1
|
McDougall J, Cragg JJ, Brownstone RM, Kramer JLK. The Power of Placebo to Restore Neurological Function After Spinal Cord Injury: Implications for Neuromodulation. Neurorehabil Neural Repair 2025:15459683251335331. [PMID: 40326381 DOI: 10.1177/15459683251335331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
BACKGROUND Emerging trials demonstrate that neuromodulation, especially spinal cord stimulation, improves function for those with chronic spinal cord injury. Their design - uncontrolled and unblinded - is justified by the claim that sham conditions are unethical and/or impossible. In the absence of controlled trials, the functional benefits of spinal cord stimulation cannot be distinguished from the effects of placebo. OBJECTIVES To discuss the validity of the claim that placebo control conditions are infeasible in spinal cord stimulation research, and to propose feasible solutions for including sham conditions that would account for placebo effects. RESULTS Placebo effects are likely to occur in spinal cord stimulation studies, given the high levels of participant expectations of an effect, natural fluctuations in symptoms associated with spinal cord injury, regression towards the mean, the Hawthorne effect, presence of concurrent interventions, and the absence of blinding in existing studies. Options for placebo control conditions could include adding an "untreated" control group, using "placebo-resistant" outcomes, adding an active comparator group or sham stimulation, or investing in parasthesia-free stimulation. Additionally, wherever feasible, blinding of both participants and assessors should be pursued. CONCLUSIONS The current evidence base for spinal cord stimulation is undermined by the lack of rigorous sham controls, and the argument that such controls are unethical or unfeasible do not withstand scrutiny. We propose strategies for the inclusion of placebo controls in future trials and encourage investigators to prioritize these approaches to ensure the true benefit of spinal cord stimulation can be determined.
Collapse
Affiliation(s)
- Jessica McDougall
- International Collaboration on Repair Discoveries (ICORD), Blusson Spinal Cord Centre, University of British Columbia, Vancouver, BC, Canada
- Department of Rehabilitation Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jacquelyn J Cragg
- International Collaboration on Repair Discoveries (ICORD), Blusson Spinal Cord Centre, University of British Columbia, Vancouver, BC, Canada
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Robert M Brownstone
- UCL Queen Square Institute of Neurology, University College London, London, UK, WC1N 3BG
| | - John L K Kramer
- International Collaboration on Repair Discoveries (ICORD), Blusson Spinal Cord Centre, University of British Columbia, Vancouver, BC, Canada
- Department of Anesthesiology, Pharmacology, and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
2
|
Hornby TG, Moore J, Holleran CL, Henderson CE. Taking the Next Step in Neurologic Rehabilitation: Contributions of Intensity and Variability of Stepping Tasks During Locomotor Training. Phys Ther 2025; 105:pzaf005. [PMID: 39823284 PMCID: PMC12034094 DOI: 10.1093/ptj/pzaf005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 09/16/2024] [Accepted: 09/26/2024] [Indexed: 01/19/2025]
Abstract
Research over the past 20 years indicates the amount of task-specific walking practice provided to individuals with stroke, brain injury, or incomplete spinal cord injury can strongly influence walking recovery. However, more recent data suggest that attention toward 2 other training parameters, including the intensity and variability of walking practice, may maximize walking recovery and facilitate gains in non-walking outcomes. The combination of these training parameters represents a stark contrast from traditional strategies, and confusion regarding the potential benefits and perceived risks may limit their implementation in clinical practice. The purpose of this perspective is to delineate the evidence regarding the contributions of intensity and variability of locomotor training to improve mobility outcomes in individuals with acute-onset brain and spinal cord injury. The rationale and evidence supporting the utility of these training parameters in controlled laboratory settings is first described by integrating concepts in the field of neuroscience, motor learning, biomechanics, and exercise physiology into a rehabilitation intervention. Subsequently, the evidence supporting the efficacy of this paradigm is addressed, including discussions of some of the misconceptions regarding perceived negative consequences of these strategies in an effort to mitigate common clinical concerns. Finally, the utility of these strategies implemented during inpatient rehabilitation is delineated to facilitate a more comprehensive understanding of the feasibility and potential benefits early following neurologic injury. A greater understanding of how and why to integrate higher intensity, variable stepping practice will support therapists to take the next step to maximize mobility in the patients they serve.
Collapse
Affiliation(s)
- T George Hornby
- Department of Physical Medicine and Rehabilitation, Indianapolis, IN 46254, United States
- Rehabilitation Hospital of Indiana, Indianapolis, IN 46254, United States
- Institute for Knowledge Translation, Carmel, IN 46082, United States
| | - Jennifer Moore
- Institute for Knowledge Translation, Carmel, IN 46082, United States
- Regional Center for Knowledge Translation in Rehabilitation, Sunnaas Hospital, Oslo, Norway
| | - Carey L Holleran
- Division of Physical Therapy, Washington University in St. Louis, St. Louis, MO 63108, United States
| | - Christopher E Henderson
- Department of Physical Medicine and Rehabilitation, Indianapolis, IN 46254, United States
- Rehabilitation Hospital of Indiana, Indianapolis, IN 46254, United States
- Institute for Knowledge Translation, Carmel, IN 46082, United States
| |
Collapse
|
3
|
Gosgnach S. The mammalian locomotor CPG: revealing the contents of the black box. J Neurophysiol 2025; 133:472-478. [PMID: 39704678 DOI: 10.1152/jn.00238.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 12/12/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024] Open
Abstract
It has long been known that a neural circuit situated in the spinal cord of mammals is independently capable of generating and modulating locomotor movements. Following its initial discovery over a century ago, a great deal of research has been focused on characterizing this neural circuit to determine how it is able to elicit movement. For much of the 20th century, difficulty in identifying individual component interneurons that comprised this neural circuit resulted in it being considered a powerful but mysterious "black box." In this article, we will review the development of a number of innovative experimental approaches that have brought us to the current state of research in the field, where we are able to identify populations that comprise this neural circuit, pinpoint their specific function, and image their activity in real time during a locomotor task.
Collapse
Affiliation(s)
- Simon Gosgnach
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
- Women's and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
4
|
Pazzaglia A, Bicanski A, Ferrario A, Arreguit J, Ryczko D, Ijspeert A. Balancing central control and sensory feedback produces adaptable and robust locomotor patterns in a spiking, neuromechanical model of the salamander spinal cord. PLoS Comput Biol 2025; 21:e1012101. [PMID: 39836708 PMCID: PMC11771899 DOI: 10.1371/journal.pcbi.1012101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 01/27/2025] [Accepted: 12/26/2024] [Indexed: 01/23/2025] Open
Abstract
This study introduces a novel neuromechanical model employing a detailed spiking neural network to explore the role of axial proprioceptive sensory feedback, namely stretch feedback, in salamander locomotion. Unlike previous studies that often oversimplified the dynamics of the locomotor networks, our model includes detailed simulations of the classes of neurons that are considered responsible for generating movement patterns. The locomotor circuits, modeled as a spiking neural network of adaptive leaky integrate-and-fire neurons, are coupled to a three-dimensional mechanical model of a salamander with realistic physical parameters and simulated muscles. In open-loop simulations (i.e., without sensory feedback), the model replicates locomotor patterns observed in-vitro and in-vivo for swimming and trotting gaits. Additionally, a modular descending reticulospinal drive to the central pattern generation network allows to accurately control the activation, frequency and phase relationship of the different sections of the limb and axial circuits. In closed-loop swimming simulations (i.e. including axial stretch feedback), systematic evaluations reveal that intermediate values of feedback strength increase the tail beat frequency and reduce the intersegmental phase lag, contributing to a more coordinated, faster and energy-efficient locomotion. Interestingly, the result is conserved across different feedback topologies (ascending or descending, excitatory or inhibitory), suggesting that it may be an inherent property of axial proprioception. Moreover, intermediate feedback strengths expand the stability region of the network, enhancing its tolerance to a wider range of descending drives, internal parameters' modifications and noise levels. Conversely, high values of feedback strength lead to a loss of controllability of the network and a degradation of its locomotor performance. Overall, this study highlights the beneficial role of proprioception in generating, modulating and stabilizing locomotion patterns, provided that it does not excessively override centrally-generated locomotor rhythms. This work also underscores the critical role of detailed, biologically-realistic neural networks to improve our understanding of vertebrate locomotion.
Collapse
Affiliation(s)
- Alessandro Pazzaglia
- Biorobotics Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Andrej Bicanski
- Neural Computation Group, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Andrea Ferrario
- Biorobotics Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Jonathan Arreguit
- Biorobotics Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Dimitri Ryczko
- Ryczko Laboratory, Department of Pharmacology-Physiology, Université de Sherbrooke, Sherbrooke, Canada
| | - Auke Ijspeert
- Biorobotics Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
5
|
Moreno-Castillo M, Guertin PA, Manjarrez E. Acute effects of L-DOPA/carbidopa/buspirone (Spinalon™) on rhythmic electrical activity of the lumbosacral spinal cord in cats. Biomed Pharmacother 2024; 181:117687. [PMID: 39541791 DOI: 10.1016/j.biopha.2024.117687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/11/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024] Open
Abstract
Discovered by Guertin and colleagues in 2004, Spinalon™ is a fixed-drug combination (L-DOPA, carbidopa, and buspirone) that can acutely induce temporary episodes of rhythmic locomotor-like activity in complete or near-complete spinal cord-injured (SCI) subjects. However, little is known about the mechanisms of action or the direct effects of Spinalon™ on neural elements of the central pattern generators (CPGs). Our study aims at characterizing the effects of Spinalon™ on electrical activity of the spinal cord in segmental areas known to contain key rhythmogenic elements of the CPGs (i.e., lumbosacral) for scratching and locomotion. We recorded spinal cord dorsum signals from decerebrate cats using a multielectrode array placed over the lumbosacral region. We found that a single intravenous injection of 100/25/7.5 mg/kg L-DOPA/carbidopa/buspirone (Spinalon™) specifically reduced the amplitude of electrical sinusoidal waves associated with fictive scratching and promoted the appearance of electrical sinusoidal-like waves occurring at frequencies compatible with fictive locomotion. These observations suggest a profound impact of Spinalon™ on the lumbosacral CPGs.
Collapse
Affiliation(s)
- Mayra Moreno-Castillo
- Institute of Physiology, Benemérita Universidad Autónoma de Puebla, 14 Sur 6301, Col. San Manuel, Apartado Postal 406, Puebla, Pue CP 72570, México
| | - Pierre A Guertin
- Department of Psychiatry and Neurosciences, Medical School, Laval University, Quebec City CP G1V 0A6, Canada
| | - Elias Manjarrez
- Institute of Physiology, Benemérita Universidad Autónoma de Puebla, 14 Sur 6301, Col. San Manuel, Apartado Postal 406, Puebla, Pue CP 72570, México.
| |
Collapse
|
6
|
Grau JW, Hudson KE, Johnston DT, Partipilo SR. Updating perspectives on spinal cord function: motor coordination, timing, relational processing, and memory below the brain. Front Syst Neurosci 2024; 18:1184597. [PMID: 38444825 PMCID: PMC10912355 DOI: 10.3389/fnsys.2024.1184597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 01/29/2024] [Indexed: 03/07/2024] Open
Abstract
Those studying neural systems within the brain have historically assumed that lower-level processes in the spinal cord act in a mechanical manner, to relay afferent signals and execute motor commands. From this view, abstracting temporal and environmental relations is the province of the brain. Here we review work conducted over the last 50 years that challenges this perspective, demonstrating that mechanisms within the spinal cord can organize coordinated behavior (stepping), induce a lasting change in how pain (nociceptive) signals are processed, abstract stimulus-stimulus (Pavlovian) and response-outcome (instrumental) relations, and infer whether stimuli occur in a random or regular manner. The mechanisms that underlie these processes depend upon signal pathways (e.g., NMDA receptor mediated plasticity) analogous to those implicated in brain-dependent learning and memory. New data show that spinal cord injury (SCI) can enable plasticity within the spinal cord by reducing the inhibitory effect of GABA. It is suggested that the signals relayed to the brain may contain information about environmental relations and that spinal cord systems can coordinate action in response to descending signals from the brain. We further suggest that the study of stimulus processing, learning, memory, and cognitive-like processing in the spinal cord can inform our views of brain function, providing an attractive model system. Most importantly, the work has revealed new avenues of treatment for those that have suffered a SCI.
Collapse
Affiliation(s)
- James W. Grau
- Lab of Dr. James Grau, Department of Psychological and Brain Sciences, Cellular and Behavioral Neuroscience, Texas A&M University, College Station, TX, United States
| | | | | | | |
Collapse
|
7
|
Zawadzka M, Kwaśniewska A, Miazga K, Sławińska U. Perspectives in the Cell-Based Therapies of Various Aspects of the Spinal Cord Injury-Associated Pathologies: Lessons from the Animal Models. Cells 2021; 10:cells10112995. [PMID: 34831217 PMCID: PMC8616284 DOI: 10.3390/cells10112995] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/25/2021] [Accepted: 10/31/2021] [Indexed: 02/07/2023] Open
Abstract
Traumatic injury of the spinal cord (SCI) is a devastating neurological condition often leading to severe dysfunctions, therefore an improvement in clinical treatment for SCI patients is urgently needed. The potential benefits of transplantation of various cell types into the injured spinal cord have been intensively investigated in preclinical SCI models and clinical trials. Despite the many challenges that are still ahead, cell transplantation alone or in combination with other factors, such as artificial matrices, seems to be the most promising perspective. Here, we reviewed recent advances in cell-based experimental strategies supporting or restoring the function of the injured spinal cord with a particular focus on the regenerative mechanisms that could define their clinical translation.
Collapse
|
8
|
The Spinal Control of Backward Locomotion. J Neurosci 2020; 41:630-647. [PMID: 33239399 DOI: 10.1523/jneurosci.0816-20.2020] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 01/13/2023] Open
Abstract
Animal locomotion requires changing direction, from forward to backward. Here, we tested the hypothesis that sensorimotor circuits within the spinal cord generate backward locomotion and adjust it to task demands. We collected kinematic and electromyography (EMG) data during forward and backward locomotion at different treadmill speeds before and after complete spinal transection in six adult cats (three males and three females). After spinal transection, five/six cats performed backward locomotion, which required tonic somatosensory input in the form of perineal stimulation. One spinal cat performed forward locomotion but not backward locomotion while two others stepped backward but not forward. Spatiotemporal adjustments to increasing speed were similar in intact and spinal cats during backward locomotion and strategies were similar to forward locomotion, with shorter cycle and stance durations and longer stride lengths. Patterns of muscle activations, including muscle synergies, were similar for forward and backward locomotion in spinal cats. Indeed, we identified five muscle synergies that were similar during forward and backward locomotion. Lastly, spinal cats also stepped backward on a split-belt treadmill, with the left and right hindlimbs stepping at different speeds. Therefore, our results show that spinal sensorimotor circuits generate backward locomotion but require additional excitability compared with forward locomotion. Similar strategies for speed modulation and similar patterns of muscle activations and muscle synergies during forward and backward locomotion are consistent with a shared spinal locomotor network, with sensory feedback from the limbs controlling the direction.SIGNIFICANCE STATEMENT Animal locomotion requires changing direction, including forward, sideways and backward. This paper shows that the center controlling locomotion within the spinal cord can produce a backward pattern when instructed by sensory signals from the limbs. However, the spinal locomotor network requires greater excitability to produce backward locomotion compared with forward locomotion. The paper also shows that the spinal network controlling locomotion in the forward direction also controls locomotion in the backward direction.
Collapse
|
9
|
Boakye M, Morehouse J, Ethridge J, Burke DA, Khattar NK, Kumar C, Manouchehri N, Streijger F, Reed R, Magnuson DS, Sherwood L, Kwon BK, Howland DR. Treadmill-Based Gait Kinematics in the Yucatan Mini Pig. J Neurotrauma 2020; 37:2277-2291. [PMID: 32605423 PMCID: PMC9836690 DOI: 10.1089/neu.2020.7050] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Yucatan miniature pigs (YMPs) are similar to humans in spinal cord size as well as physiological and neuroanatomical features, making them a useful model for human spinal cord injury. However, little is known regarding pig gait kinematics, especially on a treadmill. In this study, 12 healthy YMPs were assessed during bipedal and/or quadrupedal stepping on a treadmill at six speeds (1.0, 1.5, 2.0, 2.5, 3.0, and 3.5 km/h). Kinematic parameters, including limb coordination and proximal and distal limb angles, were measured. Findings indicate that YMPs use a lateral sequence footfall pattern across all speeds. Stride and stance durations decreased with increasing speed whereas swing duration showed no significant change. Across all speeds assessed, no significant differences were noted between hindlimb stepping parameters for bipedal or quadrupedal gait with the exception of distal limb angular kinematics. Specifically, significant differences were observed between locomotor tasks during maximum flexion (quadrupedal > bipedal), total excursion (bipedal > quadrupedal), and the phase relationship between the timing of maximum extension between the right and left hindlimbs (bipedal > quadrupedal). Speed also impacted maximum flexion and right-left phase relationships given that significant differences were found between the fastest speed (3.5 km/h) relative to each of the other speeds. This study establishes a methodology for bipedal and quadrupedal treadmill-based kinematic testing in healthy YMPs. The treadmill approach used was effective in recruiting primarily the spinal circuitry responsible for the basic stepping patterns as has been shown in cats. We recommend 2.5 km/h (0.7 m/sec) as a target walking gait for pre-clinical studies using YMPs, which is similar to that used in cats.
Collapse
Affiliation(s)
- Maxwell Boakye
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
| | - Johnny Morehouse
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
| | - Jay Ethridge
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
| | - Darlene A. Burke
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
| | - Nicolas K. Khattar
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
| | - Chitra Kumar
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
| | - Neda Manouchehri
- International Collaboration on Repair Discoveries, Department of Orthopedics, University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Femke Streijger
- International Collaboration on Repair Discoveries, Department of Orthopedics, University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Robert Reed
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
| | - David S.K. Magnuson
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
| | - Leslie Sherwood
- Research Resources Facilities, University of Louisville, Louisville, Kentucky, USA
| | - Brian K. Kwon
- International Collaboration on Repair Discoveries, Department of Orthopedics, University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Vancouver Spine Surgery Institute, Department of Orthopedics, University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Dena R. Howland
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
- Research Service, Robley Rex Veterans Affairs Medical Center, Louisville, Kentucky, USA
| |
Collapse
|
10
|
Aguilar Garcia IG, Dueñas-Jiménez JM, Castillo L, Osuna-Carrasco LP, De La Torre Valdovinos B, Castañeda-Arellano R, López-Ruiz JR, Toro-Castillo C, Treviño M, Mendizabal-Ruiz G, Duenas-Jimenez SH. Fictive Scratching Patterns in Brain Cortex-Ablated, Midcollicular Decerebrate, and Spinal Cats. Front Neural Circuits 2020; 14:1. [PMID: 32174815 PMCID: PMC7056700 DOI: 10.3389/fncir.2020.00001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 01/03/2020] [Indexed: 11/13/2022] Open
Abstract
Background: The spinal cord’s central pattern generators (CPGs) have been explained by the symmetrical half-center hypothesis, the bursts generator, computational models, and more recently by connectome circuits. Asymmetrical models, at odds with the half-center paradigm, are composed of extensor and flexor CPG modules. Other models include not only flexor and extensor motoneurons but also motoneuron pools controlling biarticular muscles. It is unknown whether a preferred model can explain some particularities that fictive scratching (FS) in the cat presents. The first aim of this study was to investigate FS patterns considering the aiming and the rhythmic periods, and second, to examine the effects of serotonin (5HT) on and segmental inputs to FS. Methods: The experiments were carried out first in brain cortex-ablated cats (BCAC), then spinalized (SC), and for the midcollicular (MCC) preparation. Subjects were immobilized and the peripheral nerves were used to elicit the Monosynaptic reflex (MR), to modify the scratching patterns and for electroneurogram recordings. Results: In BCAC, FS was produced by pinna stimulation and, in some cases, by serotonin. The scratching aiming phase (AP) initiates with the activation of either flexor or extensor motoneurons. Serotonin application during the AP produced simultaneous extensor and flexor bursts. Furthermore, WAY 100635 (5HT1A antagonist) produced a brief burst in the tibialis anterior (TA) nerve, followed by a reduction in its electroneurogram (ENG), while the soleus ENG remained silent. In SC, rhythmic phase (RP) activity was recorded in the soleus motoneurons. Serotonin or WAY produced FS bouts. The electrical stimulation of Ia afferent fibers produced heteronymous MRes waxing and waning during the scratch cycle. In MCC, FS began with flexor activity. Electrical stimulation of either deep peroneus (DP) or superficial peroneus (SP) nerves increased the duration of the TA electroneurogram. Medial gastrocnemius (MG) stretching or MG nerve electrical stimulation produced a reduction in the TA electroneurogram and an initial MG extensor burst. MRes waxed and waned during the scratch cycle. Conclusion: Descending pathways and segmental afferent fibers, as well as 5-HT and WAY, can change the FS pattern. To our understanding, the half-center hypothesis is the most suitable for explaining the AP in MCC.
Collapse
Affiliation(s)
| | | | - Luis Castillo
- Centro Básico, Universidad de Aguascalientes, Aguascalientes, Mexico
| | | | | | | | | | - Carmen Toro-Castillo
- Departmento de Electrónica y Computación, CUCEI, Universidad de Guadalajara, Guadalajara, Mexico
| | - Mario Treviño
- Laboratorio de Plasticidad Cortical y Aprendizaje Perceptual, Instituto de Neurociencias, Universidad de Guadalajara, Guadalajara, Mexico
| | - Gerardo Mendizabal-Ruiz
- Departmento de Electrónica y Computación, CUCEI, Universidad de Guadalajara, Guadalajara, Mexico
| | | |
Collapse
|
11
|
Sourioux M, Bertrand SS, Cazalets JR. Cholinergic-mediated coordination of rhythmic sympathetic and motor activities in the newborn rat spinal cord. PLoS Biol 2018; 16:e2005460. [PMID: 29985914 PMCID: PMC6053244 DOI: 10.1371/journal.pbio.2005460] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 07/19/2018] [Accepted: 06/22/2018] [Indexed: 02/07/2023] Open
Abstract
Here, we investigated intrinsic spinal cord mechanisms underlying the physiological requirement for autonomic and somatic motor system coupling. Using an in vitro spinal cord preparation from newborn rat, we demonstrate that the specific activation of muscarinic cholinergic receptors (mAchRs) (with oxotremorine) triggers a slow burst rhythm in thoracic spinal segments, thereby revealing a rhythmogenic capability in this cord region. Whereas axial motoneurons (MNs) were rhythmically activated during both locomotor activity and oxotremorine-induced bursting, intermediolateral sympathetic preganglionic neurons (IML SPNs) exhibited rhythmicity solely in the presence of oxotremorine. This somato-sympathetic synaptic drive shared by MNs and IML SPNs could both merge with and modulate the locomotor synaptic drive produced by the lumbar motor networks. This study thus sheds new light on the coupling between somatic and sympathetic systems and suggests that an intraspinal network that may be conditionally activated under propriospinal cholinergic control constitutes at least part of the synchronizing mechanism.
Collapse
Affiliation(s)
| | | | - Jean-René Cazalets
- Université de Bordeaux, CNRS UMR 5287, Bordeaux, France
- * E-mail: (JRC); (SSB)
| |
Collapse
|
12
|
Duenas-Jimenez SH, Castillo Hernandez L, de la Torre Valdovinos B, Mendizabal Ruiz G, Duenas Jimenez JM, Ramirez Abundis V, Aguilar Garcia IG. Hind limb motoneurons activity during fictive locomotion or scratching induced by pinna stimulation, serotonin, or glutamic acid in brain cortex-ablated cats. Physiol Rep 2017; 5:5/18/e13458. [PMID: 28963128 PMCID: PMC5617936 DOI: 10.14814/phy2.13458] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/01/2017] [Accepted: 09/04/2017] [Indexed: 12/18/2022] Open
Abstract
In brain cortex‐ablated cats (BCAC), hind limb motoneurons activity patterns were studied during fictive locomotion (FL) or fictive scratching (FS) induced by pinna stimulation. In order to study motoneurons excitability: heteronymous monosynaptic reflex (HeMR), intracellular recording, and individual Ia afferent fiber antidromic activity (AA) were analyzed. The intraspinal cord microinjections of serotonin or glutamic acid effects were made to study their influence in FL or FS. During FS, HeMR amplitude in extensor and bifunctional motoneurons increased prior to or during the respective electroneurogram (ENG). In soleus (SOL) motoneurons were reduced during the scratch cycle (SC). AA in medial gastrocnemius (MG) Ia afferent individual fibers of L6‐L7 dorsal roots did not occur during FS. Flexor digitorum longus (FDL) and MG motoneurons fired with doublets during the FS bursting activity, motoneuron membrane potential from some posterior biceps (PB) motoneurons exhibits a depolarization in relation to the PB (ENG). It changed to a locomotor drive potential in relation to one of the double ENG, PB bursts. In FDL and semitendinosus (ST) motoneurons, the membrane potential was depolarized during FS, but it did not change during FL. Glutamic acid injected in the L3‐L4 spinal cord segment favored the transition from FS to FL. During FL, glutamic acid produces a duration increase of extensors ENGs. Serotonin increases the ENG amplitude in extensor motoneurons, as well as the duration of scratching episodes. It did not change the SC duration. Segregation and motoneurons excitability could be regulated by the rhythmic generator and the pattern generator of the central pattern generator.
Collapse
Affiliation(s)
| | - Luis Castillo Hernandez
- Basic Center, Department of Physiology and Pharmacology, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | | | - Gerardo Mendizabal Ruiz
- Department of Computational Sciences CUCEI, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | | | | | | |
Collapse
|
13
|
Grau JW, Huang YJ, Turtle JD, Strain MM, Miranda RC, Garraway SM, Hook MA. When Pain Hurts: Nociceptive Stimulation Induces a State of Maladaptive Plasticity and Impairs Recovery after Spinal Cord Injury. J Neurotrauma 2017; 34:1873-1890. [PMID: 27788626 PMCID: PMC5444485 DOI: 10.1089/neu.2016.4626] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Spinal cord injury (SCI) is often accompanied by other tissue damage (polytrauma) that provides a source of pain (nociceptive) input. Recent findings are reviewed that show SCI places the caudal tissue in a vulnerable state that exaggerates the effects nociceptive stimuli and promotes the development of nociceptive sensitization. Stimulation that is both unpredictable and uncontrollable induces a form of maladaptive plasticity that enhances nociceptive sensitization and impairs spinally mediated learning. In contrast, relational learning induces a form of adaptive plasticity that counters these adverse effects. SCI sets the stage for nociceptive sensitization by disrupting serotonergic (5HT) fibers that quell overexcitation. The loss of 5HT can enhance neural excitability by reducing membrane-bound K+-Cl- cotransporter 2, a cotransporter that regulates the outward flow of Cl-. This increases the intracellular concentration of Cl-, which reduces the hyperpolarizing (inhibitory) effect of gamma-aminobutyric acid. Uncontrollable noxious stimulation also undermines the recovery of locomotor function, and increases behavioral signs of chronic pain, after a contusion injury. Nociceptive stimulation has a greater effect if experienced soon after SCI. This adverse effect has been linked to a downregulation in brain-derived neurotrophic factor and an upregulation in the cytokine, tumor necrosis factor. Noxious input enhances tissue loss at the site of injury by increasing the extent of hemorrhage and apoptotic/pyroptotic cell death. Intrathecal lidocaine blocks nociception-induced hemorrhage, cellular indices of cell death, and its adverse effect on behavioral recovery. Clinical implications are discussed.
Collapse
Affiliation(s)
- James W. Grau
- Cellular and Behavioral Neuroscience, Department of Psychology, Texas A&M University, College Station, Texas
| | - Yung-Jen Huang
- Cellular and Behavioral Neuroscience, Department of Psychology, Texas A&M University, College Station, Texas
| | - Joel D. Turtle
- Cellular and Behavioral Neuroscience, Department of Psychology, Texas A&M University, College Station, Texas
| | - Misty M. Strain
- Cellular and Behavioral Neuroscience, Department of Psychology, Texas A&M University, College Station, Texas
| | - Rajesh C. Miranda
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Bryan, Texas
| | - Sandra M. Garraway
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia
| | - Michelle A. Hook
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Bryan, Texas
| |
Collapse
|
14
|
Shah PK, Lavrov I. Spinal Epidural Stimulation Strategies: Clinical Implications of Locomotor Studies in Spinal Rats. Neuroscientist 2017; 23:664-680. [PMID: 28345483 DOI: 10.1177/1073858417699554] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Significant advancements in spinal epidural stimulation (ES) strategies to enable volitional motor control in persons with a complete spinal cord injury (SCI) have generated much excitement in the field of neurorehabilitation. Still, an obvious gap lies in the ability of ES to effectively generate a robust locomotor stepping response after a complete SCI in rodents, but not in humans. In order to reveal potential discrepancies between rodent and human studies that account for this void, in this review, we summarize the findings of studies that have utilized ES strategies to enable successful hindlimb stepping in spinal rats. Recent clinical and preclinical evidence indicates that motor training with ES plays a crucial role in tuning spinal neural circuitry to generate meaningful motor output. Concurrently administered pharmacology can also facilitate the circuitry to provide near optimal motor performance in SCI rats. However, as of today, the evidence for pharmacological agents to enhance motor function in persons with complete SCI is insignificant. These and other recent findings discussed in this review provide insight into addressing the translational gap, guide the design of relevant preclinical experiments, and facilitate development of new approaches for motor recovery in patients with complete SCIs.
Collapse
Affiliation(s)
- Prithvi K Shah
- 1 Division of Rehabilitation Sciences, School of Health Technology and Management, Stony Brook University, Stony Brook, NY, USA.,2 Department of Neurobiology, Stony Brook University, Stony Brook, NY, USA
| | - Igor Lavrov
- 3 Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA.,4 Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.,5 Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| |
Collapse
|
15
|
Côté MP, Murray M, Lemay MA. Rehabilitation Strategies after Spinal Cord Injury: Inquiry into the Mechanisms of Success and Failure. J Neurotrauma 2016; 34:1841-1857. [PMID: 27762657 DOI: 10.1089/neu.2016.4577] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Body-weight supported locomotor training (BWST) promotes recovery of load-bearing stepping in lower mammals, but its efficacy in individuals with a spinal cord injury (SCI) is limited and highly dependent on injury severity. While animal models with complete spinal transections recover stepping with step-training, motor complete SCI individuals do not, despite similarly intensive training. In this review, we examine the significant differences between humans and animal models that may explain this discrepancy in the results obtained with BWST. We also summarize the known effects of SCI and locomotor training on the muscular, motoneuronal, interneuronal, and supraspinal systems in human and non-human models of SCI and address the potential causes for failure to translate to the clinic. The evidence points to a deficiency in neuronal activation as the mechanism of failure, rather than muscular insufficiency. While motoneuronal and interneuronal systems cannot be directly probed in humans, the changes brought upon by step-training in SCI animal models suggest a beneficial re-organization of the systems' responsiveness to descending and afferent feedback that support locomotor recovery. The literature on partial lesions in humans and animal models clearly demonstrate a greater dependency on supraspinal input to the lumbar cord in humans than in non-human mammals for locomotion. Recent results with epidural stimulation that activates the lumbar interneuronal networks and/or increases the overall excitability of the locomotor centers suggest that these centers are much more dependent on the supraspinal tonic drive in humans. Sensory feedback shapes the locomotor output in animal models but does not appear to be sufficient to drive it in humans.
Collapse
Affiliation(s)
- Marie-Pascale Côté
- 1 Department of Neurobiology and Anatomy, Drexel University College of Medicine , Philadelphia, Pennsylvania
| | - Marion Murray
- 1 Department of Neurobiology and Anatomy, Drexel University College of Medicine , Philadelphia, Pennsylvania
| | - Michel A Lemay
- 2 Department of Bioengineering, Temple University , Philadelphia, Pennsylvania
| |
Collapse
|
16
|
Recruitment of Polysynaptic Connections Underlies Functional Recovery of a Neural Circuit after Lesion. eNeuro 2016; 3:eN-NWR-0056-16. [PMID: 27570828 PMCID: PMC4999536 DOI: 10.1523/eneuro.0056-16.2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 07/14/2016] [Accepted: 07/18/2016] [Indexed: 11/21/2022] Open
Abstract
The recruitment of additional neurons to neural circuits often occurs in accordance with changing functional demands. Here we found that synaptic recruitment plays a key role in functional recovery after neural injury. Disconnection of a brain commissure in the nudibranch mollusc, Tritonia diomedea, impairs swimming behavior by eliminating particular synapses in the central pattern generator (CPG) underlying the rhythmic swim motor pattern. However, the CPG functionally recovers within a day after the lesion. The strength of a spared inhibitory synapse within the CPG from Cerebral Neuron 2 (C2) to Ventral Swim Interneuron B (VSI) determines the level of impairment caused by the lesion, which varies among individuals. In addition to this direct synaptic connection, there are polysynaptic connections from C2 and Dorsal Swim Interneurons to VSI that provide indirect excitatory drive but play only minor roles under normal conditions. After disconnecting the pedal commissure (Pedal Nerve 6), the recruitment of polysynaptic excitation became a major source of the excitatory drive to VSI. Moreover, the amount of polysynaptic recruitment, which changed over time, differed among individuals and correlated with the degree of recovery of the swim motor pattern. Thus, functional recovery was mediated by an increase in the magnitude of polysynaptic excitatory drive, compensating for the loss of direct excitation. Since the degree of susceptibility to injury corresponds to existing individual variation in the C2 to VSI synapse, the recovery relied upon the extent to which the network reorganized to incorporate additional synapses.
Collapse
|
17
|
Minassian K, Hofstoetter US. Spinal Cord Stimulation and Augmentative Control Strategies for Leg Movement after Spinal Paralysis in Humans. CNS Neurosci Ther 2016; 22:262-70. [PMID: 26890324 DOI: 10.1111/cns.12530] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 01/28/2016] [Accepted: 01/28/2016] [Indexed: 12/30/2022] Open
Abstract
Severe spinal cord injury is a devastating condition, tearing apart long white matter tracts and causing paralysis and disability of body functions below the lesion. But caudal to most injuries, the majority of neurons forming the distributed propriospinal system, the localized gray matter spinal interneuronal circuitry, and spinal motoneuron populations are spared. Epidural spinal cord stimulation can gain access to this neural circuitry. This review focuses on the capability of the human lumbar spinal cord to generate stereotyped motor output underlying standing and stepping, as well as full weight-bearing standing and rhythmic muscle activation during assisted treadmill stepping in paralyzed individuals in response to spinal cord stimulation. By enhancing the excitability state of the spinal circuitry, the stimulation can have an enabling effect upon otherwise "silent" translesional volitional motor control. Strategies for achieving functional movement in patients with severe injuries based on minimal translesional intentional control, task-specific proprioceptive feedback, and next-generation spinal cord stimulation systems will be reviewed. The role of spinal cord stimulation can go well beyond the immediate generation of motor output. With recently developed training paradigms, it can become a major rehabilitation approach in spinal cord injury for augmenting and steering trans- and sublesional plasticity for lasting therapeutic benefits.
Collapse
Affiliation(s)
- Karen Minassian
- Center for Medical Physics and Biomedical Engineering, Medical University Vienna, Vienna, Austria
| | - Ursula S Hofstoetter
- Center for Medical Physics and Biomedical Engineering, Medical University Vienna, Vienna, Austria
| |
Collapse
|
18
|
Moonen G, Satkunendrarajah K, Wilcox JT, Badner A, Mothe A, Foltz W, Fehlings MG, Tator CH. A New Acute Impact-Compression Lumbar Spinal Cord Injury Model in the Rodent. J Neurotrauma 2015; 33:278-89. [PMID: 26414192 DOI: 10.1089/neu.2015.3937] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Traumatic injury to the lumbar spinal cord results in complex central and peripheral nervous tissue damage causing significant neurobehavioral deficits and personal/social adversity. Although lumbar cord injuries are common in humans, there are few clinically relevant models of lumbar spinal cord injury (SCI). This article describes a novel lumbar SCI model in the rat. The effects of moderate (20 g), moderate-to-severe (26 g) and severe (35 g, and 56 g) clip impact-compression injuries at the lumbar spinal cord level L1-L2 (vertebral level T11-T12) were assessed using several neurobehavioral, neuroanatomical, and electrophysiological outcome measures. Lesions were generated after meticulous anatomical landmarking using microCT, followed by laminectomy and extradural inclusion of central and radicular elements to generate a traumatic SCI. Clinically relevant outcomes, such as MR and ultrasound imaging, were paired with robust morphometry. Analysis of the lesional tissue demonstrated that pronounced tissue loss and cavitation occur throughout the acute to chronic phases of injury. Behavioral testing revealed significant deficits in locomotion, with no evidence of hindlimb weight-bearing or hindlimb-forelimb coordination in any injured group. Evaluation of sensory outcomes revealed highly pathological alterations including mechanical allodynia and thermal hyperalgesia indicated by increasing avoidance responses and decreasing latency in the tail-flick test. Deficits in spinal tracts were confirmed by electrophysiology showing increased latency and decreased amplitude of both sensory and motor evoked potentials (SEP/MEP), and increased plantar H-reflex indicating an increase in motor neuron excitability. This is a comprehensive lumbar SCI model and should be useful for evaluation of translationally oriented pre-clinical therapies.
Collapse
Affiliation(s)
- Gray Moonen
- 1 Institute of Medical Science, Faculty of Medicine, University of Toronto , Toronto, Ontario, Canada .,2 Division of Genetics and Development, Toronto Western Research Institute, University Health Network , Toronto, Ontario, Canada
| | - Kajana Satkunendrarajah
- 2 Division of Genetics and Development, Toronto Western Research Institute, University Health Network , Toronto, Ontario, Canada
| | - Jared T Wilcox
- 1 Institute of Medical Science, Faculty of Medicine, University of Toronto , Toronto, Ontario, Canada .,2 Division of Genetics and Development, Toronto Western Research Institute, University Health Network , Toronto, Ontario, Canada
| | - Anna Badner
- 1 Institute of Medical Science, Faculty of Medicine, University of Toronto , Toronto, Ontario, Canada .,2 Division of Genetics and Development, Toronto Western Research Institute, University Health Network , Toronto, Ontario, Canada
| | - Andrea Mothe
- 2 Division of Genetics and Development, Toronto Western Research Institute, University Health Network , Toronto, Ontario, Canada
| | - Warren Foltz
- 4 STTARR Innovation Centre, University Health Network , Toronto, Ontario, Canada
| | - Michael G Fehlings
- 1 Institute of Medical Science, Faculty of Medicine, University of Toronto , Toronto, Ontario, Canada .,2 Division of Genetics and Development, Toronto Western Research Institute, University Health Network , Toronto, Ontario, Canada .,3 Department of Surgery, Division of Neurosurgery, University of Toronto , Toronto, Ontario, Canada
| | - Charles H Tator
- 1 Institute of Medical Science, Faculty of Medicine, University of Toronto , Toronto, Ontario, Canada .,2 Division of Genetics and Development, Toronto Western Research Institute, University Health Network , Toronto, Ontario, Canada .,3 Department of Surgery, Division of Neurosurgery, University of Toronto , Toronto, Ontario, Canada
| |
Collapse
|
19
|
Wen J, Sun D, Tan J, Young W. A consistent, quantifiable, and graded rat lumbosacral spinal cord injury model. J Neurotrauma 2015; 32:875-92. [PMID: 25313633 PMCID: PMC4492780 DOI: 10.1089/neu.2013.3321] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The purpose of this study is to develop a rat lumbosacral spinal cord injury (SCI) model that causes consistent motoneuronal loss and behavior deficits. Most SCI models focus on the thoracic or cervical spinal cord. Lumbosacral SCI accounts for about one third of human SCI but no standardized lumbosacral model is available for evaluating therapies. Twenty-six adult female Sprague-Dawley rats were randomized to three groups: sham (n=9), 25 mm (n=8), and 50 mm (n=9). Sham rats had laminectomy only, while 25 mm and 50 mm rats were injured by dropping a 10 g rod from a height of 25 mm or 50 mm, respectively, onto the L4-5 spinal cord at the T13/L1 vertebral junction. We measured footprint length (FL), toe spreading (TS), intermediate toe spreading (ITS), and sciatic function index (SFI) from walking footprints, and static toe spreading (STS), static intermediate toe spreading (SITS), and static sciatic index (SSI) from standing footprints. At six weeks, we assessed neuronal and white matter loss, quantified axons, diameter, and myelin thickness in the peroneal and tibial nerves, and measured cross-sectional areas of tibialis anterior and gastrocnemius muscle fibers. The result shows that peroneal and tibial motoneurons were respectively distributed in 4.71 mm and 5.01 mm columns in the spinal cord. Dropping a 10-g weight from 25 mm or 50 mm caused 1.5 mm or 3.75 mm gaps in peroneal and tibial motoneuronal columns, respectively, and increased spinal cord white matter loss. Fifty millimeter contusions significantly increased FL and reduced TS, ITS, STS, SITS, SFI, and SSI more than 25 mm contusions, and resulted in smaller axon and myelinated axon diameters in tibial and peroneal nerves and greater atrophy of gastrocnemius and anterior tibialis muscles, than 25 mm contusions. This model of lumbosacral SCI produces consistent and graded loss of white matter, motoneuronal loss, peripheral nerve axonal changes, and anterior tibialis and gastrocnemius muscles atrophy in rats.
Collapse
Affiliation(s)
- Junxiang Wen
- 1 Department of Cell Biology and Neuroscience, Rutgers, the State University of New Jersey , Piscataway, New Jersey.,2 Department of Orthopaedics, Tongji University School of Medicine , Shanghai, China
| | - Dongming Sun
- 1 Department of Cell Biology and Neuroscience, Rutgers, the State University of New Jersey , Piscataway, New Jersey
| | - Jun Tan
- 2 Department of Orthopaedics, Tongji University School of Medicine , Shanghai, China
| | - Wise Young
- 1 Department of Cell Biology and Neuroscience, Rutgers, the State University of New Jersey , Piscataway, New Jersey
| |
Collapse
|
20
|
Williams RR, Venkatesh I, Pearse DD, Udvadia AJ, Bunge MB. MASH1/Ascl1a leads to GAP43 expression and axon regeneration in the adult CNS. PLoS One 2015; 10:e0118918. [PMID: 25751153 PMCID: PMC4353704 DOI: 10.1371/journal.pone.0118918] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 01/16/2015] [Indexed: 12/20/2022] Open
Abstract
Unlike CNS neurons in adult mammals, neurons in fish and embryonic mammals can regenerate their axons after injury. These divergent regenerative responses are in part mediated by the growth-associated expression of select transcription factors. The basic helix-loop-helix (bHLH) transcription factor, MASH1/Ascl1a, is transiently expressed during the development of many neuronal subtypes and regulates the expression of genes that mediate cell fate determination and differentiation. In the adult zebrafish (Danio rerio), Ascl1a is also transiently expressed in retinal ganglion cells (RGCs) that regenerate axons after optic nerve crush. Utilizing transgenic zebrafish with a 3.6 kb GAP43 promoter that drives expression of an enhanced green fluorescent protein (EGFP), we observed that knock-down of Ascl1a expression reduces both regenerative gap43 gene expression and axonal growth after injury compared to controls. In mammals, the development of noradrenergic brainstem neurons requires MASH1 expression. In contrast to zebrafish RGCs, however, MASH1 is not expressed in the mammalian brainstem after spinal cord injury (SCI). Therefore, we utilized adeno-associated viral (AAV) vectors to overexpress MASH1 in four month old rat (Rattus norvegicus) brainstem neurons in an attempt to promote axon regeneration after SCI. We discovered that after complete transection of the thoracic spinal cord and implantation of a Schwann cell bridge, animals that express MASH1 exhibit increased noradrenergic axon regeneration and improvement in hindlimb joint movements compared to controls. Together these data demonstrate that MASH1/Ascl1a is a fundamental regulator of axonal growth across vertebrates and can induce modifications to the intrinsic state of neurons to promote functional regeneration in response to CNS injury.
Collapse
Affiliation(s)
- Ryan R. Williams
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Ishwariya Venkatesh
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States of America
| | - Damien D. Pearse
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States of America
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Ava J. Udvadia
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States of America
| | - Mary Bartlett Bunge
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States of America
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States of America
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL, United States of America
- * E-mail:
| |
Collapse
|
21
|
Alford ST, Alpert MH. A synaptic mechanism for network synchrony. Front Cell Neurosci 2014; 8:290. [PMID: 25278839 PMCID: PMC4166887 DOI: 10.3389/fncel.2014.00290] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 08/31/2014] [Indexed: 01/06/2023] Open
Abstract
Within neural networks, synchronization of activity is dependent upon the synaptic connectivity of embedded microcircuits and the intrinsic membrane properties of their constituent neurons. Synaptic integration, dendritic Ca2+ signaling, and non-linear interactions are crucial cellular attributes that dictate single neuron computation, but their roles promoting synchrony and the generation of network oscillations are not well understood, especially within the context of a defined behavior. In this regard, the lamprey spinal central pattern generator (CPG) stands out as a well-characterized, conserved vertebrate model of a neural network (Smith et al., 2013a), which produces synchronized oscillations in which neural elements from the systems to cellular level that control rhythmic locomotion have been determined. We review the current evidence for the synaptic basis of oscillation generation with a particular emphasis on the linkage between synaptic communication and its cellular coupling to membrane processes that control oscillatory behavior of neurons within the locomotor network. We seek to relate dendritic function found in many vertebrate systems to the accessible lamprey central nervous system in which the relationship between neural network activity and behavior is well understood. This enables us to address how Ca2+ signaling in spinal neuron dendrites orchestrate oscillations that drive network behavior.
Collapse
Affiliation(s)
- Simon T Alford
- Department of Biological Sciences, University of Illinois at Chicago Chicago, IL, USA
| | - Michael H Alpert
- Department of Biological Sciences, University of Illinois at Chicago Chicago, IL, USA
| |
Collapse
|
22
|
Martino G, Ivanenko YP, Serrao M, Ranavolo A, d'Avella A, Draicchio F, Conte C, Casali C, Lacquaniti F. Locomotor patterns in cerebellar ataxia. J Neurophysiol 2014; 112:2810-21. [PMID: 25185815 DOI: 10.1152/jn.00275.2014] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Several studies have demonstrated how cerebellar ataxia (CA) affects gait, resulting in deficits in multijoint coordination and stability. Nevertheless, how lesions of cerebellum influence the locomotor muscle pattern generation is still unclear. To better understand the effects of CA on locomotor output, here we investigated the idiosyncratic features of the spatiotemporal structure of leg muscle activity and impairments in the biomechanics of CA gait. To this end, we recorded the electromyographic (EMG) activity of 12 unilateral lower limb muscles and analyzed kinematic and kinetic parameters of 19 ataxic patients and 20 age-matched healthy subjects during overground walking. Neuromuscular control of gait in CA was characterized by a considerable widening of EMG bursts and significant temporal shifts in the center of activity due to overall enhanced muscle activation between late swing and mid-stance. Patients also demonstrated significant changes in the intersegmental coordination, an abnormal transient in the vertical ground reaction force and instability of limb loading at heel strike. The observed abnormalities in EMG patterns and foot loading correlated with the severity of pathology [International Cooperative Ataxia Rating Scale (ICARS), a clinical ataxia scale] and the changes in the biomechanical output. The findings provide new insights into the physiological role of cerebellum in optimizing the duration of muscle activity bursts and the control of appropriate foot loading during locomotion.
Collapse
Affiliation(s)
- G Martino
- Centre of Space Bio-Medicine, University of Rome Tor Vergata, Rome, Italy; Laboratory of Neuromotor Physiology, Istituto Di Ricovero e Cura a Carattere Scientifico Santa Lucia Foundation, Rome, Italy;
| | - Y P Ivanenko
- Laboratory of Neuromotor Physiology, Istituto Di Ricovero e Cura a Carattere Scientifico Santa Lucia Foundation, Rome, Italy
| | - M Serrao
- Rehabilitation Centre Policlinico Italia, Rome, Italy; Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - A Ranavolo
- Italian Workers' Compensation Authority, Department of Occupational Medicine, Monte Porzio Catone, Rome, Italy; and
| | - A d'Avella
- Laboratory of Neuromotor Physiology, Istituto Di Ricovero e Cura a Carattere Scientifico Santa Lucia Foundation, Rome, Italy
| | - F Draicchio
- Italian Workers' Compensation Authority, Department of Occupational Medicine, Monte Porzio Catone, Rome, Italy; and
| | - C Conte
- Rehabilitation Centre Policlinico Italia, Rome, Italy
| | - C Casali
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - F Lacquaniti
- Centre of Space Bio-Medicine, University of Rome Tor Vergata, Rome, Italy; Laboratory of Neuromotor Physiology, Istituto Di Ricovero e Cura a Carattere Scientifico Santa Lucia Foundation, Rome, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
23
|
Sharples SA, Koblinger K, Humphreys JM, Whelan PJ. Dopamine: a parallel pathway for the modulation of spinal locomotor networks. Front Neural Circuits 2014; 8:55. [PMID: 24982614 PMCID: PMC4059167 DOI: 10.3389/fncir.2014.00055] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 05/11/2014] [Indexed: 12/24/2022] Open
Abstract
The spinal cord contains networks of neurons that can produce locomotor patterns. To readily respond to environmental conditions, these networks must be flexible yet at the same time robust. Neuromodulators play a key role in contributing to network flexibility in a variety of invertebrate and vertebrate networks. For example, neuromodulators contribute to altering intrinsic properties and synaptic weights that, in extreme cases, can lead to neurons switching between networks. Here we focus on the role of dopamine in the control of stepping networks in the spinal cord. We first review the role of dopamine in modulating rhythmic activity in the stomatogastric ganglion (STG) and the leech, since work from these preparations provides a foundation to understand its role in vertebrate systems. We then move to a discussion of dopamine’s role in modulation of swimming in aquatic species such as the larval xenopus, lamprey and zebrafish. The control of terrestrial walking in vertebrates by dopamine is less studied and we review current evidence in mammals with a focus on rodent species. We discuss data suggesting that the source of dopamine within the spinal cord is mainly from the A11 area of the diencephalon, and then turn to a discussion of dopamine’s role in modulating walking patterns from both in vivo and in vitro preparations. Similar to the descending serotonergic system, the dopaminergic system may serve as a potential target to promote recovery of locomotor function following spinal cord injury (SCI); evidence suggests that dopaminergic agonists can promote recovery of function following SCI. We discuss pharmacogenetic and optogenetic approaches that could be deployed in SCI and their potential tractability. Throughout the review we draw parallels with both noradrenergic and serotonergic modulatory effects on spinal cord networks. In all likelihood, a complementary monoaminergic enhancement strategy should be deployed following SCI.
Collapse
Affiliation(s)
- Simon A Sharples
- Hotchkiss Brain Institute, University of Calgary Calgary, AB, Canada ; Department of Comparative Biology and Experimental Medicine, University of Calgary Calgary, AB, Canada
| | - Kathrin Koblinger
- Hotchkiss Brain Institute, University of Calgary Calgary, AB, Canada ; Department of Comparative Biology and Experimental Medicine, University of Calgary Calgary, AB, Canada
| | - Jennifer M Humphreys
- Hotchkiss Brain Institute, University of Calgary Calgary, AB, Canada ; Department of Comparative Biology and Experimental Medicine, University of Calgary Calgary, AB, Canada
| | - Patrick J Whelan
- Hotchkiss Brain Institute, University of Calgary Calgary, AB, Canada ; Department of Comparative Biology and Experimental Medicine, University of Calgary Calgary, AB, Canada ; Department of Physiology and Pharmacology, University of Calgary Calgary, AB, Canada ; Department of Clinical Neurosciences, University of Calgary Calgary, AB, Canada
| |
Collapse
|
24
|
Hu JG, Wang XF, Deng LX, Liu NK, Gao X, Chen J, Zhou FC, Xu XM. Cotransplantation of Glial Restricted Precursor Cells and Schwann Cells Promotes Functional Recovery after Spinal Cord Injury. Cell Transplant 2013; 22:2219-36. [DOI: 10.3727/096368912x661373] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Oligodendrocyte (OL) replacement can be a promising strategy for spinal cord injury (SCI) repair. However, the poor posttransplantation survival and inhibitory properties to axonal regeneration are two major challenges that limit their use as donor cells for repair of CNS injuries. Therefore, strategies aimed at enhancing the survival of grafted oligodendrocytes as well as reducing their inhibitory properties, such as the use of more permissive oligodendrocyte progenitor cells (OPCs), also called glial restricted precursor cells (GRPs), should be highly prioritized. Schwann cell (SC) transplantation is a promising translational strategy to promote axonal regeneration after CNS injuries, partly due to their expression and secretion of multiple growth-promoting factors. Whether grafted SCs have any effect on the biological properties of grafted GRPs remains unclear. Here we report that either SCs or SC-conditioned medium (SCM) promoted the survival, proliferation, and migration of GRPs in vitro. When GRPs and SCs were cografted into the normal or injured spinal cord, robust survival, proliferation, and migration of grafted GRPs were observed. Importantly, grafted GRPs differentiated into mature oligodendrocytes and formed new myelin on axons caudal to the injury. Finally, cografts of GRPs and SCs promoted recovery of function following SCI. We conclude that cotransplantation of GRPs and SCs, the only two kinds of myelin-forming cells in the nervous system, act complementarily and synergistically to promote greater anatomical and functional recovery after SCI than when either cell type is used alone.
Collapse
Affiliation(s)
- Jian-Guo Hu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital, Bengbu Medical College, Bengbu, P.R. China
| | - Xiao-Fei Wang
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ling-Xiao Deng
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nai-Kui Liu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Xiang Gao
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jinhui Chen
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Feng C. Zhou
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Xiao-Ming Xu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
25
|
Bicanski A, Ryczko D, Knuesel J, Harischandra N, Charrier V, Ekeberg Ö, Cabelguen JM, Ijspeert AJ. Decoding the mechanisms of gait generation in salamanders by combining neurobiology, modeling and robotics. BIOLOGICAL CYBERNETICS 2013; 107:545-564. [PMID: 23430277 DOI: 10.1007/s00422-012-0543-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 12/13/2012] [Indexed: 06/01/2023]
Abstract
Vertebrate animals exhibit impressive locomotor skills. These locomotor skills are due to the complex interactions between the environment, the musculo-skeletal system and the central nervous system, in particular the spinal locomotor circuits. We are interested in decoding these interactions in the salamander, a key animal from an evolutionary point of view. It exhibits both swimming and stepping gaits and is faced with the problem of producing efficient propulsive forces using the same musculo-skeletal system in two environments with significant physical differences in density, viscosity and gravitational load. Yet its nervous system remains comparatively simple. Our approach is based on a combination of neurophysiological experiments, numerical modeling at different levels of abstraction, and robotic validation using an amphibious salamander-like robot. This article reviews the current state of our knowledge on salamander locomotion control, and presents how our approach has allowed us to obtain a first conceptual model of the salamander spinal locomotor networks. The model suggests that the salamander locomotor circuit can be seen as a lamprey-like circuit controlling axial movements of the trunk and tail, extended by specialized oscillatory centers controlling limb movements. The interplay between the two types of circuits determines the mode of locomotion under the influence of sensory feedback and descending drive, with stepping gaits at low drive, and swimming at high drive.
Collapse
Affiliation(s)
- Andrej Bicanski
- Biorobotics Laboratory, School of Engineering, École Polytechnique Fédérale de Lausanne, Station 14, 1015 , Lausanne, Vaud, Switzerland,
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Weight-bearing locomotion in the developing opossum, Monodelphis domestica following spinal transection: remodeling of neuronal circuits caudal to lesion. PLoS One 2013; 8:e71181. [PMID: 23951105 PMCID: PMC3741377 DOI: 10.1371/journal.pone.0071181] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 06/26/2013] [Indexed: 12/17/2022] Open
Abstract
Complete spinal transection in the mature nervous system is typically followed by minimal axonal repair, extensive motor paralysis and loss of sensory functions caudal to the injury. In contrast, the immature nervous system has greater capacity for repair, a phenomenon sometimes called the infant lesion effect. This study investigates spinal injuries early in development using the marsupial opossum Monodelphis domestica whose young are born very immature, allowing access to developmental stages only accessible in utero in eutherian mammals. Spinal cords of Monodelphis pups were completely transected in the lower thoracic region, T10, on postnatal-day (P)7 or P28 and the animals grew to adulthood. In P7-injured animals regrown supraspinal and propriospinal axons through the injury site were demonstrated using retrograde axonal labelling. These animals recovered near-normal coordinated overground locomotion, but with altered gait characteristics including foot placement phase lags. In P28-injured animals no axonal regrowth through the injury site could be demonstrated yet they were able to perform weight-supporting hindlimb stepping overground and on the treadmill. When placed in an environment of reduced sensory feedback (swimming) P7-injured animals swam using their hindlimbs, suggesting that the axons that grew across the lesion made functional connections; P28-injured animals swam using their forelimbs only, suggesting that their overground hindlimb movements were reflex-dependent and thus likely to be generated locally in the lumbar spinal cord. Modifications to propriospinal circuitry in P7- and P28-injured opossums were demonstrated by changes in the number of fluorescently labelled neurons detected in the lumbar cord following tracer studies and changes in the balance of excitatory, inhibitory and neuromodulatory neurotransmitter receptors’ gene expression shown by qRT-PCR. These results are discussed in the context of studies indicating that although following injury the isolated segment of the spinal cord retains some capability of rhythmic movement the mechanisms involved in weight-bearing locomotion are distinct.
Collapse
|
27
|
Gad P, Lavrov I, Shah P, Zhong H, Roy RR, Edgerton VR, Gerasimenko Y. Neuromodulation of motor-evoked potentials during stepping in spinal rats. J Neurophysiol 2013; 110:1311-22. [PMID: 23761695 DOI: 10.1152/jn.00169.2013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The rat spinal cord isolated from supraspinal control via a complete low- to midthoracic spinal cord transection produces locomotor-like patterns in the hindlimbs when facilitated pharmacologically and/or by epidural electrical stimulation. To evaluate the role of epidural electrical stimulation in enabling motor control (eEmc) for locomotion and posture, we recorded potentials evoked by epidural spinal cord stimulation in selected hindlimb muscles during stepping and standing in adult spinal rats. We hypothesized that the temporal details of the phase-dependent modulation of these evoked potentials in selected hindlimb muscles while performing a motor task in the unanesthetized state would be predictive of the potential of the spinal circuitries to generate stepping. To test this hypothesis, we characterized soleus and tibialis anterior (TA) muscle responses as middle response (MR; 4-6 ms) or late responses (LRs; >7 ms) during stepping with eEmc. We then compared these responses to the stepping parameters with and without a serotoninergic agonist (quipazine) or a glycinergic blocker (strychnine). Quipazine inhibited the MRs induced by eEmc during nonweight-bearing standing but facilitated locomotion and increased the amplitude and number of LRs induced by eEmc during stepping. Strychnine facilitated stepping and reorganized the LRs pattern in the soleus. The LRs in the TA remained relatively stable at varying loads and speeds during locomotion, whereas the LRs in the soleus were strongly modulated by both of these variables. These data suggest that LRs facilitated electrically and/or pharmacologically are not time-locked to the stimulation pulse but are highly correlated to the stepping patterns of spinal rats.
Collapse
Affiliation(s)
- Parag Gad
- Biomedical Engineering IDP, University of California, Los Angeles, California
| | | | | | | | | | | | | |
Collapse
|
28
|
Rangasamy SB. Locomotor recovery after spinal cord hemisection/contusion injures in bonnet monkeys: footprint testing--a minireview. Synapse 2013; 67:427-53. [PMID: 23401170 DOI: 10.1002/syn.21645] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 02/01/2013] [Indexed: 12/12/2022]
Abstract
Spinal cord injuries usually produce loss or impairment of sensory, motor and reflex function below the level of damage. In the absence of functional regeneration or manipulations that promote regeneration, spontaneous improvements in motor functions occur due to the activation of multiple compensatory mechanisms in animals and humans following the partial spinal cord injury. Many studies were performed on quantitative evaluation of locomotor recovery after induced spinal cord injury in animals using behavioral tests and scoring techniques. Although few studies on rodents have led to clinical trials, it would appear imperative to use nonhuman primates such as macaque monkeys in order to relate the research outcomes to recovery of functions in humans. In this review, we will discuss some of our research evidences concerning the degree of spontaneous recovery in bipedal locomotor functions of bonnet monkeys that underwent spinal cord hemisection/contusion lesions. To our knowledge, this is the first report to discuss on the extent of spontaneous recovery in bipedal locomotion of macaque monkeys through the application of footprint analyzing technique. In addition, the results obtained were compared with the published data on recovery of quadrupedal locomotion of spinally injured rodents. We propose that the mechanisms underlying spontaneous recovery of functions in spinal cord lesioned monkeys may be correlated to the mature function of spinal pattern generator for locomotion under the impact of residual descending and afferent connections. Moreover, based on analysis of motor functions observed in locomotion in these subjected monkeys, we understand that spinal automatism and development of responses by afferent stimuli from outside the cord could possibly contribute to recovery of paralyzed hindlimbs. This report also emphasizes the functional contribution of progressive strengthening of undamaged nerve fibers through a collateral sprouts/synaptic plasticity formed in partially lesioned cord of monkeys.
Collapse
Affiliation(s)
- Suresh Babu Rangasamy
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, 60612, USA.
| |
Collapse
|
29
|
Jones SE, Saad M, Lewis DI, Subramanian HH, Dutschmann M. The nucleus retroambiguus as possible site for inspiratory rhythm generation caudal to obex. Respir Physiol Neurobiol 2012; 180:305-10. [PMID: 22210466 PMCID: PMC3282833 DOI: 10.1016/j.resp.2011.12.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 12/14/2011] [Accepted: 12/14/2011] [Indexed: 11/17/2022]
Abstract
We investigated whether spinalized animals can produce inspiratory rhythm. We recorded spinal inspiratory phrenic (PNA) and cranial inspiratory hypoglossal (HNA) nerve activity in the perfused brainstem preparation of rat. Complete transverse transections were performed at 1.5 (pyramidal decussation) or 2mm (first cervical spinal segment) caudal to obex. Excitatory drive was enhanced by either extracellular potassium, hypercapnia or by stimulating arterial chemoreceptors. Caudal transections immediately eliminated descending network drive for PNA, while the cranial inspiratory HNA remained unaffected. After transection, PNA bursting remained sporadic even during enhanced excitatory drive. This implies, cervical spinal circuits lack intrinsic rhythmogenic capacity. Rostral transections also abolished PNA immediately. However, HNA also progressively lost its amplitude and rhythm. Chemoreceptor activation only triggered tonic, non-rhythmic HNA. Thus the integrity of ponto-medullary circuitry was maintained. Our results suggest that an area overlapping the caudal nucleus retroambiguus provides critical ascending input to the ponto-medullary respiratory network for inspiratory rhythm generation.
Collapse
Affiliation(s)
- Sarah E. Jones
- Institute of Membrane and Systems Biology, Garstang Building, University of Leeds, Leeds LS2 9JT
| | - Mona Saad
- Institute of Membrane and Systems Biology, Garstang Building, University of Leeds, Leeds LS2 9JT
| | - David I. Lewis
- Institute of Membrane and Systems Biology, Garstang Building, University of Leeds, Leeds LS2 9JT
| | - Hari H. Subramanian
- Florey Neurosciences Institutes, Gate 11, Royal Parade, University of Melbourne, Victoria, 3052, Australia
| | - Mathias Dutschmann
- Institute of Membrane and Systems Biology, Garstang Building, University of Leeds, Leeds LS2 9JT
- Florey Neurosciences Institutes, Gate 11, Royal Parade, University of Melbourne, Victoria, 3052, Australia
| |
Collapse
|
30
|
Abstract
Motor behaviour results from information processing across multiple neural networks acting at all levels from initial selection of the behaviour to its final generation. Understanding how motor behaviour is produced requires identifying the constituent neurons of these networks, their cellular properties, and their pattern of synaptic connectivity. Neural networks have been traditionally studied with neurophysiological and neuroanatomical approaches. These approaches have been highly successful in particularly suitable 'model' preparations, typically ones in which the numbers of neurons in the networks were relatively small, neural network composition was unvarying across individual animals, and the preparations continued to produce fictive motor patterns in vitro. However, analysing networks without these characteristics, and analysing the complete ensemble of networks that cooperatively generate behaviours, is difficult with these approaches. Recently developed molecular and neurogenetic tools provide additional avenues for analysing motor networks by allowing individual or groups of neurons within networks to be manipulated in novel ways and allowing experiments to be performed not only in vitro but also in vivo. We review here some of the new insights into motor network function that these advances have provided and indicate how these advances might bridge gaps in our understanding of motor control. To these ends, we first review motor neural network organisation highlighting cross-phylum principles. We then use prominent examples from the field to show how neurogenetic approaches can complement classical physiological studies, and identify additional areas where these approaches could be advantageously applied.
Collapse
Affiliation(s)
- Ansgar Büschges
- Zoological Institute, Department of Animal Physiology, Biocenter Cologne, University of Cologne, Zülpicher Straße 47b, 50674 Cologne, Germany.
| | | | | |
Collapse
|
31
|
Shi YC, Lin S, Castillo L, Aljanova A, Enriquez RF, Nguyen AD, Baldock PA, Zhang L, Bijker MS, Macia L, Yulyaningsih E, Zhang H, Lau J, Sainsbury A, Herzog H. Peripheral-specific y2 receptor knockdown protects mice from high-fat diet-induced obesity. Obesity (Silver Spring) 2011; 19:2137-48. [PMID: 21546930 DOI: 10.1038/oby.2011.99] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Y2 receptors, particularly those in the brain, have been implicated in neuropeptide Y (NPY)-mediated effects on energy homeostasis and bone mass. Recent evidence also indicates a role for Y2 receptors in peripheral tissues in this process by promoting adipose tissue accretion; however their effects on energy balance remain unclear. Here, we show that adult-onset conditional knockdown of Y2 receptors predominantly in peripheral tissues results in protection against diet-induced obesity accompanied by significantly reduced weight gain, marked reduction in adiposity and improvements in glucose tolerance without any adverse effect on lean mass or bone. These changes occur in association with significant increases in energy expenditure, respiratory exchange ratio, and physical activity and despite concurrent hyperphagia. On a chow diet, knockdown of peripheral Y2 receptors results in increased respiratory exchange ratio and physical activity with no effect on lean or bone mass, but decreases energy expenditure without effecting body weight or food intake. These results suggest that peripheral Y2 receptor signaling is critical in the regulation of oxidative fuel selection and physical activity and protects against the diet-induced obesity. The lack of effects on bone mass seen in this model further indicates that bone mass is primarily controlled by non-peripheral Y2 receptors. This study provides evidence that novel drugs that target peripheral rather than central Y2 receptors could provide benefits for the treatment of obesity and glucose intolerance without adverse effects on lean and bone mass, with the additional benefit of avoiding side effects often associated with pharmaceuticals that act on the central nervous system.
Collapse
Affiliation(s)
- Yan-Chuan Shi
- Neuroscience Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Lyalka VF, Hsu LJ, Karayannidou A, Zelenin PV, Orlovsky GN, Deliagina TG. Facilitation of postural limb reflexes in spinal rabbits by serotonergic agonist administration, epidural electrical stimulation, and postural training. J Neurophysiol 2011; 106:1341-54. [DOI: 10.1152/jn.00115.2011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In quadrupeds, spinalization in the thoracic region severely impairs postural control in the hindquarters. The goal of this study was to improve postural functions in chronic spinal rabbits by regular application of different factors: intrathecal injection of the 5-HT2 agonist (±)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane hydrochloride (DOI), epidural electrical spinal cord stimulation (EES), and specific postural training (SPT). The factors were used either alone (SPT group) or in combination (DOI+SPT, EES+SPT, and DOI+EES+SPT groups) or not used (control group). It was found that in none of these groups did normal postural corrective movements in response to lateral tilts of the supporting platform reappear within the month of treatment. In control group, reduced irregular electromyographic (EMG) responses, either correctly or incorrectly phased in relation to tilts, were observed. By contrast, in DOI+SPT and EES+SPT groups, a gradual threefold increase in the proportion of correctly phased EMG responses (compared with control) was observed. The increase was smaller in DOI+EES+SPT and SPT groups. Dissimilarly to these long-term effects, short-term effects of DOI and EES were weak or absent. In addition, gradual development of oscillatory EMG activity in the responses to tilts, characteristic for the control group, was retarded in DOI+SPT, EES+SPT, DOI+EES+SPT, and SPT groups. Thus regular application of the three tested factors and their combinations caused progressive, long-lasting plastic changes in the isolated spinal networks, resulting in the facilitation of spinal postural reflexes and in the retardation of the development of oscillatory EMG activity. The facilitated reflexes, however, were insufficient for normal postural functions.
Collapse
Affiliation(s)
- V. F. Lyalka
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - L.-J. Hsu
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - A. Karayannidou
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - P. V. Zelenin
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - G. N. Orlovsky
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - T. G. Deliagina
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
33
|
Rossignol S, Frigon A, Barrière G, Martinez M, Barthélemy D, Bouyer L, Bélanger M, Provencher J, Chau C, Brustein E, Barbeau H, Giroux N, Marcoux J, Langlet C, Alluin O. Chapter 16--spinal plasticity in the recovery of locomotion. PROGRESS IN BRAIN RESEARCH 2011; 188:229-41. [PMID: 21333814 DOI: 10.1016/b978-0-444-53825-3.00021-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Locomotion is a very robust motor pattern which can be optimized after different types of lesions to the central and/or peripheral nervous system. This implies that several plastic mechanisms are at play to re-express locomotion after such lesions. Here, we review some of the key observations that helped identify some of these plastic mechanisms. At the core of this plasticity is the existence of a spinal central pattern generator (CPG) which is responsible for hindlimb locomotion as observed after a complete spinal cord section. However, normally, the CPG pattern is adapted by sensory inputs to take the environment into account and by supraspinal inputs in the context of goal-directed locomotion. We therefore also review some of the sensory and supraspinal mechanisms involved in the recovery of locomotion after partial spinal injury. We particularly stress a recent development using a dual spinal lesion paradigm in which a first partial spinal lesion is made which is then followed, some weeks later, by a complete spinalization. The results show that the spinal cord below the spinalization has been changed by the initial partial lesion suggesting that, in the recovery of locomotion after partial spinal lesion, plastic mechanisms within the spinal cord itself are very important.
Collapse
Affiliation(s)
- Serge Rossignol
- Groupe de Recherche sur le Système Nerveux Central, Department of Physiology, Faculty of Medicine, Université de Montréal, Montreal, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Rehabilitation and Recovery of the Patient with Stroke. Stroke 2011. [DOI: 10.1016/b978-1-4160-5478-8.10056-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
35
|
Musienko PE, Zelenin PV, Orlovsky GN, Deliagina TG. Facilitation of postural limb reflexes with epidural stimulation in spinal rabbits. J Neurophysiol 2010; 103:1080-92. [PMID: 20018835 PMCID: PMC2822695 DOI: 10.1152/jn.00575.2009] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Accepted: 12/16/2009] [Indexed: 11/22/2022] Open
Abstract
It is known that after spinalization animals lose their ability to maintain lateral stability when standing or walking. A likely reason for this is a reduction of the postural limb reflexes (PLRs) driven by stretch and load receptors of the limbs. The aim of this study was to clarify whether spinal networks contribute to the generation of PLRs. For this purpose, first, PLRs were recorded in decerebrated rabbits before and after spinalization at T12. Second, the effects of epidural electrical stimulation (EES) at L7 on the limb reflexes were studied after spinalization. To evoke PLRs, the vertebrate column of the rabbit was fixed, whereas the hindlimbs were positioned on the platform. Periodic lateral tilts of the platform caused antiphase flexion-extension limbs movements, similar to those observed in intact animals keeping balance on the tilting platform. Before spinalization, these movements evoked PLRs: augmentation of extensor EMGs and increase of contact force during limb flexion, suggesting their stabilizing postural effects. Spinalization resulted in almost complete disappearance of PLRs. After EES, however, the PLRs reappeared and persisted for up to several minutes, although their values were reduced. The post-EES effects could be magnified by intrathecal application of quipazine (5-HT agonist) at L4-L6. Results of this study suggest that the spinal cord contains the neuronal networks underlying PLRs; they can contribute to the maintenance of lateral stability in intact subjects. In acute spinal animals, these networks can be activated by EES, suggesting that they are normally activated by a tonic supraspinal drive.
Collapse
Affiliation(s)
- P. E. Musienko
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden; and
- Pavlov Institute of Physiology, St. Petersburg, Russia
| | - P. V. Zelenin
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden; and
| | - G. N. Orlovsky
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden; and
| | - T. G. Deliagina
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden; and
| |
Collapse
|
36
|
Marino P, Norreel JC, Schachner M, Rougon G, Amoureux MC. A polysialic acid mimetic peptide promotes functional recovery in a mouse model of spinal cord injury. Exp Neurol 2009; 219:163-74. [DOI: 10.1016/j.expneurol.2009.05.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 04/23/2009] [Accepted: 05/08/2009] [Indexed: 10/20/2022]
|
37
|
Opposing aminergic modulation of distinct spinal locomotor circuits and their functional coupling during amphibian metamorphosis. J Neurosci 2009; 29:1163-74. [PMID: 19176825 DOI: 10.1523/jneurosci.5255-08.2009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The biogenic amines serotonin (5-HT) and noradrenaline (NA) are well known modulators of central pattern-generating networks responsible for vertebrate locomotion. Here we have explored monoaminergic modulation of the spinal circuits that generate two distinct modes of locomotion in the metamorphosing frog Xenopus laevis. At metamorphic climax when propulsion is achieved by undulatory larval tail movements and/or by kicking of the newly developed adult hindlimbs, the underlying motor networks remain spontaneously active in vitro, producing either separate fast axial and slow appendicular rhythms or a single combined rhythm that drives coordinated tail-based and limb-based swimming in vivo. In isolated spinal cords already expressing distinct axial and limb rhythms, bath-applied 5-HT induced coupled network activity through an opposite slowing of axial rhythmicity (by increasing motoneuron burst and cycle durations) and an acceleration of limb rhythmicity (by decreasing burst and cycle durations). In contrast, in preparations spontaneously expressing coordinated fictive locomotion, exogenous NA caused a dissociation of spinal activity into separate faster axial and slower appendicular rhythms by decreasing and increasing burst and cycle durations, respectively. Moreover, in preparations from premetamorphic and postmetamorphic animals that express exclusively axial-based or limb-based locomotion, 5-HT and NA modified the developmentally independent rhythms in a similar manner to the amines' opposing effects on the coexisting circuits at metamorphic climax. Thus, by exerting differential modulatory actions on one network that are opposite to their influences on a second adjacent circuit, these two amines are able to precisely regulate the functional relationship between different rhythmogenic networks in a developing vertebrate's spinal cord.
Collapse
|
38
|
Lyalka VF, Orlovsky GN, Deliagina TG. Impairment of postural control in rabbits with extensive spinal lesions. J Neurophysiol 2009; 101:1932-40. [PMID: 19164112 PMCID: PMC2695648 DOI: 10.1152/jn.00009.2008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Accepted: 01/15/2009] [Indexed: 11/22/2022] Open
Abstract
Our previous studies on rabbits demonstrated that the ventral spinal pathways are of primary importance for postural control in the hindquarters. After ventral hemisection, postural control did not recover, whereas after dorsal or lateral hemisection it did. The aim of this study was to examine postural capacity of rabbits after more extensive lesion (3/4 section of the spinal cord at T(12) level), that is, with only one ventral quadrant spared (VQ animals). They were tested before (control) and after lesion on the platform periodically tilted in the frontal plane. In control animals, tilts of the platform regularly elicited coordinated electromyographic (EMG) responses in the hindlimbs, which resulted in generation of postural corrections and in maintenance of balance. In VQ rabbits, the EMG responses appeared only in a part of tilt cycles, and they could be either correctly or incorrectly phased in relation to tilts. Because of a reduced value and incorrect phasing of EMG responses on both sides, this muscle activity did not cause postural corrective movements in the majority of rabbits, and the body swayed together with the platform. In these rabbits, the ability to perform postural corrections did not recover during the whole period of observation (< or =30 days). Low probability of correct EMG responses to tilts in most rabbits as well as an appearance of incorrect responses to tilts suggest that the spinal reflex chains, necessary for postural control, have not been specifically selected by a reduced supraspinal drive transmitted via a single ventral quadrant.
Collapse
Affiliation(s)
- V. F. Lyalka
- Department of Neuroscience, Karolinska Institute, SE-17177, Stockholm, Sweden
| | - G. N. Orlovsky
- Department of Neuroscience, Karolinska Institute, SE-17177, Stockholm, Sweden
| | - T. G. Deliagina
- Department of Neuroscience, Karolinska Institute, SE-17177, Stockholm, Sweden
| |
Collapse
|
39
|
Clinical relevance of gait research applied to clinical trials in spinal cord injury. Brain Res Bull 2009; 78:35-42. [DOI: 10.1016/j.brainresbull.2008.09.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Revised: 08/10/2008] [Accepted: 09/11/2008] [Indexed: 11/23/2022]
|
40
|
Fong AJ, Roy RR, Ichiyama RM, Lavrov I, Courtine G, Gerasimenko Y, Tai Y, Burdick J, Edgerton VR. Recovery of control of posture and locomotion after a spinal cord injury: solutions staring us in the face. PROGRESS IN BRAIN RESEARCH 2009; 175:393-418. [PMID: 19660669 PMCID: PMC2904312 DOI: 10.1016/s0079-6123(09)17526-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Over the past 20 years, tremendous advances have been made in the field of spinal cord injury research. Yet, consumed with individual pieces of the puzzle, we have failed as a community to grasp the magnitude of the sum of our findings. Our current knowledge should allow us to improve the lives of patients suffering from spinal cord injury. Advances in multiple areas have provided tools for pursuing effective combination of strategies for recovering stepping and standing after a severe spinal cord injury. Muscle physiology research has provided insight into how to maintain functional muscle properties after a spinal cord injury. Understanding the role of the spinal networks in processing sensory information that is important for the generation of motor functions has focused research on developing treatments that sharpen the sensitivity of the locomotor circuitry and that carefully manage the presentation of proprioceptive and cutaneous stimuli to favor recovery. Pharmacological facilitation or inhibition of neurotransmitter systems, spinal cord stimulation, and rehabilitative motor training, which all function by modulating the physiological state of the spinal circuitry, have emerged as promising approaches. Early technological developments, such as robotic training systems and high-density electrode arrays for stimulating the spinal cord, can significantly enhance the precision and minimize the invasiveness of treatment after an injury. Strategies that seek out the complementary effects of combination treatments and that efficiently integrate relevant technical advances in bioengineering represent an untapped potential and are likely to have an immediate impact. Herein, we review key findings in each of these areas of research and present a unified vision for moving forward. Much work remains, but we already have the capability, and more importantly, the responsibility, to help spinal cord injury patients now.
Collapse
Affiliation(s)
- Andy J. Fong
- Division of Engineering, Bioengineering, California Institute of Technology, Pasadena, CA, USA
| | - Roland R. Roy
- Department of Physiological Science, University of California, Los Angeles, Los Angeles, CA, USA
- Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Igor Lavrov
- Department of Physiological Science, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Yury Gerasimenko
- Department of Physiological Science, University of California, Los Angeles, Los Angeles, CA, USA
- Pavlov Institute of Physiology, St. Petersburg, Russia
| | - Y.C. Tai
- Division of Engineering, Bioengineering, California Institute of Technology, Pasadena, CA, USA
- Division of Engineering, Mechanical Engineering Options, California Institute of Technology, Pasadena, CA, USA
| | - Joel Burdick
- Division of Engineering, Bioengineering, California Institute of Technology, Pasadena, CA, USA
- Division of Engineering, Mechanical Engineering Options, California Institute of Technology, Pasadena, CA, USA
| | - V. Reggie Edgerton
- Department of Physiological Science, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Neurobiology, University of California, Los Angeles, Los Angeles, CA, USA
- Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
41
|
Lyalka VF, Musienko PE, Orlovsky GN, Grillner S, Deliagina TG. Effect of intrathecal administration of serotoninergic and noradrenergic drugs on postural performance in rabbits with spinal cord lesions. J Neurophysiol 2008; 100:723-32. [PMID: 18497353 PMCID: PMC2525719 DOI: 10.1152/jn.90218.2008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Accepted: 05/16/2008] [Indexed: 11/22/2022] Open
Abstract
Our previous studies have shown that extensive spinal lesions at T12 in the rabbit [ventral hemisection (VHS) or 3/4-section that spares one ventral quadrant (VQ)] severely damaged the postural system. When tested on the platform periodically tilted in the frontal plane, VHS and VQ animals typically were not able to perform postural corrective movements by their hindlimbs, although EMG responses (correctly or incorrectly phased) could be observed. We attempted to restore postural control in VHS and VQ rabbits by applying serotoninergic and noradrenergic drugs to the spinal cord below the lesion through the intrathecal cannula. It was found that serotonin and quipazine (5-HT1,2,3 agonist) did not re-establish postural corrective movements. However, when applied during a 10-day period after lesion, these drugs produced a twofold increase of the proportion of correct EMG responses to tilts. It was also found that methoxamine (alpha1 noradrenergic agonist), as well as the mixture of methoxamine and quipazine, did not re-establish postural corrective movements and did not increase the proportion of correct EMG responses. Serotonin (at later stages) and methoxamine induced periodical bursting in EMGs, suggesting activation of spinal rhythm-generating networks. Appearance of bursting seems to perturb normal operation of postural mechanisms, as suggested by methoxamine-induced abolishment of postural effects of quipazine. When applied in an intact animal, none of the tested drugs affected the value of postural corrections or evoked periodical bursting. We conclude that activation of the serotoninergic system (but not the noradrenergic one) causes selective enhancement of spinal postural reflexes during the earlier postlesion period.
Collapse
Affiliation(s)
- V F Lyalka
- Department of Neuroscience, Karolinska Institute, SE-17177 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
42
|
Baumbauer KM, Hoy KC, Huie JR, Hughes AJ, Woller SA, Puga DA, Setlow B, Grau JW. Timing in the absence of supraspinal input I: variable, but not fixed, spaced stimulation of the sciatic nerve undermines spinally-mediated instrumental learning. Neuroscience 2008; 155:1030-47. [PMID: 18674601 DOI: 10.1016/j.neuroscience.2008.07.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 06/27/2008] [Accepted: 07/02/2008] [Indexed: 10/21/2022]
Abstract
Rats with complete spinal transections are capable of acquiring a simple instrumentally trained response. If rats receive shock to one hind limb when the limb is extended (controllable shock), the spinal cord will learn to hold the leg in a flexed position that minimizes shock exposure. If shock is delivered irrespective of leg position, subjects do not exhibit an increase in flexion duration and subsequently fail to learn when tested with controllable shock (learning deficit). Just 6 min of variable intermittent shock produces a learning deficit that lasts 24 h. Evidence suggests that the neural mechanisms underlying the learning deficit may be related to those involved in other instances of spinal plasticity (e.g. windup, long-term potentiation). The present paper begins to explore these relations by demonstrating that direct stimulation of the sciatic nerve also impairs instrumental learning. Six minutes of electrical stimulation (mono- or biphasic direct current [DC]) of the sciatic nerve in spinally transected rats produced a voltage-dependent learning deficit that persisted for 24 h (experiments 1-2) and was dependent on C-fiber activation (experiment 7). Exposure to continuous stimulation did not produce a deficit, but intermittent burst or single pulse (as short as 0.1 ms) stimulation (delivered at a frequency of 0.5 Hz) did, irrespective of the pattern (fixed or variable) of stimulus delivery (experiments 3-6, 8). When the duration of stimulation was extended from 6 to 30 min, a surprising result emerged; shocks applied in a random (variable) fashion impaired subsequent learning whereas shocks given in a regular pattern (fixed spacing) did not (experiments 9-10). The results imply that spinal neurons are sensitive to temporal relations and that stimulation at regular intervals can have a restorative effect.
Collapse
Affiliation(s)
- K M Baumbauer
- Department of Psychology, Texas A&M University, College Station, TX 77843-4325, USA.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Sisto SA, Forrest GF, Faghri PD. Technology for mobility and quality of life in spinal cord injury. ACTA ACUST UNITED AC 2008; 27:56-68. [PMID: 18463021 DOI: 10.1109/emb.2007.907398] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sue Ann Sisto
- Division of Rehabilitation Sciences, School of Health Technology & Management, Stony Brook University, Stony Brook, NY 11790-8340, USA.
| | | | | |
Collapse
|
44
|
Gerasimenko YP, Ichiyama RM, Lavrov IA, Courtine G, Cai L, Zhong H, Roy RR, Edgerton VR. Epidural spinal cord stimulation plus quipazine administration enable stepping in complete spinal adult rats. J Neurophysiol 2007; 98:2525-36. [PMID: 17855582 DOI: 10.1152/jn.00836.2007] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We hypothesized that epidural spinal cord stimulation (ES) and quipazine (a serotonergic agonist) modulates the excitability of flexor and extensor related intraspinal neural networks in qualitatively unique, but complementary, ways to facilitate locomotion in spinal cord-injured rats. To test this hypothesis, we stimulated (40 Hz) the S(1) spinal segment before and after quipazine administration (0.3 mg/kg, ip) in bipedally step-trained and nontrained, adult, complete spinal (mid-thoracic) rats. The stepping pattern of these rats was compared with control rats. At the stimulation levels used, stepping was elicited only when the hindlimbs were placed on a moving treadmill. In nontrained rats, the stepping induced by ES and quipazine administration was non-weight bearing, and the cycle period was shorter than in controls. In contrast, the stepping induced by ES and quipazine in step-trained rats was highly coordinated with clear plantar foot placement and partial weight bearing. The effect of ES and quipazine on EMG burst amplitude and duration was greater in flexor than extensor motor pools. Using fast Fourier transformation analysis of EMG bursts during ES, we observed one dominant peak at 40 Hz in the medial gastrocnemius (ankle extensor), whereas there was less of dominant spectral peak in the tibialis anterior (ankle flexor). We suggest that these frequency distributions reflect amplitude modulation of predominantly monosynaptic potentials in the extensor and predominantly polysynaptic pathways in the flexor muscle. Quipazine potentiated the amplitude of these responses. The data suggest that there are fundamental differences in the circuitry that generates flexion and extension during locomotion.
Collapse
Affiliation(s)
- Yury P Gerasimenko
- Department of Physiological Science, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Erschbamer M, Pernold K, Olson L. Inhibiting epidermal growth factor receptor improves structural, locomotor, sensory, and bladder recovery from experimental spinal cord injury. J Neurosci 2007; 27:6428-35. [PMID: 17567803 PMCID: PMC6672443 DOI: 10.1523/jneurosci.1037-07.2007] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Lack of axon regeneration in the adult CNS has been attributed partly to myelin inhibitors and the properties of astrocytes. After spinal cord injury, proliferating astrocytes not only represent a physical barrier to regenerating axons but also express and secrete molecules that inhibit nerve growth, including chondroitin sulfate proteoglycans (CSPGs). Epidermal growth factor receptor (EGFR) activation triggers astrocytes into becoming reactive astrocytes, and EGFR ligands stimulate the secretion of CSPGs as well as the formation of cribriform astrocyte arrangements that contribute to the formation of glial scars. Recently, it was shown that EGFR inhibitors promote nerve regeneration in vitro and in vivo. Blocking a novel Nogo receptor interacting mechanism and/or effects of EGFR inhibition on astrocytes may underlie these effects. Here we show that rats subjected to weight-drop spinal cord injury can be effectively treated by direct delivery of a potent EGFR inhibitor to the injured area, leading to significantly better functional and structural outcome. Motor and sensory functions are improved and bladder function is restored. The robust effects and the fact that other EGFR inhibitors are in clinical use in cancer treatments make these drugs particularly attractive candidates for clinical trials in spinal cord injury.
Collapse
Affiliation(s)
- Matthias Erschbamer
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden.
| | | | | |
Collapse
|
46
|
Belegu V, Oudega M, Gary DS, McDonald JW. Restoring function after spinal cord injury: promoting spontaneous regeneration with stem cells and activity-based therapies. Neurosurg Clin N Am 2007; 18:143-68, xi. [PMID: 17244561 DOI: 10.1016/j.nec.2006.10.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Although neural regeneration is an active research field today, no current treatments can aid regeneration after spinal cord injury. This article reviews the feasibility of spinal cord repair and provides an overview of the range of strategies scientists are taking toward regeneration. The major focus of this article is the future role of stem cell transplantation and similar rehabilitative restorative approaches designed to optimize spontaneous regeneration by mobilizing endogenous stem cells and facilitating other cellular mechanisms of regeneration, such as axonal growth and myelination.
Collapse
Affiliation(s)
- Visar Belegu
- The International Center for Spinal Cord Injury, Kennedy Krieger Institute, Department of Neurology, Johns Hopkins University School of Medicine, 707 North Broadway, Room 518, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
47
|
Majczyński H, Cabaj A, Sławińska U, Górska T. Intrathecal administration of yohimbine impairs locomotion in intact rats. Behav Brain Res 2006; 175:315-22. [PMID: 17010450 DOI: 10.1016/j.bbr.2006.08.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2006] [Revised: 08/30/2006] [Accepted: 08/31/2006] [Indexed: 11/20/2022]
Abstract
The effects of upper lumbar level intrathecal injection of yohimbine, an alpha2-noradrenergic antagonist, on overground locomotion in intact rats was studied. This treatment caused dose-dependent impairment of hindlimb locomotor movement, which varied from transient hindlimb paralysis at a dose of 200 microg/20 microl to transient trunk instability at 50 microg/20 microl. Repetitive (every 48 h) injections of yohimbine at high (200 microg/20 microl) and medium (100 microg/20 microl) doses caused tachyphylaxis, which usually led to a lack of reaction to the third injection. This phenomenon was not observed after repetitive injections of the low (50 microg/20 microl) dose of the drug. These results show that the noradrenergic system is involved in the control of locomotion, since intrathecal administration of a specific antagonist affects this activity in intact rats.
Collapse
Affiliation(s)
- Henryk Majczyński
- Department of Neurophysiology, Nencki Institute of Experimental Biology, 3 Pasteura Str., 02-093 Warsaw, Poland.
| | | | | | | |
Collapse
|
48
|
Morton SM, Bastian AJ. Cerebellar contributions to locomotor adaptations during splitbelt treadmill walking. J Neurosci 2006; 26:9107-16. [PMID: 16957067 PMCID: PMC6674518 DOI: 10.1523/jneurosci.2622-06.2006] [Citation(s) in RCA: 429] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Locomotor adaptability ranges from the simple and fast-acting to the complex and long-lasting and is a requirement for successful mobility in an unpredictable environment. Several neural structures, including the spinal cord, brainstem, cerebellum, and motor cortex, have been implicated in the control of various types of locomotor adaptation. However, it is not known which structures control which types of adaptation and the specific mechanisms by which the appropriate adjustments are made. Here, we used a splitbelt treadmill to test cerebellar contributions to two different forms of locomotor adaptation in humans. We found that cerebellar damage does not impair the ability to make reactive feedback-driven motor adaptations, but significantly disrupts predictive feedforward motor adaptations during splitbelt treadmill locomotion. Our results speak to two important aspects of locomotor control. First, we have demonstrated that different levels of locomotor adaptability are clearly dissociable. Second, the cerebellum seems to play an essential role in predictive but not reactive locomotor adjustments. We postulate that reactive adjustments may instead be predominantly controlled by lower neural centers, such as the spinal cord or brainstem.
Collapse
Affiliation(s)
- Susanne M Morton
- Department of Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.
| | | |
Collapse
|
49
|
Abstract
Intrinsic spinal networks, known as central pattern generators (CPGs), control the timing and pattern of the muscle activity underlying locomotion in mammals. This review discusses new advances in understanding the mammalian CPGs with a focus on experiments that address the overall network structure as well as the identification of CPG neurons. I address the identification of excitatory CPG neurons and their role in rhythm generation, the organization of flexor-extensor networks, and the diverse role of commissural interneurons in coordinating left-right movements. Molecular and genetic approaches that have the potential to elucidate the function of populations of CPG interneurons are also discussed.
Collapse
Affiliation(s)
- Ole Kiehn
- Mammalian Locomotor Laboratory, Department of Neuroscience, Karolinska Institutet, Stockholm S17177, Sweden.
| |
Collapse
|
50
|
Carro-Juárez M, Rodríguez-Manzo G. Evidence for the presence of the spinal pattern generator involved in the control of the genital ejaculatory pattern in the female rat. Brain Res 2006; 1084:54-60. [PMID: 16564508 DOI: 10.1016/j.brainres.2006.02.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Revised: 02/07/2006] [Accepted: 02/08/2006] [Indexed: 11/26/2022]
Abstract
Substantial progress has been made during recent years in elucidating the control of male ejaculatory function by the central nervous system. These efforts have revealed the participation of a central pattern generator in the control of ejaculation. There is a strong similarity in the neural organization of male and female sexual functions. In the present study, the hypothesis that the spinal generator for ejaculation was present and functional in the female rat was evaluated. To this purpose, the expression of the ejaculatory motor pattern and its pharmacological activation in spinally transected female rats were investigated. Results revealed the presence in females of the already described rhythmic ejaculatory motor pattern of male rats. This ejaculatory motor pattern could be registered in the urethralis muscle of the female rat after mechanical stimulation of the urethra, vagina and clitoris and consisted, as in the male rat, of a first ejaculatory motor train followed by an after-discharge component. Besides, the female genital ejaculatory motor pattern could be pharmacologically induced by the systemic injection of sodium nitroprusside with similar motor characteristics. No significant differences between the sensorial and pharmacologically induced female genital motor patterns were found. Present findings provide evidence for the presence of the genital motor pattern of ejaculation in female rats and suggest that the spinal generator for ejaculation is also present and functional in this gender.
Collapse
Affiliation(s)
- M Carro-Juárez
- Laboratorio de Comportamiento Reproductivo, Escuela de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tlaxcala, C.P.90000, Tlaxcala, México.
| | | |
Collapse
|