, exerting its harmful effects through several pathological pathways, including a massive inflammatory response. Moreover, TBZ markedly affects sexual differentiation also by inducing the appearance of sexually undetermined individuals and a general delay of germ cell maturation. Given the paucity of data on the effects of TBZ in amphibians, our results will contribute to a better understanding of the environmental risk posed by this fungicide to the most endangered group of vertebrates.
Collapse
Affiliation(s)
- Ilaria Bernabò
- Department of Biology, Ecology and Earth Science, University of Calabria, Via P. Bucci 4/B, 87036, Rende, Cosenza, Italy.
| | - Antonello Guardia
- Department of Biology, Ecology and Earth Science, University of Calabria, Via P. Bucci 4/B, 87036, Rende, Cosenza, Italy
| | - Rachele Macirella
- Department of Biology, Ecology and Earth Science, University of Calabria, Via P. Bucci 4/B, 87036, Rende, Cosenza, Italy
| | - Settimio Sesti
- Department of Biology, Ecology and Earth Science, University of Calabria, Via P. Bucci 4/B, 87036, Rende, Cosenza, Italy
| | - Sandro Tripepi
- Department of Biology, Ecology and Earth Science, University of Calabria, Via P. Bucci 4/B, 87036, Rende, Cosenza, Italy
| | - Elvira Brunelli
- Department of Biology, Ecology and Earth Science, University of Calabria, Via P. Bucci 4/B, 87036, Rende, Cosenza, Italy.
| |
Collapse
|
39
|
Linhares BS, Ribeiro SP, de Freitas RMP, Puga LCHP, Sartori SSR, Freitas MB. Aspects regarding renal morphophysiology of fruit-eating and vampire bats. ZOOLOGY 2020; 144:125861. [PMID: 33232886 DOI: 10.1016/j.zool.2020.125861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 10/12/2020] [Accepted: 10/21/2020] [Indexed: 11/15/2022]
Abstract
Bats have adapted to many different feeding habits, which are known to induce morphophysiological adaptations in several tissues, especially those particularly involved with absorption, metabolism and excretion. The common vampire bat (Desmodus rotundus) has a very unique diet (blood), which, among other challenges, seems to pose a risk to their kidneys, due to the increased nitrogen excretion imposed by their remarkably high protein meal. Fruit-eating bats (Artibeus lituratus) consume a high carbohydrate diet and may be taken as a suitable species for this dietary comparative study. Here we aimed at investigating the renal morphology and stereology, kidneys antioxidant capacity, and plasma antidiuretic hormone (ADH) concentrations in adult fruit-eating and vampire bats. Sixteen animals were captured and used in this study, being 8 adult males from each species. Our results showed higher morphological standards of glomerular area, volumetric density of glomeruli, and renal somatic index for vampire bats, as well as higher reactive species of oxygen (ROS) production, such as nitric oxide (NO), higher plasma iron reduction ability (FRAP), higher activity of the antioxidant enzyme glutathione-S-transferase (GST) and a higher malondialdehyde production (MDA) in vampires' kidneys, compared to the fruit-eating species. The activities of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) were higher in fruit-eating bats. Plasma ADH concentrations were not different between species. Taken together, the renal morphophysiology conditions presented by vampire bats might be associated with a high demand for nitrogenous products excretion imposed by protein and iron overload. These features may play an important role on preventing protein-overload nephropathy, allowing vampires to survive under such a unique diet.
Collapse
Affiliation(s)
- Bárbara Silva Linhares
- Department of Animal Biology, Federal University of Viçosa (UFV), Viçosa, Minas Gerais, 36571-000, Brazil.
| | - Susana Puga Ribeiro
- Department of General Biology, Federal University of Viçosa (UFV), Viçosa, Minas Gerais, 36571-000, Brazil.
| | | | | | | | - Mariella Bontempo Freitas
- Department of Animal Biology, Federal University of Viçosa (UFV), Viçosa, Minas Gerais, 36571-000, Brazil.
| |
Collapse
|
40
|
Piao C, Zhang Q, Jin D, Wang L, Tang C, Zhang N, Lian F, Tong X. A Study on the Mechanism of Milkvetch Root in the Treatment of Diabetic Nephropathy Based on Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:6754761. [PMID: 33178322 PMCID: PMC7648691 DOI: 10.1155/2020/6754761] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 08/24/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023]
Abstract
Diabetic nephropathy (DN) is one of the most common complications of diabetes mellitus. Owing to its complicated pathogenesis, no satisfactory treatment strategies for DN are available. Milkvetch Root is a common traditional Chinese medicine (TCM) and has been extensively used to treat DN in clinical practice in China for many years. However, due to the complexity of botanical ingredients, the exact pharmacological mechanism of Milkvetch Root in treating DN has not been completely elucidated. The aim of this study was to explore the active components and potential mechanism of Milkvetch Root by using a systems pharmacology approach. First, the components and targets of Milkvetch Root were analyzed by using the Traditional Chinese Medicine Systems Pharmacology database. We found the common targets of Milkvetch Root and DN constructed a protein-protein interaction (PPI) network using STRING and screened the key targets via topological analysis. Enrichment of Gene Ontology (GO) pathways and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were analyzed. Subsequently, major hubs were identified and imported to the Database for Annotation, Visualization and Integrated Discovery for pathway enrichment analysis. The binding activity and targets of the active components of Milkvetch Root were verified by using the molecular docking software SYBYL. Finally, we found 20 active components in Milkvetch Root. Moreover, the enrichment analysis of GO and KEGG pathways suggested that AGE-RAGE signaling pathway, HIF-1 signaling pathway, PI3K-Akt signaling pathway, and TNF signaling pathway might be the key pathways for the treatment of DN; more importantly, 10 putative targets of Milkvetch Root (AKT1, VEGFA, IL-6, PPARG, CCL2, NOS3, SERPINE1, CRP, ICAM1, and SLC2A) were identified to be of great significance in regulating these biological processes and pathways. This study provides an important scientific basis for further elucidating the mechanism of Milkvetch Root in treating DN.
Collapse
Affiliation(s)
- Chunli Piao
- Shenzhen Hospital, Guangzhou University of Chinese Medicine (Futian), Shenzhen 518000, Guangdong, China
| | - Qi Zhang
- Changchun University of Chinese Medicine, Changchun 130000, Jilin, China
| | - De Jin
- Guang'anmen Hospital, China Academy of Chinese Medical Science, Beijing 100000, China
| | - Li Wang
- Shenzhen Hospital, Guangzhou University of Chinese Medicine (Futian), Shenzhen 518000, Guangdong, China
| | - Cheng Tang
- Shenzhen Hospital, Guangzhou University of Chinese Medicine (Futian), Shenzhen 518000, Guangdong, China
| | - Naiwen Zhang
- Shenzhen Hospital, Guangzhou University of Chinese Medicine (Futian), Shenzhen 518000, Guangdong, China
| | - Fengmei Lian
- Guang'anmen Hospital, China Academy of Chinese Medical Science, Beijing 100000, China
| | - Xiaolin Tong
- Guang'anmen Hospital, China Academy of Chinese Medical Science, Beijing 100000, China
| |
Collapse
|
41
|
Combination of Exercise Training and SOD Mimetic Tempol Enhances Upregulation of Nitric Oxide Synthase in the Kidney of Spontaneously Hypertensive Rats. Int J Hypertens 2020; 2020:2142740. [PMID: 33145105 PMCID: PMC7596428 DOI: 10.1155/2020/2142740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 08/12/2020] [Accepted: 09/30/2020] [Indexed: 12/02/2022] Open
Abstract
Both exercise training (Ex) and superoxide dismutase (SOD) mimetic tempol have antihypertensive and renal protective effects in rodent models of several hypertensions. We recently reported that Ex increases nitric oxide (NO) production and the expression levels of endothelial and neuronal NO synthase (eNOS and nNOS) in the kidney and aorta of the spontaneously hypertensive rats (SHR) and normotensive Wistar–Kyoto rats (WKY). We also found that endogenous hydrogen peroxide (H2O2) upregulates the expression levels of eNOS and nNOS in SHR. To elucidate the mechanism of the Ex-upregulated NO system in the kidney, we examined the additive effect of Ex and tempol on the renal NO system in SHR and WKY. Our data showed that, in SHR, both Ex and tempol increase the levels of H2O2 and nitrate/nitrite (NOx) in plasma and urine. We also observed an increased renal NOS activity and upregulated expression levels of eNOS and nNOS with decreased NADPH oxidase activity. The effects of the combination of Ex and tempol on these variables were cumulate in SHR. On the other hand, we found that Ex increases these variables with increased renal NADPH oxidase activity, but tempol did not change these variables or affect the Ex-induced upregulation in the activity and expression of NOS in WKY. The SOD activity in the kidney and aorta was activated by tempol only in SHR, but not in WKY; whereas Ex increased SOD activity only in the aorta in both SHR and WKY. These results indicate that Ex-induced endogenous H2O2 produced in the blood vessel and other organs outside of the kidney may be carried to the kidney by blood flow and stimulates the NO system in the kidney.
Collapse
|
42
|
Zhang J, Qu L, Wei J, Jiang S, Xu L, Wang L, Cheng F, Jiang K, Buggs J, Liu R. A new mechanism for the sex differences in angiotensin II-induced hypertension: the role of macula densa NOS1β-mediated tubuloglomerular feedback. Am J Physiol Renal Physiol 2020; 319:F908-F919. [PMID: 33044868 DOI: 10.1152/ajprenal.00312.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Females are protected against the development of angiotensin II (ANG II)-induced hypertension compared with males, but the mechanisms have not been completely elucidated. In the present study, we hypothesized that the effect of ANG II on the macula densa nitric oxide (NO) synthase 1β (NOS1β)-mediated tubuloglomerular feedback (TGF) mechanism is different between males and females, thereby contributing to the sexual dimorphism of ANG II-induced hypertension. We used microperfusion, micropuncture, clearance of FITC-inulin, and radio telemetry to examine the sex differences in the changes of macula densa NOS1β expression and activity, TGF response, natriuresis, and blood pressure (BP) after a 2-wk ANG II infusion in wild-type and macula densa-specific NOS1 knockout mice. In wild-type mice, ANG II induced higher expression of macula densa NOS1β, greater NO generation by the macula densa, and a lower TGF response in vitro and in vivo in females than in males; the increases of glomerular filtration rate, urine flow rate, and Na+ excretion in response to an acute volume expansion were significantly greater and the BP responses to ANG II were significantly less in females than in males. In contrast, these sex differences in the effects of ANG II on TGF, natriuretic response, and BP were largely diminished in knockout mice. In addition, tissue culture of human kidney biopsies (renal cortex) with ANG II resulted in a greater increase in NOS1β expression in females than in males. In conclusion, macula densa NOS1β-mediated TGF is a novel and important mechanism for the sex differences in ANG II-induced hypertension.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Larry Qu
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Jin Wei
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Shan Jiang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Lan Xu
- College of Public Health, University of South Florida, Tampa, Florida
| | - Lei Wang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Feng Cheng
- Department of Pharmaceutical Science, College of Pharmacy, University of South Florida, Tampa, Florida
| | - Kun Jiang
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Jacentha Buggs
- Advanced Organ Disease and Transplantation Institute, Tampa General Hospital, Tampa, Florida
| | - Ruisheng Liu
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| |
Collapse
|
43
|
Characterization of the Oxidative Stress in Renal Ischemia/Reperfusion-Induced Cardiorenal Syndrome Type 3. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1605358. [PMID: 33102574 PMCID: PMC7568802 DOI: 10.1155/2020/1605358] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/25/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022]
Abstract
In kidney disease (KD), several factors released into the bloodstream can induce a series of changes in the heart, leading to a wide variety of clinical situations called cardiorenal syndrome (CRS). Reactive oxygen species (ROS) play an important role in the signaling and progression of systemic inflammatory conditions, as observed in KD. The aim of the present study was to characterize the redox balance in renal ischemia/reperfusion-induced cardiac remodeling. C57BL/6 male mice were subjected to occlusion of the left renal pedicle, unilateral, for 60 min, followed by reperfusion for 8 and 15 days, respectively. The following redox balance components were evaluated: catalase (CAT), superoxide dismutase (SOD), total antioxidant capacity (FRAP), NADPH oxidase (NOX), nitric oxide synthase (NOS), hydrogen peroxide (H2O2), and the tissue bioavailability of nitric oxide (NO) such as S-nitrosothiol (RSNO) and nitrite (NO2−). The results indicated a process of renoprotection in both kidneys, indicated by the reduction of cellular damage and some oxidant agents. We also observed an increase in the activity of antioxidant enzymes, such as SOD, and an increase in NO bioavailability. In the heart, we noticed an increase in the activity of NOX and NOS, together with increased cell damage on day 8, followed by a reduction in protein damage on day 15. The present study concludes that the kidneys and heart undergo distinct processes of damage and repair at the analyzed times, since the heart is a secondary target of ischemic kidney injury. These results are important for a better understanding of the cellular mechanisms involved in CRS.
Collapse
|
44
|
Woodman AG, Mah R, Keddie DL, Noble RMN, Holody CD, Panahi S, Gragasin FS, Lemieux H, Bourque SL. Perinatal iron deficiency and a high salt diet cause long-term kidney mitochondrial dysfunction and oxidative stress. Cardiovasc Res 2020; 116:183-192. [PMID: 30715197 DOI: 10.1093/cvr/cvz029] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/08/2019] [Accepted: 01/29/2019] [Indexed: 12/15/2022] Open
Abstract
AIMS Perinatal iron deficiency (ID) alters developmental trajectories of offspring, predisposing them to cardiovascular dysfunction in later life. The mechanisms underlying this long-term programming of renal function have not been defined. We hypothesized perinatal ID causes hypertension and alters kidney metabolic function and morphology in a sex-dependent manner in adult offspring. Furthermore, we hypothesized these effects are exacerbated by chronic consumption of a high salt diet. METHODS AND RESULTS Pregnant Sprague Dawley rats were fed either an iron-restricted or replete diet prior to and throughout pregnancy. Adult offspring were fed normal or high salt diets for 6 weeks prior to experimentation at 6 months of age. Blood pressure (BP) was assessed via indwelling catheters in anaesthetized offspring; kidney mitochondrial function was assessed via high-resolution respirometry; reactive oxygen species and nitric oxide were quantified via fluorescence microscopy. Adult males, but not females, exhibited increased systolic BP due to ID (P = 0.01) and high salt intake (P = 0.02). In males, but not in females, medullary mitochondrial content was increased by high salt (P = 0.003), while succinate-dependent respiration was reduced by ID (P < 0.05). The combination of perinatal ID and high salt reduced complex IV activity in the cortex of males (P = 0.01). Perinatal ID increased cytosolic superoxide generation (P < 0.001) concomitant with reduced nitric oxide bioavailability (P < 0.001) in male offspring, while high salt increased mitochondrial superoxide in the medulla (P = 0.04) and cytosolic superoxide within the cortex (P = 0.01). Male offspring exhibited glomerular basement membrane thickening (P < 0.05), increased collagen deposition (P < 0.05), and glomerular hypertrophy (interaction, P = 0.02) due to both perinatal ID and high salt. Female offspring exhibited no alterations in mitochondrial function or morphology due to either high salt or ID. CONCLUSION Perinatal ID causes long-term sex-dependent alterations in renal metabolic function and morphology, potentially contributing to hypertension and increased cardiovascular disease risk.
Collapse
Affiliation(s)
- Andrew G Woodman
- Department of Pharmacology, University of Alberta, Edmonton, Canada.,Women and Children's Health Research Institute, University of Alberta, Edmonton, Canada
| | - Richard Mah
- Department of Pharmacology, University of Alberta, Edmonton, Canada.,Women and Children's Health Research Institute, University of Alberta, Edmonton, Canada
| | - Danae L Keddie
- Department of Pharmacology, University of Alberta, Edmonton, Canada.,Women and Children's Health Research Institute, University of Alberta, Edmonton, Canada
| | - Ronan M N Noble
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Canada.,Department of Pediatrics, University of Alberta, Edmonton, Canada
| | - Claudia D Holody
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Canada.,Department of Pediatrics, University of Alberta, Edmonton, Canada
| | - Sareh Panahi
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Canada.,Department of Anesthesiology & Pain Medicine, University of Alberta, Edmonton, Canada
| | - Ferrante S Gragasin
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Canada.,Department of Anesthesiology & Pain Medicine, University of Alberta, Edmonton, Canada
| | - Helene Lemieux
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Canada.,Department of Medicine, University of Alberta, Edmonton, Canada.,Faculty Saint-Jean, University of Alberta, Edmonton, Canada
| | - Stephane L Bourque
- Department of Pharmacology, University of Alberta, Edmonton, Canada.,Women and Children's Health Research Institute, University of Alberta, Edmonton, Canada.,Department of Pediatrics, University of Alberta, Edmonton, Canada.,Department of Anesthesiology & Pain Medicine, University of Alberta, Edmonton, Canada
| |
Collapse
|
45
|
Fakhouri EW, Peterson SJ, Kothari J, Alex R, Shapiro JI, Abraham NG. Genetic Polymorphisms Complicate COVID-19 Therapy: Pivotal Role of HO-1 in Cytokine Storm. Antioxidants (Basel) 2020; 9:E636. [PMID: 32708430 PMCID: PMC7402116 DOI: 10.3390/antiox9070636] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 12/15/2022] Open
Abstract
Coronaviruses are very large RNA viruses that originate in animal reservoirs and include severe acute respiratory distress syndrome (SARS) and Middle East respiratory syndrome (MERS) and other inconsequential coronaviruses from human reservoirs like the common cold. SARS-CoV-2, the virus that causes COVID-19 and is believed to originate from bat, quickly spread into a global pandemic. This RNA virus has a special affinity for porphyrins. It invades the cell at the angiotensin converting enzyme-2 (ACE-2) receptor and binds to hemoproteins, resulting in a severe systemic inflammatory response, particularly in high ACE-2 organs like the lungs, heart, and kidney, resulting in systemic disease. The inflammatory response manifested by increased cytokine levels and reactive oxygen species results in inhibition of heme oxygenase (HO-1), with a subsequent loss of cytoprotection. This has been seen in other viral illness like human immunodeficiency virus (HIV), Ebola, and SARS/MERS. There are a number of medications that have been tried with some showing early clinical promise. This illness disproportionately affects patients with obesity, a chronic inflammatory disease with a baseline excess of cytokines. The majority of the medications used in the treatment of COVID-19 are metabolized by cytochrome P450 (CYP) enzymes, primarily CYP2D6. This is further complicated by genetic polymorphisms of CYP2D6, HO-1, ACE, and ACE-2. There is a potential role for HO-1 upregulation to treat/prevent cytokine storm. Current therapy must focus on antivirals and heme oxygenase upregulation. Vaccine development will be the only magic bullet.
Collapse
Affiliation(s)
- Eddie W. Fakhouri
- New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY 11215, USA; (E.W.F.); (J.K.)
| | - Stephen J. Peterson
- New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY 11215, USA; (E.W.F.); (J.K.)
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Janish Kothari
- New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY 11215, USA; (E.W.F.); (J.K.)
| | - Ragin Alex
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA;
| | - Joseph I. Shapiro
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA;
| | - Nader G. Abraham
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA;
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA;
- Department of Medicine, New York Medical College, Valhalla, New York, NY 10595, USA
| |
Collapse
|
46
|
Corrêa HL, Moura SRG, Neves RVP, Tzanno-Martins C, Souza MK, Haro AS, Costa F, Silva JAB, Stone W, Honorato FS, Deus LA, Prestes J, Simões HG, Vieira EC, de Melo GF, Moraes MR, Rosa TS. Resistance training improves sleep quality, redox balance and inflammatory profile in maintenance hemodialysis patients: a randomized controlled trial. Sci Rep 2020; 10:11708. [PMID: 32678132 PMCID: PMC7367305 DOI: 10.1038/s41598-020-68602-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 06/11/2020] [Indexed: 11/09/2022] Open
Abstract
Patients in maintenance hemodialisys (HD) present sleep disorders, increased inflammation, unbalanced redox profiles, and elevated biomarkers representing endothelial dysfunction. Resistance training (RT) has shown to mitigate the loss of muscle mass, strength, improve inflammatory profiles, and endothelial function while decreasing oxidative stress for those in HD. However, the relation between those factors and sleep quality are inadequately described. The aim of this study was to verify the effects of 3 months of RT on sleep quality, redox balance, nitric oxide (NO) bioavailability, inflammation profile, and asymmetric dimethylarginine (ADMA) in patients undergoing HD. Our primary goal was to describe the role of RT on sleep quality. Our secondary goal was to evaluate the effect of RT on NO, metabolism markers, and inflammatory and redox profiles as potential mechanisms to explain RT-induced sleep quality changes. Fifty-five men undergoing maintenance hemodialysis were randomized into either a control (CTL, n = 25) and RT group (RTG; n = 30). Participants in the RT group demonstrated an improvement in sleep pattern, redox, inflammatory profiles, and biomarkers of endothelial function (NO2- and ADMA). This group also increased muscle strength (total workload in RT exercises of upper and lower limbs). These findings support that RT may improve the clinical status of HD patients by improving their sleep quality, oxidative and inflammatory parameters.
Collapse
Affiliation(s)
- Hugo Luca Corrêa
- Graduate Program of Physical Education, Catholic University of Brasilia (USB), EPTC, QS07, LT1 s/n. Bloco G Sala 117, Águas Claras, Taguatinga, Brasília, DF, 71966-700, Brazil.
| | - Sting Ray Gouveia Moura
- Graduate Program of Physical Education, Catholic University of Brasilia (USB), EPTC, QS07, LT1 s/n. Bloco G Sala 117, Águas Claras, Taguatinga, Brasília, DF, 71966-700, Brazil
| | - Rodrigo Vanerson Passos Neves
- Graduate Program of Physical Education, Catholic University of Brasilia (USB), EPTC, QS07, LT1 s/n. Bloco G Sala 117, Águas Claras, Taguatinga, Brasília, DF, 71966-700, Brazil
| | | | - Michel Kendy Souza
- Department of Nephrology, Federal University of São Paulo, São Paulo, Brazil
| | - Anderson Sola Haro
- Department of Nephrology, Federal University of São Paulo, São Paulo, Brazil
| | - Fernando Costa
- Department of Nephrology, Federal University of São Paulo, São Paulo, Brazil
| | | | - Whitley Stone
- School of Kinesiology, Recreation, and Sport, Western Kentucky University, Bowling Green, KY, USA
| | - Fernando Sousa Honorato
- Graduate Program of Physical Education, Catholic University of Brasilia (USB), EPTC, QS07, LT1 s/n. Bloco G Sala 117, Águas Claras, Taguatinga, Brasília, DF, 71966-700, Brazil
| | - Lysleine Alves Deus
- Graduate Program of Physical Education, Catholic University of Brasilia (USB), EPTC, QS07, LT1 s/n. Bloco G Sala 117, Águas Claras, Taguatinga, Brasília, DF, 71966-700, Brazil
| | - Jonato Prestes
- Graduate Program of Physical Education, Catholic University of Brasilia (USB), EPTC, QS07, LT1 s/n. Bloco G Sala 117, Águas Claras, Taguatinga, Brasília, DF, 71966-700, Brazil
| | - Herbert Gustavo Simões
- Graduate Program of Physical Education, Catholic University of Brasilia (USB), EPTC, QS07, LT1 s/n. Bloco G Sala 117, Águas Claras, Taguatinga, Brasília, DF, 71966-700, Brazil
| | - Elaine Cristina Vieira
- Graduate Program of Physical Education, Catholic University of Brasilia (USB), EPTC, QS07, LT1 s/n. Bloco G Sala 117, Águas Claras, Taguatinga, Brasília, DF, 71966-700, Brazil
| | - Gislane Ferreira de Melo
- Graduate Program of Physical Education, Catholic University of Brasilia (USB), EPTC, QS07, LT1 s/n. Bloco G Sala 117, Águas Claras, Taguatinga, Brasília, DF, 71966-700, Brazil
| | - Milton Rocha Moraes
- Graduate Program of Physical Education, Catholic University of Brasilia (USB), EPTC, QS07, LT1 s/n. Bloco G Sala 117, Águas Claras, Taguatinga, Brasília, DF, 71966-700, Brazil
| | - Thiago Santos Rosa
- Graduate Program of Physical Education, Catholic University of Brasilia (USB), EPTC, QS07, LT1 s/n. Bloco G Sala 117, Águas Claras, Taguatinga, Brasília, DF, 71966-700, Brazil
| |
Collapse
|
47
|
Zhang B, Zhang XL, Zhang CY, Sun GB, Sun XB. Shenkang Injection protects against diabetic nephropathy in streptozotocin (STZ)-induced mice through enhancement of anti-oxidant and anti-inflammatory activities. CHINESE HERBAL MEDICINES 2020; 12:289-296. [PMID: 36119010 PMCID: PMC9476641 DOI: 10.1016/j.chmed.2020.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/14/2020] [Accepted: 05/21/2020] [Indexed: 12/20/2022] Open
Abstract
Objective To investigate the protective effects and possible mechanisms of Shenkang Injection (SKI) on the diabetic nephropathy in streptozotocin-induced mice. Methods STZ with the feeding of high fat diet (HFD) was used to induce diabetic mice. The balb/c mice and diabetic mice were then randomly divided into five groups: (1) control group, (2) model group, (3) alprostadil (Alp, 1.5 μg/kg) group, (4) SKI (30 ml/kg) group, (5) Alp (1.5 μg/kg) + SKI (15 ml/kg) group. After six weeks' treatment, blood, urine and kidney tissues were collected for biochemical assay, ELISA assay, and pathological analysis. Results Diabetic mice exhibited evident manifestations of diabetic nephropathy (DN), as indicated by increased 24-h urine volume, urinary albumin and kidney weight index (P < 0.01), which could be attenuated by SKI treatment (P < 0.01). SKI was further found to improve abnormal morphology in glomerulus with increased glomerular volume and to decrease urinary N-acetyl-b-D-glucpsaminidase (NAG), β2-microglobulin (β2-MG), and kidney injury molecules-1 (KIM-1) levels (P < 0.05, P < 0.01). Plasma levels of anti-oxidant enzymes significantly reduced in the diabetic mice, and those decreases could be reversed by SKI and Alp treatments. Additionally, SKI obviously suppressed the diabetes-induced increases of pro-inflammatory cytokines (IL-6, IL-1β and TNF-α) (P < 0.01). Meanwhile, SKI was found to effectively attenuate the diabetes-induced coagulation dysfunction, as evidenced by lengthening prothrombin and thrombin time, and decreasing plasma levels of fibrinogen (FIB), 6-K-PGF1α and thromboxane B2 (TXB2) (P < 0.05, P < 0.01). With SKI and Alp combined treatment, the anti-oxidant activities and improvements of coagulation dysfunction were enhanced. Conclusion SKI possesses a remarkable property to prevent diabetic nephropathy. The improvements of kidney function and hypercoagulability by SKI were enhanced with Alp combined treatment. The molecular mechanisms underlying the protection of SKI against DN may be related to enhancing the anti-oxidant and anti-inflammatory activities, and improving the coagulation dysfunction.
Collapse
|
48
|
McArdle Z, Schreuder MF, Moritz KM, Denton KM, Singh RR. Physiology and Pathophysiology of Compensatory Adaptations of a Solitary Functioning Kidney. Front Physiol 2020; 11:725. [PMID: 32670095 PMCID: PMC7332829 DOI: 10.3389/fphys.2020.00725] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/03/2020] [Indexed: 12/15/2022] Open
Abstract
Children born with a solitary functioning kidney (SFK) have an increased risk of hypertension and kidney disease from early in adulthood. In response to a reduction in kidney mass, the remaining kidney undergoes compensatory kidney growth. This is associated with both an increase in size of the kidney tubules and the glomeruli and an increase in single nephron glomerular filtration rate (SNGFR). The compensatory hypertrophy and increase in filtration at the level of the individual nephron results in normalization of total glomerular filtration rate (GFR). However, over time these same compensatory mechanisms may contribute to kidney injury and hypertension. Indeed, approximately 50% of children born with a SFK develop hypertension by the age of 18 and 20–40% require dialysis by the age of 30. The mechanisms that result in kidney injury are only partly understood, and early biomarkers that distinguish those at an elevated risk of kidney injury are needed. This review will outline the compensatory adaptations to a SFK, and outline how these adaptations may contribute to kidney injury and hypertension later in life. These will be based largely on the mechanisms we have identified from our studies in an ovine model of SFK, that implicate the renal nitric oxide system, the renin angiotensin system and the renal nerves to kidney disease and hypertension associated with SFK. This discussion will also evaluate current, and speculate on next generation, prognostic factors that may predict those children at a higher risk of future kidney disease and hypertension.
Collapse
Affiliation(s)
- Zoe McArdle
- Cardiovascular Program, Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, VIC, Australia
| | - Michiel F Schreuder
- Department of Pediatric Nephrology, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, Netherlands
| | - Karen M Moritz
- Child Health Research Centre and School of Biomedical Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Kate M Denton
- Cardiovascular Program, Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, VIC, Australia
| | - Reetu R Singh
- Cardiovascular Program, Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
49
|
Wang C, Kawakami-Mori F, Kang L, Ayuzawa N, Ogura S, Koid SS, Reheman L, Yeerbolati A, Liu B, Yatomi Y, Chen X, Fujita T, Shimosawa T. Low-dose L-NAME induces salt sensitivity associated with sustained increased blood volume and sodium-chloride cotransporter activity in rodents. Kidney Int 2020; 98:1242-1252. [PMID: 32592815 DOI: 10.1016/j.kint.2020.05.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 05/18/2020] [Accepted: 05/21/2020] [Indexed: 12/01/2022]
Abstract
To investigate the cause of salt sensitivity in a normotensive animal model, we treated rats with a low-dose of the nitric oxide synthase inhibitor, L-NAME, that does not elevate blood pressure per se or induce kidney fibrosis. A high salt diet increased the circulating blood volume both in L-NAME-treated and nontreated animals for the first 24 hours. Thereafter, the blood volume increase persisted only in the L-NAME-treated rats. Blood pressure was higher in the L-NAME-treated group from the start of high salt diet exposure. Within the first 24 hours of salt loading, the L-NAME treated animals failed to show vasodilation and maintained high systemic vascular resistance in response to blood volume expansion. After four weeks on the high salt diet, the slope of the pressure-natriuresis curve was blunted in the L-NAME-treated group. An increase in natriuresis was observed after treatment with hydrochlorothiazide, but not amiloride, a change observed in parallel with increased phosphorylated sodium-chloride cotransporter (NCC). In contrast, a change in blood pressure was not observed in L-NAME-treated NCC-deficient mice fed a high salt diet. Moreover, direct L-NAME-induced NCC activation was demonstrated in cells of the mouse distal convoluted tubule. The vasodilatator, sodium nitroprusside, downregulated phosphorylated NCC expression. The effect of L-NAME on phosphorylated NCC was blocked by both the SPAK inhibitor STOCK2S-26016 and the superoxide dismutase mimetic TEMPO which also attenuated salt-induced hypertension. These results suggest that the initiation of salt sensitivity in normotensive rodents could be due to hyporeactivity of the vasculature and that maintaining blood pressure could result in a high circulating volume due to inappropriate NCC activity in the low-dose L-NAME model. Thus, even slightly impaired nitric oxide production may be important in salt sensitivity regulation in healthy rodents.
Collapse
Affiliation(s)
- Conghui Wang
- Department of Nephrology, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China; Department of Clinical Laboratory, School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Fumiko Kawakami-Mori
- Department of Clinical Epigenetics, Research Center for Advancing Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Lei Kang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Nobuhiro Ayuzawa
- Department of Clinical Epigenetics, Research Center for Advancing Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Sayoko Ogura
- Department of Pathology and Microbiology, Division of Laboratory Medicine, School of Medicine, Nihon University, Tokyo, Japan
| | - Suang Suang Koid
- Department of Clinical Laboratory, School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Clinical Laboratory, School of Medicine, International University of Health and Welfare, Chiba, Japan
| | - Latapati Reheman
- Department of Clinical Laboratory, School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Alimila Yeerbolati
- Department of Clinical Laboratory, School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Beibei Liu
- Department of Clinical Laboratory, School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory, School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Xiangmei Chen
- Department of Nephrology, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China
| | - Toshiro Fujita
- Department of Clinical Epigenetics, Research Center for Advancing Science and Technology, The University of Tokyo, Tokyo, Japan; CREST, Japan Science and Technology Agency, Tokyo, Japan
| | - Tatsuo Shimosawa
- Department of Clinical Laboratory, School of Medicine, International University of Health and Welfare, Chiba, Japan; CREST, Japan Science and Technology Agency, Tokyo, Japan.
| |
Collapse
|
50
|
Ally A, Powell I, Ally MM, Chaitoff K, Nauli SM. Role of neuronal nitric oxide synthase on cardiovascular functions in physiological and pathophysiological states. Nitric Oxide 2020; 102:52-73. [PMID: 32590118 DOI: 10.1016/j.niox.2020.06.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/15/2020] [Accepted: 06/15/2020] [Indexed: 12/16/2022]
Abstract
This review describes and summarizes the role of neuronal nitric oxide synthase (nNOS) on the central nervous system, particularly on brain regions such as the ventrolateral medulla (VLM) and the periaqueductal gray matter (PAG), and on blood vessels and the heart that are involved in the regulation and control of the cardiovascular system (CVS). Furthermore, we shall also review the functional aspects of nNOS during several physiological, pathophysiological, and clinical conditions such as exercise, pain, cerebral vascular accidents or stroke and hypertension. For example, during stroke, a cascade of molecular, neurochemical, and cellular changes occur that affect the nervous system as elicited by generation of free radicals and nitric oxide (NO) from vulnerable neurons, peroxide formation, superoxides, apoptosis, and the differential activation of three isoforms of nitric oxide synthases (NOSs), and can exert profound effects on the CVS. Neuronal NOS is one of the three isoforms of NOSs, the others being endothelial (eNOS) and inducible (iNOS) enzymes. Neuronal NOS is a critical homeostatic component of the CVS and plays an important role in regulation of different systems and disease process including nociception. The functional and physiological roles of NO and nNOS are described at the beginning of this review. We also elaborate the structure, gene, domain, and regulation of the nNOS protein. Both inhibitory and excitatory role of nNOS on the sympathetic autonomic nervous system (SANS) and parasympathetic autonomic nervous system (PANS) as mediated via different neurotransmitters/signal transduction processes will be explored, particularly its effects on the CVS. Because the VLM plays a crucial function in cardiovascular homeostatic mechanisms, the neuroanatomy and cardiovascular regulation of the VLM will be discussed in conjunction with the actions of nNOS. Thereafter, we shall discuss the up-to-date developments that are related to the interaction between nNOS and cardiovascular diseases such as hypertension and stroke. Finally, we shall focus on the role of nNOS, particularly within the PAG in cardiovascular regulation and neurotransmission during different types of pain stimulus. Overall, this review focuses on our current understanding of the nNOS protein, and provides further insights on how nNOS modulates, regulates, and controls cardiovascular function during both physiological activity such as exercise, and pathophysiological conditions such as stroke and hypertension.
Collapse
Affiliation(s)
- Ahmmed Ally
- Arkansas College of Osteopathic Medicine, Fort Smith, AR, USA.
| | - Isabella Powell
- All American Institute of Medical Sciences, Black River, Jamaica
| | | | - Kevin Chaitoff
- Interventional Rehabilitation of South Florida, West Palm Beach, FL, USA
| | - Surya M Nauli
- Chapman University and University of California, Irvine, CA, USA.
| |
Collapse
|