1
|
Kutzner TJ, Higuero AM, Süßmair M, Kopitz J, Hingar M, Díez-Revuelta N, Caballero GG, Kaltner H, Lindner I, Abad-Rodríguez J, Reusch D, Gabius HJ. How presence of a signal peptide affects human galectins-1 and -4: Clues to explain common absence of a leader sequence among adhesion/growth-regulatory galectins. Biochim Biophys Acta Gen Subj 2019; 1864:129449. [PMID: 31678146 DOI: 10.1016/j.bbagen.2019.129449] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 09/24/2019] [Accepted: 09/26/2019] [Indexed: 01/22/2023]
Abstract
BACKGROUND Galectins are multifunctional effectors, which all share absence of a signal sequence. It is not clear why galectins belong to the small set of proteins, which avoid the classical export route. METHODS Products of recombinant galectin expression in P. pastoris were analyzed by haemagglutination, gel filtration and electrophoresis and lectin blotting as well as mass spectrometry on the level of tryptic peptides and purified glycopeptides(s). Density gradient centrifugation and confocal laser scanning microscopy facilitated localization in transfected human and rat cells, proliferation assays determined activity as growth mediator. RESULTS Directing galectin-1 to the classical secretory pathway in yeast produces N-glycosylated protein that is active. It cofractionates and -localizes with calnexin in human cells, only Gal-4 is secreted. Presence of N-glycan(s) reduces affinity of cell binding and growth regulation by Gal-1. CONCLUSIONS Folding and activity of a galectin are maintained in signal-peptide-directed routing, N-glycosylation occurs. This pathway would deplete cytoplasm and nucleus of galectin, presence of N-glycans appears to interfere with lattice formation. GENERAL SIGNIFICANCE Availability of glycosylated galectins facilitates functional assays to contribute to explain why galectins invariably avoid classical routing for export.
Collapse
Affiliation(s)
- Tanja J Kutzner
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstr. 13, 80539 Munich, Germany
| | - Alonso M Higuero
- Membrane Biology and Axonal Repair Laboratory, Hospital Nacional de Parapléjicos (SESCAM), Finca La Peraleda s/n, 45071 Toledo, Spain
| | - Martina Süßmair
- Pharma Biotech Development Penzberg, Roche Diagnostics GmbH, 82777 Penzberg, Germany
| | - Jürgen Kopitz
- Department of Applied Tumor Biology, Institute of Pathology, Ruprecht-Karls-University Heidelberg, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany
| | - Michael Hingar
- Pharma Biotech Development Penzberg, Roche Diagnostics GmbH, 82777 Penzberg, Germany
| | - Natalia Díez-Revuelta
- Membrane Biology and Axonal Repair Laboratory, Hospital Nacional de Parapléjicos (SESCAM), Finca La Peraleda s/n, 45071 Toledo, Spain
| | - Gabriel García Caballero
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstr. 13, 80539 Munich, Germany
| | - Herbert Kaltner
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstr. 13, 80539 Munich, Germany
| | - Ingo Lindner
- Pharma Biotech Development Penzberg, Roche Diagnostics GmbH, 82777 Penzberg, Germany
| | - José Abad-Rodríguez
- Membrane Biology and Axonal Repair Laboratory, Hospital Nacional de Parapléjicos (SESCAM), Finca La Peraleda s/n, 45071 Toledo, Spain.
| | - Dietmar Reusch
- Pharma Biotech Development Penzberg, Roche Diagnostics GmbH, 82777 Penzberg, Germany.
| | - Hans-Joachim Gabius
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstr. 13, 80539 Munich, Germany.
| |
Collapse
|
2
|
Rerouting of fibroblast growth factor 2 to the classical secretory pathway results in post-translational modifications that block binding to heparan sulfate proteoglycans. FEBS Lett 2008; 582:2387-92. [PMID: 18538671 DOI: 10.1016/j.febslet.2008.05.042] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Revised: 05/02/2008] [Accepted: 05/26/2008] [Indexed: 01/07/2023]
Abstract
FGF-2 is a proangiogenic growth factor secreted by unconventional means. It is unknown why FGF-2 takes an ER/Golgi-independent secretory route. We find that secretion of FGF-2 via the ER/Golgi system causes post-translational modifications that prevent binding to heparan sulfate proteoglycans (HSPGs), an interaction that is critically important for both FGF-2 storage and signal transduction. This loss of function is due to artificial O-glycosylation mainly resulting in the addition of glycosaminoglycan chains of the chrondroitin sulfate type. Our findings suggest that the unconventional mechanism of FGF-2 export is an ancient pathway of protein secretion that, in the course of evolution, has been kept due to the inability of the classical secretory pathway to export FGF-2 in a functional form.
Collapse
|
3
|
Chen ST, Gysin R, Kapur S, Baylink DJ, Lau KHW. Modifications of the fibroblast growth factor-2 gene led to a marked enhancement in secretion and stability of the recombinant fibroblast growth factor-2 protein. J Cell Biochem 2007; 100:1493-508. [PMID: 17243099 DOI: 10.1002/jcb.21136] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Progress in FGF-2 gene therapy has been hampered by the difficulty in achieving therapeutic levels of FGF-2 secretion. This study tested whether the addition of BMP2/4 hybrid secretion signal to the FGF-2 gene and mutation of cys-70 and cys-88 to serine and asparagine, respectively, would increase the stability and secretion of active FGF-2 protein in mammalian cells using MLV-based vectors. Single or double mutations of cys-70 and cys-88 to ser-70 and asp-88, respectively, markedly increased the amounts of FGF-2 protein in conditioned media and cell lysates, which may be due to glycosylation, particularly at the mutated asp-88 residue. Addition of BMP2/4 secretion signal increased FGF-2 secretion, but also suppressed FGF-2 biosynthesis. The combination of BMP2/4 secretion signal and double cys-70 and cys-88 mutations increased the total amount of secreted FGF-2 protein >60-fold. The modifications did not alter its ability to stimulate cell proliferation and Erk1/2 phosphorylation in marrow stromal cells or its ability to bind heparin in vitro, suggesting that the modified FGF-2 protein was functionally as effective as the unmodified FGF-2. An ex vivo application of rat skin fibroblasts (RSF) transduced with the modified FGF-2 vector in a subcutaneous implant model showed that rats with implants containing cells transduced with the modified FGF-2 vector increased serum FGF-2 level >15-fold, increased growth of the implant, and increased vascularization within the implant, compared to rats that received implants containing beta-galactosidase- or wild-type FGF-2-transduced control cells. This modified vector may be useful in FGF-2 gene therapy investigations.
Collapse
Affiliation(s)
- Shin-Tai Chen
- The Gene Therapy Division, Musculoskeletal Disease Center (151), Jerry L. Pettis Memorial V.A. Medical Center, Loma Linda, California 92357, USA
| | | | | | | | | |
Collapse
|
4
|
Fujihara Y, Koyama H, Nishiyama N, Eguchi T, Takato T. Gene transfer of bFGF to recipient bed improves survival of ischemic skin flap. ACTA ACUST UNITED AC 2005; 58:511-7. [PMID: 15897037 DOI: 10.1016/j.bjps.2004.12.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2004] [Accepted: 12/15/2004] [Indexed: 11/26/2022]
Abstract
BACKGROUND The recipient bed is a promising target of angiogenic therapy to treat ischemic skin flaps. We delivered basic fibroblast growth factor (bFGF) gene to the recipient bed by a plasmid-based method with electroporation, and assessed the effects on flap viability in a rat dorsal skin flap model. METHODS A 25 x 90 mm(2) axial skin flap was elevated on the back of male Sprague-Dawley rats. Two days before flap elevation, an expression plasmid vector containing the bFGF gene with the signal sequence was injected into the dorsal muscles beneath the skin flap, and then electroporation was delivered (FGF-E(+) group). As control, rats were injected with a plasmid vector containing LacZ gene (LacZ-E(+) group), instead of bFGF gene. Other groups of animals received plasmid vector containing bFGF (FGF-E(-) group) or LacZ (LacZ-E(-) group) gene without electroporation. Seven days later, the area of necrosis and neovascularisation of the skin flap were evaluated. RESULTS The bFGF gene was successfully transferred to the dorsal muscles, and bFGF was expressed in muscle tissue. The area of flap necrosis (%) in the FGF-E(+) group (21.7+/-5.3%) was significantly smaller than that in the LacZ-E(+) (28.3+/-4.1%), FGF-E(-) (29.7+/-3.3%), and LacZ-E(-) (28.1+/-2.5%) groups. Postmortem angiograms and histological analyses showed that vascularisation in the distal part of the skin flap was significantly increased in the FGF-E(+) group compared with the other groups. CONCLUSION These findings suggested that gene delivery of bFGF to the recipient bed muscles enhanced vascularity and viability of an ischemic skin flap, and that plasmid-based gene delivery with electroporation was a suitable delivery method.
Collapse
Affiliation(s)
- Y Fujihara
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | | | | | | | | |
Collapse
|
5
|
Nishikage S, Koyama H, Miyata T, Ishii S, Hamada H, Shigematsu H. In vivo electroporation enhances plasmid-based gene transfer of basic fibroblast growth factor for the treatment of ischemic limb. J Surg Res 2004; 120:37-46. [PMID: 15172188 DOI: 10.1016/j.jss.2003.12.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2003] [Indexed: 11/22/2022]
Abstract
BACKGROUND Angiogenic therapy for ischemic tissues using angiogenic growth factors has been reported on an experimental and a clinical level. Electroporation enhances the efficiency of plasmid-based gene transfer in a variety of tissues. The purpose of this study was to evaluate the angiogenic effects of plasmid-based gene transfer using basic fibroblast growth factor (bFGF) in combination with electroporation. MATERIALS AND METHODS The transfection efficiency of in vivo electroporation in rabbit skeletal muscles was evaluated using pCAccluc+ encoding luciferase. To evaluate the angiogenic effects of bFGF gene in ischemic limb, we constructed a plasmid, pCAcchbFGFcs23, containing human bFGF cDNA fused with the secretory signal sequence of interleukin (IL)-2. Then, 500 microg of pCAcchbFGFcs23 or pCAZ3 (control plasmid) was injected into the ischemic thigh muscles in a rabbit model of hind limb ischemia with in vivo electroporation (bFGF-E(+) group and LacZ-E(+) group). Other sets of animals were injected with pCAcchbFGFcs23 (bFGF-E(-) group) or pCAZ3 (LacZ-E(-) group) without electroporation. Then 28 days later, calf blood pressure ratio, angiographic score, in vivo blood flow, and capillary density in the ischemic limb were measured. RESULTS Gene transfer efficiency increased markedly with the increase in voltage up to 100 V. Regarding angiogenic responses, calf blood pressure ratio, in vivo blood flow, and capillary density only in the bFGF-E(+) group were significantly higher than those in LacZ-E(-) group. Angiographic scores in the bFGF-E(+) and bFGF-E(-) groups were significantly higher than that in the LacZ-E(-) group. CONCLUSION These data suggest that in vivo electroporation enhances bFGF gene transfer for the treatment of ischemic limb muscles.
Collapse
Affiliation(s)
- Seiji Nishikage
- Department of Vascular Regeneration, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
6
|
Ishii S, Koyama H, Miyata T, Nishikage S, Hamada H, Miyatake SI, Shigematsu H. Appropriate control of ex vivo gene therapy delivering basic fibroblast growth factor promotes successful and safe development of collateral vessels in rabbit model of hind limb ischemia. J Vasc Surg 2004; 39:629-38. [PMID: 14981459 DOI: 10.1016/j.jvs.2003.09.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
PURPOSE In our previous study, adenovirus-mediated ex vivo gene transfer of basic fibroblast growth factor promoted significant collateral vessel development in a rabbit model of hind limb ischemia. The present study examined how to control the efficacy and safety of this gene therapy, and also evaluated the feasibility of repeat application of this procedure. METHODS Modified hFGF gene with the secretory signal sequence was adenovirally transferred to cultured autologous fibroblasts, and various numbers of the cells (2 x 10(5), 1 x 10(6), 5 x 10(6), or 2.5 x 10(7)) or vehicle was injected through the left internal iliac artery in rabbits in whom the left femoral artery had been excised 21 days previously. Twenty-eight days after cell administration, calf blood pressure ratio, angiographic score, blood flow in the internal iliac artery, and capillary density of muscle tissue were measured to analyze collateral vessel development and tissue perfusion in the ischemic limb. To assess delivery efficiency and viral contamination, the distribution of injected cells and the time course of blood anti-adenovirus antibody titer were examined in rabbits treated with various numbers of gene-transduced cells. In addition, animals received two injections, 21 days apart, of fibroblasts infected with adenovirus vector containing the luciferase gene, and luciferase expression was measured to evaluate whether the present therapy is repeatable. RESULTS At 28 days after cell administration, significant collateral vessel development without detectable side effects was observed in rabbits who received 5 x 10(6) or 2.5 x 10(7) cells, compared with those who received vehicle, and no significant development was detected in animals with fewer than 5 x 10(6) cells (P <.01 for calf blood pressure ratio and capillary density, P <.05 for angiographic score and maximum blood flow). There was no difference in collateral augmentation between rabbits with 5 x 10(6) and 2.5 x 10(7) cells. However, in animals with 2.5 x 10(7) cells a large number of injected cells accumulated in the lungs, anti-adenovirus antibody titer increased significantly, and calf blood pressure in the left hind limb of two rabbits decreased immediately after injection. Luciferase analysis showed very low gene expression after repeated administration. CONCLUSION These findings suggest that 5 x 10(6) is a suitable number of cells to induce appropriate collateral vessel development and minimize potential side effects of this procedure. Despite use of ex vivo gene transfer, repeat administration of the cells was not feasible. Clinical relevance Since the present study determined the appropriate conditions for effective and safe stimulation of collateral vessels, the clinical relevance of the ex vivo therapy might be carried forward. However, the findings raised another issue that should be resolved before clinical application; that is, the number of gene-transduced cells able to be injected was strictly limited. To estimate the therapeutic range of cell number in humans, additional experiments using large animals are desirable.
Collapse
Affiliation(s)
- Shigeyuki Ishii
- Department of Vascular Regeneration, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
7
|
Ninomiya M, Koyama H, Miyata T, Hamada H, Miyatake S, Shigematsu H, Takamoto S. Ex vivo gene transfer of basic fibroblast growth factor improves cardiac function and blood flow in a swine chronic myocardial ischemia model. Gene Ther 2003; 10:1152-60. [PMID: 12833124 DOI: 10.1038/sj.gt.3301984] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We previously reported adenovirus-mediated ex vivo gene transfer of basic fibroblast growth factor (bFGF) as a new treatment for leg ischemia. This time, we tested this method on a swine myocardial ischemia model, seeking the possibility of its application for ischemic heart disease. An ameroid constrictor was placed around the proximal left circumflex branch of pigs to induce myocardial ischemia. Simultaneously, a skin section was harvested and fibroblasts were cultured. Fibroblasts were then infected with adenovirus vector containing a bFGF cDNA with a secretory signal sequence (bFGF group, n=8) or a LacZ cDNA (control group, n=8). At 28 days after constrictor implantation, 2.5 x 10(6) fibroblasts were administered into each of the right and left coronary arteries. The injected fibroblasts accumulated in the myocardium without causing myocardial ischemia. Echocardiography, electromechanical mapping and coronary arteriography were conducted just before and 28 days after fibroblast injection, and regional left ventricular myocardial blood flow was measured 28 days after fibroblast injection. These evaluations revealed that the bFGF group exhibited significant development of collateral vessels and improvement of myocardial contraction in the ischemic area compared with the control group. We believe that this method is a promising treatment strategy for ischemic heart disease.
Collapse
Affiliation(s)
- M Ninomiya
- Department of Cardiac Surgery, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | | | | | | | | | | | | |
Collapse
|
8
|
Ohara N, Koyama H, Miyata T, Hamada H, Miyatake SI, Akimoto M, Shigematsu H. Adenovirus-mediated ex vivo gene transfer of basic fibroblast growth factor promotes collateral development in a rabbit model of hind limb ischemia. Gene Ther 2001; 8:837-45. [PMID: 11423931 DOI: 10.1038/sj.gt.3301475] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2000] [Accepted: 03/29/2001] [Indexed: 11/08/2022]
Abstract
Adenovirus-mediated ex vivo gene transfer of basic fibroblast growth factor (bFGF), a new strategy for the treatment of chronic vascular occlusive disease, was examined in a rabbit model of hind limb ischemia. The left femoral artery was completely excised to induce an ischemic state in the hind limb of male rabbits. Simultaneously, a skin section was resected from the wound, and host fibroblasts were cultured. The cultured fibroblasts were infected with adenovirus vector containing modified human bFGF cDNA with the secretory signal sequence (AxCAMAssbFGF) or LacZ cDNA (AxCALacZ). At 21 days after femoral artery excision, the gene-transduced fibroblasts were administered through the left internal iliac artery. The fibroblasts significantly accumulated in the ischemic hind limb, and the AxCAMAssbFGF-treated cells secreted bFGF for less than 14 days without elevation of systemic bFGF level. At 28 days after cell administration, calf blood pressure ratio, angiographic score, capillary density of muscle tissue and blood flow of the left internal iliac artery were determined, and animals with AxCAMAssbFGF-treated cells showed significantly greater development of collateral vessels, as compared with those with AxCALacZ-treated cells. These findings suggest that adenovirus-mediated ex vivo gene transfer of bFGF was effective for improvement of chronic limb ischemia.
Collapse
Affiliation(s)
- N Ohara
- Division of Vascular Surgery, Department of Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
9
|
Yukawa H, Takahashi JC, Miyatake SI, Saiki M, Matsuoka N, Akimoto M, Yanamoto H, Nagata I, Kikuchi H, Hashimoto N. Adenoviral gene transfer of basic fibroblast growth factor promotes angiogenesis in rat brain. Gene Ther 2000; 7:942-9. [PMID: 10849554 DOI: 10.1038/sj.gt.3301182] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cerebral ischemic disease often causes morbidity and mortality, while the induction of new blood vessels is expected to provide a therapeutic effect in this occlusive cerebrovascular disease. In this study, we utilized two replication-deficient adenoviral vectors containing cDNA from basic fibroblast growth factor (bFGF), a well-known angiogenic factor, and examined whether biological angiogenic activity of adenovirally gene-transferred bFGF could be observed in the rat brain. One vector contained native cDNA from bFGF without the secretory signal sequence and the other contained the same cDNA fused with an interleukin-2 secretory signal sequence. After ventricular administration of these viral vectors, gene-transferred cells demonstrated a high immunoreactivity against the anti-bFGF antibody and a remarkably high concentration of bFGF was detected in the cerebrospinal fluid. A semiquantitative analysis of angiogenic activity revealed that bFGF gene transfer induced angiogenesis in normal rat brains, with a more pronounced angiogenic effect seen with the vector of a secreted form than with the vector without a secretory signal sequence. These results suggest that bFGF gene transfer using these adenoviral vectors might be useful for the treatment of ischemic cerebrovascular disease.
Collapse
Affiliation(s)
- H Yukawa
- Department of Neurosurgery and Clinical Neuroscience, Faculty of Medicine, Kyoto University, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Matsumoto-Yoshitomi S, Habashita J, Nomura C, Kuroshima K, Kurokawa T. Autocrine transformation by fibroblast growth factor 9 (FGF-9) and its possible participation in human oncogenesis. Int J Cancer 1997; 71:442-50. [PMID: 9139882 DOI: 10.1002/(sici)1097-0215(19970502)71:3<442::aid-ijc23>3.0.co;2-g] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Transfection of human fibroblast growth factor 9 (FGF-9) cDNA into mouse BALB/c 3T3 clone A31 cells led to morphological transformation of the cells and foci formation 4 weeks later. Isolated transformants had a higher saturation density than parental A31 cells, could grow in soft agar, and secreted FGF-9 into the culture supernatant. The introduction of FGF-9 N33 cDNA, which encodes a truncated protein that has 33 N-terminal amino acids deleted and has the same mitogenic potency as FGF-9, failed to lead to foci formation. Although FGF-9 is a secretory protein, it does not have a typical secretory signal sequence, and the secreted protein retains the full sequence coded in the cDNA except for the initiating methionine. The produced FGF-9 N33 was not secreted and remained within the cell. It is possible that FGF-9 has an uncleavable signal sequence within the first 33 N-terminal amino acids. All of the phenotypes acquired by transformation could be arrested by treatment with a neutralizing anti-human FGF-9 monoclonal antibody (MAb) 150-59. Additionally, transformants formed tumors in nude mice. Injection of MAb 150-59 suppressed tumor formation in nude mice and caused existing tumors to regress. Our results suggest that the cellular transformation mediated by FG F-9 is produced by autocrine stimulation. We have detected FGF-9 production in the human tumor cell lines glioma NMC-G1, from which FGF-9 was originally purified, and stomach carcinoma AZ-521. The growth of NMC-G1 was not affected by MAb 150-59, but that of AZ-521 was arrested by MAb 150-59 in the presence of heparin. Moreover, the growth of the AZ-521 cell tumor in nude mice could be partially arrested by antibody treatment. The possibility of a participation of FGF-9 in the formation of human tumors is suggested.
Collapse
Affiliation(s)
- S Matsumoto-Yoshitomi
- Molecular Pharmacology Laboratory, Pharmaceutical Research Division, Takeda Chemical Industries Ltd., Osaka, Japan
| | | | | | | | | |
Collapse
|
11
|
Kusewitt DF, Sabourin CL, Budge CL, Sherburn TE, Ley RD. Characterization of cDNA encoding basic fibroblast growth factor of the marsupial Monodelphis domestica. DNA Cell Biol 1994; 13:549-54. [PMID: 8024698 DOI: 10.1089/dna.1994.13.549] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We have isolated and characterized a 1,593-bp cDNA containing the coding region of the basic fibroblast growth factor (BFGF) gene of a marsupial, the opossum Monodelphis domestica. The encoded protein is 156 amino acids long. The BFGF gene of M. domestica is 82-87% identical to the BFGF genes of placental mammals at the nucleotide level and 92-93% identical to these genes at the level of the amino acids encoded. Regions of the BFGF molecule important in heparin binding, high-affinity receptor binding, and biologic function are highly conserved between placental mammals and this marsupial. There are several AUG and CUG codons in the 5' region of the marsupial cDNA that may serve as alternate sites of translation initiation; use of these sites would produce amino-terminally extended BFGF proteins. Amino-terminal extensions of BFGF in other species serve as nuclear localization signals. Conserved A+T-rich motifs in the 3' untranslated region of the marsupial mRNA probably serve to regulate mRNA stability. The high degree of evolutionary conservation of BFGF in mammals suggests that the molecule plays an important role in normal growth and development and that stringent control of its activity is essential.
Collapse
Affiliation(s)
- D F Kusewitt
- Center for Photomedicine, Lovelace Institutes, Albuquerque, NM 87108
| | | | | | | | | |
Collapse
|
12
|
Yu W, Naim JO, Lanzafame RJ. The effect of laser irradiation on the release of bFGF from 3T3 fibroblasts. Photochem Photobiol 1994; 59:167-70. [PMID: 8165235 DOI: 10.1111/j.1751-1097.1994.tb05017.x] [Citation(s) in RCA: 170] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Studies have shown that low-level laser irradiation increases the proliferation of fibroblasts in cell culture. The mechanism of action is unknown. Basic fibroblast growth factor (bFGF) is a multifunctional polypeptide that has been detected in most tissues and which supports cell proliferation and differentiation. The purpose of this study was to determine whether laser irradiation (660 nm) can stimulate production of bFGF from fibroblast cells in cell culture. Our study showed that fibroblasts irradiated with laser energy at 2.16 J/cm2 demonstrated increased cell proliferation and enhanced production of bFGF, whereas fibroblasts irradiated with laser energy at 3.24 J/cm2 neither demonstrated increased cell proliferation or an enhanced release of bFGF as compared to the control group. These results provide direct evidence that the proliferation of fibroblasts as a result of stimulation by low level laser irradiation may be associated with the autocrine production of bFGF from fibroblasts.
Collapse
Affiliation(s)
- W Yu
- Department of Surgery, Rochester General Hospital, NY
| | | | | |
Collapse
|