1
|
Alfonso EE, Troche R, Deng Z, Annamalai T, Chapagain P, Tse-Dinh YC, Leng F. Potent Inhibition of Bacterial DNA Gyrase by Digallic Acid and Other Gallate Derivatives. ChemMedChem 2022; 17:e202200301. [PMID: 36161274 PMCID: PMC9742164 DOI: 10.1002/cmdc.202200301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/23/2022] [Indexed: 01/14/2023]
Abstract
Bacterial DNA gyrase, an essential enzyme, is a validated target for discovering and developing new antibiotics. Here we screened a pool of polyphenols and discovered that digallic acid is a potent DNA gyrase inhibitor. We also found that several food additives based on gallate, such as dodecyl gallate, potently inhibit bacterial DNA gyrase. Interestingly, the IC50 of these gallate derivatives against DNA gyrase is correlated with the length of hydrocarbon chain connecting to the gallate. These new bacterial DNA gyrase inhibitors are ATP competitive inhibitors of DNA gyrase. Our results also show that digallic acid and certain gallate derivatives potently inhibit E. coli DNA topoisomerase IV. Several gallate derivatives have strong antimicrobial activities against Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA). This study provides a solid foundation for the design and synthesis of gallate-based DNA gyrase inhibitors that may be used to combat antibacterial resistance.
Collapse
Affiliation(s)
- Eddy E Alfonso
- Biomolecular Sciences Institute, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
| | - Rogelio Troche
- Biomolecular Sciences Institute, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
| | - Zifang Deng
- Biomolecular Sciences Institute, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
| | - Thirunavukkarasu Annamalai
- Biomolecular Sciences Institute, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
| | - Prem Chapagain
- Biomolecular Sciences Institute, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
- Department of Physics, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
| | - Yuk-Ching Tse-Dinh
- Biomolecular Sciences Institute, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
| | - Fenfei Leng
- Biomolecular Sciences Institute, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
| |
Collapse
|
2
|
Alfonso EE, Deng Z, Boaretto D, Hood BL, Vasile S, Smith LH, Chambers JW, Chapagain P, Leng F. Novel and Structurally Diversified Bacterial DNA Gyrase Inhibitors Discovered through a Fluorescence-Based High-Throughput Screening Assay. ACS Pharmacol Transl Sci 2022; 5:932-944. [PMID: 36268121 PMCID: PMC9578135 DOI: 10.1021/acsptsci.2c00113] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Indexed: 12/25/2022]
Abstract
Bacterial DNA gyrase, a type IIA DNA topoisomerase that plays an essential role in bacterial DNA replication and transcription, is a clinically validated target for discovering and developing new antibiotics. In this article, based on a supercoiling-dependent fluorescence quenching (SDFQ) method, we developed a high-throughput screening (HTS) assay to identify inhibitors targeting bacterial DNA gyrase and screened the National Institutes of Health's Molecular Libraries Small Molecule Repository library containing 370,620 compounds in which 2891 potential gyrase inhibitors have been identified. According to these screening results, we acquired 235 compounds to analyze their inhibition activities against bacterial DNA gyrase using gel- and SDFQ-based DNA gyrase inhibition assays and discovered 155 new bacterial DNA gyrase inhibitors with a wide structural diversity. Several of them have potent antibacterial activities. These newly discovered gyrase inhibitors include several DNA gyrase poisons that stabilize the gyrase-DNA cleavage complexes and provide new chemical scaffolds for the design and synthesis of bacterial DNA gyrase inhibitors that may be used to combat multidrug-resistant bacterial pathogens. Additionally, this HTS assay can be applied to screen inhibitors against other DNA topoisomerases.
Collapse
Affiliation(s)
- Eddy E. Alfonso
- Biomolecular
Sciences Institute, Florida International
University, Miami, Florida 33199, United States
- Department
of Chemistry and Biochemistry, Florida International
University, Miami, Florida 33199, United
States
| | - Zifang Deng
- Biomolecular
Sciences Institute, Florida International
University, Miami, Florida 33199, United States
- Department
of Chemistry and Biochemistry, Florida International
University, Miami, Florida 33199, United
States
| | - Daniel Boaretto
- Biomolecular
Sciences Institute, Florida International
University, Miami, Florida 33199, United States
- Department
of Chemistry and Biochemistry, Florida International
University, Miami, Florida 33199, United
States
| | - Becky L. Hood
- Conrad
Prebys Center for Chemical Genomics, Sanford
Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Stefan Vasile
- Conrad
Prebys Center for Chemical Genomics, Sanford
Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Layton H. Smith
- Conrad
Prebys Center for Chemical Genomics, Sanford
Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Jeremy W. Chambers
- Biomolecular
Sciences Institute, Florida International
University, Miami, Florida 33199, United States
- Department
of Environmental Health Sciences, Florida
International University, Miami, Florida 33199, United States
| | - Prem Chapagain
- Biomolecular
Sciences Institute, Florida International
University, Miami, Florida 33199, United States
- Department
of Physics, Florida International University, Miami, Florida 33199, United States
| | - Fenfei Leng
- Biomolecular
Sciences Institute, Florida International
University, Miami, Florida 33199, United States
- Department
of Chemistry and Biochemistry, Florida International
University, Miami, Florida 33199, United
States
| |
Collapse
|
3
|
Gmeiner WH. Entrapment of DNA topoisomerase-DNA complexes by nucleotide/nucleoside analogs. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2019; 2:994-1001. [PMID: 31930190 PMCID: PMC6953902 DOI: 10.20517/cdr.2019.95] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/22/2019] [Accepted: 11/29/2019] [Indexed: 06/10/2023]
Abstract
Topoisomerases are well-validated targets for cancer chemotherapy and DNA topoisomerase 1 (Top1) is the sole target of the camptothecin (CPT) class of anticancer drugs. Over the last 20 years, multiple studies have shown Top1 activity is modulated by non-native DNA structures and this can lead to trapping of Top1 cleavage complexes (Top1cc) and conversion to DNA double strand breaks. Among the perturbations to DNA structure that generate Top1cc are nucleoside analogs that are incorporated into genomic DNA during replication including cytarabine, gemcitabine, and 5-fluoro-2'-deoxyuridine (FdU). We review the literature summarizing the role of Top1cc in mediating the DNA damaging and cytotoxic activities of nucleoside analogs. We also summarize studies demonstrating distinct differences between Top1cc induced by nucleoside analogs and CPTs, particularly with regard to DNA repair. Collectively, these studies demonstrate that, while Top1 is a common target for both Top1 poisons such as CPT and nucleoside analogs such as FdU, these agents are not redundant. In recent years, studies have shown that Top1 poisons and nucleoside analogs together with other anti-cancer drugs such as cisplatin cause replication stress and the DNA repair pathways that modulate the cytotoxic activities of these compounds are being elucidated. We present an overview of this evolving literature, which has implications for how targeting of Top1 with nucleoside analogs can be used more effectively for cancer treatment.
Collapse
Affiliation(s)
- William H. Gmeiner
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
4
|
Synthesis and biological activities of two camptothecin derivatives against Spodoptera exigua. Sci Rep 2019; 9:18067. [PMID: 31792297 PMCID: PMC6889156 DOI: 10.1038/s41598-019-54596-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 11/01/2019] [Indexed: 11/29/2022] Open
Abstract
Camptothecin (CPT), a natural alkaloid isolated from Camptotheca acuminata Decne, is found to show potential insecticidal activities with unique action mechanisms by targeting at DNA-topoisomease I (Top1) complex and inducing cell apoptosis. To improve the efficacy against insect pests, two camptothecin (CPT) derivatives were synthesized through introducing two functional groups, 2-nitroaminoimidazoline and 1-chloro-2-isocyanatoethane by esterification reaction. The insecticidal activities of these two derivatives were evaluated at contact toxicity, cytotoxicity and topoisomerase I (Top1) inhibitory activities comparing with CPT and hydroxyl-camptothecin (HCPT). Results showed that compound a, synthesized by introducing 2-nitroaminoimidazoline to CPT, apparently increased contact toxicity to the third larvae of beet armyworm, Spodoptera exigua, and cytotoxicity to IOZCAS-Spex-II cells isolated from S. exigua. However, the inhibition on DNA relaxation activity of Top1 was reduced to less than 5 percentage even at high concentrations (50 and 100 μM). For introducing 1-chloro-2-isocyanatoethane to HCPT, the contact toxicity, cytotoxicity and Top1 inhibitory activity of synthesized compound b were increased significantly compared to CPT and HCPT. These results suggested that both synthesized compounds possessed high efficacy against S. exigua by targeting at Top1 (compound b) or novel mechanism of action (compound a).
Collapse
|
5
|
Overexpression of TIMP-1 and Sensitivity to Topoisomerase Inhibitors in Glioblastoma Cell Lines. Pathol Oncol Res 2017; 25:59-69. [PMID: 28963609 DOI: 10.1007/s12253-017-0312-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 09/15/2017] [Indexed: 01/03/2023]
Abstract
The multifunctional protein - tissue inhibitor of metalloproteinases-1 (TIMP-1) - has been associated with a poor prognosis in several types of cancers including glioblastomas. In addition, TIMP-1 has been associated with decreased response to chemotherapy, and especially the efficacy of the family of topoisomerase (TOP) inhibitors has been related to TIMP-1. As a second line treatment of glioblastomas, the vascular endothelial growth factor (VEGF) antibody bevacizumab is administered in combination with the TOP1 inhibitor irinotecan and glioblastoma cell levels of TIMP-1 could therefore potentially influence the efficacy of such treatment. In the present study, we aimed to investigate whether a high TIMP-1 expression in glioblastoma cell lines would affect the sensitivity to TOP inhibitors, and whether TIMP-1 overexpressing cells would have alterered growth and invasion. We established TIMP-1 overexpressing subclones from two human glioblastoma cell lines. TIMP-1 overexpressing U87MG cells were significantly more resistant than low TIMP-1 expressing clones and parental cells when exposed to SN-38 (TOP1 inhibitor) or epirubicin (TOP2 inhibitor). No significant differences were observed for the TIMP-1 transfected A172 cells. Implantation of both U87MG and A172 spheroids into organotypic brain slice cultures revealed a reduced growth of TIMP-1 overexpressing U87MG spheroids, however, no significant differences in invasion were observed. The present study suggests that TIMP-1 overexpression reduces the effect of TOP inhibitors in glioblastoma. TIMP-1 also appeared to reduce spheroid growth, but did not influence invasion. Whether TIMP-1 plays a role in irinotecan resistance and has a predictive potential in glioblastoma patients remains to be elucidated.
Collapse
|
6
|
Baranello L, Kouzine F, Levens D. DNA topoisomerases beyond the standard role. Transcription 2015; 4:232-7. [PMID: 24135702 DOI: 10.4161/trns.26598] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Chromatin is dynamically changing its structure to accommodate and control DNA-dependent processes inside of eukaryotic cells. These changes are necessarily linked to changes of DNA topology, which might itself serve as a regulatory signal to be detected by proteins. Thus, DNA Topoisomerases may contribute to the regulation of many events occurring during the transcription cycle. In this review we will focus on DNA Topoisomerase functions in transcription, with particular emphasis on the multiplicity of tasks beyond their widely appreciated role in solving topological problems associated with transcription elongation.
Collapse
|
7
|
Molecular docking studies of curcumin natural derivatives with DNA topoisomerase I and II-DNA complexes. Interdiscip Sci 2014; 6:285-91. [DOI: 10.1007/s12539-012-0048-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 12/18/2012] [Accepted: 03/19/2013] [Indexed: 10/24/2022]
|
8
|
Gilad Y, Firer MA, Rozovsky A, Ragozin E, Redko B, Albeck A, Gellerman G. "Switch off/switch on" regulation of drug cytotoxicity by conjugation to a cell targeting peptide. Eur J Med Chem 2014; 85:139-46. [PMID: 25084142 DOI: 10.1016/j.ejmech.2014.07.073] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 07/19/2014] [Accepted: 07/21/2014] [Indexed: 11/17/2022]
Abstract
Bi-nuclear amino acid platforms loaded with various drugs for conjugation to a peptide carrier were synthesized using simple and convenient orthogonally protective solid-phase organic synthesis (SPOS). Each arm of the platform carries a different anticancer agent linked through the same or different functional group, providing discrete chemo- and bio-release profiles for each drug, and also enabling "switch off/switch on" regulation of drug cytotoxicity by conjugation to the platform and to a cell targeting peptide. The versatility of this approach enables efficient production of drug-loaded platforms and determination of favorable drug combinations/modes of linkage for subsequent conjugation to a carrier moiety for targeted cancer cell therapy. The results presented here potentiate the application of amino acid platforms for targeted drug delivery (TDD).
Collapse
Affiliation(s)
- Yossi Gilad
- Department of Biological Chemistry, Ariel University, Ariel, 40700, Israel; The Julius Spokojny Bioorganic Chemistry Laboratory, Department of Chemistry, Bar Ilan University, Ramat Gan, 52900, Israel
| | - Michael A Firer
- Department of Chemical Engineering, Ariel University, Ariel, 40700, Israel
| | - Alex Rozovsky
- Department of Biological Chemistry, Ariel University, Ariel, 40700, Israel; The Julius Spokojny Bioorganic Chemistry Laboratory, Department of Chemistry, Bar Ilan University, Ramat Gan, 52900, Israel
| | - Elena Ragozin
- Department of Biological Chemistry, Ariel University, Ariel, 40700, Israel
| | - Boris Redko
- Department of Biological Chemistry, Ariel University, Ariel, 40700, Israel; The Julius Spokojny Bioorganic Chemistry Laboratory, Department of Chemistry, Bar Ilan University, Ramat Gan, 52900, Israel
| | - Amnon Albeck
- The Julius Spokojny Bioorganic Chemistry Laboratory, Department of Chemistry, Bar Ilan University, Ramat Gan, 52900, Israel
| | - Gary Gellerman
- Department of Biological Chemistry, Ariel University, Ariel, 40700, Israel.
| |
Collapse
|
9
|
Marcussen LB, Jepsen ML, Kristoffersen EL, Franch O, Proszek J, Ho YP, Stougaard M, Knudsen BR. DNA-based sensor for real-time measurement of the enzymatic activity of human topoisomerase I. SENSORS 2013; 13:4017-28. [PMID: 23529147 PMCID: PMC3673067 DOI: 10.3390/s130404017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 02/16/2013] [Accepted: 03/19/2013] [Indexed: 11/28/2022]
Abstract
Sensors capable of quantitative real-time measurements may present the easiest and most accurate way to study enzyme activities. Here we present a novel DNA-based sensor for specific and quantitative real-time measurement of the enzymatic activity of the essential human enzyme, topoisomerase I. The basic design of the sensor relies on two DNA strands that hybridize to form a hairpin structure with a fluorophore-quencher pair. The quencher moiety is released from the sensor upon reaction with human topoisomerase I thus enabling real-time optical measurement of enzymatic activity. The sensor is specific for topoisomerase I even in raw cell extracts and presents a simple mean of following enzyme kinetics using standard laboratory equipment such as a qPCR machine or fluorimeter. Human topoisomerase I is a well-known target for the clinically used anti-cancer drugs of the camptothecin family. The cytotoxic effect of camptothecins correlates directly with the intracellular topoisomerase I activity. We therefore envision that the presented sensor may find use for the prediction of cellular drug response. Moreover, inhibition of topoisomerase I by camptothecin is readily detectable using the presented DNA sensor, suggesting a potential application of the sensor for first line screening for potential topoisomerase I targeting anti-cancer drugs.
Collapse
Affiliation(s)
- Lærke Bay Marcussen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C 8000, Denmark; E-Mails: (L.B.M.); (M.L.J.); (E.L.K.); (O.F.)
- Department of Pathology, Aarhus University Hospital, Aarhus C 8000, Denmark; E-Mail:
| | - Morten Leth Jepsen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C 8000, Denmark; E-Mails: (L.B.M.); (M.L.J.); (E.L.K.); (O.F.)
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C 8000, Denmark; E-Mail:
| | - Emil Laust Kristoffersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C 8000, Denmark; E-Mails: (L.B.M.); (M.L.J.); (E.L.K.); (O.F.)
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C 8000, Denmark; E-Mail:
| | - Oskar Franch
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C 8000, Denmark; E-Mails: (L.B.M.); (M.L.J.); (E.L.K.); (O.F.)
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C 8000, Denmark; E-Mail:
| | - Joanna Proszek
- Department of Pathology, Aarhus University Hospital, Aarhus C 8000, Denmark; E-Mail:
| | - Yi-Ping Ho
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C 8000, Denmark; E-Mail:
| | - Magnus Stougaard
- Department of Pathology, Aarhus University Hospital, Aarhus C 8000, Denmark; E-Mail:
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C 8000, Denmark; E-Mail:
- Authors to whom correspondence should be addressed; E-Mails: (M.S.); (B.R.K.)
| | - Birgitta Ruth Knudsen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C 8000, Denmark; E-Mails: (L.B.M.); (M.L.J.); (E.L.K.); (O.F.)
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C 8000, Denmark; E-Mail:
- Authors to whom correspondence should be addressed; E-Mails: (M.S.); (B.R.K.)
| |
Collapse
|
10
|
Rao VA. Iron chelators with topoisomerase-inhibitory activity and their anticancer applications. Antioxid Redox Signal 2013; 18:930-55. [PMID: 22900902 PMCID: PMC3557438 DOI: 10.1089/ars.2012.4877] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SIGNIFICANCE Iron and topoisomerases are abundant and essential cellular components. Iron is required for several key processes such as DNA synthesis, mitochondrial electron transport, synthesis of heme, and as a co-factor for many redox enzymes. Topoisomerases serve as critical enzymes that resolve topological problems during DNA synthesis, transcription, and repair. Neoplastic cells have higher uptake and utilization of iron, as well as elevated levels of topoisomerase family members. Separately, the chelation of iron and the cytotoxic inhibition of topoisomerase have yielded potent anticancer agents. RECENT ADVANCES The chemotherapeutic drugs doxorubicin and dexrazoxane both chelate iron and target topoisomerase 2 alpha (top2α). Newer chelators such as di-2-pyridylketone-4,4,-dimethyl-3-thiosemicarbazone and thiosemicarbazone -24 have recently been identified as top2α inhibitors. The growing list of agents that appear to chelate iron and inhibit topoisomerases prompts the question of whether and how these two distinct mechanisms might interplay for a cytotoxic chemotherapeutic outcome. CRITICAL ISSUES While iron chelation and topoisomerase inhibition each represent mechanistically advantageous anticancer therapeutic strategies, dual targeting agents present an attractive multi-modal opportunity for enhanced anticancer tumor killing and overcoming drug resistance. The commonalities and caveats of dual inhibition are presented in this review. FUTURE DIRECTIONS Gaps in knowledge, relevant biomarkers, and strategies for future in vivo studies with dual inhibitors are discussed.
Collapse
Affiliation(s)
- V Ashutosh Rao
- Laboratory of Biochemistry, Division of Therapeutic Proteins, Office of Biotechnology Products, Office of Pharmaceutical Science, Center for Drug Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892, USA.
| |
Collapse
|
11
|
Lin RK, Ho CW, Liu LF, Lyu YL. Topoisomerase IIβ deficiency enhances camptothecin-induced apoptosis. J Biol Chem 2013; 288:7182-92. [PMID: 23344961 DOI: 10.1074/jbc.m112.415471] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Camptothecin (CPT), a topoisomerase (Top) I-targeting drug that stabilizes Top1-DNA covalent adducts, can induce S-phase-specific cytotoxicity due to the arrest of progressing replication forks. However, CPT-induced non-S-phase cytotoxicity is less well characterized. In this study, we have identified topoisomerase IIβ (Top2β) as a specific determinant for CPT sensitivity, but not for many other cytotoxic agents, in non-S-phase cells. First, quiescent mouse embryonic fibroblasts (MEFs) lacking Top2β were shown to be hypersensitive to CPT with prominent induction of apoptosis. Second, ICRF-187, a Top2 catalytic inhibitor known to deplete Top2β, specifically sensitized MEFs to CPT. To explore the molecular basis for CPT hypersensitivity in Top2β-deficient cells, we found that upon CPT exposure, the RNA polymerase II large subunit (RNAP LS) became progressively depleted, followed by recovery to nearly the original level in wild-type MEFs, whereas RNAP LS remained depleted without recovery in Top2β-deficient cells. Concomitant with the reduction of the RNAP LS level, the p53 protein level was greatly induced. Interestingly, RNAP LS depletion has been well documented to lead to p53-dependent apoptosis. Altogether, our findings support a model in which Top2β deficiency promotes CPT-induced apoptosis in quiescent non-S-phase cells, possibly due to RNAP LS depletion and p53 accumulation.
Collapse
Affiliation(s)
- Ren-Kuo Lin
- Department of Pharmacology, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | | | |
Collapse
|
12
|
Mancini G, D'Annessa I, Coletta A, Chillemi G, Pommier Y, Cushman M, Desideri A. Binding of an Indenoisoquinoline to the topoisomerase-DNA complex induces reduction of linker mobility and strengthening of protein-DNA interaction. PLoS One 2012; 7:e51354. [PMID: 23236483 PMCID: PMC3516564 DOI: 10.1371/journal.pone.0051354] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 10/31/2012] [Indexed: 11/18/2022] Open
Abstract
Long-duration comparative molecular dynamics simulations of the DNA-topoisomerase binary and DNA-topoisomerase-indenoisoquinoline ternary complexes have been carried out. The analyses demonstrated the role of the drug in conformationally stabilizing the protein-DNA interaction. In detail, the protein lips, clamping the DNA substrate, interact more tightly in the ternary complex than in the binary one. The drug also reduces the conformational space sampled by the protein linker domain through an increased interaction with the helix bundle proximal to the active site. A similar alteration of linker domain dynamics has been observed in a precedent work for topotecan but the molecular mechanisms were different if compared to those described in this work. Finally, the indenoisoquinoline keeps Lys532 far from the DNA, making it unable to participate in the religation reaction, indicating that both short- and long-range interactions contribute to the drug poisoning effect.
Collapse
Affiliation(s)
- Giordano Mancini
- CASPUR Inter-University Consortium for the Application of Super-Computing for Universities and Research, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
13
|
Rømer MU, Jensen NF, Nielsen SL, Müller S, Nielsen KV, Nielsen HJ, Brünner N. TOP1 gene copy numbers in colorectal cancer samples and cell lines and their association to in vitro drug sensitivity. Scand J Gastroenterol 2012; 47:68-79. [PMID: 22171973 DOI: 10.3109/00365521.2011.638393] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE A positive relationship between topoisomerase-1 (TOP1) protein and sensitivity toward the TOP1 inhibitor irinotecan has been reported in patients with metastatic colorectal cancer (mCRC). In this study, we analyzed TOP1 gene copy number variation in tumor tissue from CRC patients and CRC cell lines with different sensitivities to the TOP1 inhibitor SN-38 and oxaliplatin. MATERIAL AND METHODS A TOP1 gene probe with a chromosome 20 centromere (CEN-20) reference probe was applied on normal mucosa and on tumor tissue from 50 stage III CRC patients. Additionally, associations between TOP1/CEN-20 ratio and in vitro sensitivity to SN-38 (irinotecan) and oxaliplatin were tested on 10 CRC cell lines. Results. In the malignant epithelium, 84% of the samples demonstrated an increased TOP1 gene copy number and 64% had an increased TOP1/CEN-20 ratio compared with the non-affected mucosa. Sixteen (32%) of the tumors had a ratio of ≥ 1.5 and 9 (18%) of these had a ratio of ≥ 2.0. A positive association was observed between the TOP1 gene copy number and the TOP1/CEN-20 ratio and in vitro sensitivity toward SN-38, but not toward oxaliplatin. CONCLUSIONS A large fraction of the clinical samples demonstrated increased TOP1 gene copy number and increased TOP1/CEN-20 ratio. The cell line study suggested an association between TOP1 gene copy number or TOP1/CEN-20 ratio and sensitivity to irinotecan but not oxaliplatin.
Collapse
Affiliation(s)
- Maria Unni Rømer
- Department of Veterinary Disease Biology, Section of Pathobiology, Faculty of Life Sciences, University of Copenhagen, Frederiksberg C, Denmark.
| | | | | | | | | | | | | |
Collapse
|
14
|
Frøhlich RF, Juul S, Nielsen MB, Vinther M, Veigaard C, Hede MS, Andersen FF. Identification of a minimal functional linker in human topoisomerase I by domain swapping with Cre recombinase. Biochemistry 2008; 47:7127-36. [PMID: 18553933 DOI: 10.1021/bi800031k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cellular forms of type IB topoisomerases distinguish themselves from their viral counterparts and the tyrosine recombinases to which they are closely related by having rather extensive N-terminal and linker domains. The functions and necessity of these domains are not yet fully unraveled. In this study we replace 86 amino acids including the linker domain of the cellular type IB topoisomerase, human topoisomerase I, with four, six, or eight amino acids from the corresponding short loop region in Cre recombinase. In vitro characterization of the resulting chimeras, denoted Cropos, reveals that six amino acids from the Cre linker loop constitute the minimal length of a functional linker in human topoisomerase I.
Collapse
Affiliation(s)
- Rikke From Frøhlich
- Department of Molecular Biology and Interdisciplinary Nanoscience Center (iNANO), University of Aarhus, Denmark
| | | | | | | | | | | | | |
Collapse
|
15
|
Kim H, Cardellina JH, Akee R, Champoux JJ, Stivers JT. Arylstibonic acids: novel inhibitors and activators of human topoisomerase IB. Bioorg Chem 2008; 36:190-7. [PMID: 18508107 DOI: 10.1016/j.bioorg.2008.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Revised: 04/15/2008] [Accepted: 04/15/2008] [Indexed: 11/19/2022]
Abstract
Human topoisomerase IB (hTopo) forms a covalent phosphotyrosyl linkage with the DNA backbone, and controls genomic DNA topology by relaxing DNA supercoils during the processes of DNA replication, transcription, chromosome condensation and decondensation. The essential role of hTopo in these processes has made it a preeminent anticancer drug target. We have screened a small library of arylstibonic acids for their effects on plasmid supercoil relaxation catalyzed by hTopo. Despite the similar structures of the library compounds, some compounds were found to be effective competitive inhibitors, and others, nonessential activators. Some arylstibonic acids show selectivity in their action against hTopo and the related enzyme from poxvirus (vTopo). Structure-activity relationships and structural modeling suggest that competitive inhibition may result from positioning of the negatively charged stibonic acid and carboxylate groups of the inhibitors into DNA phosphate binding pockets on hTopo. The hTopo activators act by a surprising allosteric mechanism without interfering with DNA binding or binding of the widely used hTopo poison camptothecin. Arylstibonic acid competitive inhibitors may become useful small molecules for elucidating the cellular functions of hTopo.
Collapse
Affiliation(s)
- Hyeongnam Kim
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205-2185, USA
| | | | | | | | | |
Collapse
|
16
|
Stivers JT, Nagarajan R. Probing enzyme phosphoester interactions by combining mutagenesis and chemical modification of phosphate ester oxygens. Chem Rev 2007; 106:3443-67. [PMID: 16895336 PMCID: PMC2729714 DOI: 10.1021/cr050317n] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- James T Stivers
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205, USA.
| | | |
Collapse
|
17
|
Yoshimura A, Seki M, Hayashi T, Kusa Y, Tada S, Ishii Y, Enomoto T. Functional relationships between Rad18 and WRNIP1 in vertebrate cells. Biol Pharm Bull 2007; 29:2192-6. [PMID: 17077513 DOI: 10.1248/bpb.29.2192] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The WRNIP1 protein interacts with WRN, the product of the causative gene for Werner syndrome. Mutation of the Saccharomyces cerevisiae gene MGS1, the yeast counterpart of WRNIP1, confers synthetic lethality with mutation of RAD18. To examine the functional relationship between WRNIP1 and Rad18 in higher eukaryotic cells, we generated WRNIP1-/-/-/RAD18-/- lines from chicken DT40 cells and compared them with single mutant cell lines. Unlike the corresponding yeast mutant, WRNIP1-/-/-/RAD18-/- cells are viable but grow more slowly than single mutants and wild type cells, and they show an additive or synergistic elevation in the frequency of sister chromatid exchanges. As reported, WRNIP1-/-/- cells and RAD18-/- cells are moderately and severely sensitive to camptothecin (CPT), respectively. Unexpectedly, the severe CPT sensitivity of RAD18-/- cells is slightly suppressed by disruption of the WRNIP1 gene.
Collapse
Affiliation(s)
- Akari Yoshimura
- Molecular Cell Biology Laboratory, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | | | | | | | | | | | | |
Collapse
|
18
|
Yoshimura A, Nishino K, Takezawa J, Tada S, Kobayashi T, Sonoda E, Kawamoto T, Takeda S, Ishii Y, Yamada K, Enomoto T, Seki M. A novel Rad18 function involved in protection of the vertebrate genome after exposure to camptothecin. DNA Repair (Amst) 2006; 5:1307-16. [PMID: 16931176 DOI: 10.1016/j.dnarep.2006.05.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Revised: 05/02/2006] [Accepted: 05/05/2006] [Indexed: 01/01/2023]
Abstract
In Saccharomyces cerevisiae, Rad18 functions in post-replication repair pathways, such as error-free damage bypass involving Rad30 (Poleta) and error-prone damage bypass involving Rev3/7 (Polzeta). Chicken DT40 RAD18(-/-) cells were found to be hypersensitive to camptothecin (CPT), while RAD30(-/-) and REV3(-/-) cells, which are defective in translesion DNA synthesis, were not. RAD18(-/-) cells also showed higher levels of H2AX phosphorylation and chromosomal aberrations, particularly chromosomal gaps and breaks, upon exposure to CPT. Detailed analysis by alkaline sucrose density gradient centrifugation revealed that RAD18(-/-) and wild type cells exhibited similar rates of elongation of newly synthesized DNA in the presence or absence of low concentrations of CPT but that DNA breaks frequently occurred on both parental and nascent strands within 1h after a brief exposure to an elevated concentration of CPT, with more breaks induced in RAD18(-/-) cells than in wild type cells. These data suggest a previously unanticipated role for Rad18 in dealing with replication forks upon encountering DNA lesions induced by CPT.
Collapse
Affiliation(s)
- Akari Yoshimura
- Molecular Cell Biology Laboratory, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba 6-3, Aramaki, Sendai 980-8578, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Das BB, Sen N, Roy A, Dasgupta SB, Ganguly A, Mohanta BC, Dinda B, Majumder HK. Differential induction of Leishmania donovani bi-subunit topoisomerase I-DNA cleavage complex by selected flavones and camptothecin: activity of flavones against camptothecin-resistant topoisomerase I. Nucleic Acids Res 2006; 34:1121-32. [PMID: 16488884 PMCID: PMC1373691 DOI: 10.1093/nar/gkj502] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Emergence of the bi-subunit topoisomerase I in the kinetoplastid family (Trypanosoma and Leishmania) has brought a new twist in topoisomerase research related to evolution, functional conservation and preferential sensitivities to the specific inhibitors of type IB topoisomerase family. In the present study, we describe that naturally occurring flavones baicalein, luteolin and quercetin are potent inhibitors of the recombinant Leishmania donovani topoisomerase I. These compounds bind to the free enzyme and also intercalate into the DNA at a very high concentration (300 µM) without binding to the minor grove. Here, we show that inhibition of topoisomerase I by these flavones is due to stabilization of topoisomerase I–DNA cleavage complexes, which subsequently inhibit the religation step. Their ability to stabilize the covalent topoisomerase I–DNA complex in vitro and in living cells is similar to that of the known topoisomerase I inhibitor camptothecin (CPT). However, in contrast to CPT, baicalein and luteolin failed to inhibit the religation step when the drugs were added to pre-formed enzyme substrate binary complex. This differential mechanism to induce the stabilization of cleavable complex with topoisomerase I and DNA by these selected flavones and CPT led us to investigate the effect of baicalein and luteolin on CPT-resistant mutant enzyme LdTOP1Δ39LS lacking 1–39 amino acids of the large subunit [B. B. Das, N. Sen, S. B. Dasgupta, A. Ganguly and H. K. Majumder (2005) J. Biol. Chem. 280, 16335–16344]. Baicalein and luteolin stabilize duplex oligonucleotide cleavage with LdTOP1Δ39LS. This observation was further supported by the stabilization of in vivo cleavable complex by baicalein and luteolin with highly CPT-resistant L.donovani strain. Taken together, our data suggest that the interacting amino acid residues of topoisomerase I may be partially overlapping or different for flavones and CPT. This study illuminates new properties of the flavones and provide additional insights into the ligand binding properties of L.donovani topoisomerase I.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Biswanath Dinda
- Department of Chemistry, Tripura UniversitySuryamaninagar 799130, Tripura, India
| | - Hemanta K. Majumder
- To whom correspondence should be addressed. Tel: +91 33 2412 3207; Fax: +91 33 2473 5197;
| |
Collapse
|
20
|
Chillemi G, Fiorani P, Castelli S, Bruselles A, Benedetti P, Desideri A. Effect on DNA relaxation of the single Thr718Ala mutation in human topoisomerase I: a functional and molecular dynamics study. Nucleic Acids Res 2005; 33:3339-50. [PMID: 15944452 PMCID: PMC1145191 DOI: 10.1093/nar/gki642] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The functional and dynamical properties of the human topoisomerase I Thr718Ala mutant have been compared to that of the wild-type enzyme using functional assays and molecular dynamics (MD) simulations. At physiological ionic strength, the cleavage and religation rates, evaluated on oligonucleotides containing the preferred topoisomerase I DNA sequence, are almost identical for the wild-type and the mutated enzymes, as is the cleavage/religation equilibrium. On the other hand, the Thr718Ala mutant shows a decreased efficiency in a DNA plasmid relaxation assay. The MD simulation, carried out on the enzyme complexed with its preferred DNA substrate, indicates that the mutant has a different dynamic behavior compared to the wild-type enzyme. Interestingly, no changes are observed in the proximity of the mutation site, whilst a different flexibility is detected in regions contacting the DNA scissile strand, such as the linker and the V-shaped α helices. Taken together, the functional and simulation results indicate a direct communication between the mutation site and regions located relatively far away, such as the linker domain, that with their altered flexibility confer a reduced DNA relaxation efficiency. These results provide evidence that the comprehension of the topoisomerase I dynamical properties are an important element in the understanding of its complex catalytic cycle.
Collapse
Affiliation(s)
- Giovanni Chillemi
- CASPUR Interuniversities Consortium for Supercomputing ApplicationsVia dei Tizii 6b, Rome 00185, Italy
| | - Paola Fiorani
- Department of Biology, National Institute for the Physics of Matter, University of Rome Tor VergataVia Della Ricerca Scientifica, Rome 00133, Italy
| | - Silvia Castelli
- Department of Biology, National Institute for the Physics of Matter, University of Rome Tor VergataVia Della Ricerca Scientifica, Rome 00133, Italy
| | - Alessandro Bruselles
- CASPUR Interuniversities Consortium for Supercomputing ApplicationsVia dei Tizii 6b, Rome 00185, Italy
- Department of Biology, National Institute for the Physics of Matter, University of Rome Tor VergataVia Della Ricerca Scientifica, Rome 00133, Italy
| | - Piero Benedetti
- Department of Biology, University of PaduaVia Ugo Bassi 58/B, Padua 35131, Italy
| | - Alessandro Desideri
- Department of Biology, National Institute for the Physics of Matter, University of Rome Tor VergataVia Della Ricerca Scientifica, Rome 00133, Italy
- To whom correspondence should be addressed. Tel: +39 06 72594376; Fax: +39 06 2022798;
| |
Collapse
|
21
|
Zhang Z, Tanabe K, Hatta H, Nishimoto SI. Bioreduction activated prodrugs of camptothecin: molecular design, synthesis, activation mechanism and hypoxia selective cytotoxicity. Org Biomol Chem 2005; 3:1905-10. [PMID: 15889173 DOI: 10.1039/b502813b] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Several water-soluble derivatives (CPT3, CPT3a-d) of camptothecin (CPT) were synthesized, among which CPT3 bearing an N,N'-dimethyl-1-aminoethylcarbamate side-chain was further conjugated with reductively eliminating structural units of indolequinone, 4-nitrobenzyl alcohol and 4-nitrofuryl alcohol to produce novel prodrugs of camptothecin (CPT4-6). All CPT derivatives were of lower cytotoxicity than their parent compound of CPT. In contrast, CPT4 and CPT6 showed higher hypoxia selectivity of cytotoxicity towards tumor cells than CPT. A mechanism by which a representative prodrug CPT4 is activated in the presence of DT-diaphorase to release CPT was also discussed. The bioreduction activated CPT prodrugs including CPT4 and CPT6 are identified to be promising for application to the hypoxia targeting tumor chemotherapy.
Collapse
Affiliation(s)
- Zhouen Zhang
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura Campus, Nishikyo-ku, Kyoto, 615-8510, Japan
| | | | | | | |
Collapse
|
22
|
Stewart CF, Leggas M, Schuetz JD, Panetta JC, Cheshire PJ, Peterson J, Daw N, Jenkins JJ, Gilbertson R, Germain GS, Harwood FC, Houghton PJ. Gefitinib enhances the antitumor activity and oral bioavailability of irinotecan in mice. Cancer Res 2004; 64:7491-9. [PMID: 15492275 DOI: 10.1158/0008-5472.can-04-0096] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
As a single agent the ERBB1 inhibitor, gefitinib (Iressa; ZD1839) showed minimal activity against a panel of 10 pediatric tumor xenografts that do not express the ERBB1 receptor. However, combined with irinotecan (CPT-11), significantly greater than additive activity was observed in four of eight models (P < 0.05), and the combination showed enhanced activity against three additional tumor lines. Breast cancer resistance protein (ABCG2), a transporter that confers resistance to SN-38 (the active metabolite of irinotecan), was readily detected in six of nine xenograft models examined by immunohistochemistry. In vitro gefitinib potently reversed resistance to SN-38 only in a cell line that overexpressed functional ABCG2. However, overexpression of ABCG2 did not decrease accumulation nor increase the rate of efflux of [(14)C]gefitinib. On the basis of these results and the distribution of Abcg2 in mouse tissues, we assessed the ability of gefitinib to modulate irinotecan pharmacokinetics. Oral gefitinib coadministration resulted in no change in clearance of intravenously administered irinotecan. However, gefitinib treatment dramatically increased the oral bioavailability of irinotecan after simultaneous oral administration. It is concluded that gefitinib may modulate SN-38 activity at the cellular level to reverse tumor resistance mediated by ABCG2 through inhibiting drug efflux and may be used potentially in humans to modulate the oral bioavailability of a poorly absorbed camptothecin such as irinotecan.
Collapse
Affiliation(s)
- Clinton F Stewart
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Colley WC, van der Merwe M, Vance JR, Burgin AB, Bjornsti MA. Substitution of Conserved Residues within the Active Site Alters the Cleavage Religation Equilibrium of DNA Topoisomerase I. J Biol Chem 2004; 279:54069-78. [PMID: 15489506 DOI: 10.1074/jbc.m409764200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic DNA topoisomerase I (Top1p) catalyzes the relaxation of supercoiled DNA and constitutes the cellular target of camptothecin (CPT). Mutation of conserved residues in close proximity to the active site tyrosine (Tyr(727) of yeast Top1p) alters the DNA cleavage religation equilibrium, inducing drug-independent cell lethality. Previous studies indicates that yeast Top1T722Ap and Top1N726Hp cytotoxicity results from elevated levels of covalent enzyme-DNA intermediates. Here we show that Top1T722Ap acts as a CPT mimetic by exhibiting reduced rates of DNA religation, whereas increased Top1N726Hp.DNA complexes result from elevated DNA binding and cleavage. We also report that the combination of the T722A and N726H mutations in a single protein potentiates the cytotoxic action of the enzyme beyond that induced by co-expression of the single mutants. Moreover, the addition of CPT to cells expressing the double top1T722A/N726H mutant did not enhance cell lethality. Thus, independent alterations in DNA cleavage and religation contribute to the lethal phenotype. The formation of distinct cytotoxic lesions was also evidenced by the different responses induced by low levels of these self-poisoning enzymes in isogenic strains defective for the Rad9 DNA damage checkpoint, processive DNA replication, or ubiquitin-mediated proteolysis. Substitution of Asn(726) with Phe or Tyr also produces self-poisoning enzymes, implicating stacking interactions in the increased kinetics of DNA cleavage by Top1N726Hp and Top1N726Fp. In contrast, replacing the amide side chain of Asn(726) with Gln renders Top1N726Qp resistant to CPT, suggesting that the orientation of the amide within the active site is critical for effective CPT binding.
Collapse
Affiliation(s)
- William C Colley
- Department of Molecular Pharmacology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | | | |
Collapse
|
24
|
Root DE, Flaherty SP, Kelley BP, Stockwell BR. Biological mechanism profiling using an annotated compound library. ACTA ACUST UNITED AC 2004; 10:881-92. [PMID: 14522058 DOI: 10.1016/j.chembiol.2003.08.009] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We present a method for testing many biological mechanisms in cellular assays using an annotated library of 2036 small organic molecules. This annotated compound library represents a large-scale collection of compounds with diverse, experimentally confirmed biological mechanisms and effects. We found that this chemical library is (1) more structurally diverse than conventional, commercially available libraries, (2) enriched in active compounds in a tumor cell viability assay, and (3) capable of generating hypotheses regarding biological mechanisms underlying cellular processes. We elucidated biological mechanisms relevant to the antiproliferative activity of 85 compounds from this library that were selected using a high-throughput cell viability screen. We developed a novel automated scoring system for identifying statistically enriched mechanisms among such a subset of compounds. This scoring system can identify both previously known and potentially novel antiproliferative mechanisms.
Collapse
Affiliation(s)
- David E Root
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
| | | | | | | |
Collapse
|
25
|
Dolma S, Lessnick SL, Hahn WC, Stockwell BR. Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. Cancer Cell 2003; 3:285-96. [PMID: 12676586 DOI: 10.1016/s1535-6108(03)00050-3] [Citation(s) in RCA: 1035] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We used synthetic lethal high-throughput screening to interrogate 23,550 compounds for their ability to kill engineered tumorigenic cells but not their isogenic normal cell counterparts. We identified known and novel compounds with genotype-selective activity, including doxorubicin, daunorubicin, mitoxantrone, camptothecin, sangivamycin, echinomycin, bouvardin, NSC146109, and a novel compound that we named erastin. These compounds have increased activity in the presence of hTERT, the SV40 large and small T oncoproteins, the human papillomavirus type 16 (HPV) E6 and E7 oncoproteins, and oncogenic HRAS. We found that overexpressing hTERT and either E7 or LT increased expression of topoisomerase 2alpha and that overexpressing RAS(V12) and ST both increased expression of topoisomerase 1 and sensitized cells to a nonapoptotic cell death process initiated by erastin.
Collapse
Affiliation(s)
- Sonam Dolma
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
| | | | | | | |
Collapse
|
26
|
|
27
|
Staker BL, Hjerrild K, Feese MD, Behnke CA, Burgin AB, Stewart L. The mechanism of topoisomerase I poisoning by a camptothecin analog. Proc Natl Acad Sci U S A 2002; 99:15387-92. [PMID: 12426403 PMCID: PMC137726 DOI: 10.1073/pnas.242259599] [Citation(s) in RCA: 612] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We report the x-ray crystal structure of human topoisomerase I covalently joined to double-stranded DNA and bound to the clinically approved anticancer agent Topotecan. Topotecan mimics a DNA base pair and binds at the site of DNA cleavage by intercalating between the upstream (-1) and downstream (+1) base pairs. Intercalation displaces the downstream DNA, thus preventing religation of the cleaved strand. By specifically binding to the enzyme-substrate complex, Topotecan acts as an uncompetitive inhibitor. The structure can explain several of the known structure-activity relationships of the camptothecin family of anticancer drugs and suggests that there are at least two classes of mutations that can produce a drug-resistant enzyme. The first class includes changes to residues that contribute to direct interactions with the drug, whereas a second class would alter interactions with the DNA and thereby destabilize the drug-binding site.
Collapse
Affiliation(s)
- Bart L Staker
- deCODE genetics, Incorporated, BioStructures Group, 7869 Northeast Day Road West, Bainbridge Island, WA 98110, USA
| | | | | | | | | | | |
Collapse
|
28
|
Woo MH, Vance JR, Marcos ARO, Bailly C, Bjornsti MA. Active site mutations in DNA topoisomerase I distinguish the cytotoxic activities of camptothecin and the indolocarbazole, rebeccamycin. J Biol Chem 2002; 277:3813-22. [PMID: 11733535 DOI: 10.1074/jbc.m110484200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA topoisomerase I (Top1p) catalyzes topological changes in DNA and is the cellular target of the antitumor agent camptothecin (CPT). Non-CPT drugs that target Top1p, such as indolocarbazoles, are under clinical development. However, whether the cytotoxicity of indolocarbazoles derives from Top1p poisoning remains unclear. To further investigate indolocarbazole mechanism, rebeccamycin R-3 activity was examined in vitro and in yeast. Using a series of Top1p mutants, where substitution of residues around the active site tyrosine has well-defined effects on enzyme catalysis, we show that catalytically active, CPT-resistant enzymes remain sensitive to R-3. This indolocarbazole did not inhibit yeast Top1p activity, yet was effective in stabilizing Top1p-DNA complexes. Similar results were obtained with human Top1p, when Ser or His were substituted for Asn-722. The mutations altered enzyme function and sensitivity to CPT, yet R-3 poisoning of Top1p was unaffected. Moreover, top1delta, rad52delta yeast cells expressing human Top1p, but not catalytically inactive Top1Y723Fp, were sensitive to R-3. These data support hTop1p as the cellular target of R-3 and indicate that distinct drug-enzyme interactions at the active site are required for efficient poisoning by R-3 or CPT. Furthermore, resistance to one poison may potentiate cell sensitivity to structurally distinct compounds that also target Top1p.
Collapse
Affiliation(s)
- Michael H Woo
- Department of Molecular Pharmacology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | | | |
Collapse
|