1
|
Hu M, Bogoyevitch MA, Jans DA. Impact of Respiratory Syncytial Virus Infection on Host Functions: Implications for Antiviral Strategies. Physiol Rev 2020; 100:1527-1594. [PMID: 32216549 DOI: 10.1152/physrev.00030.2019] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Respiratory syncytial virus (RSV) is one of the leading causes of viral respiratory tract infection in infants, the elderly, and the immunocompromised worldwide, causing more deaths each year than influenza. Years of research into RSV since its discovery over 60 yr ago have elucidated detailed mechanisms of the host-pathogen interface. RSV infection elicits widespread transcriptomic and proteomic changes, which both mediate the host innate and adaptive immune responses to infection, and reflect RSV's ability to circumvent the host stress responses, including stress granule formation, endoplasmic reticulum stress, oxidative stress, and programmed cell death. The combination of these events can severely impact on human lungs, resulting in airway remodeling and pathophysiology. The RSV membrane envelope glycoproteins (fusion F and attachment G), matrix (M) and nonstructural (NS) 1 and 2 proteins play key roles in modulating host cell functions to promote the infectious cycle. This review presents a comprehensive overview of how RSV impacts the host response to infection and how detailed knowledge of the mechanisms thereof can inform the development of new approaches to develop RSV vaccines and therapeutics.
Collapse
Affiliation(s)
- MengJie Hu
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Victoria, Australia; and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | - Marie A Bogoyevitch
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Victoria, Australia; and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | - David A Jans
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Victoria, Australia; and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
2
|
In Reply: Viral Etiology of Bronchiolitis Among Pediatric Patients. Pediatr Infect Dis J 2019; 38:e233-e234. [PMID: 31261355 DOI: 10.1097/inf.0000000000002397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
3
|
Transient Tachypnea of the Newborn Is Associated With an Increased Risk of Hospitalization Due to Respiratory Syncytial Virus Bronchiolitis. Pediatr Infect Dis J 2019; 38:419-421. [PMID: 30882737 DOI: 10.1097/inf.0000000000002057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Transient tachypnea of the newborn (TTN) is a self-limiting respiratory disorder, resulting from a failure to clear the lungs of perinatal fluid. As similar pathophysiologic features are present in children with respiratory syncytial virus (RSV) bronchiolitis, we hypothesized that these two conditions may be connected. METHODS This was a population-based cohort study that included all children born in term (≥37 weeks of gestation) without congenital malformations in Finland between 1996 and 2015. Children diagnosed with TTN (International Statistical Classification of Diseases and Related Health Problems, 10th Revision [ICD-10] code P22.1) after birth and children hospitalized because of RSV bronchiolitis (ICD-10 code J21.0) during first year of life were identified from the Medical Birth Register and National Hospital Discharge Register, respectively, and the data were linked. Logistic regression was used to analyze the association between these two conditions. RESULTS Of the 1,042,045 children included in the study cohort, 16,327 (1.57%) were diagnosed with TTN at birth and 12,345 (1.18%) were hospitalized because of RSV bronchiolitis during the first year of life. The rate of RSV hospitalization was higher in children with a history of TTN compared with children without TTN diagnosis [260/16,327 (1.59%) vs. 12,085/1,025,718 (1.18%), respectively; P value <0.0001]. After adjusting for gestational age at birth, mode of delivery, gender, birth weight, multiple births, older siblings and maternal smoking, TTN was associated with increased risk for RSV hospitalization (odds ratio: 1.31, 95% confidence interval: 1.16-1.48). CONCLUSIONS TTN diagnosis after birth was associated with increased risk for RSV hospitalization during the first year of life.
Collapse
|
4
|
Cui Y, Li H, Wu S, Zhao R, Du D, Ding Y, Nie H, Ji HL. Formaldehyde impairs transepithelial sodium transport. Sci Rep 2016; 6:35857. [PMID: 27762337 PMCID: PMC5071906 DOI: 10.1038/srep35857] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 10/06/2016] [Indexed: 01/26/2023] Open
Abstract
Unsaturated oxidative formaldehyde is a noxious aldehyde in cigarette smoke that causes edematous acute lung injury. However, the mechanistic effects of formaldehyde on lung fluid transport are still poorly understood. We examined how formaldehyde regulates human epithelial sodium channels (ENaC) in H441 and expressed in Xenopus oocytes and exposed mice in vivo. Our results showed that formaldehyde reduced mouse transalveolar fluid clearance in vivo. Formaldehyde caused a dose-dependent inhibition of amiloride-sensitive short-circuit Na+ currents in H441 monolayers and of αβγ-ENaC channel activity in oocytes. α-ENaC protein was reduced, whereas phosphorylation of the extracellular regulated protein kinases 1 and 2 (ERK1/2) increased significantly post exposure. Moreover, both α- and γ-ENaC transcripts were down-regulated. Reactive oxygen species (ROS) was elevated significantly by formaldehyde in addition to markedly augmented membrane permeability of oocytes. These data suggest that formaldehyde contributes to edematous acute lung injury by reducing transalveolar Na+ transport, through decreased ENaC activity and enhanced membrane depolarization, and by elevating ROS production over long-term exposure.
Collapse
Affiliation(s)
- Yong Cui
- Department of Anesthesiology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Huiming Li
- Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, Liaoning, China
| | - Sihui Wu
- Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, Liaoning, China
| | - Runzhen Zhao
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| | - Deyi Du
- Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, Liaoning, China
| | - Yan Ding
- Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, Liaoning, China
| | - Hongguang Nie
- Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, Liaoning, China
| | - Hong-Long Ji
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| |
Collapse
|
5
|
Song W, Yu Z, Doran SF, Ambalavanan N, Steele C, Garantziotis S, Matalon S. Respiratory syncytial virus infection increases chlorine-induced airway hyperresponsiveness. Am J Physiol Lung Cell Mol Physiol 2015; 309:L205-10. [PMID: 26071553 DOI: 10.1152/ajplung.00159.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 06/08/2015] [Indexed: 12/21/2022] Open
Abstract
Exposure to chlorine (Cl2) damages airway and alveolar epithelia resulting in acute lung injury and reactive airway hyperresponsiveness (AHR) to methacholine. However, little is known about the effect of preexisting respiratory disease on Cl2-induced lung injury. By using a murine respiratory syncytial virus (RSV) infection model, we found that preexisting RSV infection increases Cl2 (187 ppm for 30 min)-induced lung inflammation and airway AHR at 24 h after exposure (5 days after infection). RSV infection and Cl2 exposure synergistically induced oxygen desaturation and neutrophil infiltration and increased MCP-1, MIP-1β, IL-10, IFN-γ, and RANTES concentrations in the bronchoalveolar lavage fluid (BALF). In contrast, levels of type 2 cytokines (i.e., IL-4, IL-5, IL-9, and IL-13) were not significantly affected by either RSV infection or Cl2 exposure. Cl2 exposure, but not RSV infection, induced AHR to methacholine challenge as measured by flexiVent. Moreover, preexisting RSV infection amplified BALF levels of hyaluronan (HA) and AHR. The Cl2-induced AHR was mitigated by treatment with inter-α-trypsin inhibitor antibody, which inhibits HA signaling, suggesting a mechanism of HA-mediated AHR from exacerbated oxidative injury. Our results show for the first time that preexisting RSV infection predisposes the lung to Cl2-induced injury. These data emphasize the necessity for further research on the effects of Cl2 in vulnerable populations and the development of appropriate treatments.
Collapse
Affiliation(s)
- Weifeng Song
- Department of Anesthesiology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Zhihong Yu
- Department of Anesthesiology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Stephen F Doran
- Department of Anesthesiology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Namasivayam Ambalavanan
- Department of Pediatrics (Neonatology), School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Chad Steele
- Department of Medicine (Pulmonary, Critical Care and Sleep), and the Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Stavros Garantziotis
- Laboratory of Respiratory Biology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Sadis Matalon
- Department of Anesthesiology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama;
| |
Collapse
|
6
|
van den Berg E, Bem RA, Bos AP, Lutter R, van Woensel JBM. The effect of TIP on pneumovirus-induced pulmonary edema in mice. PLoS One 2014; 9:e102749. [PMID: 25047452 PMCID: PMC4105480 DOI: 10.1371/journal.pone.0102749] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 06/20/2014] [Indexed: 01/14/2023] Open
Abstract
Background Pulmonary edema plays a pivotal role in the pathophysiology of respiratory syncytial virus (RSV)-induced respiratory failure. In this study we determined whether treatment with TIP (AP301), a synthetic cyclic peptide that mimics the lectin-like domain of human TNF, decreases pulmonary edema in a mouse model of severe human RSV infection. TIP is currently undergoing clinical trials as a therapy for pulmonary permeability edema and has been shown to decrease pulmonary edema in different lung injury models. Methods C57BL/6 mice were infected with pneumonia virus of mice (PVM) and received TIP or saline (control group) by intratracheal instillation on day five (early administration) or day seven (late administration) after infection. In a separate set of experiments the effect of multiple dose administration of TIP versus saline was tested. Pulmonary edema was determined by the lung wet-to-dry (W/D) weight ratio and was assessed at different time-points after the administration of TIP. Secondary outcomes included clinical scores and lung cellular response. Results TIP did not have an effect on pulmonary edema in different dose regimens at different time points during PVM infection. In addition, TIP administration did not affect clinical severity scores or lung cellular response. Conclusion In this murine model of severe RSV infection TIP did not affect pulmonary edema nor course of disease.
Collapse
Affiliation(s)
- Elske van den Berg
- Pediatric Intensive Care Unit, Emma Children's Hospital, Academic Medical Center, Amsterdam, The Netherlands
- * E-mail:
| | - Reinout A. Bem
- Pediatric Intensive Care Unit, Emma Children's Hospital, Academic Medical Center, Amsterdam, The Netherlands
| | - Albert P. Bos
- Pediatric Intensive Care Unit, Emma Children's Hospital, Academic Medical Center, Amsterdam, The Netherlands
| | - Rene Lutter
- Department of Respiratory Medicine and Experimental Immunology, Academic Medical Center, Amsterdam, The Netherlands
| | - Job B. M. van Woensel
- Pediatric Intensive Care Unit, Emma Children's Hospital, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Respiratory syncytial virus infection disrupts monolayer integrity and function in cystic fibrosis airway cells. Viruses 2013; 5:2260-71. [PMID: 24056672 PMCID: PMC3798900 DOI: 10.3390/v5092260] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 09/12/2013] [Accepted: 09/16/2013] [Indexed: 11/17/2022] Open
Abstract
Background: Respiratory Syncytial Virus (RSV) infection is a common contributor to pulmonary symptoms in children with cystic fibrosis (CF). Here we examined RSV infection in immortalized bronchial epithelial cells (CFBE41o-) expressing wild-type (wt) or F508del cystic fibrosis transmembrane conductance regulator (CFTR), for monolayer integrity and RSV replication. Methods: CFBE41o- monolayers expressing wt or F508del CFTR were grown on permeable supports and inoculated with RSV A2 strain. Control experiments utilized UV-inactivated RSV and heat-killed RSV. Monolayer resistance and RSV production was monitored for up to six days post-infection. Results: Within 24 h, a progressive decrease in monolayer resistance was observed in RSV infected F508del CFBE41o- cells, while the monolayer integrity of RSV infected wt CFTR CFBE41o- cells remained stable. RSV replication was necessary to disrupt F508del CFBE41o- monolayers as UV-irradiated and heat killed RSV had no effect on monolayer integrity, with an earlier and much more pronounced peak in RSV titer noted in F508del relative to wt CFTR-expressing cells. RSV infection of wt CFBE41o- monolayers also resulted in blunting of CFTR response. Conclusions: These findings identify an enhanced sensitivity of CFBE41o- cells expressing F508del CFTR to RSV infection, replication and monolayer disruption independent of the cellular immune response, and provide a novel mechanism by which cystic fibrosis airway epithelia are susceptible to RSV-dependent injury.
Collapse
|
8
|
Song JJ, Kwon SK, Cho CG, Park SW, Chae SW. Expression of ENaC in LPS-induced inflammation of middle ear mucosa. Acta Otolaryngol 2012; 132:1145-50. [PMID: 22830999 DOI: 10.3109/00016489.2012.697640] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONCLUSION The expression of all three subunits of the epithelial sodium channel (ENaC) decreased after the lipopolysaccharide (LPS) injection and normalized as the fluid collection resolved. This implies that fluid collection in acute otitis media may be caused by the inhibition of ENaC function. OBJECTIVES We investigated the expression levels of subunits of ENaC after an injection of LPS into the middle ear cavity of rats. METHODS Seventy-two Sprague-Dawley rats were assigned randomly into the five groups that received an LPS injection and the control group. A transtympanic injection of LPS (1 mg/ml) was done and rats were sacrificed 6, 12, 24, 72, and 120 h after the procedure. Real-time RT-PCR was carried out for ENaC-α, -β, -γ, and immunohistochemistry was performed for ENaC-α and -β. RESULTS The level of ENaC-α expression decreased 0.50-fold and 0.55-fold at 6 and 12 h, respectively (p < 0.05), but it normalized at 24 h. It increased 3.64-fold at 72 h and 3.24-fold at 120 h (p < 0.05). At 6 and 12 h after the LPS injection into the middle ear cavity, inflammation was induced and ENaC-α immunoreactivity decreased. At 24 h, ENaC-α immunoreactivity was normalized, then at 72 and 120 h after the injection it was increased.
Collapse
Affiliation(s)
- Jae-Jun Song
- Department of Otorhinolaryngology-Head and Neck Surgery, Dongguk University Ilsan Hospital, Korea
| | | | | | | | | |
Collapse
|
9
|
Interaction of purinergic receptors with GPCRs, ion channels, tyrosine kinase and steroid hormone receptors orchestrates cell function. Purinergic Signal 2011; 8:91-103. [PMID: 21887492 DOI: 10.1007/s11302-011-9260-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 08/16/2011] [Indexed: 01/26/2023] Open
Abstract
Extracellular purines and pyrimidines have emerged as key regulators of a wide range of physiological and pathophysiological cellular processes acting through P1 and P2 cell surface receptors. Increasing evidence suggests that purinergic receptors can interact with and/or modulate the activity of other classes of receptors and ion channels. This review will focus on the interactions of purinergic receptors with other GPCRs, ion channels, receptor tyrosine kinases, and steroid hormone receptors. Also, the signal transduction pathways regulated by these complexes and their new functional properties are discussed.
Collapse
|
10
|
Abstract
Over the past 20 years, the growing awareness that purinergic signaling events literally shape the immune and inflammatory responses to infection and allergic reactions warranted the development of animal models to assess their importance in vivo in acute lung injury and chronic airway diseases. The pioneer work conducted with the adenosine deaminase (ADA)-deficient mouse provided irrefutable evidence that excess adenosine (ADO) accumulating in the lungs of asthmatic patients, constitutes a powerful mediator of disease severity. These original studies launched the development of murine strains for the two major ectonucleotidases responsible for the generation of airway ADO from ATP release: CD39 and CD73. The dramatic acute lung injury and chronic lung complications, manifested by these knockout mice in response to allergens and endotoxin, demonstrated the critical importance of regulating the availability of ATP and ADO for their receptors. Therapeutic targets are currently evaluated using knockout mice and agonists/antagonists for each ADO receptor (A(1)R, A(2A)R, A(2B)R, and A(3)R) and the predominant ATP receptors (P2Y(2)R and P2X(7)R). This chapter provides an in-depth description of each in vivo study, and a critical view of the therapeutic potentials for the treatment of airway diseases.
Collapse
Affiliation(s)
- Maryse Picher
- and Treatment Center, Cystic Fibrosis Pulmonary Research and T, University of North Carolina, Chapel Hill,, 27599 North Carolina USA
| | - Richard C. Boucher
- University of North Carolina, - Cystic Fibrosis Pulmonary Research and, Thurston-Bowles building - 7011, CHAPEL HILL, 27599 North Carolina USA
| | | |
Collapse
|