1
|
Freire-Cobo C, Rothwell ES, Varghese M, Edwards M, Janssen WGM, Lacreuse A, Hof PR. Neuronal vulnerability to brain aging and neurodegeneration in cognitively impaired marmoset monkeys (Callithrix jacchus). Neurobiol Aging 2023; 123:49-62. [PMID: 36638681 PMCID: PMC9892246 DOI: 10.1016/j.neurobiolaging.2022.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/01/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022]
Abstract
The investigation of neurobiological and neuropathological changes that affect synaptic integrity and function with aging is key to understanding why the aging brain is vulnerable to Alzheimer's disease. We investigated the cellular characteristics in the cerebral cortex of behaviorally characterized marmosets, based on their trajectories of cognitive learning as they transitioned to old age. We found increased astrogliosis, increased phagocytic activity of microglial cells and differences in resting and reactive microglial cell phenotypes in cognitively impaired compared to nonimpaired marmosets. Differences in amyloid beta deposition were not related to cognitive trajectory. However, we found age-related changes in density and morphology of dendritic spines in pyramidal neurons of layer 3 in the dorsolateral prefrontal cortex and the CA1 field of the hippocampus between cohorts. Overall, our data suggest that an accelerated aging process, accompanied by neurodegeneration, that takes place in cognitively impaired aged marmosets and affects the plasticity of dendritic spines in cortical areas involved in cognition and points to mechanisms of neuronal vulnerability to aging.
Collapse
Affiliation(s)
- Carmen Freire-Cobo
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Emily S Rothwell
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA, USA
| | - Merina Varghese
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mélise Edwards
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA, USA
| | - William G M Janssen
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Agnès Lacreuse
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA, USA
| | - Patrick R Hof
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
2
|
Rollenhagen A, Anstötz M, Zimmermann K, Kasugai Y, Sätzler K, Molnar E, Ferraguti F, Lübke JHR. Layer-specific distribution and expression pattern of AMPA- and NMDA-type glutamate receptors in the barrel field of the adult rat somatosensory cortex: a quantitative electron microscopic analysis. Cereb Cortex 2023; 33:2342-2360. [PMID: 35732315 PMCID: PMC9977369 DOI: 10.1093/cercor/bhac212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 11/14/2022] Open
Abstract
AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) and NMDA (N-methyl-d-aspartate) glutamate receptors are driving forces for synaptic transmission and plasticity at neocortical synapses. However, their distribution pattern in the adult rat neocortex is largely unknown and was quantified using freeze fracture replication combined with postimmunogold-labeling. Both receptors were co-localized at layer (L)4 and L5 postsynaptic densities (PSDs). At L4 dendritic shaft and spine PSDs, the number of gold grains detecting AMPA was similar, whereas at L5 shaft PSDs AMPA-receptors outnumbered those on spine PSDs. Their number was significantly higher at L5 vs. L4 PSDs. At L4 and L5 dendritic shaft PSDs, the number of gold grains detecting GluN1 was ~2-fold higher than at spine PSDs. The number of gold grains detecting the GluN1-subunit was higher for both shaft and spine PSDs in L5 vs. L4. Both receptors showed a large variability in L4 and L5. A high correlation between the number of gold grains and PSD size for both receptors and targets was observed. Both receptors were distributed over the entire PSD but showed a layer- and target-specific distribution pattern. The layer- and target-specific distribution of AMPA and GluN1 glutamate receptors partially contribute to the observed functional differences in synaptic transmission and plasticity in the neocortex.
Collapse
Affiliation(s)
- Astrid Rollenhagen
- Institute of Neuroscience and Medicine INM-10, Research Centre Jülich GmbH, Leo Brandt Str., Jülich 52425, Germany
| | - Max Anstötz
- Institute of Neuroscience and Medicine INM-10, Research Centre Jülich GmbH, Leo Brandt Str., Jülich 52425, Germany.,Institute of Anatomy II, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Universitätsstr. 1, Düsseldorf 40001, Germany
| | - Kerstin Zimmermann
- Institute of Neuroscience and Medicine INM-10, Research Centre Jülich GmbH, Leo Brandt Str., Jülich 52425, Germany
| | - Yu Kasugai
- Department of Pharmacology, Medical University of Innsbruck, Peter Mayr Strasse 1a, Innsbruck A-6020, Austria
| | - Kurt Sätzler
- School of Biomedical Sciences, University of Ulster, Cromore Rd., Londonderry BT52 1SA, United Kingdom
| | - Elek Molnar
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom
| | - Francesco Ferraguti
- Department of Pharmacology, Medical University of Innsbruck, Peter Mayr Strasse 1a, Innsbruck A-6020, Austria
| | - Joachim H R Lübke
- Institute of Neuroscience and Medicine INM-10, Research Centre Jülich GmbH, Leo Brandt Str., Jülich 52425, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH/Medical University Aachen, Pauwelstr. 30, Aachen 52074, Germany.,JARA Translational Medicine Jülich/Aachen, Germany
| |
Collapse
|
3
|
Asch RH, Hillmer AT, Baldassarri SR, Esterlis I. The metabotropic glutamate receptor 5 as a biomarker for psychiatric disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 168:265-310. [PMID: 36868631 DOI: 10.1016/bs.irn.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The role of glutamate system in the etiology and pathophysiology of psychiatric disorders has gained considerable attention in the past two decades, including dysregulation of the metabotropic glutamatergic receptor subtype 5 (mGlu5). Thus, mGlu5 may represent a promising therapeutic target for psychiatric conditions, particularly stress-related disorders. Here, we describe mGlu5 findings in mood disorders, anxiety, and trauma disorders, as well as substance use (specifically nicotine, cannabis, and alcohol use). We highlight insights gained from positron emission tomography (PET) studies, where possible, and discuss findings from treatment trials, when available, to explore the role of mGlu5 in these psychiatric disorders. Through the research evidence reviewed in this chapter, we make the argument that, not only is dysregulation of mGlu5 evident in numerous psychiatric disorders, potentially functioning as a disease "biomarker," the normalization of glutamate neurotransmission via changes in mGlu5 expression and/or modulation of mGlu5 signaling may be a needed component in treating some psychiatric disorders or symptoms. Finally, we hope to demonstrate the utility of PET as an important tool for investigating mGlu5 in disease mechanisms and treatment response.
Collapse
Affiliation(s)
- Ruth H Asch
- Department of Psychiatry, Yale University, New Haven, CT, United States.
| | - Ansel T Hillmer
- Department of Psychiatry, Yale University, New Haven, CT, United States; Department of Radiology and Biomedical Imaging, New Haven, CT, United States
| | - Stephen R Baldassarri
- Yale Program in Addiction Medicine, Yale University, New Haven, CT, United States; Department of Internal Medicine, Yale University, New Haven, CT, United States
| | - Irina Esterlis
- Department of Psychiatry, Yale University, New Haven, CT, United States; Department of Psychology, Yale University, New Haven, CT, United States; Clinical Neurosciences Division, U.S. Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, Veterans Affairs Connecticut Healthcare System, West Haven, CT, United States
| |
Collapse
|
4
|
The glutamatergic synapse: a complex machinery for information processing. Cogn Neurodyn 2021; 15:757-781. [PMID: 34603541 DOI: 10.1007/s11571-021-09679-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/04/2021] [Accepted: 04/16/2021] [Indexed: 10/21/2022] Open
Abstract
Being the most abundant synaptic type, the glutamatergic synapse is responsible for the larger part of the brain's information processing. Despite the conceptual simplicity of the basic mechanism of synaptic transmission, the glutamatergic synapse shows a large variation in the response to the presynaptic release of the neurotransmitter. This variability is observed not only among different synapses but also in the same single synapse. The synaptic response variability is due to several mechanisms of control of the information transferred among the neurons and suggests that the glutamatergic synapse is not a simple bridge for the transfer of information but plays an important role in its elaboration and management. The control of the synaptic information is operated at pre, post, and extrasynaptic sites in a sort of cooperation between the pre and postsynaptic neurons which also involves the activity of other neurons. The interaction between the different mechanisms of control is extremely complicated and its complete functionality is far from being fully understood. The present review, although not exhaustively, is intended to outline the most important of these mechanisms and their complexity, the understanding of which will be among the most intriguing challenges of future neuroscience.
Collapse
|
5
|
Association between human gray matter metabotropic glutamate receptor-5 availability in vivo and white matter properties: a [ 11C]ABP688 PET and diffusion tensor imaging study. Brain Struct Funct 2020; 225:1805-1816. [PMID: 32495131 DOI: 10.1007/s00429-020-02094-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 05/26/2020] [Indexed: 10/24/2022]
Abstract
Excitatory corticofugal projections in the subcortical white matter (WM) convey signals arising from local neuronal activity in the gray matter (GM). We hypothesized that metabotropic glutamate receptor-5 (mGluR5) availability in GM, as a surrogate marker for local glutamatergic neuronal activity, correlates with WM properties in healthy brain. We examined the relationship in healthy individuals between GM mGluR5 availability measured in vivo using [11C]ABP688 positron emission tomography (PET) and WM properties measured as fractional anisotropy (FA) using diffusion tensor imaging (DTI). Twenty-three healthy volunteers underwent this multimodal imaging. We calculated mGluR5 availability, [11C]ABP688 binding potential (BPND), using the simplified reference tissue model, and generated DTI FA maps using FMRIB's Diffusion Toolbox (FDT) along with Tract-Based Spatial Statistics (TBSS). To investigate the relationship between mGluR5 availability and FA, we performed voxel-wise and region of interest (ROI)-based analyses. The voxel-wise analysis showed significant positive correlations between the whole cerebral GM [11C]ABP688 BPND and the FA in widespread WM regions including the corpus callosum body, internal capsule, and corona radiata (FWE corrected p < 0.05). The ROI-based analysis also revealed significant positive correlations (Bonferroni-corrected threshold p < 0.00021) between [11C]ABP688 BPND in the frontal and parietal cortical GM and FA in the internal capsule (anterior limb and retrolenticular part). Using a novel multimodal imaging interrogation, we provide the first evidence that GM mGluR5 availability is significantly positively associated with WM properties in healthy subjects. Future comparison studies could determine whether this relationship is perturbed in neuropsychiatric disorders with dysregulated mGluR5 signaling.
Collapse
|
6
|
Proteasomal-Mediated Degradation of AKAP150 Accompanies AMPAR Endocytosis during cLTD. eNeuro 2020; 7:ENEURO.0218-19.2020. [PMID: 32205379 PMCID: PMC7163082 DOI: 10.1523/eneuro.0218-19.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 02/17/2020] [Accepted: 03/02/2020] [Indexed: 12/26/2022] Open
Abstract
The number and function of synaptic AMPA receptors (AMPARs) tightly regulates excitatory synaptic transmission. Current evidence suggests that AMPARs are inserted into the postsynaptic membrane during long-term potentiation (LTP) and are removed from the membrane during long-term depression (LTD). Dephosphorylation of GluA1 at Ser-845 and enhanced endocytosis are critical events in the modulation of LTD. Moreover, changes in scaffold proteins from the postsynaptic density (PSD) could be also related to AMPAR regulation in LTD. In the present study we analyzed the effect of chemical LTD (cLTD) on A-kinase anchoring protein (AKAP)150 and AMPARs levels in mouse-cultured neurons. We show that cLTD induces AKAP150 protein degradation via proteasome, coinciding with GluA1 dephosphorylation at Ser-845 and endocytosis of GluA1-containing AMPARs. Pharmacological inhibition of proteasome activity, but not phosphatase calcineurin (CaN), reverted cLTD-induced AKAP150 protein degradation. Importantly, AKAP150 silencing induced dephosphorylation of GluA1 Ser-845 and GluA1-AMPARs endocytosis while AKAP150 overexpression blocked cLTD-mediated GluA1-AMPARs endocytosis. Our results provide direct evidence that cLTD-induced AKAP150 degradation by the proteasome contributes to synaptic AMPARs endocytosis.
Collapse
|
7
|
Mao LM, Wang JQ. Amphetamine-induced Conditioned Place Preference and Changes in mGlu1/5 Receptor Expression and Signaling in the Rat Medial Prefrontal Cortex. Neuroscience 2018; 400:110-119. [PMID: 30599269 DOI: 10.1016/j.neuroscience.2018.12.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/27/2018] [Accepted: 12/21/2018] [Indexed: 12/27/2022]
Abstract
The medial prefrontal cortex (mPFC) is implicated in the rewarding effect of psychostimulants, although molecular mechanisms underlying the rewarding properties of stimulants in this region are poorly understood. Group I metabotropic glutamate (mGlu) receptors (mGlu1/5 subtypes) are believed to be critical in this event. We thus in this study investigated changes in mGlu1/5 receptor expression and function in the rat mPFC in response to conditioned place preference (CPP) induced by amphetamine. Repeated amphetamine administration (2.5 mg/kg, once daily on alternate days for 10 days) induced reliable CPP. In the mPFC, surface expression of mGlu5 receptors was elevated in rats after amphetamine conditioning. mGlu5 receptors were also increased at synaptic and extrasynaptic sites in amphetamine-conditioned rats. Expression of mGlu1 receptors was stable in surface and synaptic compartments, while it was elevated in the extrasynaptic location. In mPFC neurons, the mGlu1/5 agonist-stimulated phosphoinositide signaling pathway was upregulated in its efficacy following amphetamine conditioning. The mGlu1/5 agonist-stimulated Src kinase phosphorylation was also augmented in rats treated with amphetamine. These results demonstrate the sensitivity of mPFC mGlu1/5 receptors to amphetamine-induced CPP. Amphetamine conditioning results in the upregulation of mGlu1/5 receptor expression at subcellular and/or subsynaptic levels and mGlu1/5-mediated postreceptor signaling in mPFC neurons.
Collapse
Affiliation(s)
- Li-Min Mao
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - John Q Wang
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA; Department of Anesthesiology, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA.
| |
Collapse
|
8
|
Di Maio V, Santillo S, Sorgente A, Vanacore P, Ventriglia F. Influence of active synaptic pools on the single synaptic event. Cogn Neurodyn 2018; 12:391-402. [PMID: 30137876 PMCID: PMC6048015 DOI: 10.1007/s11571-018-9483-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 01/09/2018] [Accepted: 02/26/2018] [Indexed: 12/11/2022] Open
Abstract
The activity of the single synapse is the base of information processing and transmission in the brain as well as of important phenomena as the Long Term Potentiation which is the main mechanism for learning and memory. Although usually considered as independent events, the single quantum release gives variable postsynaptic responses which not only depend on the properties of the synapses but can be strongly influenced by the activity of other synapses. In the present paper we show the results of a series of computational experiments where pools of active synapses, in a compatible time window, influence the response of a single synapse of the considered pool. Moreover, our results show that the activity of the pool, by influencing the membrane potential, can be a significant factor in the NMDA unblocking from M g 2 + increasing the contribution of this receptor type to the Excitatory Post Synaptic Current. We consequently suggest that phenomena like the LTP, which depend on NMDA activation, can occur also in subthreshold conditions due to the integration of the dendritic synaptic activity.
Collapse
Affiliation(s)
- Vito Di Maio
- Istituto di Scienze Applicate e Sistemi Intelligenti del CNR, c/o Complesso “A. Olivetti”, Via Campi Flegrei 34, 80078 Pozzuoli, NA Italy
| | - Silvia Santillo
- Istituto di Scienze Applicate e Sistemi Intelligenti del CNR, c/o Complesso “A. Olivetti”, Via Campi Flegrei 34, 80078 Pozzuoli, NA Italy
| | - Antonio Sorgente
- Istituto di Scienze Applicate e Sistemi Intelligenti del CNR, c/o Complesso “A. Olivetti”, Via Campi Flegrei 34, 80078 Pozzuoli, NA Italy
| | - Paolo Vanacore
- Istituto di Scienze Applicate e Sistemi Intelligenti del CNR, c/o Complesso “A. Olivetti”, Via Campi Flegrei 34, 80078 Pozzuoli, NA Italy
| | - Francesco Ventriglia
- Istituto di Scienze Applicate e Sistemi Intelligenti del CNR, c/o Complesso “A. Olivetti”, Via Campi Flegrei 34, 80078 Pozzuoli, NA Italy
| |
Collapse
|
9
|
Esterlis I, Holmes SE, Sharma P, Krystal JH, DeLorenzo C. Metabotropic Glutamatergic Receptor 5 and Stress Disorders: Knowledge Gained From Receptor Imaging Studies. Biol Psychiatry 2018; 84:95-105. [PMID: 29100629 PMCID: PMC5858955 DOI: 10.1016/j.biopsych.2017.08.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/24/2017] [Accepted: 08/28/2017] [Indexed: 12/28/2022]
Abstract
The metabotropic glutamatergic receptor subtype 5 (mGluR5) may represent a promising therapeutic target for stress-related psychiatric disorders. Here, we describe mGluR5 findings in stress disorders, particularly major depressive disorder (MDD), highlighting insights from positron emission tomography studies. Positron emission tomography studies report either no differences or lower mGluR5 in MDD, potentially reflecting MDD heterogeneity. Unlike the rapidly acting glutamatergic agent ketamine, mGluR5-specific modulation has not yet shown antidepressant efficacy in MDD and bipolar disorder. Although we recently showed that ketamine may work, in part, through significant mGluR5 modulation, the specific role of mGluR5 downregulation in ketamine's antidepressant response is unclear. In contrast to MDD, there has been much less investigation of mGluR5 in bipolar disorder, yet initial studies indicate that mGluR5-specific treatments may aid in both depressed and manic mood states. The direction of modulation needed may be state dependent, however, limiting clinical feasibility. There has been relatively little study of posttraumatic stress disorder or obsessive-compulsive disorder to date, although there is evidence for the upregulation of mGluR5 in these disorders. However, while antagonism of mGluR5 may reduce fear conditioning, it may also reduce fear extinction. Therefore, studies are needed to determine the role mGluR5 modulation might play in the treatment of these conditions. Further challenges in modulating this prevalent neurotransmitter system include potential induction of significant side effects. As such, more research is needed to identify level and type (positive/negative allosteric modulation or full antagonism) of mGluR5 modulation required to translate existing knowledge into improved therapies.
Collapse
Affiliation(s)
- Irina Esterlis
- Department of Psychiatry, Yale University, New Haven, Connecticut; US Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, Veteran's Affairs Connecticut Healthcare System, West Haven, Connecticut.
| | | | - Priya Sharma
- Department of Psychiatry, Schulich School of Medicine and Dentistry; Western University- London, Ontario, Canada; London Health Sciences Centre- Victoria Hospital
| | - John H. Krystal
- Yale University, Department of Psychiatry,Yale University, Department of Neuroscience,U.S. Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, VA Connecticut Healthcare System
| | - Christine DeLorenzo
- Stony Brook University, Department of Psychiatry,Stony Brook University, Department of Biomedical Engineering
| |
Collapse
|
10
|
Di Maio V, Santillo S, Ventriglia F. Multisynaptic cooperation shapes single glutamatergic synapse response. Brain Res 2018; 1697:93-104. [PMID: 29913131 DOI: 10.1016/j.brainres.2018.06.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 06/08/2018] [Accepted: 06/12/2018] [Indexed: 01/18/2023]
Abstract
The activity of thousands of excitatory synapse in the dendritic tree produces variations of membrane potential which, while can produce the spike generation at soma (hillock), can also influence the output of a single glutamatergic synapse. We used a model of synaptic diffusion and EPSP generation to simulate the effect of different number of active synapses on the output of a single one. Our results show that, also in subthreshold conditions, the excitatory dendritic activity can influence several parameters of the single synaptic output such as its amplitude, its time course, the NMDA-component activation and consequently phenomena like STP and LTP.
Collapse
Affiliation(s)
- Vito Di Maio
- Istituto di Scienze Applicate e Sistemi Intelligenti (ISASI) del CNR, Italy.
| | - Silvia Santillo
- Istituto di Scienze Applicate e Sistemi Intelligenti (ISASI) del CNR, Italy
| | | |
Collapse
|
11
|
Helfer P, Shultz TR. Coupled feedback loops maintain synaptic long-term potentiation: A computational model of PKMzeta synthesis and AMPA receptor trafficking. PLoS Comput Biol 2018; 14:e1006147. [PMID: 29813048 PMCID: PMC5993340 DOI: 10.1371/journal.pcbi.1006147] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 06/08/2018] [Accepted: 04/16/2018] [Indexed: 01/13/2023] Open
Abstract
In long-term potentiation (LTP), one of the most studied types of neural plasticity, synaptic strength is persistently increased in response to stimulation. Although a number of different proteins have been implicated in the sub-cellular molecular processes underlying induction and maintenance of LTP, the precise mechanisms remain unknown. A particular challenge is to demonstrate that a proposed molecular mechanism can provide the level of stability needed to maintain memories for months or longer, in spite of the fact that many of the participating molecules have much shorter life spans. Here we present a computational model that combines simulations of several biochemical reactions that have been suggested in the LTP literature and show that the resulting system does exhibit the required stability. At the core of the model are two interlinked feedback loops of molecular reactions, one involving the atypical protein kinase PKMζ and its messenger RNA, the other involving PKMζ and GluA2-containing AMPA receptors. We demonstrate that robust bistability-stable equilibria both in the synapse's potentiated and unpotentiated states-can arise from a set of simple molecular reactions. The model is able to account for a wide range of empirical results, including induction and maintenance of late-phase LTP, cellular memory reconsolidation and the effects of different pharmaceutical interventions.
Collapse
Affiliation(s)
- Peter Helfer
- Department of Psychology and Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Thomas R. Shultz
- Department of Psychology and School of Computer Science, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
12
|
Esterlis I, DellaGioia N, Pietrzak RH, Matuskey D, Nabulsi N, Abdallah CG, Yang J, Pittenger C, Sanacora G, Krystal JH, Parsey RV, Carson RE, DeLorenzo C. Ketamine-induced reduction in mGluR5 availability is associated with an antidepressant response: an [ 11C]ABP688 and PET imaging study in depression. Mol Psychiatry 2018; 23:824-832. [PMID: 28397841 PMCID: PMC5636649 DOI: 10.1038/mp.2017.58] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/28/2016] [Accepted: 01/24/2017] [Indexed: 12/13/2022]
Abstract
The mechanisms of action of the rapid antidepressant effects of ketamine, an N-methyl-D-aspartate glutamate receptor antagonist, have not been fully elucidated. This study examined the effects of ketamine on ligand binding to a metabotropic glutamatergic receptor (mGluR5) in individuals with major depressive disorder (MDD) and healthy controls. Thirteen healthy and 13 MDD nonsmokers participated in two [11C]ABP688 positron emission tomography (PET) scans on the same day-before and during intravenous ketamine administration-and a third scan 1 day later. At baseline, significantly lower [11C]ABP688 binding was detected in the MDD as compared with the control group. We observed a significant ketamine-induced reduction in mGluR5 availability (that is, [11C]ABP688 binding) in both MDD and control subjects (average of 14±9% and 19±22%, respectively; P<0.01 for both), which persisted 24 h later. There were no differences in ketamine-induced changes between MDD and control groups at either time point (P=0.8). A significant reduction in depressive symptoms was observed following ketamine administration in the MDD group (P<0.001), which was associated with the change in binding (P<0.04) immediately after ketamine. We hypothesize that glutamate released after ketamine administration moderates mGluR5 availability; this change appears to be related to antidepressant efficacy. The sustained decrease in binding may reflect prolonged mGluR5 internalization in response to the glutamate surge.
Collapse
Affiliation(s)
- Irina Esterlis
- Yale University Department of Psychiatry
- Yale University Department of Radiology and Biomedical Imaging
- U.S. Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, VA Connecticut Healthcare System
| | | | - Robert H. Pietrzak
- Yale University Department of Psychiatry
- U.S. Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, VA Connecticut Healthcare System
| | - David Matuskey
- Yale University Department of Psychiatry
- Yale University Department of Radiology and Biomedical Imaging
| | - Nabeel Nabulsi
- Yale University Department of Radiology and Biomedical Imaging
| | - Chadi G. Abdallah
- Yale University Department of Psychiatry
- U.S. Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, VA Connecticut Healthcare System
| | - Jie Yang
- Stony Brook University Department of Preventive Medicine
| | | | | | - John H. Krystal
- Yale University Department of Psychiatry
- Yale University Department of Neuroscience
- U.S. Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, VA Connecticut Healthcare System
| | - Ramin V. Parsey
- Stony Brook University Department of Psychiatry
- Stony Brook University Department of Biomedical Engineering
- Stony Brook University Department of Radiology
| | - Richard E. Carson
- Yale University Department of Radiology and Biomedical Imaging
- Yale University Department of Biomedical Engineering
| | - Christine DeLorenzo
- Stony Brook University Department of Psychiatry
- Stony Brook University Department of Biomedical Engineering
| |
Collapse
|
13
|
Schidlitzki A, Twele F, Klee R, Waltl I, Römermann K, Bröer S, Meller S, Gerhauser I, Rankovic V, Li D, Brandt C, Bankstahl M, Töllner K, Löscher W. A combination of NMDA and AMPA receptor antagonists retards granule cell dispersion and epileptogenesis in a model of acquired epilepsy. Sci Rep 2017; 7:12191. [PMID: 28939854 PMCID: PMC5610327 DOI: 10.1038/s41598-017-12368-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 09/08/2017] [Indexed: 01/01/2023] Open
Abstract
Epilepsy may arise following acute brain insults, but no treatments exist that prevent epilepsy in patients at risk. Here we examined whether a combination of two glutamate receptor antagonists, NBQX and ifenprodil, acting at different receptor subtypes, exerts antiepileptogenic effects in the intrahippocampal kainate mouse model of epilepsy. These drugs were administered over 5 days following kainate. Spontaneous seizures were recorded by video/EEG at different intervals up to 3 months. Initial trials showed that drug treatment during the latent period led to higher mortality than treatment after onset of epilepsy, and further, that combined therapy with both drugs caused higher mortality at doses that appear safe when used singly. We therefore refined the combined-drug protocol, using lower doses. Two weeks after kainate, significantly less mice of the NBQX/ifenprodil group exhibited electroclinical seizures compared to vehicle controls, but this effect was lost at subsequent weeks. The disease modifying effect of the treatment was associated with a transient prevention of granule cell dispersion and less neuronal degeneration in the dentate hilus. These data substantiate the involvement of altered glutamatergic transmission in the early phase of epileptogenesis. Longer treatment with NBQX and ifenprodil may shed further light on the apparent temporal relationship between dentate gyrus reorganization and development of spontaneous seizures.
Collapse
Affiliation(s)
- Alina Schidlitzki
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559, Hannover, Germany
- Center for Systems Neuroscience, 30559, Hannover, Germany
| | - Friederike Twele
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559, Hannover, Germany
| | - Rebecca Klee
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559, Hannover, Germany
| | - Inken Waltl
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559, Hannover, Germany
- Center for Systems Neuroscience, 30559, Hannover, Germany
| | - Kerstin Römermann
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559, Hannover, Germany
| | - Sonja Bröer
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559, Hannover, Germany
| | - Sebastian Meller
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559, Hannover, Germany
- Center for Systems Neuroscience, 30559, Hannover, Germany
| | - Ingo Gerhauser
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Vladan Rankovic
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559, Hannover, Germany
- Institute for Auditory Neuroscience at University Medical Center Göttingen & German Primate Center, Göttingen, Germany
| | - Dandan Li
- Center for Systems Neuroscience, 30559, Hannover, Germany
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Claudia Brandt
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559, Hannover, Germany
| | - Marion Bankstahl
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559, Hannover, Germany
- Center for Systems Neuroscience, 30559, Hannover, Germany
| | - Kathrin Töllner
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559, Hannover, Germany
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559, Hannover, Germany.
- Center for Systems Neuroscience, 30559, Hannover, Germany.
| |
Collapse
|
14
|
Tian D, Tian M, Ma Z, Zhang L, Cui Y, Li J. Voluntary exercise rescues sevoflurane-induced memory impairment in aged male mice. Exp Brain Res 2016; 234:3613-3624. [PMID: 27540727 DOI: 10.1007/s00221-016-4756-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 08/10/2016] [Indexed: 12/16/2022]
Abstract
Postoperative cognitive impairment is especially common in older patients following major surgery. Although exposure to sevoflurane is known to cause memory deficits, few studies have examined the putative approaches to reduce such impairments. This study tested the hypotheses that sevoflurane exposure can decrease NR2B subunit-containing NMDA receptor activity in hippocampus of aged mice, and voluntary exercise may counteract the declining hippocampal functions. We found that long exposure (3 h/day for 3 days), but not short exposure (1 h/day for 3 days), to 3 % sevoflurane produced a long-lasting spatial memory deficits up to 3 weeks in aged mice, and such an effect was not due to the neuronal loss in the hippocampus, but was correlated with a long-term decrease in Fyn kinase expression and NR2B subunit phosphorylation in the hippocampus. Furthermore, voluntary exercise rescued sevoflurane-induced spatial memory deficits in aged mice and restored Fyn kinase expression and NR2B subunit phosphorylation in the hippocampus to a level comparable to control animals. Generally, our results suggested that Fyn-mediated NR2B subunit phosphorylation may play a critical role in sevoflurane-induced impairment in cognitive functions in aged animals, and voluntary exercise might be an important non-pharmacological approach to treatment of inhaled anesthetics-induced postoperative cognitive impairment in clinical settings.
Collapse
Affiliation(s)
- Dan Tian
- Department of Anesthesiology, The Second Hospital of Jilin University, Changchun, China
| | - Miao Tian
- Department of Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Zhiming Ma
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, China
| | - Leilei Zhang
- Department of Anesthesiology, The Second Hospital of Jilin University, Changchun, China
| | - Yunfeng Cui
- Department of Anesthesiology, The Second Hospital of Jilin University, Changchun, China
| | - Jinlong Li
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, China.
| |
Collapse
|
15
|
Rozov A, Burnashev N. Fast interaction between AMPA and NMDA receptors by intracellular calcium. Cell Calcium 2016; 60:407-414. [PMID: 27707506 DOI: 10.1016/j.ceca.2016.09.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 09/20/2016] [Accepted: 09/21/2016] [Indexed: 11/27/2022]
Abstract
Suppression of NMDA receptor (NMDAR)-mediated currents by intracellular Ca2+ has been described as a negative feedback loop in NMDAR modulation. In the time scale of tenths of milliseconds the depth of the suppression does not depend on the Ca2+ source. It may be caused by Ca2+ influx through voltage-gated calcium channels, NMDAR channels or release from intracellular stores. However, NMDARs are often co-expressed in synapses with Ca2+-permeable AMPA receptors (AMPARs). Due to significant differences in activation kinetics between these two types of glutamate receptors (GluRs), Ca2+ entry through AMPARs precedes full activation of NMDARs, and therefore, might have an impact on the amplitude of NMDAR-mediated currents. The study of Ca2+-mediated crosstalk between AMPAR and NMDAR in native synapses is challenging due to high NMDAR Ca2+ permeability. Therefore, recombinant Ca2+-permeable AMPAR and Ca2+-impermeable NMDAR mutant channels were co-expressed in HEK 293 cells to examine their interaction. An AMPAR-mediated increase in intracellular Ca2+ concentration ([Ca2+]i) reversibly reduced the size of NMDAR-mediated whole-cell currents. The time course of the NMDAR channel inactivation and recovery from inactivation followed the time course of the [Ca2+]i transient. When brief (1ms) pulses of glutamate were applied to outside-out patches, the degree of NMDAR inactivation increased with the increase in charge carried by the currents through co-activated AMPARs. However, AMPAR-mediated NMDAR inactivation was abolished in the presence of intracellular fast Ca2+ buffer BAPTA or in Ca2+-free extracellular solution. We conclude that Ca2+ entering through AMPARs inactivates co-localized NMDARs in the time range of excitatory postsynaptic currents.
Collapse
Affiliation(s)
- Andrei Rozov
- OpenLab of Neurobiology, Kazan Federal University, 420111 Kazan, Russia; Department of Physiology and Pathophysiology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Nail Burnashev
- INMED, Institut de Neurobiologie de la Méditerranée UMR901, Marseille, France; Aix-Marseille Université, Marseille, France; INSERM U901, Marseille, France.
| |
Collapse
|
16
|
Li Q, Cui P, Miao Y, Gao F, Li XY, Qian WJ, Jiang SX, Wu N, Sun XH, Wang Z. Activation of group I metabotropic glutamate receptors regulates the excitability of rat retinal ganglion cells by suppressing Kir and I h. Brain Struct Funct 2016; 222:813-830. [PMID: 27306787 DOI: 10.1007/s00429-016-1248-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 06/05/2016] [Indexed: 10/21/2022]
Abstract
Group I metabotropic glutamate receptor (mGluR I) activation exerts a slow postsynaptic excitatory effect in the CNS. Here, the issues of whether and how this receptor is involved in regulating retinal ganglion cell (RGC) excitability were investigated in retinal slices using patch-clamp techniques. Under physiological conditions, RGCs displayed spontaneous firing. Extracellular application of LY367385 (10 µM)/MPEP (10 µM), selective mGluR1 and mGluR5 antagonists, respectively, significantly reduced the firing frequency, suggesting that glutamate endogenously released from bipolar cells constantly modulates RGC firing. DHPG (10 µM), an mGluR I agonist, significantly increased the firing and caused depolarization of the cells, which were reversed by LY367385, but not by MPEP, suggesting the involvement of the mGluR1 subtype. Intracellular Ca2+-dependent PI-PLC/PKC and calcium/calmodulin-dependent protein kinase II (CaMKII) signaling pathways mediated the DHPG-induced effects. In the presence of cocktail synaptic blockers (CNQX, D-AP5, bicuculline, and strychnine), which terminated the spontaneous firing in both ON and OFF RGCs, DHPG still induced depolarization and triggered the cells to fire. The DHPG-induced depolarization could not be blocked by TTX. In contrast, Ba2+, an inwardly rectifying potassium channel (Kir) blocker, and Cs+ and ZD7288, hyperpolarization-activated cation channel (I h) blockers, mimicked the effect of DHPG. Furthermore, in the presence of Ba2+/ZD7288, DHPG did not show further effects. Moreover, Kir and I h currents could be recorded in RGCs, and extracellular application of DHPG indeed suppressed these currents. Our results suggest that activation of mGluR I regulates the excitability of rat RGCs by inhibiting Kir and I h.
Collapse
Affiliation(s)
- Qian Li
- Institutes of Brain Science, Fudan University, 138 Yixueyuan Rd, Shanghai, 200032, China.,Institute of Neurobiology, Fudan University, Shanghai, 200032, China.,State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032, China.,Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Peng Cui
- Institutes of Brain Science, Fudan University, 138 Yixueyuan Rd, Shanghai, 200032, China.,Institute of Neurobiology, Fudan University, Shanghai, 200032, China.,State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032, China.,Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Yanying Miao
- Institutes of Brain Science, Fudan University, 138 Yixueyuan Rd, Shanghai, 200032, China.,Institute of Neurobiology, Fudan University, Shanghai, 200032, China.,State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032, China.,Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Feng Gao
- Institutes of Brain Science, Fudan University, 138 Yixueyuan Rd, Shanghai, 200032, China.,Eye & ENT Hospital, Fudan University, Shanghai, 200031, China.,State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, 200031, China.,Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Xue-Yan Li
- Institutes of Brain Science, Fudan University, 138 Yixueyuan Rd, Shanghai, 200032, China.,Institute of Neurobiology, Fudan University, Shanghai, 200032, China.,State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032, China.,Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Wen-Jing Qian
- Institutes of Brain Science, Fudan University, 138 Yixueyuan Rd, Shanghai, 200032, China.,Institute of Neurobiology, Fudan University, Shanghai, 200032, China.,State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032, China.,Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Shu-Xia Jiang
- Institutes of Brain Science, Fudan University, 138 Yixueyuan Rd, Shanghai, 200032, China.,Institute of Neurobiology, Fudan University, Shanghai, 200032, China.,State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032, China.,Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Na Wu
- Institutes of Brain Science, Fudan University, 138 Yixueyuan Rd, Shanghai, 200032, China.,Eye & ENT Hospital, Fudan University, Shanghai, 200031, China.,State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, 200031, China.,Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Xing-Huai Sun
- Institutes of Brain Science, Fudan University, 138 Yixueyuan Rd, Shanghai, 200032, China. .,Eye & ENT Hospital, Fudan University, Shanghai, 200031, China. .,State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032, China. .,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, 200031, China. .,Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China.
| | - Zhongfeng Wang
- Institutes of Brain Science, Fudan University, 138 Yixueyuan Rd, Shanghai, 200032, China. .,Eye & ENT Hospital, Fudan University, Shanghai, 200031, China. .,Institute of Neurobiology, Fudan University, Shanghai, 200032, China. .,State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032, China. .,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, 200031, China. .,Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
17
|
Zheng K, Rusakov DA. Efficient integration of synaptic events by NMDA receptors in three-dimensional neuropil. Biophys J 2016; 108:2457-2464. [PMID: 25992724 PMCID: PMC4456998 DOI: 10.1016/j.bpj.2015.04.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 04/04/2015] [Accepted: 04/09/2015] [Indexed: 01/15/2023] Open
Abstract
Sustained activation of NMDA receptors (NMDARs) plays an important role in controlling activity of neural circuits in the brain. However, whether this activation reflects the ambient level of excitatory neurotransmitter glutamate in brain tissue or whether it depends mainly on local synaptic discharges remains poorly understood. To shed light on the underlying biophysics here we developed and explored a detailed Monte Carlo model of a realistic three-dimensional neuropil fragment containing 54 excitatory synapses. To trace individual molecules and their individual receptor interactions on this scale, we have designed and implemented a dedicated computer cluster and the appropriate software environment. Our simulations have suggested that sparse synaptic discharges are 20-30 times more efficient than nonsynaptic (stationary, leaky) supply of glutamate in controlling sustained NMDAR occupancy in the brain. This mechanism could explain how the brain circuits provide substantial background activation of NMDARs while maintaining a negligible ambient glutamate level in the extracellular space. Thus the background NMDAR occupancy, rather than the background glutamate level, is likely to reflect the ongoing activity in local excitatory networks.
Collapse
Affiliation(s)
- Kaiyu Zheng
- UCL Institute of Neurology, University College London, Queen Square, London, United Kingdom.
| | - Dmitri A Rusakov
- UCL Institute of Neurology, University College London, Queen Square, London, United Kingdom.
| |
Collapse
|
18
|
Li Y, Pehrson AL, Waller JA, Dale E, Sanchez C, Gulinello M. A critical evaluation of the activity-regulated cytoskeleton-associated protein (Arc/Arg3.1)'s putative role in regulating dendritic plasticity, cognitive processes, and mood in animal models of depression. Front Neurosci 2015; 9:279. [PMID: 26321903 PMCID: PMC4530346 DOI: 10.3389/fnins.2015.00279] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 07/23/2015] [Indexed: 11/13/2022] Open
Abstract
Major depressive disorder (MDD) is primarily conceptualized as a mood disorder but cognitive dysfunction is also prevalent, and may limit the daily function of MDD patients. Current theories on MDD highlight disturbances in dendritic plasticity in its pathophysiology, which could conceivably play a role in the production of both MDD-related mood and cognitive symptoms. This paper attempts to review the accumulated knowledge on the basic biology of the activity-regulated cytoskeleton-associated protein (Arc or Arg3.1), its effects on neural plasticity, and how these may be related to mood or cognitive dysfunction in animal models of MDD. On a cellular level, Arc plays an important role in modulating dendritic spine density and remodeling. Arc also has a close, bidirectional relationship with postsynaptic glutamate neurotransmission, since it is stimulated by multiple glutamatergic receptor mechanisms but also modulates α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor internalization. The effects on AMPA receptor trafficking are likely related to Arc's ability to modulate phenomena such as long-term potentiation, long-term depression, and synaptic scaling, each of which are important for maintaining proper cognitive function. Chronic stress models of MDD in animals show suppressed Arc expression in the frontal cortex but elevation in the amygdala. Interestingly, cognitive tasks depending on the frontal cortex are generally impaired by chronic stress, while those depending on the amygdala are enhanced, and antidepressant treatments stimulate cortical Arc expression with a timeline that is reminiscent of the treatment efficacy lag observed in the clinic or in preclinical models. However, pharmacological treatments that stimulate regional Arc expression do not universally improve relevant cognitive functions, and this highlights a need to further refine our understanding of Arc on a subcellular and network level.
Collapse
Affiliation(s)
- Yan Li
- External Sourcing and Scientific Excellence, Lundbeck Research USA, Inc. Paramus, NJ, USA
| | - Alan L Pehrson
- External Sourcing and Scientific Excellence, Lundbeck Research USA, Inc. Paramus, NJ, USA
| | - Jessica A Waller
- External Sourcing and Scientific Excellence, Lundbeck Research USA, Inc. Paramus, NJ, USA
| | - Elena Dale
- Neuroinflammation Disease Biology Unit, Lundbeck Research USA, Inc. Paramus, NJ, USA
| | - Connie Sanchez
- External Sourcing and Scientific Excellence, Lundbeck Research USA, Inc. Paramus, NJ, USA
| | - Maria Gulinello
- Behavioral Core Facility, Department of Neuroscience, Albert Einstein College of Medicine Bronx, NY, USA
| |
Collapse
|
19
|
Electron tomographic structure and protein composition of isolated rat cerebellar, hippocampal and cortical postsynaptic densities. Neuroscience 2015. [PMID: 26215919 DOI: 10.1016/j.neuroscience.2015.07.062] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Electron tomography and immunogold labeling were used to analyze similarities and differences in the morphology and protein composition of postsynaptic densities (PSDs) isolated from adult rat cerebella, hippocampi, and cortices. There were similarities in physical dimensions and gross morphology between cortical, hippocampal and most cerebellar PSDs, although the morphology among cerebellar PSDs could be categorized into three distinct groups. The majority of cerebellar PSDs were composed of dense regions of protein, similar to cortical and hippocampal PSDs, while others were either composed of granular or lattice-like protein regions. Significant differences were found in protein composition and organization across PSDs from the different brain regions. The signaling protein, βCaMKII, was found to be a major component of each PSD type and was more abundant than αCaMKII in both hippocampal and cerebellar PSDs. The scaffold molecule PSD-95, a major component of cortical PSDs, was found absent in a fraction of cerebellar PSDs and when present was clustered in its distribution. In contrast, immunogold labeling for the proteasome was significantly more abundant in cerebellar and hippocampal PSDs than cortical PSDs. Together, these results indicate that PSDs exhibit remarkable diversity in their composition and morphology, presumably as a reflection of the unique functional demands placed on different synapses.
Collapse
|
20
|
Shingo AS, Mervis RF, Kanabayashi T, Kito S, Murase T. The dendrites of granule cell layer neurons are the primary injury sites in the “Brain Diabetes” rat. Behav Brain Res 2015; 280:78-83. [DOI: 10.1016/j.bbr.2014.11.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 11/20/2014] [Accepted: 11/25/2014] [Indexed: 10/24/2022]
|
21
|
Rubio ME, Fukazawa Y, Kamasawa N, Clarkson C, Molnár E, Shigemoto R. Target- and input-dependent organization of AMPA and NMDA receptors in synaptic connections of the cochlear nucleus. J Comp Neurol 2014; 522:4023-42. [PMID: 25041792 DOI: 10.1002/cne.23654] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 07/07/2014] [Accepted: 07/17/2014] [Indexed: 12/12/2022]
Abstract
We examined the synaptic structure, quantity, and distribution of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)- and N-methyl-D-aspartate (NMDA)-type glutamate receptors (AMPARs and NMDARs, respectively) in rat cochlear nuclei by a highly sensitive freeze-fracture replica labeling technique. Four excitatory synapses formed by two distinct inputs, auditory nerve (AN) and parallel fibers (PF), on different cell types were analyzed. These excitatory synapse types included AN synapses on bushy cells (AN-BC synapses) and fusiform cells (AN-FC synapses) and PF synapses on FC (PF-FC synapses) and cartwheel cell spines (PF-CwC synapses). Immunogold labeling revealed differences in synaptic structure as well as AMPAR and NMDAR number and/or density in both AN and PF synapses, indicating a target-dependent organization. The immunogold receptor labeling also identified differences in the synaptic organization of FCs based on AN or PF connections, indicating an input-dependent organization in FCs. Among the four excitatory synapse types, the AN-BC synapses were the smallest and had the most densely packed intramembrane particles (IMPs), whereas the PF-CwC synapses were the largest and had sparsely packed IMPs. All four synapse types showed positive correlations between the IMP-cluster area and the AMPAR number, indicating a common intrasynapse-type relationship for glutamatergic synapses. Immunogold particles for AMPARs were distributed over the entire area of individual AN synapses; PF synapses often showed synaptic areas devoid of labeling. The gold-labeling for NMDARs occurred in a mosaic fashion, with less positive correlations between the IMP-cluster area and the NMDAR number. Our observations reveal target- and input-dependent features in the structure, number, and organization of AMPARs and NMDARs in AN and PF synapses.
Collapse
Affiliation(s)
- María E Rubio
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurobiology, University of Pittsburgh, PA, USA
| | | | | | | | | | | |
Collapse
|
22
|
Random dispersion in excitatory synapse response. Cogn Neurodyn 2014; 8:327-34. [PMID: 25009674 DOI: 10.1007/s11571-014-9285-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 03/07/2014] [Accepted: 03/12/2014] [Indexed: 10/25/2022] Open
Abstract
The excitatory synaptic function is subject to a huge amount of researches and fairly all the structural elements of the synapse are investigated to determine their specific contribution to the response. A model of an excitatory (hippocampal) synapse, based on time discretized Langevin equations (time-step = 40 fs), was introduced to describe the Brownian motion of Glutamate molecules (GLUTs) within the synaptic cleft and their binding to postsynaptic receptors. The binding has been computed by the introduction of a binding probability related to the hits of GLUTs on receptor binding sites. This model has been utilized in computer simulations aimed to describe the random dispersion of the synaptic response, evaluated from the dispersion of the peak amplitude of the excitatory post-synaptic current. The results of the simulation, presented here, have been used to find a reliable numerical quantity for the unknown value of the binding probability. Moreover, the same results have shown that the coefficient of variation decreases when the number of postsynaptic receptors increases, all the other parameters of the process being unchanged. Due to its possible relationships with the learning and memory, this last finding seems to furnish an important clue for understanding the basic mechanisms of the brain activity.
Collapse
|
23
|
Super-resolution imaging reveals that AMPA receptors inside synapses are dynamically organized in nanodomains regulated by PSD95. J Neurosci 2013; 33:13204-24. [PMID: 23926273 DOI: 10.1523/jneurosci.2381-12.2013] [Citation(s) in RCA: 442] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The spatiotemporal organization of neurotransmitter receptors in postsynaptic membranes is a fundamental determinant of synaptic transmission and information processing by the brain. Using four independent super-resolution light imaging methods and EM of genetically tagged and endogenous receptors, we show that, in rat hippocampal neurons, AMPARs are often highly concentrated inside synapses into a few clusters of ∼70 nm that contain ∼20 receptors. AMPARs are stabilized reversibly in these nanodomains and diffuse freely outside them. Nanodomains are dynamic in their shape and position within synapses and can form or disappear within minutes, although they are mostly stable for up to 1 h. AMPAR nanodomains are often, but not systematically, colocalized with clusters of the scaffold protein PSD95, which are generally of larger size than AMPAR nanoclusters. PSD95 expression level regulates AMPAR nanodomain size and compactness in parallel to miniature EPSC amplitude. Monte Carlo simulations further indicate the impact of AMPAR concentration in clusters on the efficacy of synaptic transmission. The observation that AMPARs are highly concentrated in nanodomains, instead of diffusively distributed in the PSD as generally thought, has important consequences on our understanding of excitatory neurotransmission. Furthermore, our results indicate that glutamatergic synaptic transmission is controlled by the nanometer-scale regulation of the size of these highly concentrated nanodomains.
Collapse
|
24
|
Repetitive magnetic stimulation induces functional and structural plasticity of excitatory postsynapses in mouse organotypic hippocampal slice cultures. J Neurosci 2013. [PMID: 23197741 DOI: 10.1523/jneurosci.0409-12.2012] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive brain stimulation technique that can alter cortical excitability in human subjects for hours beyond the stimulation period. It thus has potential as a therapeutic tool in neuropsychiatric disorders associated with alterations in cortical excitability. However, rTMS-induced neural plasticity remains insufficiently understood at the cellular level. To learn more about the effects of repetitive magnetic stimulation (rMS), we established an in vitro model of rMS using mouse organotypic entorhino-hippocampal slice cultures. We assessed the outcome of a high-frequency (10 Hz) rMS protocol on functional and structural properties of excitatory synapses in mature hippocampal CA1 pyramidal neurons. Whole-cell patch-clamp recordings, immunohistochemistry, and time-lapse imaging techniques revealed that rMS induces a long-lasting increase in glutamatergic synaptic strength, which is accompanied by structural remodeling of dendritic spines. The effects of rMS on spine size were predominantly seen in small spines, suggesting differential effects of rMS on subpopulations of spines. Furthermore, our data indicate that rMS-induced postsynaptic changes depend on the NMDA receptor-mediated accumulation of GluA1-containing AMPA receptors. These results provide first experimental evidence that rMS induces coordinated functional and structural plasticity of excitatory postsynapses, which is consistent with a long-term potentiation of synaptic transmission.
Collapse
|
25
|
Ventriglia F, Di Maio V. Effects of AMPARs trafficking and glutamate-receptors binding probability on stochastic variability of EPSC. Biosystems 2013; 112:298-304. [PMID: 23416752 DOI: 10.1016/j.biosystems.2013.01.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 01/24/2013] [Accepted: 01/30/2013] [Indexed: 10/27/2022]
Abstract
Mathematical models of the excitatory synapse are providing valuable information about the synaptic response. The effects of several synaptic components on EPSC variability have been tested by computer simulation. Our model, based on Brownian diffusion of glutamate in the synaptic cleft, is basically the same we have used in previous papers but parameters have been upgraded according to the new experimental findings. The presence of filaments into the synaptic cleft and the number and the ratio of AMPA and NMDA receptors have been the main parameters upgraded. A different way of computing the binding probability of glutamate molecules to receptors by means of geometrical considerations has been also used. The obtained results were more precise and they suggested that the new elements can play a significant role in the stochastic variability of the synaptic response. Nevertheless, new problems arise concerning the value of the lower limit of the binding probability.
Collapse
|
26
|
Morland C, Nordengen K, Gundersen V. Valproate causes reduction of the excitatory amino acid aspartate in nerve terminals. Neurosci Lett 2012; 527:100-4. [DOI: 10.1016/j.neulet.2012.08.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 08/10/2012] [Accepted: 08/23/2012] [Indexed: 10/28/2022]
|
27
|
Vezatin is essential for dendritic spine morphogenesis and functional synaptic maturation. J Neurosci 2012; 32:9007-22. [PMID: 22745500 DOI: 10.1523/jneurosci.3084-11.2012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Vezatin is an integral membrane protein associated with cell-cell adhesion complex and actin cytoskeleton. It is expressed in the developing and mature mammalian brain, but its neuronal function is unknown. Here, we show that Vezatin localizes in spines in mature mouse hippocampal neurons and codistributes with PSD95, a major scaffolding protein of the excitatory postsynaptic density. Forebrain-specific conditional ablation of Vezatin induced anxiety-like behavior and impaired cued fear-conditioning memory response. Vezatin knock-down in cultured hippocampal neurons and Vezatin conditional knock-out in mice led to a significantly increased proportion of stubby spines and a reduced proportion of mature dendritic spines. PSD95 remained tethered to presynaptic terminals in Vezatin-deficient hippocampal neurons, suggesting that the reduced expression of Vezatin does not compromise the maintenance of synaptic connections. Accordingly, neither the amplitude nor the frequency of miniature EPSCs was affected in Vezatin-deficient hippocampal neurons. However, the AMPA/NMDA ratio of evoked EPSCs was reduced, suggesting impaired functional maturation of excitatory synapses. These results suggest a role of Vezatin in dendritic spine morphogenesis and functional synaptic maturation.
Collapse
|
28
|
Examining form and function of dendritic spines. Neural Plast 2012; 2012:704103. [PMID: 22577585 PMCID: PMC3345238 DOI: 10.1155/2012/704103] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 01/10/2012] [Indexed: 12/20/2022] Open
Abstract
The majority of fast excitatory synaptic transmission in the central nervous system takes place at protrusions along dendrites called spines. Dendritic spines are highly heterogeneous, both morphologically and functionally. Not surprisingly, there has been much speculation and debate on the relationship between spine structure and function. The advent of multi-photon laser-scanning microscopy has greatly improved our ability to investigate the dynamic interplay between spine form and function. Regulated structural changes occur at spines undergoing plasticity, offering a mechanism to account for the well-described correlation between spine size and synapse strength. In turn, spine structure can influence the degree of biochemical and perhaps electrical compartmentalization at individual synapses. Here, we review the relationship between dendritic spine morphology, features of spine compartmentalization and synaptic plasticity. We highlight emerging molecular mechanisms that link structural and functional changes in spines during plasticity, and also consider circumstances that underscore some divergence from a tight structure-function coupling. Because of the intricate influence of spine structure on biochemical and electrical signalling, activity-dependent changes in spine morphology alone may thus contribute to the metaplastic potential of synapses. This possibility asserts a role for structural dynamics in neuronal information storage and aligns well with current computational models.
Collapse
|
29
|
Subsynaptic AMPA receptor distribution is acutely regulated by actin-driven reorganization of the postsynaptic density. J Neurosci 2012; 32:658-73. [PMID: 22238102 DOI: 10.1523/jneurosci.2927-11.2012] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
AMPA receptors (AMPARs) mediate synaptic transmission and plasticity during learning, development, and disease. Mechanisms determining subsynaptic receptor position are poorly understood but are key determinants of quantal size. We used a series of live-cell, high-resolution imaging approaches to measure protein organization within single postsynaptic densities in rat hippocampal neurons. By photobleaching receptors in synapse subdomains, we found that most AMPARs do not freely diffuse within the synapse, indicating they are embedded in a matrix that determines their subsynaptic position. However, time lapse analysis revealed that synaptic AMPARs are continuously repositioned in concert with plasticity of this scaffold matrix rather than simply by free diffusion. Using a fluorescence correlation analysis, we found that across the lateral extent of single PSDs, component proteins were differentially distributed, and this distribution was continually adjusted by actin treadmilling. The C-terminal PDZ ligand of GluA1 did not regulate its mobility or distribution in the synapse. However, glutamate receptor activation promoted subsynaptic mobility. Strikingly, subsynaptic immobility of both AMPARs and scaffold molecules remained essentially intact even after loss of actin filaments. We conclude that receptors are actively repositioned at the synapse by treadmilling of the actin cytoskeleton, an influence which is transmitted only indirectly to receptors via the pliable and surprisingly dynamic internal structure of the PSD.
Collapse
|
30
|
Okubo Y, Kanemaru K, Iino M. Imaging of Ca2+ and related signaling molecules and investigation of their functions in the brain. Antioxid Redox Signal 2011; 14:1303-14. [PMID: 20615120 DOI: 10.1089/ars.2010.3367] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Intracellular Ca(2+) signaling, and related mechanisms involving inositol 1,4,5-trisphosphate (IP(3)), nitric oxide, and the excitatory neurotransmitter glutamate, play a major role in the regulation of cellular function in the brain. Due to the complex morphology of central neurons, the correct spatiotemporal distribution of signaling molecules is essential. Thus, imaging studies have been particularly useful in elucidating the functions of these signaling molecules. The advancement of imaging methods, together with the development of a new method for the specific inhibition of intracellular IP(3) signaling, have made it possible to identify pathways that are regulated by Ca(2+) signals in the brain, including Ca(2+)-dependent synaptic maintenance and glial cell-dependent neurite growth. Further investigation of Ca(2+)-related signaling is expected to increase our understanding of brain function in the future.
Collapse
Affiliation(s)
- Yohei Okubo
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | | |
Collapse
|
31
|
Das P, Zerda R, Alvarez FJ, Tietz EI. Immunogold electron microscopic evidence of differential regulation of GluN1, GluN2A, and GluN2B, NMDA-type glutamate receptor subunits in rat hippocampal CA1 synapses during benzodiazepine withdrawal. J Comp Neurol 2011; 518:4311-28. [PMID: 20853509 DOI: 10.1002/cne.22458] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Benzodiazepine withdrawal-anxiety is associated with enhanced α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor (AMPAR)-mediated glutamatergic transmission in rat hippocampal CA1 synapses due to enhanced synaptic insertion and phosphorylation of GluA1 homomers. Interestingly, attenuation of withdrawal-anxiety is associated with a reduction in N-methyl-D-aspartate receptor (NMDAR)-mediated currents and subunit expression, secondary to AMPA receptor potentiation. Therefore, in this study ultrastructural evidence for possible reductions in NMDAR GluN1, GluN2A, and GluN2B subunits was sought at CA1 stratum radiatum synapses in proximal dendrites using postembedding immunogold labeling of tissues from rats withdrawn for 2 days from 1-week daily oral administration of the benzodiazepine, flurazepam (FZP). GluN1-immunogold density and the percentage of immunopositive synapses were significantly decreased in tissues from FZP-withdrawn rats. Similar decreases were observed for GluN2B subunits; however, the relative lateral distribution of GluN2B-immunolabeling within the postsynaptic density did not change after BZ withdrawal. In contrast to the GluN2B subunit, the percentage of synapses labeled with the GluN2A subunit antibody and the density of immunogold labeling for this subunit was unchanged. The spatial localization of immunogold particles associated with each NMDAR subunit was consistent with a predominantly postsynaptic localization. The data therefore provide direct evidence for reduced synaptic GluN1/GluN2B receptors and preservation of GluN1/GluN2A receptors in the CA1 stratum radiatum region during BZ withdrawal. Based on collective findings in this benzodiazepine withdrawal-anxiety model, we propose a functional model illustrating the changes in glutamate receptor populations at excitatory synapses during benzodiazepine withdrawal.
Collapse
Affiliation(s)
- Paromita Das
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Health Science Campus, Toledo, Ohio 43614, USA
| | | | | | | |
Collapse
|
32
|
Ventriglia F. Effect of filaments within the synaptic cleft on the response of excitatory synapses simulated by computer experiments. Biosystems 2010; 104:14-22. [PMID: 21195740 DOI: 10.1016/j.biosystems.2010.12.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2010] [Revised: 12/15/2010] [Accepted: 12/22/2010] [Indexed: 11/15/2022]
Abstract
Mathematical models of the excitatory synapse are furnishing valuable information about the synaptic response. Based on Brownian-diffusion of glutamate molecules, a synapse model was utilized to investigate the synaptic response on a femto-second time scale by the use of a parallel computer. In particular, the presence of fibrils crossing the synaptic cleft was simulated, which could have a role in shaping the brain activity. To this aim the model of synapse was modified by considering trans-synaptic filaments with diameters ranging from 7 nm to 3 nm, disposed on a grid with spacing of 14 nm or 8 nm. The simulation demonstrated that the presence of filaments induced an increase in the synaptic response, most likely linked to an increment in the probability of encounter between glutamate molecules and receptors. The increase was small--from 5 to 20%, but metabolic and functional considerations provide substantive hints about the importance of these small changes for brain activity. Moreover, it was shown that the presence of filaments made more stable the response of the synapse to random variations of pre-synaptic elements. Originated by these computational results, some inferences about the biological bases of mind diseases such as autism, mental retardation and schizophrenia, are reported in the Discussion.
Collapse
Affiliation(s)
- Francesco Ventriglia
- Istituto di Cibernetica E.Caianiello del CNR, Via Campi Flegrei 34, Pozzuoli (NA), Italy.
| |
Collapse
|
33
|
Kristiansen LV, Patel SA, Haroutunian V, Meador-Woodruff JH. Expression of the NR2B-NMDA receptor subunit and its Tbr-1/CINAP regulatory proteins in postmortem brain suggest altered receptor processing in schizophrenia. Synapse 2010; 64:495-502. [PMID: 20175224 DOI: 10.1002/syn.20754] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Several lines of evidence implicate aberrant glutamate neurotransmission in the pathophysiology of schizophrenia. In particular, compromised signaling through the N-methyl-D-aspartate (NMDA) receptor has been linked to positive, negative, and cognitive symptoms of this illness. Studies in postmortem brain have identified altered expression of several structural and signaling molecules of the postsynaptic density (PSD), including the abundantly expressed protein PSD-95, which binds directly to NR2 subunits of the NMDA receptor and regulates its trafficking, membrane expression, and downstream signaling. Several mechanisms for functional regulation of the NR2B-containing NMDA receptor, which have been linked to cognitive dysfunction in schizophrenia, are well known. To analyze whether early events in NR2B processing are affected in schizophrenia, we have isolated a subcellular endoplasmic reticulum (ER)-enriched fraction from postmortem brain and analyzed expression of the NR1 and NR2B NMDA receptor subunits as well as PSD-95 in two areas of prefrontal cortex. We found significantly decreased ER expression of NR2B and PSD-95 in dorsolateral prefrontal cortex in schizophrenia. Analysis in total-cell homogenates from the same subjects of NR2B and PSD-95 expression, as well as of the CINAP and Tbr-1 transcription regulatory proteins, indicate that changes in NR2B processing in schizophrenia involve increased ER exit of NR2B containing NMDA receptors.
Collapse
Affiliation(s)
- Lars V Kristiansen
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| | | | | | | |
Collapse
|
34
|
Shaffer C, Guo ML, Fibuch EE, Mao LM, Wang JQ. Regulation of group I metabotropic glutamate receptor expression in the rat striatum and prefrontal cortex in response to amphetamine in vivo. Brain Res 2010; 1326:184-92. [PMID: 20193665 DOI: 10.1016/j.brainres.2010.02.062] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 02/12/2010] [Accepted: 02/20/2010] [Indexed: 01/17/2023]
Abstract
G protein-coupled metabotropic glutamate receptors (mGluRs) are expressed in widespread regions of the mammalian brain and are involved in the regulation of a variety of neuronal and synaptic activities. Group I mGluRs (mGluR1 and mGluR5 subtypes) are expressed in striatal medium spiny output neurons and are believed to play an important role in the modulation of cellular responses to dopamine stimulation with psychostimulants. In this study, we investigated the effect of a single dose of the psychostimulant amphetamine on mGluR1/5 protein expression in the rat forebrain in vivo. We found that acute systemic injection of amphetamine at a behaviorally active dose (5 mg/kg) was able to reduce mGluR5 protein levels in a confined biochemical fraction of synaptosomal plasma membranes enriched from the striatum. In contrast to the striatum, amphetamine increased mGluR5 protein levels in the medial prefrontal cortex. These changes in mGluR5 expression in both the striatum and the medial prefrontal cortex were transient and reversible. In addition, protein levels of mGluR1 in the enriched synaptosomal fraction from both the striatum and the medial prefrontal cortex remained stable in response to acute amphetamine. Similarly, Homer1b/c proteins, which are prominent anchoring proteins of mGluR1/5 and are highly expressed in the striatum and the medial prefrontal cortex, showed no change in their protein abundance in striatal and cortical synaptosomes after amphetamine administration. These data demonstrate differential sensitivity of mGluR1 and mGluR5 expression to amphetamine. Acute amphetamine injection is able to alter mGluR5 protein levels at synaptic sites in a subtype- and region-specific manner.
Collapse
Affiliation(s)
- Christopher Shaffer
- Department of Anesthesiology, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | | | | | | | | |
Collapse
|
35
|
Neuronal transporters regulate glutamate clearance, NMDA receptor activation, and synaptic plasticity in the hippocampus. J Neurosci 2009; 29:14581-95. [PMID: 19923291 DOI: 10.1523/jneurosci.4845-09.2009] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the mammalian brain, the specificity of excitatory synaptic transmission depends on rapid diffusion of glutamate away from active synapses and the powerful uptake capacity of glutamate transporters in astrocytes. The extent to which neuronal glutamate transporters influence the lifetime of glutamate in the extracellular space remains unclear. Here we show that EAAC1, the predominant neuronal glutamate transporter at excitatory synapses in hippocampal area CA1, buffers glutamate released during synaptic events and prolongs the time course of its clearance by astrocytes. EAAC1 does not significantly alter activation of receptors in the synaptic cleft. Instead, it reduces recruitment of perisynaptic/extrasynaptic NR2B-containing NMDARs, thereby facilitating induction of long-term potentiation by short bursts of high-frequency stimulation. We describe novel roles of EAAC1 in regulating glutamate diffusion and propose that NMDARs at different subsynaptic locations can make distinct contributions to the regulation of synaptic strength.
Collapse
|
36
|
Kalantzis G, Shouval HZ. Structural plasticity can produce metaplasticity. PLoS One 2009; 4:e8062. [PMID: 19956610 PMCID: PMC2779489 DOI: 10.1371/journal.pone.0008062] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Accepted: 10/16/2009] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Synaptic plasticity underlies many aspect of learning memory and development. The properties of synaptic plasticity can change as a function of previous plasticity and previous activation of synapses, a phenomenon called metaplasticity. Synaptic plasticity not only changes the functional connectivity between neurons but in some cases produces a structural change in synaptic spines; a change thought to form a basis for this observed plasticity. Here we examine to what extent structural plasticity of spines can be a cause for metaplasticity. This study is motivated by the observation that structural changes in spines are likely to affect the calcium dynamics in spines. Since calcium dynamics determine the sign and magnitude of synaptic plasticity, it is likely that structural plasticity will alter the properties of synaptic plasticity. METHODOLOGY/PRINCIPAL FINDINGS In this study we address the question how spine geometry and alterations of N-methyl-D-aspartic acid (NMDA) receptors conductance may affect plasticity. Based on a simplified model of the spine in combination with a calcium-dependent plasticity rule, we demonstrated that after the induction phase of plasticity a shift of the long term potentiation (LTP) or long term depression (LTD) threshold takes place. This induces a refractory period for further LTP induction and promotes depotentiation as observed experimentally. That resembles the BCM metaplasticity rule but specific for the individual synapse. In the second phase, alteration of the NMDA response may bring the synapse to a state such that further synaptic weight alterations are feasible. We show that if the enhancement of the NMDA response is proportional to the area of the post synaptic density (PSD) the plasticity curves most likely return to the initial state. CONCLUSIONS/SIGNIFICANCE Using simulations of calcium dynamics in synaptic spines, coupled with a biophysically motivated calcium-dependent plasticity rule, we find under what conditions structural plasticity can form the basis of synapse specific metaplasticity.
Collapse
Affiliation(s)
- Georgios Kalantzis
- Department of Neurobiology and Anatomy, The University of Texas Medical School at Houston, Houston, Texas, United States of America
- * E-mail: (GK); (HZS)
| | - Harel Z. Shouval
- Department of Neurobiology and Anatomy, The University of Texas Medical School at Houston, Houston, Texas, United States of America
- * E-mail: (GK); (HZS)
| |
Collapse
|
37
|
McKinney RA. Excitatory amino acid involvement in dendritic spine formation, maintenance and remodelling. J Physiol 2009; 588:107-16. [PMID: 19933758 DOI: 10.1113/jphysiol.2009.178905] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In the central nervous system, most excitatory synapses occur on dendritic spines, which are small protrusions from the dendritic tree. In the mature cortex and hippocampus, dendritic spines are heterogeneous in shape. It has been shown that the shapes of the spine can affect synapse stability and synaptic function. Dendritic spines are highly motile structures that can undergo actin-dependent shape changes, which occur over a time scale ranging from seconds to tens of minutes or even days. The formation, remodelling and elimination of excitatory synapses on dendritic spines represent ways of refining the microcircuitry in the brain. Here I review the current knowledge on the effects of modulation of AMPA and NMDA ionotropic glutamate receptors on dendritic spine formation, motility and remodelling.
Collapse
Affiliation(s)
- R Anne McKinney
- Department of Pharmacology and Therapeutics, Bellini Life Science Building, McGill University, Montreal, H3G 0B1, Canada.
| |
Collapse
|
38
|
Yu J, Daniels BA, Baldridge WH. Slow excitation of cultured rat retinal ganglion cells by activating group I metabotropic glutamate receptors. J Neurophysiol 2009; 102:3728-39. [PMID: 19846623 DOI: 10.1152/jn.00650.2009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
As in many CNS neurons, retinal ganglion cells (RGCs) receive fast synaptic activation through postsynaptic ionotropic receptors. However, the potential role of postsynaptic group I metabotropic glutamate receptors (mGluRs) in these neurons is unknown. In this study we first demonstrated that the selective group I mGluR agonist (S)-3,5-dihydroxyphenylglycine (DHPG) increased intracellular calcium concentration in neurons within the ganglion cell layer of the rat retina. This prompted us to use an immunopanned-RGC and cortical astroglia coculture preparation to explore the effect of group I mGluR activation on the electrophysiological properties of cultured RGCs. Using perforated patch-clamp recordings in current-clamp configuration, we found that application of DHPG increased spontaneous spiking and depolarized the resting membrane potential of RGCs. This boosting effect was attributed to an increase in membrane resistance due to blockade of a background K(+) conductance. Further experiments showed that the group I mGluR-sensitive K(+) conductance was not blocked by 3 mM Cs(+), but was sensitive to acidification. Pharmacological studies indicated that the effect of DHPG on RGCs was mediated by the mGluR1 rather than the mGluR5 receptor subtype. Our results suggest a facilitatory role for group I mGluR activation in modulating RGC excitability in the mammalian inner retina.
Collapse
Affiliation(s)
- Jianing Yu
- Department of Anatomy and Neurobiology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | |
Collapse
|
39
|
Bourne JN, Harris KM. Balancing structure and function at hippocampal dendritic spines. Annu Rev Neurosci 2008; 31:47-67. [PMID: 18284372 DOI: 10.1146/annurev.neuro.31.060407.125646] [Citation(s) in RCA: 691] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Dendritic spines are the primary recipients of excitatory input in the central nervous system. They provide biochemical compartments that locally control the signaling mechanisms at individual synapses. Hippocampal spines show structural plasticity as the basis for the physiological changes in synaptic efficacy that underlie learning and memory. Spine structure is regulated by molecular mechanisms that are fine-tuned and adjusted according to developmental age, level and direction of synaptic activity, specific brain region, and exact behavioral or experimental conditions. Reciprocal changes between the structure and function of spines impact both local and global integration of signals within dendrites. Advances in imaging and computing technologies may provide the resources needed to reconstruct entire neural circuits. Key to this endeavor is having sufficient resolution to determine the extrinsic factors (such as perisynaptic astroglia) and the intrinsic factors (such as core subcellular organelles) that are required to build and maintain synapses.
Collapse
Affiliation(s)
- Jennifer N Bourne
- Center for Learning and Memory, Department of Neurobiology, University of Texas, Austin, Texas 78712-0805, USA.
| | | |
Collapse
|
40
|
Suzuki T, Kodama S, Hoshino C, Izumi T, Miyakawa H. A plateau potential mediated by the activation of extrasynaptic NMDA receptors in rat hippocampal CA1 pyramidal neurons. Eur J Neurosci 2008; 28:521-34. [DOI: 10.1111/j.1460-9568.2008.06324.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
Dendritic spine plasticity—Current understanding from in vivo studies. ACTA ACUST UNITED AC 2008; 58:282-9. [DOI: 10.1016/j.brainresrev.2008.01.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 01/23/2008] [Accepted: 01/24/2008] [Indexed: 11/17/2022]
|
42
|
Newpher TM, Ehlers MD. Glutamate receptor dynamics in dendritic microdomains. Neuron 2008; 58:472-97. [PMID: 18498731 PMCID: PMC2572138 DOI: 10.1016/j.neuron.2008.04.030] [Citation(s) in RCA: 278] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 04/28/2008] [Accepted: 04/30/2008] [Indexed: 01/08/2023]
Abstract
Among diverse factors regulating excitatory synaptic transmission, the abundance of postsynaptic glutamate receptors figures prominently in molecular memory and learning-related synaptic plasticity. To allow for both long-term maintenance of synaptic transmission and acute changes in synaptic strength, the relative rates of glutamate receptor insertion and removal must be tightly regulated. Interactions with scaffolding proteins control the targeting and signaling properties of glutamate receptors within the postsynaptic membrane. In addition, extrasynaptic receptor populations control the equilibrium of receptor exchange at synapses and activate distinct signaling pathways involved in plasticity. Here, we review recent findings that have shaped our current understanding of receptor mobility between synaptic and extrasynaptic compartments at glutamatergic synapses, focusing on AMPA and NMDA receptors. We also examine the cooperative relationship between intracellular trafficking and surface diffusion of glutamate receptors that underlies the expression of learning-related synaptic plasticity.
Collapse
Affiliation(s)
- Thomas M. Newpher
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Michael D. Ehlers
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
- Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
43
|
Group I Metabotropic Glutamate Receptor-mediated Gene Expression in Striatal Neurons. Neurochem Res 2008; 33:1920-4. [DOI: 10.1007/s11064-008-9654-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Accepted: 03/06/2008] [Indexed: 10/22/2022]
|
44
|
Ohno-Shosaku T, Hashimotodani Y, Ano M, Takeda S, Tsubokawa H, Kano M. Endocannabinoid signalling triggered by NMDA receptor-mediated calcium entry into rat hippocampal neurons. J Physiol 2007; 584:407-18. [PMID: 17615096 PMCID: PMC2277148 DOI: 10.1113/jphysiol.2007.137505] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Endocannabinoids are released from neurons in activity-dependent manners, act retrogradely on presynaptic CB(1) cannabinoid receptors, and induce short-term or long-term suppression of transmitter release. The endocannabinoid release is triggered by postsynaptic activation of voltage-gated Ca(2+) channels and/or G(q)-coupled receptors such as group I metabotropic glutamate receptors (I-mGluRs) and M(1)/M(3) muscarinic receptors. However, the roles of NMDA receptors, which provide another pathway for Ca(2+) entry into neurons, in endocannabinoid signalling have been poorly understood. In the present study, we investigated the possible contribution of NMDA receptors in endocannabinoid production by recording IPSCs in cultured hippocampal neurons. Under the conditions minimizing the activation of voltage-gated Ca(2+) channels, local application of NMDA (200 microm) transiently suppressed cannabinoid-sensitive IPSCs, but not cannabinoid-insensitive IPSCs. This NMDA-induced suppression was abolished by blocking NMDA receptors, CB(1) receptors and diacylglycerol lipase, but not by inhibiting voltage-gated Ca(2+) channels. When the postsynaptic neuron was dialysed with 30 mm BAPTA, the NMDA-induced suppression was reduced significantly. A lower dose of NMDA (20 microm) exerted little effect when applied alone, but markedly enhanced the cannabinoid-dependent suppression driven by muscarinic receptors or I-mGluRs. These data clearly indicate that the activation of NMDA receptors facilitates the endocannabinoid release either alone or in concert with the G(q)-coupled receptors.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Calcium Channels/metabolism
- Calcium Signaling/drug effects
- Cannabinoid Receptor Modulators/metabolism
- Cells, Cultured
- Chelating Agents/pharmacology
- Dose-Response Relationship, Drug
- Egtazic Acid/analogs & derivatives
- Egtazic Acid/pharmacology
- Endocannabinoids
- Excitatory Amino Acid Agonists/pharmacology
- GTP-Binding Protein alpha Subunits, Gq-G11/metabolism
- Glycine/analogs & derivatives
- Glycine/pharmacology
- Hippocampus/cytology
- Hippocampus/drug effects
- Hippocampus/metabolism
- Inhibitory Postsynaptic Potentials
- Lipoprotein Lipase/metabolism
- Morpholines/pharmacology
- Muscarinic Agonists/pharmacology
- N-Methylaspartate/metabolism
- N-Methylaspartate/pharmacology
- Neurons/drug effects
- Neurons/metabolism
- Oxotremorine/analogs & derivatives
- Oxotremorine/pharmacology
- Phospholipase C beta/metabolism
- Pyrazoles/pharmacology
- Rats
- Receptor, Cannabinoid, CB1/drug effects
- Receptor, Cannabinoid, CB1/metabolism
- Receptors, Metabotropic Glutamate/metabolism
- Receptors, Muscarinic/metabolism
- Receptors, N-Methyl-D-Aspartate/drug effects
- Receptors, N-Methyl-D-Aspartate/metabolism
- Resorcinols/pharmacology
Collapse
Affiliation(s)
- Takako Ohno-Shosaku
- Department of Cellular Neuroscience, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
45
|
Masukawa K, Sakai N, Ohmori S, Shirai Y, Saito N. Spatiotemporal analysis of the molecular interaction between PICK1 and PKC. Acta Histochem Cytochem 2006; 39:173-81. [PMID: 17327904 PMCID: PMC1779951 DOI: 10.1267/ahc.06025] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Accepted: 11/10/2006] [Indexed: 11/22/2022] Open
Abstract
PICK1 is a protein which was initially identified as a protein kinase Calpha (alphaPKC) binding protein using the yeast two-hybrid system. In addition to alphaPKC, the PICK1 complex binds to and regulates various transmembrane proteins including receptors and transporters. However, it has not been clarified when and where PICK1 binds to alphaPKC. We examined the spatio-temporal interaction of PICK1 and PKC using live imaging techniques and showed that the activated alphaPKC binds to PICK1 and transports it to the plasma membrane. Although the membrane translocation of PICK1 requires the activation of alphaPKC, PICK1 is retained on the membrane even after PKC moves back to the cytosol. These results suggest that the interaction between alphaPKC and PICK1 is transient and may not be necessary for the regulation of receptors/transporters by PICK1 or by alphaPKC on the membrane.
Collapse
Affiliation(s)
- Kenji Masukawa
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe 657–8501, Japan
| | - Norio Sakai
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical Sciences, Hiroshima University
| | - Shiho Ohmori
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe 657–8501, Japan
| | - Yasuhito Shirai
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe 657–8501, Japan
| | - Naoaki Saito
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe 657–8501, Japan
- Correspondence to: Naoaki Saito, Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, 1–1 Rokkodai-cho, Nada-ku, Kobe 657–8501, Japan. E-mail:
| |
Collapse
|
46
|
Galvan A, Kuwajima M, Smith Y. Glutamate and GABA receptors and transporters in the basal ganglia: what does their subsynaptic localization reveal about their function? Neuroscience 2006; 143:351-75. [PMID: 17059868 PMCID: PMC2039707 DOI: 10.1016/j.neuroscience.2006.09.019] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2006] [Revised: 09/10/2006] [Accepted: 09/13/2006] [Indexed: 01/29/2023]
Abstract
GABA and glutamate, the main transmitters in the basal ganglia, exert their effects through ionotropic and metabotropic receptors. The dynamic activation of these receptors in response to released neurotransmitter depends, among other factors, on their precise localization in relation to corresponding synapses. The use of high resolution quantitative electron microscope immunocytochemical techniques has provided in-depth description of the subcellular and subsynaptic localization of these receptors in the CNS. In this article, we review recent findings on the ultrastructural localization of GABA and glutamate receptors and transporters in monkey and rat basal ganglia, at synaptic, extrasynaptic and presynaptic sites. The anatomical evidence supports numerous potential locations for receptor-neurotransmitter interactions, and raises important questions regarding mechanisms of activation and function of synaptic versus extrasynaptic receptors in the basal ganglia.
Collapse
Affiliation(s)
- A Galvan
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA.
| | | | | |
Collapse
|
47
|
Gsell W, Burke M, Wiedermann D, Bonvento G, Silva AC, Dauphin F, Bührle C, Hoehn M, Schwindt W. Differential effects of NMDA and AMPA glutamate receptors on functional magnetic resonance imaging signals and evoked neuronal activity during forepaw stimulation of the rat. J Neurosci 2006; 26:8409-16. [PMID: 16914666 PMCID: PMC6674350 DOI: 10.1523/jneurosci.4615-05.2006] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Most of the currently used methods for functional brain imaging do not visualize neuronal activity directly but rather rely on the elicited hemodynamic and/or metabolic responses. Glutamate, the major excitatory neurotransmitter, plays an important role in the neurovascular/neurometabolic coupling, but the specific mechanisms are still poorly understood. To investigate the role of the two major ionotropic glutamate receptors [NMDA receptors (NMDA-Rs) and AMPA receptors (AMPA-Rs)] for the generation of functional magnetic resonance imaging (fMRI) signals, we used fMRI [measurements of blood oxygenation level-dependent (BOLD), perfusion-weighted imaging (PWI), and cerebral blood volume (CBV)] together with recordings of somatosensory evoked potentials (SEPs) during electrical forepaw stimulation in the alpha-chloralose anesthetized rat. Intravenous injection of the NMDA-R antagonist MK-801 [(+)-5-methyl-10,11-dihydro-5H-dibenzo [a,d] cyclohepten-5,10-imine maleate] (0.06 mg/kg plus 3.6 microg x kg(-1) x h(-1)) significantly decreased BOLD (-51 +/- 19%; n = 5) and PWI (-57 +/- 26%; n = 5) responses but reduced the SEPs only mildly (approximately -10%). Systemic application of the AMPA-R antagonist GYKI-53655 [1-(4-aminophenyl)-3-methylcarbamyl-4-methyl-7,8-methylenedioxy-3,4-dihydro-5H-2,3-benzodiazepine] significantly decreased both the hemodynamic response (BOLD, -49 +/- 13 and -65 +/- 15%; PWI, -22 +/- 48 and -68 +/- 4% for 5 and 7 mg/kg, i.v., respectively; CBV, -80 +/- 7% for 7 mg/kg; n = 4) and the SEPs (up to -60%). These data indicate that the interaction of glutamate with its postsynaptic and/or glial receptors is necessary for the generation of blood flow and BOLD responses and illustrate the differential role of NMDA-Rs and AMPA-Rs in the signaling chain leading from increased neuronal activity to the hemodynamic response in the somatosensory cortex.
Collapse
|
48
|
Kristiansen LV, Beneyto M, Haroutunian V, Meador-Woodruff JH. Changes in NMDA receptor subunits and interacting PSD proteins in dorsolateral prefrontal and anterior cingulate cortex indicate abnormal regional expression in schizophrenia. Mol Psychiatry 2006; 11:737-47, 705. [PMID: 16702973 DOI: 10.1038/sj.mp.4001844] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Abnormal expression of the N-methyl-D-Aspartate (NMDA) receptor and its interacting molecules of the postsynaptic density (PSD) are thought to be involved in the pathophysiology of schizophrenia. Frontal regions of neocortex including dorsolateral prefrontal (DLPFC) and anterior cingulate cortex (ACC) are essential for cognitive and behavioral functions that are affected in schizophrenia. In this study, we have measured protein expression of two alternatively spliced isoforms of the NR1 subunit (NR1C2 and NR1C2') as well as expression of the NR2A-D subunits of the NMDA receptor in DLPFC and ACC in post-mortem samples from elderly schizophrenic patients and a comparison group. We found significantly increased expression of NR1C2' but not of NR1C2 in ACC, suggesting altered NMDA receptor cell membrane expression in this cortical area. We did not find significant changes in the expression of either of the NR1 isoforms in DLPFC. We did not detect changes of any of the NR2 subunits studied in either cortical area. In addition, we studied expression of the NMDA-interacting PSD molecules NF-L, SAP102, PSD-95 and PSD-93 in ACC and DLPFC at both transcriptional and translational levels. We found significant changes in the expression of NF-L in DLPFC, and PSD-95 and PSD-93 in ACC; increased transcript expression was associated with decreased protein expression, suggesting abnormal translation and/or accelerated protein degradation of these molecules in schizophrenia. Our findings suggest abnormal regional processing of the NMDA receptor and its associated PSD molecules, possibly involving transcription, translation, trafficking and protein stability in cortical areas in schizophrenia.
Collapse
Affiliation(s)
- L V Kristiansen
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294-0017, USA.
| | | | | | | |
Collapse
|
49
|
David HN, Ansseau M, Abraini JH. Dopamine-glutamate reciprocal modulation of release and motor responses in the rat caudate-putamen and nucleus accumbens of "intact" animals. ACTA ACUST UNITED AC 2005; 50:336-60. [PMID: 16278019 DOI: 10.1016/j.brainresrev.2005.09.002] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2004] [Revised: 09/10/2005] [Accepted: 09/16/2005] [Indexed: 10/25/2022]
Abstract
Functional interactions between dopaminergic neurotransmission and glutamatergic neurotransmission are well known to play a crucial integrative role in the striatum, the major input structure of the basal ganglia now widely recognized to contribute to the control of motor activity and movements but also to the processing of cognitive and limbic functions. However, the nature of these interactions is still a matter of debate and controversy. This review (1) summarizes anatomical data on the distribution of dopaminergic and glutamatergic receptors in the striatum-accumbens complex, (2) focuses on the dopamine-glutamate interactions in the modulation of each other's release in the striatum-accumbens complex, and (3) examines the dopamine-glutamate interactions in the entire striatum involved in the control of locomotor activity. The effects of dopaminergic and glutamatergic receptor selective agonists and antagonists on dopamine and glutamate release as well on motor responses are analyzed in the entire striatum, by reviewing both in vitro and in vivo data. Regarding in vivo data, only findings from focal injections studies in the nucleus accumbens or the caudate-putamen of "intact" animals are reviewed. Altogether, the available data demonstrate that dopamine and glutamate do not uniformly interact to modulate each others' release and postsynaptic modulation of striatal output neurons. Depending on the receptor subtypes involved, interactions between dopaminergic and glutamatergic transmission vary as a multiple and complex combination of tonic, phasic, facilitatory, and inhibitory properties.
Collapse
Affiliation(s)
- Hélène N David
- Unité de Psychologie Médicale, CHU Sart-Tilman, B 4000 Liège, Belgium.
| | | | | |
Collapse
|
50
|
Okubo Y, Kakizawa S, Hirose K, Iino M. Cross talk between metabotropic and ionotropic glutamate receptor-mediated signaling in parallel fiber-induced inositol 1,4,5-trisphosphate production in cerebellar Purkinje cells. J Neurosci 2005; 24:9513-20. [PMID: 15509738 PMCID: PMC6730146 DOI: 10.1523/jneurosci.1829-04.2004] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In many excitatory glutamatergic synapses, both ionotropic glutamate receptors (iGluRs) and metabotropic glutamate receptors (mGluRs) are closely distributed on the postsynaptic membrane. However, the functional significance of the close distribution of the two types of glutamate receptors has not been fully clarified. In this study, we examined the functional interaction between iGluR and mGluR at parallel fiber (PF)--> Purkinje cell synapses in the generation of inositol 1,4,5-trisphosphate (IP3), a key second messenger that regulates many important cellular functions. We visualized local IP3 dynamics in Purkinje cells using the green fluorescent protein-tagged pleckstrin homology domain (GFP-PHD) as a fluorescent IP3 probe. Purkinje cells were transduced with Sindbis virus encoding GFP-PHD and imaged with a two-photon laser scanning microscope. Translocation of GFP-PHD from the plasma membrane to the cytoplasm attributable to an increase in IP3 concentration was observed on PF stimulation in fine dendrites of Purkinje cells. Surprisingly, this PF-induced IP3 production was blocked not only by the group I mGluR antagonist but also by the AMPA receptor (AMPAR) antagonist. The PF-induced IP3 production was blocked by either the inhibition of G-protein activation by GDP-betaS or intracellular Ca2+ buffering by BAPTA. These results show that IP3 production is mediated cooperatively by group I mGluR and AMPAR through G-protein activation and Ca2+ influx at PF--> Purkinje cell synapses, identifying the robust cross talk between iGluR and mGluR for the generation of IP3 signals.
Collapse
Affiliation(s)
- Yohei Okubo
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | | | | | | |
Collapse
|