1
|
Chaban R, Cooper DKC, Pierson RN. Pig heart and lung xenotransplantation: Present status. J Heart Lung Transplant 2022; 41:1014-1022. [PMID: 35659792 PMCID: PMC10124776 DOI: 10.1016/j.healun.2022.04.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/14/2022] [Accepted: 04/24/2022] [Indexed: 11/19/2022] Open
Abstract
The recent pig heart transplant in a patient at the University of Maryland Medical Center has stimulated renewed interest in the xenotransplantation of organs from genetically engineered pigs. The barriers to the use of pigs as sources of organs have largely been overcome by 2 approaches - (1) the deletion of expression of the three known pig carbohydrate xenoantigens against which humans have preformed antibodies, and (2) the transgenic introduction of human 'protective' proteins, such as complement-regulatory proteins. These gene modifications, coupled with immunosuppressive therapy based on blockade of the CD40/CD154 costimulation pathway, have resulted in survival of baboons with life-supporting pig heart grafts for almost 9 months. The initial clinical success at the University of Maryland reinforces encouraging preclinical results. It suggests that pig hearts are likely to provide an effective bridge to an allotransplant, but their utility for destination therapy remains uncertain. Because of additional complex immunobiological problems, the same approach has been less successful in preclinical lung xenograft transplantation, where survival is still measured in days or weeks. The first formal clinical trials of pig heart transplantation may include patients who do not have access to an allotransplant, those with contraindications for mechanical circulatory support, those in need of retransplantation or with a high level of panel-reactive antibodies. Infants with complex congenital heart disease, should also be considered.
Collapse
Affiliation(s)
- Ryan Chaban
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Department of Cardiovascular Surgery, University Hospital of Johannes Gutenberg University, Mainz, Germany.
| | - David K C Cooper
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Richard N Pierson
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
2
|
Shu S, Ren J, Song J. Cardiac xenotransplantation: a promising way to treat advanced heart failure. Heart Fail Rev 2020; 27:71-91. [DOI: 10.1007/s10741-020-09989-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
3
|
|
4
|
Coelho AC, García Díez J. Biological Risks and Laboratory-Acquired Infections: A Reality That Cannot be Ignored in Health Biotechnology. Front Bioeng Biotechnol 2015; 3:56. [PMID: 25973418 PMCID: PMC4412124 DOI: 10.3389/fbioe.2015.00056] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 04/10/2015] [Indexed: 12/16/2022] Open
Abstract
Advances and research in biotechnology have applications over a wide range of areas, such as microbiology, medicine, the food industry, agriculture, genetically modified organisms, and nanotechnology, among others. However, research with pathogenic agents, such as virus, parasites, fungi, rickettsia, bacterial microorganisms, or genetic modified organisms, has generated concern because of their potential biological risk - not only for people, but also for the environment due to their unpredictable behavior. In addition, concern for biosafety is associated with the emergence of new diseases or re-emergence of diseases that were already under control. Biotechnology laboratories require biosafety measures designed to protect their staff, the population, and the environment, which may be exposed to hazardous organisms and materials. Laboratory staff training and education is essential, not only to acquire a good understanding about the direct handling of hazardous biological agents but also knowledge of the epidemiology, pathogenicity, and human susceptibility to the biological materials used in research. Biological risk can be reduced and controlled by the correct application of internationally recognized procedures such as proper microbiological techniques, proper containment apparatus, adequate facilities, protective barriers, and special training and education of laboratory workers. To avoid occupational infections, knowledge about standardized microbiological procedures and techniques and the use of containment devices, facilities, and protective barriers is necessary. Training and education about the epidemiology, pathogenicity, and biohazards of the microorganisms involved may prevent or decrease the risk. In this way, the scientific community may benefit from the lessons learned in the past to anticipate future problems.
Collapse
Affiliation(s)
- Ana Cláudia Coelho
- Department of Veterinary Sciences, Veterinary and Animal Science Center (CECAV), School of Agrarian and Veterinary Sciences, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Juan García Díez
- Department of Veterinary Sciences, Veterinary and Animal Science Center (CECAV), School of Agrarian and Veterinary Sciences, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| |
Collapse
|
5
|
Pierson RN, Dorling A, Ayares D, Rees MA, Seebach JD, Fishman JA, Hering BJ, Cooper DKC. Current status of xenotransplantation and prospects for clinical application. Xenotransplantation 2009; 16:263-80. [PMID: 19796067 PMCID: PMC2866107 DOI: 10.1111/j.1399-3089.2009.00534.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Xenotransplantation is one promising approach to bridge the gap between available human cells, tissues, and organs and the needs of patients with diabetes or end-stage organ failure. Based on recent progress using genetically modified source pigs, improving results with conventional and experimental immunosuppression, and expanded understanding of residual physiologic hurdles, xenotransplantation appears likely to be evaluated in clinical trials in the near future for some select applications. This review offers a comprehensive overview of known mechanisms of xenograft injury, a contemporary assessment of preclinical progress and residual barriers, and our opinions regarding where breakthroughs are likely to occur.
Collapse
Affiliation(s)
- Richard N Pierson
- Division of Cardiac Surgery, Department of Surgery, University of Maryland, Baltimore VAMC, Baltimore, MD 21201, USA.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Affiliation(s)
- Richard N Pierson
- Department of Surgery, Baltimore Veterans Affairs Medical Center, and Division of Cardiac Surgery, University of Maryland, Baltimore 21201, USA.
| |
Collapse
|
7
|
Louz D, Bergmans HE, Loos BP, Hoeben RC. Reappraisal of biosafety risks posed by PERVs in xenotransplantation. Rev Med Virol 2008; 18:53-65. [PMID: 17987669 DOI: 10.1002/rmv.559] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Donor materials of porcine origin could potentially provide an alternative source of cells, tissues or whole organs for transplantation to humans, but is hampered by the health risk posed by infection with porcine viruses. Although pigs can be bred in such a way that all known exogenous microorganisms are eliminated, this is not feasible for all endogenous pathogens, such as the porcine endogenous retroviruses (PERVs) which are present in the germline of pigs as proviruses. Upon transplantation, PERV proviruses would be transferred to the human recipient along with the xenograft. If xenotransplantation stimulates or facilitates replication of PERVs in the new hosts, a risk exists for adaptation of the virus to humans and subsequent spread of these viruses. In a worst-case scenario, this might result in the emergence of a new viral disease. Although the concerns for disease potential of PERVs are easing, only limited pre-clinical and clinical data are available. Small-scale, well-designed and carefully controlled clinical trials would provide more evidence on the safety of this approach and allow a better appreciation of the risks involved. It is therefore important to have a framework of protective measures and monitoring protocols in place to facilitate such initially small scale clinical trials. This framework will raise ethical and social considerations regarding acceptability.
Collapse
Affiliation(s)
- Derrick Louz
- GMO office, Substances Expertise Centre of the National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands.
| | | | | | | |
Collapse
|
8
|
Son JK, Oh ST, Cho SK, Yoon KH, Lee SK. Mechanism of prolonged gene expression by Epstein-Barr virus-based plasmid in porcine cells. Xenotransplantation 2006; 13:560-5. [PMID: 17059583 DOI: 10.1111/j.1399-3089.2006.00350.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
BACKGROUND We previously showed that an Epstein-Barr virus (EBV)-based plasmid, pEBVGFP, exerts prolonged gene expression in porcine neonatal pancreatic cell clusters (NPCCs). In this study, the mechanism underlying this was investigated. METHODS GFP expression was analyzed in porcine cells transfected with pEBVGFP by FACS analysis and confocal microscopy. The possible integration of pEBVGFP into the chromosomal DNA was analyzed by Southern blot. Self-replication of the EBV-based plasmid in porcine cells was investigated by PCR. The NPCCs were immunostained to characterize cells transfected with pEBVGFP. RESULTS The EBV based plasmid provided prolonged GFP expression in porcine cells and duct cells were the main cells transfected among NPCCs. Southern blot showed that the transfected pEBVGFP stayed for a long time as an episome rather than integrating into the chromosomal DNA. pEBVGFP isolated from the transfected porcine cells had methylated CpG suggesting that they self-replicated in those cells. CONCLUSIONS The EBV-based plasmid may be useful for genetically manipulating porcine cells to enhance their value as xenotransplantation sources.
Collapse
Affiliation(s)
- Jung Kyu Son
- Research Institute of Immunobiology, Department of Biomedical Sciences, The Catholic University of Korea, Seoul, Korea
| | | | | | | | | |
Collapse
|
9
|
Martina Y, Kurian S, Cherqui S, Evanoff G, Wilson C, Salomon DR. Pseudotyping of porcine endogenous retrovirus by xenotropic murine leukemia virus in a pig islet xenotransplantation model. Am J Transplant 2005; 5:1837-47. [PMID: 15996230 DOI: 10.1111/j.1600-6143.2005.00978.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The potential of porcine endogenous retrovirus (PERV) as a human pathogen, particularly as a public health risk, is a major concern for xenotransplantation. In vitroPERV transmission to human cells is well established. Evidence from human/pig hematopoietic chimeras in immunodeficient mice suggests PERV transmission from pig to human cells in vivo. However, recently Yang et al. demonstrated in such a model that PERV-C, a nonhuman-tropic class, could be transmitted via pseudotyping by xenotropic murine leukemia virus (X-MLV). We developed a mouse pig islet xenotransplant model, where pig and human cells are located in physically separate compartments, to directly assess PERV transmission from a functional pig xenograft. X-MLV efficiently pseudotypes all three classes of PERV, including PERV-A and -B that are known to productively infect human cell lines and PERV-C that is normally not infectious for human cells. Pseudotyping also extends PERV's natural tropism to nonpermissive, nonhuman primate cells. X-MLV is activated locally by the surgical procedure involved in the tissue transplants. Thus, the presence and activation of endogenous X-MLV in immunodeficient mice limits the clinical significance of previous reports of in vivo PERV transmission from pig tissues to human cells.
Collapse
Affiliation(s)
- Yuri Martina
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, USA
| | | | | | | | | | | |
Collapse
|
10
|
Reynolds MA, Aberdeen GW, Pepe GJ, Sauk JJ, Albrecht ED. Estrogen Suppression Induces Papillary Gingival Overgrowth in Pregnant Baboons. J Periodontol 2004; 75:693-701. [PMID: 15212352 DOI: 10.1902/jop.2004.75.5.693] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Alterations in sex steroids during pregnancy are associated with the development and exacerbation of reactive lesions involving the gingiva. Currently, few experimental animal models similar to humans are available to examine regulatory pathways involving sex steroids and the periodontium. METHODS In the present study, we used the baboon as a novel experimental model for the study of the regulatory actions of estrogen on the periodontium during pregnancy. Pregnant baboons (N = 5) were administered the potent, highly specific aromatase inhibitor CGS 20267 (2 mg/day subcutaneously) daily on days 60 through 165 of gestation (term = 184). Untreated females (N = 10) and females (5) concomitantly administered aromatase inhibitor and estradiol benzoate (2.0 mg/day each subcutaneously) served as controls. Gingival biopsies were taken between days 145 and 165 of gestation. RESULTS Administration of CGS 20267 in all females suppressed maternal serum concentrations of estradiol by 95% and induced the development of an exuberant papillomatous enlargement of the gingiva by gestational day 110, with the most prominent development involving the labial aspects of the anterior sextants. None of the untreated pregnant controls or females concomitantly administered aromatase inhibitor and estradiol benzoate developed gingival overgrowth. Thus, estradiol alone prevented the onset of gingival overgrowth induced by estrogen suppression. In all baboons, discontinuation of the aromatase inhibitor at time of cesarean section resulted in spontaneous regression and resolution of the papillomatous hyperplasia within 4 to 6 weeks. Clinically, the gingival papillary overgrowth was erythematous and edematous, with a propensity toward spontaneous subgingival hemorrhage. Histologically, the biopsy specimens demonstrated hyperplasia of the epithelium typified by mild hyperkeratosis, acanthosis, and elongation and isolated anastamoses of rete ridges. Subjacent to the intact epithelium was a loose connective tissue stroma with isolated areas of inflammatory cell infiltrate. Special stains verified the presence of isolated bacterial biofilms; however, no evidence of fungal filaments was present. Histological features suggestive of viral infection were notably absent in the epithelium. No evidence of viral particles or capsids was identified using transmission electron microscopy. Reverse transcription polymerase chain reaction analysis, using a panel of degenerate primers, was negative for papilloma family viruses. CONCLUSIONS These results are consistent with a significant role for estrogen during primate pregnancy in the regulation of cellular proliferation and differentiation within the gingiva. The baboon represents an important experimental model for studying the regulatory actions of estrogen on the periodontium during pregnancy.
Collapse
Affiliation(s)
- Mark A Reynolds
- Department of Periodontics, University of Maryland, Dental School, Baltimore, MD 21201, USA.
| | | | | | | | | |
Collapse
|
11
|
Abstract
The shortage of human organs and tissues for transplantation and the advances in immunology of rejection and in genetic engineering have renewed interest in xenotransplantation--the transplantation of animal organs, tissues or cells to humans. Clinical trials have involved the use of non-human primate, porcine, and bovine cells/tissues/organs. In recent years, research has focused mainly on pigs as donors (especially, pigs genetically engineered to carry some human genes). One of the major concerns in xenotransplantation is the risk of transmission of animal pathogens, particularly viruses, to recipients and the possible adaptation of such pathogens for human-to-human transmission. Porcine endogenous retroviruses (PERVs) have been of special concern because of their ability to infect human cells and because, at present, they cannot be removed from the source animal's genome. To date, retrospective studies of humans exposed to live porcine cells/tissues have not found evidence of infection with PERV but more extensive research is needed. This article reviews infectious disease risks associated with xenotransplantation, some measures for minimizing that risk, and microbiological diagnostic methods that may be used in the follow-up of xenotransplant recipients.
Collapse
Affiliation(s)
- Roumiana S Boneva
- HIV and Retrovirology Branch, Division of HIV, STD and TB Laboratory Research, National Center for HIV, STD and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
| | | |
Collapse
|
12
|
Allan JS. Understanding xenotransplantation risks from nonhuman primate retroviruses. Curr Top Microbiol Immunol 2003; 278:101-23. [PMID: 12934943 DOI: 10.1007/978-3-642-55541-1_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Significant progress in making animal-to-human transplantation a viable adjunct to human organ donation will require a greater understanding of the intricacies of immunologic rejection. Recent success in generating cloned knockout piglets increases the possibility that xenotransplantation may find its way into the clinics. Nonhuman primates' organs have been used for human transplants in the past and there is reason to believe that if ethical considerations and inherent problems with supply were overcome, their close genetic proximity to humans would lessen complications of rejection. Unfortunately, nonhuman primates harbor several pathogens known to be infectious in humans and the potential of other viral infections has precluded further use of monkeys in this setting. Baboons are generally considered the nonhuman primate species of choice yet this species carries several retroviruses considered a threat to humans in transplantation. Both known and potentially undiscovered retroviruses pose an important risk that is the focus of this review.
Collapse
Affiliation(s)
- J S Allan
- Department of Virology and Immunology, Southwest Foundation for Biomedical Research, 7620 N.W. Loop 410 at Military Drive, San Antonio, TX 78227, USA.
| |
Collapse
|
13
|
Specke V, Schuurman HJ, Plesker R, Coulibaly C, Ozel M, Langford G, Kurth R, Denner J. Virus safety in xenotransplantation: first exploratory in vivo studies in small laboratory animals and non-human primates. Transpl Immunol 2002; 9:281-8. [PMID: 12180842 DOI: 10.1016/s0966-3274(02)00039-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
For xenotransplantation, the transplantation of animal cells, tissues and organs into human recipients, to date, pigs are favored as potential donors. Beside ethical, immunological, physiological and technical problems, the microbiological safety of the xenograft has to be guaranteed. It will be possible to eliminate all of the known porcine microorgansims in the nearby future by vaccinating or specified pathogen-free breeding. Thus, the main risk will come from the porcine endogenous retroviruses (PERVs) which are present in the pig genome as proviruses of different subtypes. PERVs will therefore be transmitted, with the xenograft, to the human recipient. PERVs can infect numerous different types of human primary cells and cell lines in vitro and were shown to adapt to these cells by serial passaging on uninfected cells. Furthermore, PERVs have high homology to other retroviruses, such as feline leukemia virus (FeLV) or murine leukemia virus (MuLV), which are known to induce tumors or immunodeficiencies in the infected host. To evaluate the potential risk of a trans-species transmission of PERV in vivo, naive and immunosuppressed rats, guinea pigs and minks were inoculated with PERV and screened over a period of 3 months for an antibody reaction against PERV proteins or for the integration of proviral DNA into the genomic DNA of the host's cells. Furthermore, we inoculated three different species of non-human primates, rhesus monkey (Macaca mulatta), pig-tailed monkey (Macaca nemestrina) and baboon (Papio hamadryas) with high titers of a human-adapted PERV. To simulate a situation in xenotransplantation, the animals received a daily triple immunosuppression using cyclosporine A, methylprednisolone and RAD, a rapamycin derivative, presently under development by Novartis. None of the small laboratory animals or the non-human primates showed production of antibodies against PERV or evidence of integration of proviral DNA in blood cells or cells of several organs, 3 months after virus inoculation, despite the observation that cells of the animals used in the experiment were infectible in vitro. This apparent difference in the outcome of the in vitro and the in vivo data might be explained by an efficient elimination of the virus by the innate or adaptive immunity of the animals.
Collapse
Affiliation(s)
- V Specke
- Robert Koch-Institute, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Specke V, Rubant S, Denner J. Productive infection of human primary cells and cell lines with porcine endogenous retroviruses. Virology 2001; 285:177-80. [PMID: 11437652 DOI: 10.1006/viro.2001.0934] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Porcine endogenous retroviruses (PERVs) infect human cells in vitro and therefore represent a risk for xenotransplantation. However, first clinical transplantations of pig cells into humans or ex vivo perfusions did not result in transmission of PERVs. On the other hand, recent experiments with SCID mice demonstrated infections with PERV in vivo. In order to define and characterize human target cells, we studied numerous primary human cells and cell lines. Infection with PERVs was shown for human peripheral blood mononuclear cells, primary endothelial cells, and primary aortic smooth muscle cells as well as lymphocytic, monocytic, and epithelial cell lines.
Collapse
Affiliation(s)
- V Specke
- Robert Koch-Institute, Nordufer 20, Berlin, D-13353, Germany
| | | | | |
Collapse
|
15
|
Cunningham DA, Herring C, Fernández-Suárez XM, Whittam AJ, Paradis K, Langford GA. Analysis of patients treated with living pig tissue for evidence of infection by porcine endogenous retroviruses. Trends Cardiovasc Med 2001; 11:190-6. [PMID: 11597830 DOI: 10.1016/s1050-1738(01)00104-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The use of pigs as a source of cells and organs for transplantation has the potential to reduce the current chronic shortage of organs for the treatment of many end-stage diseases. The risk of transmission of infectious agents across the species barrier (zoonoses) has to be assessed. Many such agents can be eliminated from the pig herd. However, porcine endogenous retroviruses, which are carried within the pig genome, are not easily eliminated. They can infect primary and immortalized human cells in vitro, but to date no evidence for in vivo infection has been found in retrospective studies of humans exposed to viable porcine cells. Small-scale clinical trials using porcine cells for the treatment of Parkinson's and Huntington's disease are currently in progress. The prospective monitoring of these patients in conjunction with further research into the biology of this virus will help address safety issues.
Collapse
|
16
|
Abstract
Xenotransplantation, the transplantation of living organs, tissues, or cells from one species to another, is viewed as a potential solution to the existing shortage of human organs for transplantation. While whole-organ xenotransplantation is still in the preclinical stage, cellular xenotransplantation and extracorporeal perfusion applications are showing promise in early clinical trials. Advances in immunosuppressive therapy, gene engineering, and cloning of animals bring a broader array of xenotransplantation protocols closer to clinical trials. Despite several potential advantages over allotransplantation, xenotransplantation encompasses a number of problems. Immunologic rejection remains the primary hindrance. The potential to introduce infections across species barriers, another major concern, is the main focus of this review. Nonhuman primates are unlikely to be a main source for xenotransplantation products despite their phylogenetic proximity to humans. Genetically engineered pigs, bred under special conditions, are currently envisaged as the major source. Thus far, there has been no evidence for human infections caused by pig xenotransplantation products. However, the existence of xenotropic endogenous retroviruses and the clinical evidence of long-lasting porcine cell microchimerism indicate the potential for xenogeneic infections. Thus, further trials should continue under regulatory oversight, with close clinical and laboratory monitoring for potential xenogeneic infections.
Collapse
Affiliation(s)
- R S Boneva
- HIV/AIDS and Retrovirology Branch, Division of AIDS, STD and TB Laboratory Research, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA.
| | | | | |
Collapse
|
17
|
Weber DJ, Rutala WA. Gene therapy: a new challenge for infection control. Infect Control Hosp Epidemiol 1999; 20:530-2. [PMID: 10466551 DOI: 10.1086/501664] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|