1
|
Age-related changes in the transcriptome of antibody-secreting cells. Oncotarget 2017; 7:13340-53. [PMID: 26967249 PMCID: PMC4924646 DOI: 10.18632/oncotarget.7958] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/28/2016] [Indexed: 12/18/2022] Open
Abstract
We analyzed age-related defects in B cell populations from young and aged mice. Microarray analysis of bone marrow resident antibody secreting cells (ASCs) showed significant changes upon aging, affecting multiple genes, pathways and functions including those that play a role in immune regulation, humoral immune responses, chromatin structure and assembly, cell metabolism and the endoplasmic reticulum (ER) stress response. Further analysis showed upon aging defects in energy production through glucose catabolism with reduced oxidative phosphorylation. In addition aged B cells had increased levels of reactive oxygen-species (ROS), which was linked to enhanced expression of the co-inhibitor programmed cell death (PD)-1.
Collapse
|
2
|
Vinuesa CG, Linterman MA, Goodnow CC, Randall KL. T cells and follicular dendritic cells in germinal center B-cell formation and selection. Immunol Rev 2010; 237:72-89. [PMID: 20727030 DOI: 10.1111/j.1600-065x.2010.00937.x] [Citation(s) in RCA: 210] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Germinal centers (GCs) are specialized microenvironments formed after infection where activated B cells can mutate their B-cell receptors to undergo affinity maturation. A stringent process of selection allows high affinity, non-self-reactive B cells to become long-lived memory B cells and plasma cells. While the precise mechanism of selection is still poorly understood, the last decade has advanced our understanding of the role of T cells and follicular dendritic cells (FDCs) in GC B-cell formation and selection. T cells and non-T-cell-derived CD40 ligands on FDCs are essential for T-dependent (TD) and T-independent GC formation, respectively. TD-GC formation requires Bcl-6-expressing T cells capable of signaling through SAP, which promotes formation of stable T:B conjugates. By contrast, differentiation of B blasts along the extrafollicular pathway is less dependent on SAP. T-follicular helper (Tfh) cell-derived CD40L, interleukin-21, and interleukin-4 play important roles in GC B-cell proliferation, survival, and affinity maturation. A role for FDC-derived integrin signals has also emerged: GC B cells capable of forming an immune synapse with FDCs have a survival advantage. This emerges as a powerful mechanism to ensure death of B cells that bind self-reactive antigen, which would not normally be presented on FDCs.
Collapse
Affiliation(s)
- Carola G Vinuesa
- John Curtin School of Medical Research and Australian Phenomics Facility, Australian National University, Canberra, ACT, Australia.
| | | | | | | |
Collapse
|
3
|
Abstract
Vaccines work by eliciting an immune response and consequent immunological memory that mediates protection from infection or disease. Recently, new methods have been developed to dissect the immune response in experimental animals and humans, which have led to increased understanding of the molecular mechanisms that control differentiation and maintenance of memory T and B cells. In this review we will provide an overview of the cellular organization of immune memory and underline some of the outstanding questions on immunological memory and how they pertain to vaccination strategies. Finally we will discuss how we can learn about antigen design from the interrogation of our memory T and B cells-a journey from vaccines to memory and back.
Collapse
Affiliation(s)
- Federica Sallusto
- Institute for Research in Biomedicine, CH-6500 Bellinzona, Switzerland.
| | | | | | | |
Collapse
|
4
|
Haining WN, Wherry EJ. Integrating genomic signatures for immunologic discovery. Immunity 2010; 32:152-61. [PMID: 20189480 DOI: 10.1016/j.immuni.2010.02.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 02/04/2010] [Accepted: 02/04/2010] [Indexed: 11/27/2022]
Abstract
Understanding heterogeneity in adaptive immune responses is essential to dissect pathways of memory B and T cell differentiation and to define correlates of protective immunity. Traditionally, immunologists have deconvoluted this heterogeneity with flow cytometry--with combinations of markers to define signatures that represent specific lineages, differentiation states, and functions. Genome-scale technologies have become widely available and provide the ability to define expression signatures--sets of genes--that represent discrete biological properties of cell populations. Because genomic signatures can serve as surrogates of a phenotype, function, or cell state, they can integrate phenotypic information between experiments, cell types, and species. Here, we discuss how integration of well-defined expression signatures across experimental conditions together with functional analysis of their component genes could provide new opportunities to dissect the complexity of the adaptive immune response and map the immune response to vaccines and pathogens.
Collapse
Affiliation(s)
- W Nicholas Haining
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
5
|
Grigoryev YA, Kurian SM, Nakorchevskiy AA, Burke JP, Campbell D, Head SR, Deng J, Kantor AB, Yates JR, Salomon DR. Genome-wide analysis of immune activation in human T and B cells reveals distinct classes of alternatively spliced genes. PLoS One 2009; 4:e7906. [PMID: 19936255 PMCID: PMC2775942 DOI: 10.1371/journal.pone.0007906] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Accepted: 10/17/2009] [Indexed: 12/22/2022] Open
Abstract
Alternative splicing of pre-mRNA is a mechanism that increases the protein diversity of a single gene by differential exon inclusion/exclusion during post-transcriptional processing. While alternative splicing is established to occur during lymphocyte activation, little is known about the role it plays during the immune response. Our study is among the first reports of a systematic genome-wide analysis of activated human T and B lymphocytes using whole exon DNA microarrays integrating alternative splicing and differential gene expression. Purified human CD2+ T or CD19+ B cells were activated using protocols to model the early events in post-transplant allograft immunity and sampled as a function of time during the process of immune activation. Here we show that 3 distinct classes of alternatively spliced and/or differentially expressed genes change in an ordered manner as a function of immune activation. We mapped our results to function-based canonical pathways and demonstrated that some are populated by only one class of genes, like integrin signaling, while other pathways, such as purine metabolism and T cell receptor signaling, are populated by all three classes of genes. Our studies augment the current view of T and B cell activation in immunity that has been based exclusively upon differential gene expression by providing evidence for a large number of molecular networks populated as a function of time and activation by alternatively spliced genes, many of which are constitutively expressed.
Collapse
Affiliation(s)
- Yevgeniy A Grigoryev
- Department of Molecular & Experimental Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
Diffuse Large B cell lymphoma (DLBCL) is characterized by a markedly heterogeneous clinical course and response to therapy that is not appreciated with standard histopathologic and immunophenotypic evaluations. Analysis of global gene expression using DNA microarrays has the potential to improve the classification of lymphomas. Molecular profiling may allow the description of specific disease subtypes with similar clinical behavior and outcome. In addition, gene expression profiling has led to the discovery of new putative genes and a better understanding of aberrant signaling pathways. These insights may lead to the discovery of new targeted therapies. This review describes the progress that has been made in our understanding of DLBCL as a result of gene expression profiling.
Collapse
Affiliation(s)
- Daniel Morgensztern
- Division of Hematology/Oncology, Department of Medicine, Washington University in St Louis, St Louis, MO, USA
| | | | | |
Collapse
|
7
|
Linterman MA, Rigby RJ, Wong RK, Yu D, Brink R, Cannons JL, Schwartzberg PL, Cook MC, Walters GD, Vinuesa CG. Follicular helper T cells are required for systemic autoimmunity. ACTA ACUST UNITED AC 2009; 206:561-76. [PMID: 19221396 PMCID: PMC2699132 DOI: 10.1084/jem.20081886] [Citation(s) in RCA: 493] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Production of high-affinity pathogenic autoantibodies appears to be central to the pathogenesis of lupus. Because normal high-affinity antibodies arise from germinal centers (GCs), aberrant selection of GC B cells, caused by either failure of negative selection or enhanced positive selection by follicular helper T (T(FH)) cells, is a plausible explanation for these autoantibodies. Mice homozygous for the san allele of Roquin, which encodes a RING-type ubiquitin ligase, develop GCs in the absence of foreign antigen, excessive T(FH) cell numbers, and features of lupus. We postulated a positive selection defect in GCs to account for autoantibodies. We first demonstrate that autoimmunity in Roquin(san/san) (sanroque) mice is GC dependent: deletion of one allele of Bcl6 specifically reduces the number of GC cells, ameliorating pathology. We show that Roquin(san) acts autonomously to cause accumulation of T(FH) cells. Introduction of a null allele of the signaling lymphocyte activation molecule family adaptor Sap into the sanroque background resulted in a substantial and selective reduction in sanroque T(FH) cells, and abrogated formation of GCs, autoantibody formation, and renal pathology. In contrast, adoptive transfer of sanroque T(FH) cells led to spontaneous GC formation. These findings identify T(FH) dysfunction within GCs and aberrant positive selection as a pathway to systemic autoimmunity.
Collapse
Affiliation(s)
- Michelle A Linterman
- Division of Immunology and Genetics, The John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Yu D, Cook MC, Shin DM, Silva DG, Marshall J, Toellner KM, Havran WL, Caroni P, Cooke MP, Morse HC, MacLennan ICM, Goodnow CC, Vinuesa CG. Axon growth and guidance genes identify T-dependent germinal centre B cells. Immunol Cell Biol 2008; 86:3-14. [PMID: 17938642 DOI: 10.1038/sj.icb.7100123] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Selection of B cells subjected to hypermutation in germinal centres (GC) during T cell-dependent (TD) antibody responses yields memory cells and long-lived plasma cells that produce high affinity antibodies biased to foreign antigens rather than self-antigens. GC also form in T-independent (TI) responses to polysaccharide antigens but failed selection results in GC involution and memory cells are not generated. To date there are no markers that allow phenotypic distinction of T-dependent and TI germinal centre B cells. We compared the global gene expression of GC B cells purified from mice immunized with either TD or TI antigens and identified eighty genes that are differentially expressed in TD GC. Significantly, the largest cluster comprises genes involved in growth and guidance of neuron axons such as Plexin B2, Basp1, Nelf, Shh, Sc4mol and Sult4alpha. This is consistent with formation of long neurite (axon and dendrite)-like structures by mouse and human GC B cells, which may facilitate T:B cell interactions within GC, affinity maturation and B cell memory formation. Expression of BASP1 and PLEXIN B2 protein is very low or undetectable in resting and TI GC B cells, but markedly upregulated in GC B cells induced in the presence of T cell help. Finally we show some of the axon growth genes upregulated in TD-GC B cells including Basp1, Shh, Sult4alpha, Sc4mol are also preferentially expressed in post-GC B cell neoplasms.
Collapse
Affiliation(s)
- Di Yu
- Division of Immunology and Genetics, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Bhattacharya D, Cheah MT, Franco CB, Hosen N, Pin CL, Sha WC, Weissman IL. Transcriptional profiling of antigen-dependent murine B cell differentiation and memory formation. THE JOURNAL OF IMMUNOLOGY 2007; 179:6808-19. [PMID: 17982071 DOI: 10.4049/jimmunol.179.10.6808] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Humoral immunity is characterized by the generation of Ab-secreting plasma cells and memory B cells that can more rapidly generate specific Abs upon Ag exposure than their naive counterparts. To determine the intrinsic differences that distinguish naive and memory B cells and to identify pathways that allow germinal center B cells to differentiate into memory B cells, we compared the transcriptional profiles of highly purified populations of these three cell types along with plasma cells isolated from mice immunized with a T-dependent Ag. The transcriptional profile of memory B cells is similar to that of naive B cells, yet displays several important differences, including increased expression of activation-induced deaminase and several antiapoptotic genes, chemotactic receptors, and costimulatory molecules. Retroviral expression of either Klf2 or Ski, two transcriptional regulators specifically enriched in memory B cells relative to their germinal center precursors, imparted a competitive advantage to Ag receptor and CD40-engaged B cells in vitro. These data suggest that humoral recall responses are more rapid than primary responses due to the expression of a unique transcriptional program by memory B cells that allows them to both be maintained at high frequencies and to detect and rapidly respond to antigenic re-exposure.
Collapse
Affiliation(s)
- Deepta Bhattacharya
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford Cancer Center, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | | | | | | | | | | | | |
Collapse
|
10
|
Cattoretti G, Büttner M, Shaknovich R, Kremmer E, Alobeid B, Niedobitek G. Nuclear and cytoplasmic AID in extrafollicular and germinal center B cells. Blood 2006; 107:3967-75. [PMID: 16439679 DOI: 10.1182/blood-2005-10-4170] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Activation-induced cytidine deaminase (AID) is necessary for immunoglobulin somatic hypermutation (SHM) and class switch recombination (CSR) in T-dependent immune response in germinal centers (GCs). The structural similarity of AID with RNA-editing enzymes and its largely cytoplasmic location have fueled controversial views of its mode of interaction with DNA. We show that AID, a mature B-cell-restricted cytoplasmic antigen, is relocated into the nucleus in 2.5% of CDKN1B(-), CCNB1(-) GC cells. The GC dark zone and the outer zone (OZ), but not the light zone, contain nuclear and cytoplasmic AID(+) blasts. AID(+) cells in the OZ are in contact with T cells and CD23(-) follicular dendritic cells. In addition, AID is expressed in extrafollicular large proliferating B cells, 14% of which have nuclear AID. GC and extrafollicular AID(+) cells express E47 but not the inhibiting BHLH protein Id2. Outside the GC, AID(+) B cells are in contact with T cells and show partial evidence of CD40 plus bcr stimulation-dependent signature (CCL22, JunB, cMYC, CD30) but lack early and late plasma cell markers. The distribution of nuclear AID is consistent with the topography of SHM and CSR inside the GC and in extrafollicular activated B cells.
Collapse
Affiliation(s)
- Giorgio Cattoretti
- Institute for Cancer Genetics, 1150 St Nicholas Avenue, Russ Berrie Science Pavilion, Rm 301, Columbia University, New York, NY 10032, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Abbas AR, Baldwin D, Ma Y, Ouyang W, Gurney A, Martin F, Fong S, van Lookeren Campagne M, Godowski P, Williams PM, Chan AC, Clark HF. Immune response in silico (IRIS): immune-specific genes identified from a compendium of microarray expression data. Genes Immun 2005; 6:319-31. [PMID: 15789058 DOI: 10.1038/sj.gene.6364173] [Citation(s) in RCA: 301] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Immune cell-specific expression is one indication of the importance of a gene's role in the immune response. We have compiled a compendium of microarray expression data for virtually all human genes from six key immune cell types and their activated and differentiated states. Immune Response In Silico (IRIS) is a collection of genes that have been selected for specific expression in immune cells. The expression pattern of IRIS genes recapitulates the phylogeny of immune cells in terms of the lineages of their differentiation. Gene Ontology assignments for IRIS genes reveal significant involvement in inflammation and immunity. Genes encoding CD antigens, cytokines, integrins and many other gene families playing key roles in the immune response are highly represented. IRIS also includes proteins of unknown function and expressed sequence tags that may not represent genes. The predicted cellular localization of IRIS proteins is evenly distributed between cell surface and intracellular compartments, indicating that immune specificity is important at many points in the signaling pathways of the immune response. IRIS provides a resource for further investigation into the function of the immune system and immune diseases.
Collapse
Affiliation(s)
- A R Abbas
- Department of Bioinformatics, Genentech, Inc., South San Francisco, CA 94080, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Berry JD, Boese DJ, Law DKS, Zollinger WD, Tsang RSW. Molecular analysis of monoclonal antibodies to group variant capsular polysaccharide of Neisseria meningitidis: recurrent heavy chains and alternative light chain partners. Mol Immunol 2005; 42:335-44. [PMID: 15589322 PMCID: PMC7126428 DOI: 10.1016/j.molimm.2004.09.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2004] [Indexed: 11/27/2022]
Abstract
We determined the molecular sequence of monoclonal antibodies (mAbs) to serogroups B and C capsular polysaccharides (PS) of Neisseria meningitidis. N. meningitidis infections are a leading cause of bacterial septicemia and meningitis in humans. Antibodies to PS are fundamental to host defense and diagnostics. The polysaccharide capsule of group B N. meningitidis is poorly immunogenic and thus is an important model for studying pathogen-host co-evolution through understanding the molecular basis of the host immune response. We used a modified reverse-transcriptase PCR to amplify and sequence the V-genes of murine hybridomas produced against types B and C capsular PS. Databank analysis of the sequences encoding the V-genes of type C capsular PS mAb, 4-2-C, reveal that heavy chain alleles are recurrently used to encode this specificity in mice. Interestingly, a V-gene from the same germline family also encodes the V-domain of mAbs 2-2-B, which targets the antigenically distinct serogroup B capsular PS. Somatic mutation, junctional diversity and alternative light chains collectively impart the specificity for these serologically distinct epitopes. Knowledge of the specific immunoglobulin genes used to target common bacterial virulence factors may lead to insights on pathogen-host co-evolution, and the potential use of this information in pre-symptomatic diagnosis is discussed.
Collapse
Affiliation(s)
- Jody D Berry
- National Center for Foreign Animal Disease, Canadian Food Inspection Agency, 1015 Arlington Street, Winnipeg, Manitoba, Canada R3E 3M4.
| | | | | | | | | |
Collapse
|
13
|
Abstract
Recent technological advances in genomics, proteomics and bioinformatics have offered new insights into the molecular mechanisms that underlie lymphocyte signaling and function, and the development of new tools in these areas has opened up new avenues for biological investigation. By adding a quantitative dimension to lymphocyte proteome profiling, molecular machines and spatiotemporal regulatory processes can now be analyzed using such discovery-driven approaches. Biologists employing genomic and proteomic tools are gathering data at increasing speed and their struggle to extract maximal biological information is helped by new software tools that enable the detailed comparison of multiple datasets.
Collapse
Affiliation(s)
- Bernd Wollscheid
- Institute for Systems Biology, 1441 North 34th Street, Seattle, Washington 98103, USA.
| | | | | |
Collapse
|
14
|
Bryant PA, Venter D, Robins-Browne R, Curtis N. Chips with everything: DNA microarrays in infectious diseases. THE LANCET. INFECTIOUS DISEASES 2004; 4:100-11. [PMID: 14871635 DOI: 10.1016/s1473-3099(04)00930-2] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Two developments are set to revolutionise research in and clinical management of infectious diseases. First, the completion of the human genome project together with the sequencing of many pathogen genomes, and second, the development of microarray technology. This review explains the principles underlying DNA microarrays and highlights the uses to which they are being put to investigate the molecular basis of infectious diseases. Pathogen studies enable identification of both known and novel organisms, understanding of genetic evolution, and investigation of determinants of pathogenicity. Host studies show the complexities of development and activation of both innate and adaptive immunity. Host-pathogen studies allow global analysis of gene expression during pathogenesis. Microarray technology will accelerate our understanding of the complex genetic processes underlying the interaction between microorganisms and the host, with consequent improvements in the diagnosis, treatment, and prevention of infectious diseases.
Collapse
Affiliation(s)
- Penelope A Bryant
- Department of Paediatrics, University of Melbourne, Murdoch Children's Research Institute, Victoria, Australia
| | | | | | | |
Collapse
|
15
|
MacLennan ICM, Toellner KM, Cunningham AF, Serre K, Sze DMY, Zúñiga E, Cook MC, Vinuesa CG. Extrafollicular antibody responses. Immunol Rev 2003; 194:8-18. [PMID: 12846803 DOI: 10.1034/j.1600-065x.2003.00058.x] [Citation(s) in RCA: 464] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In adaptive antibody responses, B cells are induced to grow either in follicles where they form germinal centers or in extrafollicular foci as plasmablasts. Extrafollicular growth typically occurs in the medullary cords of lymph nodes and in foci in the red pulp of the spleen. It is not a feature of secondary lymphoid tissue associated with the internal epithelia of the body. All types of naïve and memory B cells can be recruited into extrafollicular responses. These responses are associated with immunoglobulin class switching but, at the most, only low-level hypermutation.
Collapse
Affiliation(s)
- Ian C M MacLennan
- MRC Center for Immune Regulation, University of Birmingham, Birmingham, UK.
| | | | | | | | | | | | | | | |
Collapse
|