1
|
Apell HJ, Roudna M. Partial Reactions of the Na,K-ATPase: Determination of Activation Energies and an Approach to Mechanism. J Membr Biol 2020; 253:631-645. [PMID: 33184678 PMCID: PMC7688194 DOI: 10.1007/s00232-020-00153-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 11/05/2020] [Indexed: 11/26/2022]
Abstract
Abstract Kinetic experiments were performed with preparations of kidney Na,K-ATPase in isolated membrane fragments or reconstituted in vesicles to obtain information of the activation energies under turnover conditions and for selected partial reactions of the Post-Albers pump cycle. The ion transport activities were detected with potential or conformation sensitive fluorescent dyes in steady-state or time-resolved experiments. The activation energies were derived from Arrhenius plots of measurements in the temperature range between 5 °C and 37 °C. The results were used to elaborate indications of the respective underlying rate-limiting reaction steps and allowed conclusions to be drawn about possible molecular reaction mechanisms. The observed consequent alteration between ligand-induced reaction and conformational relaxation steps when the Na,K-ATPase performs the pump cycle, together with constraints set by thermodynamic principles, provided restrictions which have to be met when mechanistic models are proposed. A model meeting such requirements is presented for discussion. Graphic Abstract ![]()
Collapse
Affiliation(s)
- Hans-Jürgen Apell
- Department of Biology, University of Konstanz, 78464, Konstanz, Germany.
| | - Milena Roudna
- Department of Biology, University of Konstanz, 78464, Konstanz, Germany
| |
Collapse
|
2
|
Moreno C, Yano S, Bezanilla F, Latorre R, Holmgren M. Transient Electrical Currents Mediated by the Na +/K +-ATPase: A Tour from Basic Biophysics to Human Diseases. Biophys J 2020; 119:236-242. [PMID: 32579966 PMCID: PMC7376075 DOI: 10.1016/j.bpj.2020.06.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/06/2020] [Accepted: 06/03/2020] [Indexed: 01/14/2023] Open
Abstract
The Na+/K+-ATPase is a chemical molecular machine responsible for the movement of Na+ and K+ ions across the cell membrane. These ions are moved against their electrochemical gradients, so the protein uses the free energy of ATP hydrolysis to transport them. In fact, the Na+/K+-ATPase is the single largest consumer of energy in most cells. In each pump cycle, the protein sequentially exports 3Na+ out of the cell, then imports 2K+ into the cell at an approximate rate of 200 cycles/s. In each half cycle of the transport process, there is a state in which ions are stably trapped within the permeation pathway of the protein by internal and external gates in their closed states. These gates are required to open alternately; otherwise, passive ion diffusion would be a wasteful end of the cell's energy. Once one of these gates open, ions diffuse from their binding sites to the accessible milieu, which involves moving through part of the electrical field across the membrane. Consequently, ions generate transient electrical currents first discovered more than 30 years ago. They have been studied in a variety of preparations, including native and heterologous expression systems. Here, we review three decades' worth of work using these transient electrical signals to understand the kinetic transitions of the movement of Na+ and K+ ions through the Na+/K+-ATPase and propose the significance that this work might have to the understanding of the dysfunction of human pump orthologs responsible for some newly discovered neurological pathologies.
Collapse
Affiliation(s)
- Cristina Moreno
- Molecular Neurophysiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Sho Yano
- Medical Genetics and Genomic Medicine Training Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Francisco Bezanilla
- Department of Biochemistry and Molecular Biology, University of Chicago, Gordon Center for Integrative Sciences, Chicago, Illinois
| | - Ramon Latorre
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Miguel Holmgren
- Molecular Neurophysiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
3
|
Energy landscape of the reactions governing the Na+ deeply occluded state of the Na+/K+-ATPase in the giant axon of the Humboldt squid. Proc Natl Acad Sci U S A 2011; 108:20556-61. [PMID: 22143771 DOI: 10.1073/pnas.1116439108] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Na(+)/K(+) pump is a nearly ubiquitous membrane protein in animal cells that uses the free energy of ATP hydrolysis to alternatively export 3Na(+) from the cell and import 2K(+) per cycle. This exchange of ions produces a steady-state outwardly directed current, which is proportional in magnitude to the turnover rate. Under certain ionic conditions, a sudden voltage jump generates temporally distinct transient currents mediated by the Na(+)/K(+) pump that represent the kinetics of extracellular Na(+) binding/release and Na(+) occlusion/deocclusion transitions. For many years, these events have escaped a proper thermodynamic treatment due to the relatively small electrical signal. Here, taking the advantages offered by the large diameter of the axons from the squid Dosidicus gigas, we have been able to separate the kinetic components of the transient currents in an extended temperature range and thus characterize the energetic landscape of the pump cycle and those transitions associated with the extracellular release of the first Na(+) from the deeply occluded state. Occlusion/deocclusion transition involves large changes in enthalpy and entropy as the ion is exposed to the external milieu for release. Binding/unbinding is substantially less costly, yet larger than predicted for the energetic cost of an ion diffusing through a permeation pathway, which suggests that ion binding/unbinding must involve amino acid side-chain rearrangements at the site.
Collapse
|
4
|
Le Goff G, Vitha MF, Clarke RJ. Orientational polarisability of lipid membrane surfaces. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:562-70. [PMID: 17178101 DOI: 10.1016/j.bbamem.2006.10.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2006] [Revised: 10/11/2006] [Accepted: 10/31/2006] [Indexed: 10/23/2022]
Abstract
Here we present a fluorescence method based on the Stokes shift of the voltage-sensitive dye di-8-ANEPPS to quantify the orientational polarisability of lipid membrane surfaces, i.e. the polarisability due to molecular reorientation. Di-8-ANEPPS is already an established probe of membrane dipole potential. Its use, therefore, as a probe of both the dipole potential and orientational polarisability allows a direct comparison of these two properties in an identical region of the lipid bilayer. We applied the new technique on phosphatidylcholine vesicles to study the effects of different degrees of hydrocarbon saturation and of the incorporation of cholesterol and some of its oxidized derivatives. We found that lipids with unsaturated chains had a lower orientational polarisability than those with saturated chains. This could be explained by a reduction in membrane dipole potential as a result of a decrease in lipid packing density. Cholesterol derivatives were found to either increase or decrease the orientational polarisability depending on their molecular structure. The varying effects could be explained by antagonistic effects of the dipole potential and membrane order, which are both changed to varying degrees by the cholesterol derivatives and which lead to increases and decreases in orientational polarisability, respectively.
Collapse
Affiliation(s)
- Gaëlle Le Goff
- School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia
| | | | | |
Collapse
|
5
|
Apell HJ. How do P-Type ATPases transport ions? Bioelectrochemistry 2004; 63:149-56. [PMID: 15110265 DOI: 10.1016/j.bioelechem.2003.09.021] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2003] [Revised: 08/29/2003] [Accepted: 09/03/2003] [Indexed: 11/17/2022]
Abstract
P-type ATPases are a large family of membrane proteins that perform active ion transport across biological membranes. In these proteins, the energy-providing ATP hydrolysis is coupled to ion transport of one or two ion species across the respective membrane. The pump function of the investigated pumps is described by a so-called Post-Albers cycle. Main features of the pumping process are (1) a Ping-Pong mechanism, i.e. both transported ion species are transferred successively and in opposite direction across the membrane, (2) the transport process for each ion species consists of a sequence of reaction steps, which are ion binding, ion occlusion, conformational transition of the protein, successive deocclusion of the ions and release to the other side of the membrane. (3) Recent experimental evidence shows that the ion-binding sites are placed in the transmembrane section of the proteins and that ion movements occur preferentially during the ion binding and release processes. The main features of the mechanism include narrow access channels from both sides, one gate per access channel, and an ion-binding moiety that is adapted specifically to the ions that are transported, and differently in both principal conformations.
Collapse
Affiliation(s)
- Hans-Jürgen Apell
- Department of Biology, University of Konstanz, Fach M635, 78464 Konstanz, Germany.
| |
Collapse
|
6
|
Apell HJ. Structure-function relationship in P-type ATPases--a biophysical approach. Rev Physiol Biochem Pharmacol 2004; 150:1-35. [PMID: 12811587 DOI: 10.1007/s10254-003-0018-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
P-type ATPases are a large family of membrane proteins that perform active ion transport across biological membranes. In these proteins the energy-providing ATP hydrolysis is coupled to ion-transport that builds up or maintains the electrochemical potential gradients of one or two ion species across the membrane. P-type ATPases are found in virtually all eukaryotic cells and also in bacteria, and they are transporters of a broad variety of ions. So far, a crystal structure with atomic resolution is available only for one species, the SR Ca-ATPase. However, biochemical and biophysical studies provide an abundance of details on the function of this class of ion pumps. The aim of this review is to summarize the results of preferentially biophysical investigations of the three best-studied ion pumps, the Na,K-ATPase, the gastric H,K-ATPase, and the SR Ca-ATPase, and to compare functional properties to recent structural insights with the aim of contributing to the understanding of their structure-function relationship.
Collapse
Affiliation(s)
- H-J Apell
- Department of Biology, University of Konstanz, Fach M635, 78457 Konstanz, Germany.
| |
Collapse
|
7
|
Abstract
In the Na,K-ATPase the charge-translocating reaction steps were found to be binding of the third Na(+) ion to the cytoplasmic side and the release of all three Na(+) ions to the extracellular side as well as binding of the two K(+) ions on the extracellular side. The conformation transition E(1) --> E(2) was only of minor electrogenicity; all other reaction steps produced no significant charge movements. In the SR Ca-ATPase and the gastric H,K-ATPase, all ion-binding and -release steps were identified to move charge through the membrane. The high-resolution structure of the SR Ca-ATPase in state E(1) revealed the position of the ion-binding sites in the transmembrane part of the protein. If the same arrangement is assumed for the Na pump, the missing expected charge movements in state E(1) may to be assumed to be apparent effects. With the proposal that binding of 2 Na(+) or 2 K(+) is compensated correspondingly by H(+) ions, agreement between structural and functional aspects is obtained. Investigations of the pH-dependence of ion-binding steps indicate competition between the ions and electrogenic H(+) binding in support of this concept.
Collapse
|
8
|
Apell HJ, Diller A. Do H+ ions obscure electrogenic Na+ and K+ binding in the E1 state of the Na,K-ATPase? FEBS Lett 2002; 532:198-202. [PMID: 12459489 DOI: 10.1016/s0014-5793(02)03675-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In contrast to other P-type ATPases, the Na,K-ATPase binding and release of ions on the cytoplasmic side, to the state called E1, is not electrogenic with the exception of the third Na+. Since the high-resolution structure of the closely related SR Ca-ATPase in state E1 revealed the ion-binding sites deep inside the transmembrane part of the protein, the missing electrogenicity in state E1 can be explained by an obscuring counter-movement of H+ ions. Evidence for such a mechanism is presented by analysis of pH effects on Na+ and K+ binding and by electrogenic H+ movements in the E1 conformation of the Na,K-ATPase.
Collapse
Affiliation(s)
- Hans-Jürgen Apell
- University of Konstanz, Biology, Universitätsstrasse 10, Konstanz 78457, Germany.
| | | |
Collapse
|
9
|
Lüpfert C, Grell E, Pintschovius V, Apell HJ, Cornelius F, Clarke RJ. Rate limitation of the Na(+),K(+)-ATPase pump cycle. Biophys J 2001; 81:2069-81. [PMID: 11566779 PMCID: PMC1301680 DOI: 10.1016/s0006-3495(01)75856-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The kinetics of Na(+)-dependent phosphorylation of the Na(+),K(+)-ATPase by ATP were investigated via the stopped-flow technique using the fluorescent label RH421 (saturating [ATP], [Na(+)], and [Mg(2+)], pH 7.4, and 24 degrees C). The well-established effect of buffer composition on the E(2)-E(1) equilibrium was used as a tool to investigate the effect of the initial enzyme conformation on the rate of phosphorylation of the enzyme. Preincubation of pig kidney enzyme in 25 mM histidine and 0.1 mM EDTA solution (conditions favoring E(2)) yielded a 1/tau value of 59 s(-1). Addition of MgCl(2) (5 mM), NaCl (2 mM), or ATP (2 mM) to the preincubation solution resulted in increases in 1/tau to values of 129, 167, and 143 s(-1), respectively. The increases can be attributed to a shift in the enzyme conformational equilibrium before phosphorylation from the E(2) state to an E(1) or E(1)-like state. The results thus demonstrate conclusively that the E(2) --> E(1) transition does in fact limit the rate of subsequent reactions of the pump cycle. Based on the experimental results, the rate constant of the E(2) --> E(1) transition under physiological conditions could be estimated to be approximately 65 s(-1) for pig kidney enzyme and 90 s(-1) for enzyme from rabbit kidney. Taking into account the rates of other partial reactions, computer simulations show these values to be consistent with the turnover number of the enzyme cycle (approximately 48 s(-1) and approximately 43 s(-1) for pig and rabbit, respectively) calculated from steady-state measurements. For enzyme of the alpha(1) isoform the E(2) --> E(1) conformational change is thus shown to be the major rate-determining step of the entire enzyme cycle.
Collapse
Affiliation(s)
- C Lüpfert
- School of Chemistry, University of Sydney, Sydney NSW 2006, Australia
| | | | | | | | | | | |
Collapse
|
10
|
Chatton JY, Marquet P, Magistretti PJ. A quantitative analysis of L-glutamate-regulated Na+ dynamics in mouse cortical astrocytes: implications for cellular bioenergetics. Eur J Neurosci 2000; 12:3843-53. [PMID: 11069579 DOI: 10.1046/j.1460-9568.2000.00269.x] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The mode of Na+ entry and the dynamics of intracellular Na+ concentration ([Na+]i) changes consecutive to the application of the neurotransmitter glutamate were investigated in mouse cortical astrocytes in primary culture by video fluorescence microscopy. An elevation of [Na+]i was evoked by glutamate, whose amplitude and initial rate were concentration dependent. The glutamate-evoked Na+ increase was primarily due to Na+-glutamate cotransport, as inhibition of non-NMDA ionotropic receptors by 6-cyano-7-nitroquinoxiline-2,3-dione (CNQX) only weakly diminished the response and D-aspartate, a substrate of the glutamate transporter, produced [Na+]i elevations similar to those evoked by glutamate. Non-NMDA receptor activation could nevertheless be demonstrated by preventing receptor desensitization using cyclothiazide. Thus, in normal conditions non-NMDA receptors do not contribute significantly to the glutamate-evoked Na+ response. The rate of Na+ influx decreased during glutamate application, with kinetics that correlate well with the increase in [Na+]i and which depend on the extracellular concentration of glutamate. A tight coupling between Na+ entry and Na+/K+ ATPase activity was revealed by the massive [Na+]i increase evoked by glutamate when pump activity was inhibited by ouabain. During prolonged glutamate application, [Na+]i remains elevated at a new steady-state where Na+ influx through the transporter matches Na+ extrusion through the Na+/K+ ATPase. A mathematical model of the dynamics of [Na+]i homeostasis is presented which precisely defines the critical role of Na+ influx kinetics in the establishment of the elevated steady state and its consequences on the cellular bioenergetics. Indeed, extracellular glutamate concentrations of 10 microM already markedly increase the energetic demands of the astrocytes.
Collapse
Affiliation(s)
- J Y Chatton
- Institute of Physiology and Laboratory of Neurological Research, Department of Neurology, University of Lausanne Medical School, Rue du Bugnon 7, CH-1005 Lausanne, Switzerland.
| | | | | |
Collapse
|
11
|
DeCoursey TE, Cherny VV. Temperature dependence of voltage-gated H+ currents in human neutrophils, rat alveolar epithelial cells, and mammalian phagocytes. J Gen Physiol 1998; 112:503-22. [PMID: 9758867 PMCID: PMC2229433 DOI: 10.1085/jgp.112.4.503] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
H+ currents in human neutrophils, rat alveolar epithelial cells, and several mammalian phagocyte cell lines were studied using whole-cell and excised-patch tight-seal voltage clamp techniques at temperatures between 6 and 42 degrees C. Effects of temperature on gating kinetics were distinguished from effects on the H+ current amplitude. The activation and deactivation of H+ currents were both highly temperature sensitive, with a Q10 of 6-9 (activation energy, Ea, approximately 30-38 kcal/mol), greater than for most other ion channels. The similarity of Ea for channel opening and closing suggests that the same step may be rate determining. In addition, when the turn-on of H+ currents with depolarization was fitted by a delay and single exponential, both the delay and the time constant (tauact) had similarly high Q10. These results could be explained if H+ channels were composed of several subunits, each of which undergoes a single rate-determining gating transition. H+ current gating in all mammalian cells studied had similarly strong temperature dependences. The H+ conductance increased markedly with temperature, with Q10 >/= 2 in whole-cell experiments. In excised patches where depletion would affect the measurement less, the Q10 was 2.8 at >20 degrees C and 5.3 at <20 degrees C. This temperature sensitivity is much greater than for most other ion channels and for H+ conduction in aqueous solution, but is in the range reported for H+ transport mechanisms other than channels; e.g., carriers and pumps. Evidently, under the conditions employed, the rate-determining step in H+ permeation occurs not in the diffusional approach but during permeation through the channel itself. The large Ea of permeation intrinsically limits the conductance of this channel, and appears inconsistent with the channel being a water-filled pore. At physiological temperature, H+ channels provide mammalian cells with an enormous capacity for proton extrusion.
Collapse
Affiliation(s)
- T E DeCoursey
- Department of Molecular Biophysics and Physiology, Rush Presbyterian St. Luke's Medical Center, Chicago, Illinois 60612, USA.
| | | |
Collapse
|